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Finite Constants: Characterizations of a New
Decidable Set of Constants

Bernhard Steffen * Jens Knoop t

Abstract

Constant propagation —the replacement of program terms which repre-
sent a unique value at run time by their values— is a classical program
optimization method. In spite of being treated for years, constant propa-
gation still has been in the unsatisfactory phase of heuristics. We enhance
the known constant propagation techniques to obtain an algorithm which
is optimal for programs without loops. Fundamental is the introduction
of a new decidable set of constants, the finite constants. This set has two
different characterizations: a denotational one, which directly specifies our
iterative algorithm and an operational one, which delivers the completeness
or optimality of this algorithm for programs without loops. The algorithm
is implemented in a commercial compiler project !.

1 Motivation

Constant propagation— the replacement of program terms which represent a unique
value at run time by their values — is a classical program optimization method. In
spite of being treated for years, constant propagation still has been in the unsat-
isfactory phase of heuristics. This is mainly because it is in general undecidable
whether a term can be replaced by a constant or not [13, 14]. The proof of un-
decidability constructs for each polynomial a complex term which is constant iff
the polynomial has no natural root. Undecidability then follows from the unde-
cidability of the existence of such a root (cf. Hilbert’s 10¢ problem). But there
is a huge gap between this theoretical result and algorithmic reality. For example
current algorithms fail already for loop-free programs even if the term language
contains only + as an arithmetic operator (Presburger Arithmetic) although this
situation is perfectly decidable.

*Laboratory for Foundations of Computer Science, University of Edinburgh — The author is
supported by the Science and Engineering Research Council grant GC/D69464

tInstitut fiir Informatik und Praktische Mathematik, Christian-Albrechts-Universitit, D-2300
Kiel 1—-The author is supported by the Deutsche Forschungsgemeinschaft grant La 426/9-1
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In this paper we enhance the known constant propagation techniques to obtain
an algorithm which is optimal for programs without loops. Fundamental is the
introduction of a new decidable set of constants, the finite constants. This set has
two different characterizations: an operational one, in which it can be regarded
as a natural generalization of a set arising from an algorithm of Kam and Ullman
[7], and a denotational one, which is suitable for implementation. Indeed, the
. denotational characterization of the finite constants specifies our iterative algo-
rithm, which is actually implemented in a commercial compiler project, and the
operational characterization delivers the completeness or optimality of this algo-
rithm for programs without loops. This can be regarded as a first completeness
or optimality result for constant propagation.

2 Background

The essence of data flow analysis is to determine information which is valid for
every program state, which might result from a program execution reaching a
particular program point.

Completeness therefore is specified by the meet over all paths (MOP) strategy
in the sense of Kam and Ullman [7], which “intersects” (“meets”) all informations
which are valid for the execution of some program path from the starting point
of a program to a particular program point. This execution directed strategy is
closely related to the operational semantics of a program. Unfortunately, it is in
general not computable because the number of program paths might be infinite.

Efficient algorithms are often specified by the mazimum fized point (MFP)
strategy in the sense of Kam and Ullman [7]. This strategy iteratively approx-
imates the greatest solution of a set of simultaneous equations. A pure MFP-
strategy represents control flow by computing the entry information for every
statement as the “intersection” (“meet”) of all exit informations of those state-
ments which might dynamically precede, and it represents the semantics by means
of a (local) semantic functional which is used to derive the exit information of a
statement from its entry information (see Equation System 5.4). Therefore the
MFP-strategy has a denotational character: it compositionally constructs the
global semantics from the semantics of the primitives (statements), which is given
in a domain theoretic way (see section 5).

Coincidence of the operational and the denotational approach can be proved
for a wide range of analysis situations with practical relevance [10, 11, 15, 16, 17].
Here the following theorem is central (cf. [7, 10, 11]):

Theorem 2.1 (Coincidence Theorem)

The solutions of the MFP-strategy and the MOP-strategy coincide, if the abstract
semantics of all primitives (or statements) is given by a distributive function (i.e.



by a function f : C—D with: VC'CC. f(NC)=N{f(c)]|c € C'} for some
complete semi-lattices C and D).

This coincidence is the basis for proving completeness of data flow analysis algo-
rithms (cf. [15, 16, 17]). However, current constant propagation algorithms (for
example [1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 22, 23, 24]) violate the distributivity
condition and fail to detect constancy even in situations in which it is obvious

* from the operational point of view (i.e. for the MOP-strategy). Kam and Ullman

a)

[7] gave a simple example (see Figure 1(a)?) for illustration:

Figure 1
b)
2
X 1= 2 X := 3 X = 2 X = 2
y := 3 y = 2 y := 3 y = 3
3
]z i= x+y Z 1= Xty

The point of the example in Figure 1(a) is that z+y has a unique value in node 3
even though its operands, = and y, are not constant. This phenomenon cannot be
handled by pure MFP-algorithms which inductively determine constant terms on
the basis of data flow informations which, as usual, express constancy of variables
only. They detect at most simple constants [13, 14], i.e. program terms which
only possess constant subterms. An example is the term z + y in Figure 1(b).

Kam and Ullman [7] gave a heuristics which extends the pure MFP-approach
to cover the situation of Figure 1(a). They determine constancy at a node (here
8) by separate investigation of the exit informations of all preceding nodes (here 1
and 2), instead of dealing with the entry information of the considered node. Thus
they obtain z 4+ y=>5 in node 3 because =+ y=>5 at the end of both preceding
nodes.

Kam and Ullman’s heuristics adopts operational ideas for the MFP-approach:
instead of applying the semantic functions locally on the entry information of
the considered statement, they involve backward paths (of length one) and try to
derive constancy on the basis of the entry informations to these paths. Clearly,
this operationally based “one-step-look-back” heuristics fails as soon as we enlarge
the context, see Figure 2:

2Formally, this figure does not display flow graphs in the sense of section 3. The definition
there would require to split the upper nodes into two nodes, which we avoided here for clarity.
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Here, Kam and Ullman’s algorithm detects the constancy of = + y, but it fails
to detect the constancy of z % y. The detection of z * y=6 would require a
“look-back” of two nodes. This observation suggests two pure approaches to
cover the phenomenon of constant terms with non-constant subterms. First, a
purely operational approach: it realizes the idea of an arbitrary (finite) “look-
back” and characterizes the (finite) operational constants (see section 4). Second,
a purely denotational approach: it realizes the idea of associating values not only
with variables, but also with terms, and characterizes the (finite) denotational
constants (see section 5). Indeed, it will turn out that the operational approach
and the denotational approach deliver the same set of finite constants. Moreover,
this set is optimal for programs without loops.

3 Preliminaries

We consider terms ¢ € T which are inductively built from variables z € V
and operators op € Op. The semantics of terms of T is induced by an n-
terpretation I = (DU{L},];), where D denotes a non empty data domain,
1 ¢ D anew datum, and I, a function which associates with each 0-ary opera-
tor ¢ € Op a datum. Iy(c) € D and with each n-ary operator op € Op, n > 1,
a total function Iy(op) : (DU{L})»— (DU{L}), which is assumed to be strict
(ie. Io(op)(dy,..,d,) =L, whenever there exists a j € {1,..,n} with d;=1).
Y={o|loc: V- (DU{_L})} denotes the set of all states and o the dlstmct
start state which assigns L to all variables z € V (this choice of o reflects
the fact that we do not assume anything about the context of the program being
optimized ). The semantics of terms ¢ € T is given by the evaluation function
Eval : T — (¥ —DU{Ll}), which is inductively defined by: Vo € & V¢t € T.
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o(z) ift=x€V
Iy(c) . if t=c isa O-ary
operator

Io(op)(Eval(ty)(0), ., Eval(t,)(0)) if t = op(ty,.,1,)

. In the following we assume D C T, i.e. data d € D are considered as 0-ary
operators that evaluate to d.

As usual, we represent imperative programs as flow graphs G = (N, E,s) with
node set N, edge set E and a distinguished node s € N. (Flow graphs are
obtainable for example by the algorithm of [2]). Nodes n € N represent assign-
ments of the form z:=1t and edges (n,m) € E represent the nondeterministic
branching structure of G. (As usual in data flow analysis we do not consider
deterministic branching here to avoid undecidability. However, it is possible to
heuristically cover some aspects of deterministic branching (see section 9).) s
denotes the unique start node of NN, which is assumed to possess no predecessors.
For simplicity we assume that every node n € N is reachable from s. Addition-
ally, for each node n = (z:=1t) € N we define two functions

6, 1 T—T by §,(s)=g4s[t/z] forall s€T

where [t/z] stands for the simultaneous replacement of all occurrences of by ¢,
and §,:X — 3%, defined by: VoeX VyeV.

1,000 = {

Eval(t)(0) =

Eval(t)(c) ify=1=z
o(y) otherwise

6, realizes the backward substitution and 6, the state transformation caused by
the assignment of node n. The following relationship between 6, and 8, follows
immediately by induction on the structure of the term t € T:

Lemma 3.1 VteT Vo€ X Vn e N. Eval(6,(t))(o) = Eval(t)(0,(c))

A finite path of G is a sequence (ny,..,n,) of nodes such that (n;,n;.,) € E
for j € {1,.,,¢—1}. P(ny,n,) denotes the set of all finite paths from n, to ng.
Now the state transformations ,,: ¥ — X can be extended to cover finite paths
as well. For each path p=(n,,..,n,) € P(n;,n,) we define ©,: T~ by
O,=¢4 0,, if g=1 and O (ng,.nq) © O, otherwise.

Let now X,=, {0"| dp=(s,.,n) €P(s,n): 0,(c )} C T denote the set of all
possible states at a node n € N. Then the set of all terms which represent the
unique value d € D at a node n € N is given by

Constants(n, d)=4 {t € T |Vo € X,,. Eval(t)(c) =d}.

Indeed, Constants(n,d) specifies the ideal (but in general not decidable) solution
of the constant propagation problem.



In the following we generally assume that G= (N, E,s) is an arbitrary but
fixed flow graph, m and n, possibly indexed, are nodes of N, ¢, possibly indexed,
is an element of T and d is an element of D. In particular, all statements are
formulated wrt this choice of G. For example, the set of finite constants is meant
to be the set of finite constants wrt G (see Definition 6.4).

-4 The Operational Approach

For each path p=(n,,...,n,) € P(ny,n,) and each term ¢ € T we define the t-
associated path to p as p,=((ny,1y),...,(ng,%,)) with t, =% and t;=46, (¢;41)
for all 1<j<g. Additionally, let P(ny,n,,t)={p;|p € P(ny,n,)}. Then we
obtain as an inductive extension of Lemma 3.1:

Lemma 4.1 (Substitution Lemma)
Vi€ T Vn e N Vp,=((s,15),., (n,t)) € P(s,n,1).
Eval(ts)(co | ) = Eval(t)(0,(c ))

Moreover, we call p,=((ni,t),.,(n,,1t,)) a relevant path of length k wrt t for
n, p; € Ri(n,t), iff

l.ng=n and {,=1

2. g=k or (¢g<k and n,=s)

3. Vi,j €{1,..,q}. (n;,t;) = (n,t;) = i=j

Note that R, (n,t) denotes the set of all relevant paths from s to n. The central
definition of this section, however, is:

Definition 4.2 For k € wU{w} we define:
1. t is a k-constant of walue d at node n, t € Cy(n,d), iff
Vp;=((n1,t1),., (ng=n,t,=1)) € Ry(n,t). Eval(t;)(c ) = d
2. the set of finite operational constants of value d at node n, Cy,,(n,d), by
Ciop(n,d) =g U{Ci(n,d) | k € w}
3. the set of operational constants of value d at node n, C,,(n,d), by

Cop(n, d) =4 U{Ci(n,d) |k € wU{w}}



Finite operational constants realize the idea of an arbitrary but finite “look-back”
in a pure operational approach (see section 2). They generalize the set of constants
which is characterized by the algorithm of Kam and Ullman [7]. This is in general
not true for subsets Cy(.,.) of Cy,,(.,.) because Kam and Ullman’s algorithm is
enhanced by the denotational mechanism it is based on. Indeed, for every k € w
there exists a program with a Kam/Ullman-constant which is not a k—constant.
On the other hand, there exist already 3—constants which are not Kam/Ullman-
constants. An example is z *y in Figure 2. We choose the pure operational (and
later denotational) approach for our generalization because mixed approaches are
difficult to classify. For example, try to characterize the set of Kam/Ullman—
constants in an intuitive way.

Finally let us state the main result of this section:

Theorem 4.3
1. C,p(n,d) = Constants(n,d)
2. 3k € w. Cy,p(n,d) = Ci(n,d)

Proof: Applying the Substitution Lemma 4.1, we obtain that Constants(n,d)
coincides with

{t € T|Vp,=((s,%s),-, (n, 1)) € P(s,n,1). Eval(ts)(o ) =d}
which can easily be proved to coincide with C,,(n,d). This proves (1).

To show the nontrivial inclusion “C” of (2), let Var(G) and Var(t) denote the set
of all the variables that occur in G and in the term t respectively. Furthermore,
let EQv(T) be the equivalence relation on T defined by:

V tl? t2 € T. (tl, tz) € EQV(T) = Var(tl) = Va'l"(tz)

and Var(cl) = U{Var(t)|t € cl} for ¢l € EQy(T). Then the strictness of the
evaluation function Eval yields:

Vel € EQy(T). Var(c)\Var(G) # 0 = C;,(n,d)Ncl=0
Hence, Cy,,(n,d) is contained in the union of the obviously finite set of classes
CL=g4 {cl € EQv(T) | Var(cl)\Var(G)=0 A cINC},,(n,d) £ 0}

Now let ¢l € CL and t € ¢l with t € Cy,,(n,d). Then Definition 4.2(2) implies
the existence of a k € w with t € Ci(n,d). Thus we have:

Vp:= ((nla t1)sees (nq =n,t,= 1) € Rk(’n, t). Var(t;) =0
Furthermore, given an arbitrary s € ¢l the equality Var(s)=Var(t) delivers:
Vp,=((n1,t1),., (ng=n,t,=3)) € Ry(n,s). Var(ty)=0
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Together this yields:
Vs € cl. s € Cypp(n,d) <= s € Cy(n,d)

Thus there exists for every class ¢l € CL a constant k,; € w with
Vtecl t€Cyp(n,d) =teC,n,d

This shows that maz{k, |cl€CL} (which is finite because of the finiteness of CL)
* satisfies (2). ]

To simplify the proof of the equivalence between our operational and our denota-

tional approach (section 6), we introduce an equivalent characterization of finite
operational constants:

Lemma 4.4 VteT. t € Cyyp(n,d) <=
3k € w Vp,=((ny,t1), ., (ng=mn,t,=1)) € Ry(n,t). n,=s A Eval(t;)(c)=d

While “«” is obvious, “=" follows from Theorem 4.3(2) and the observation that
the new characterization only delays the evaluation of ¢ until each relevant path
has reached the start node s. This is definitely the case after at most | N | more
steps.

5 The Denotational Approach

Let T' be an arbitrary subset of the set of all terms T. Then Part(T) denotes the
set of all partitions of T. Moreover, Part=4 U{Part(T)|TCT} and CS(p) =4
{t|t lies in a class of p} for p € Part. We call CS(p) the carrier set of p.
Partitions can alternatively be viewed as equivalence relations on their carrier sets.
This view enables us to define the meet—operation ' on Part as the realization of
the set theoretical intersection of their corresponding equivalence relations. Note,
with this definition (Part,) is a complete semi-lattice (this is essential for the
algorithmic characterization of the denotational approach).

The evaluation function Eval : T— (X —=DU{L}) of section 3 induces a
unique partition Part(Eval); on every carrier set 7' C T

Definition 5.1
1. Viy,3 € TCT. (t1,t;) € Part(Eval)r <= Eval(t;)(o | ) =Eval(t;)(c )
2. Part(Eval) =4 { Part(Eval); | TC T}

The denotational approach uses a semantic functional [.]: N — (Part — Part)
which is defined by:

Vn € N Vp € Part. [n](p)=4 {(r,3)](6.(r),6n(s)) € p}



Remark 5.2 [ ] is defined for arbitrary partitions. If the carrier set T is closed
under all §,, n € N, Algorithm A (see below) is complete (i.e. it computes
Constants(n,d) for all n € N and d € D). Unfortunately, the closure under all
the 4,, n € N, would usually lead to an infinite carrier set. This is responsible
for the case where Cjy,,, C Cy,,, (see Definition 5.5).

It is easy to show that [ ] satisfies the condition for the Coincidence Theorem
2.1, i.e. it is easy to prove that:

Lemma 5.3 The semantic functions [n], n € N, are distributive.

Given an arbitrary start partition sp € Part(Eval), the denotational approach
is characterized by Equation System 5.4. It labels every node n of G with a
pre-partition preg,(n) and a post—partition postg,(n), which are the greatest
solutions of this equation system.

Equation System 5.4

s if n=s
pre(n) = { np{ post(m)|(m,n) € E}  otherwise
post(n) = [n](pre(n))

In analogy to section 4 we invent:

Definition 5.5 For sp € Part(Eval) we define:
1. t is a sp—constant of value d at node n, t € Cyy(n,d), iff (t,d) € pregy(n)

2. the set of finite denotational constants of value d at node n, Cpyzen(n,d),
by

Cfden(na d) =df U { Csp(n’ d) I sp € Part(Eval) A I CS(SP) I € w}
3. the set of denotational constants of value d at node n, Cgy.,(n,d), by
Cden(n? d) =df U{ Osp(nad) l sp € Part(Eval)}

Continuing the analogy with section 4 we have:

Theorem 5.6
1. Cyen(n,d) = Constants(n, d)



2. (VTCT. |T| €w) 3sp € Part(Eval).
|CS(3p)| €w A Claen(n,d) NT C Ciy(n,d)

The proof of (1) follows by means of the Substitution Lemma 4.1, Lemma 5.3 and
the Coincidence Theorem 2.1. For (2) let S =4 C4en(n,d) N T. Then Definition
5.5(2) delivers:

Vs € S dsp, € Part(Eval). |CS(sp,)| ew A seC,,, (n,d)
Thus || {sp,|s € S} (which is finite because of the finiteness of S) satisfies (2).

Remark 5.7 Theorem 5.6(2) is weaker than Theorem 4.3(2). This is because
operational constants satisfy the formula

(s € Ci(n,d) A k € w)
= (Vt € T. (Var(s)=Var(t) A t € Cs,p(n,d)) =t € Ci(n,d))
whereas the corresponding formula for denotational constants
(s€C,y(n,d) A |CS(sp)| € w)
= (Vt € T. (Var(s)=Var(t) A t€Cjsen(n,d))=>teC,y(n,d))

is false (remember, Var(s) and Var(t) denote the sets of all variables contained
in s and ¢ respectively).

The practical relevance of the denotational approach comes from its characteriza-
tion in terms of an iterative algorithm:

Algorithm A: ‘
Input: An arbitrary flow graph G = (G, E,s) and a partition sp € Part(Eval)
with finite carrier set CS(sp).

Output: A designation of G with pre-partitions (stored in pre) and post-
partitions (stored in post) characterizing valid equivalence information.

Remark: T denotes the “universal” data flow information, which is assumed to
“contain” every data flow information. The variable workset controls the iterative
process.

(Initialization of the &esignation arrays pre and post and the variable workset )

FOR all nodes neN DO
IF n =8 THEN (preln], post[n]) := (sp, Inl(sp))
ELSE (preln], post[n]) := (T, T) FI

0D;

workset := N;
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(Iterative fixed point computation )

WHILE workset # &g DO
LET n € workset
BEGIN
workset := workset \ ([n};
IF pre(n] a3 pre[ln] n [ ] { post[m] |(m,n)ecE }
THEN

pre[n] := pre[n] n [ ]| { post(m]|(m,n)e¢E };
post[n) := Inl(preln]);
workset := workset v [ m | (n,m)ecE |

FI

OD ®

This algorithm, which matches the classical pattern of Kildall’s data flow analysis
algonthm (10, 11}, discovers all sp-constants:

Theorem 5.8 Given a finite start partition sp € Part(Eval), Algorithm A com-
putes preg,(n) and postyy(n), for all nodes n € N. In particular, it determines
Cyp(n,d), for all n € N and d € D.

6 Equivalence and Optimality

In this section we show that the operational approach and the denotational ap-
proach characterize exactly the same set of constants, which we call finite constants
(see Equivalence Theorem 6.1). Indeed, this set of constants is algorithmically de-
cidable (see Decidability Theorem 7.5) and it is optimal for DAGs, i.e. given
an acyclic flow graph the set of finite constants and the set of all terms which
represent a unique value at run time, coincide (see Optimality Theorem 6.6).

Theorem 6.1 (Equivalence Theorem)
1. Cop(n,d) = Constants(n,d) = Cy,,(n,d)
2. Cfop("” d) = Cfden(n,d)

While (1) is an immediate consequence of Theorem 4.3 (1) and Theorem 5.6 (1),
the proof of (2) is based on the notion of finite MOP—constants:

11



Definition 6.2

1. Given sp € Part(Eval), we callt to be a sp-MOP—constant of value d at
n, e Osp,MOP(nad); Zﬁ

Vpy= ((nl =38, tl), sey (nq =n, tq = t)) € P(Sa n, t)' (tla d) € sp
2. The set of finite MOP—constants of value d at n, Cjpop(n,d), is given by:
Cimopr(n, d) =g U{Copmop(n,d)|sp € Part(Eval) A |CS(sp) | € w}

Applying Lemma 5.3, the Coincidence Theorem 2.1 yields:
Lemma 6.3 C}g.,(n,d) =Cipop(n, d)

Thus, in order to complete the proof of the Equivalence Theorem 6.1, it remains
to show:

CjMOP(n, d) = Cfop(n’ d)

The first inclusion, Cjpop(n,d) CCtop(n,d), is obvious by contraposition. For
the second inclusion, Cypop(n,d) 2 Cy,p(n,d), let t € Cy,y(n,d). Then Lemma
4.4 and the definition of relevant paths deliver the existence of a k € w, such that
Tr; and Tp, coincide, where

o Trs =g {t1|Ps=((ny=5,%),., (nq=n,tq=t)) € Ry(n,t)} and
o TP,t =df {tl Ipt= ((nl = satl)a .y (nq =n>tq =t)) € P(Sanat)}

On the other hand, we have |Tg ;| < |R4(n,t)| < w. Together with Definition
5.1(1) we therefore conclude for sp= Part(Eval)ry, uagy:

t € Cypmopr(n,d) C Crarop(n,d)
which completes the proof of the Equivalence Theorem 6.1.

The Equivalence Theorem 6.1(2) gives rise to:

Definition 6.4 The set of finite constants of value d at node n, Ctin(n,d), is
defined by:

Cﬁn(n,d) =df Cfop(nad) = Cfden(nvd)
Remark 6.5

Due to the Equivalence Theorem 6.1, the operational constants C,,(n,d) and
the denotational constants Cy,(n,d) coincide with the set of all constant terms
Constants(n,d). The undecidability result of [13, 14] is reflected by the necessity
of considering infinite sets of paths in the operational approach and infinite start
partitions in the denotational approach.

12



If G is an acyclic flow graph, the number of nodes |N| is an upper bound for
the length of paths in G. This and Theorem 6.1 imply the sequence of equalities

Ctop(nyd) = Cop(n,d) = Constants(n,d) = Cyp(n,d) = Cigen(n,d)

which directly proves the optimality of finite constants for DAGs:

Theorem 6.6 (Optimality Theorem)
Let G=(N,E,s) be an acyclic flow graph. Then we have:

Ciop(n,d) = Constants(n,d) = Cjgen(n,d)

7 Decidability

In this section we develop a uniform algorithm that, given an arbitrary flow graph
G=(N,E,s), anode n € N and an arbitrary term ¢ € T, decides, whether ¢
is a finite constant of G at the node n or not. Additionally, in the positive case,
it determines the corresponding value as well. This decision algorithm, which we
will refer to as Algorithm B, is based upon the denotational characterization of
the finite constants (see section 5) and consists of two parts:

o Computing a subset S(G,n,t) C T such that all finite subsets 7 CT
satisfy:

VdeD. te CPart(Eval)T (n’ d) = t € CPa'rt(Eval)s(G,n,t) (n7 d)

¢ Determining Cpyyi(gval) (G t)(n, d) for all values d € D.

According to Theorem 5.8, it is sufficient to find an algorithm that computes such
a subset S(G,n,t). The following five step procedure meets this requirement:

1. Transform the flow graph G by adding a new node n’ to N, such that

¢ n’ represents the same assignment as n
e n'/ has the same set of predecessors as n

¢ n’ has no successors

2. Construct a regular expression p over N that represents P(s,n’). Here,

“+” stands for nondeterministic branching, ;” for sequential composition
and “*” for indefinite looping. An algorithm for this construction is given
in [21].

13



3. Replace indefinite looping, *, by bounded looping, (%), where k is the number
of variables which occur on the left hand side of an assignment of the cor-
responding subexpression of p, to arrive at the (*—free) regular expression

Pre
4. Evaluate the functional A, : P(T)— P(T), which is inductively defined
by:
[ {6,(s)|s €T} if penN
B (85, (T)) if p=p1;p
A(T) =g { Bn (TYUA,(T) if p=p1+p;
U{ai (T)]5 €{0,...k}} if p=p{Y
| U{AJ (T)|j e w}} it p=p;

( Here, P(T) denotes the powerset of T and Aj the j-times repeated
application of A,. In particular, Ag is the identity on P(T) ).

5. Finally set:

gkg,n,t) — { élpr({t})u{d} it VseA, {t}) Eval(s)(o,)=d

otherwise

To establish the main result of this section, the Decidability Theorem 7.5, let us
now collect some basic properties of A,. First, we obtain by an easy structural
induction:

Lemma 7.1 Given a regular expression p, we have:

VICT. |T|=w = |ADM|=w

The second property gives us a handle on how to deal with loops. Its rather
technical proof can be found in [18].

Lemma 7.2 Let p be a regular expression and k be the number of variables
which occur on the left hand side of an assignment of p. Then we have:

VICT. AMYT) ¢ AW(T) = | Ap(T)| = w

This and Lemma 7.1 are enough to justify the reduction step (3) of the first part
of Algorithm B.

Theorem 7.3 Given a regular expression p and a term t € T, we have:
[A,({t})| ew = A,({t}) = A, ({t})
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Finally, we have as a consequence of Lemma 6.3:

Lemma 7.4 Let G=(N,E,s) be a flow graph, n € N, sp € Part(Eval), t € T,
d € D and p be a regular expression representing the set of all paths from s to
n 3. Then we have for t € Cy,,(n,d):

teC,n,d) < A, ({t})U{d} C CS(sp)

Now, the main result of this section follows easily by means of Theorem 7.3 and
Lemma 7.4:

Theorem 7.5 (Decidability Theorem)

Algorithm B decides for every flow graph G=(N,E,s), n € N and t € T
whether ¢ is a finite constant at node n, i.e. whether t € U{C;,(n,d)|d € D}.
In the positive case, it additionally determines the value of t at n.

Further details and slightly stronger results can be found in [18].

It is actually possible to decide on the fly whether ¢ € Cj;,(n,d). One must
only take care during the reduction of the *-operator. If the reduction does not
cover the full effect of the original regular expression, Theorem 7.3 and Lemma
7.4 justify to stop the algorithm because ¢ can no longer be a finite constant.
With this extra check, we succeed in computing a nontrivial set S(G,n,t) iff
t € Cp(n,d). However, the two step structure of Algorithm B allows us to
check for constancy of terms in parallel. For example, a slight modification in the

definition of S leads to an algorithm that covers the set of all program terms in
one go (cf. [18]).

8 Extensions

In the following discussion we assume the strict integer arithmetic, i.e. the value
of ¢ is Eval(t)(o | ) whenever ¢ contains no variables, and it is L otherwise. In
this setting the term z+y is a finite constant at the entrance of node 2 in the flow
graph of Figure 3(a), but not in the flow graph of Figure 3(b): for Figure 3(a) it
is easy to prove that (z +y) € C4(2,5) for all k>3 and (z+y) € C,,(2,5) for
every start partition sp with |CS(sp)| € w and (((2+1)+(3~1)),5) € sp. On
the other hand, z +y. is not a finite constant in the example of Figure 3(b): it is
not finite in the operational sense because G, contains relevant paths of arbitrary
length. This implies that there is a relevant path p=((n; =1,%,),..,(n,=2,z+y))
in Ry(2,z +y) for each k € w, where ¢, contains variables. Thus we have
Eval(t,)(¢; )=L1. Also, it is not finite in the denotational sense because the

3Note that p might contain the *-operator.
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a) .

constancy of = + y would only be detected if the start partition contained all
equivalences between 5 and the infinite sequence of terms ((2 + 1) + (3 — 1)),

(@+1)+1)+(3-1)-1)),....

Figure 3
b) c)
s Gz: 8 Gs: 8
X = 2 X 1= 2 X 1= 2
y := 3 y :=3 y :=3
1 1 1
X := x+1 X 1= xX+1 X 1= X+Z
y = y-1 y :=y-1 y = ¥-2
L
2 2 2
Z = X+y Z = X+y Z 1= X+y

This observation might suggest that the notion of finite constants is relatively
restrictive, an impression caused by the syntactic nature of the backward substi-
tution function 6, which has simplified the development of the theory. However, all
the properties shown remain true if we extend § to Spew, which reduces the back-
ward substituted terms by means of a rewriting function Rew which preserves dis-
tributivity, i.e. which induces distributive semantic functions [n]: Part — Part,
n € N, by:

[ ](P) ={(r, s)]| (6Rew,n('r)7 6Rew,n(3)) € p}.

Concerning the example of Figure 3(b), a generalization by means of a distribu-
tivity preserving rewriting function Rew with Rew((z + 1)+ (y — 1))=z +y
would classify z + y as a finite constant. However, it could fail in the exam-
ple of Figure 3(c). A generalization by means of a rewriting function Rew’ with
Rew'((z+Z)+(y—Z))==z+y, whenever Z denotes a variable or a 0-ary opera-
tor, would even succeed in this case. Thus the generalization of the pure backward
substitution function § to functions pey leads to a hierarchy of sets of finite
constants, each one wrt the concrete choice of Rew. Indeed, the size of a set
of finite constants strongly depends on this choice, but the principle of finiteness
always remains the same.
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9 Conclusions

We have presented an enhanced algorithm for constant propagation, which is
optimal for acyclic flow graphs. Fundamental for achieving this optimal algorithm
was the introduction of a new decidable set of constants, the finite constants. We
have proved that this set has two characterizations: a denotational one, which
_ specifies our algorithm and an operational one, which delivers the optimality of
this algorithm. Our algorithm has been implemented in a commercial compiler
project [19]. Currently, the implementation determines an approximation of the
set of terms which is necessary to detect all finite constants. This approximation
is efficiently computable and leads to results which exceed all optimizations of |7,
10, 11, 13, 14]. Additionally, our algorithm is a sound basis for further extensions,
for example for taking advantage of path informations in the sense of [3, 23]. This
can be done by means of the collecting semantics of [12]. We have exhibited a
way for generalizing the notion of finite constants by the transition from the pure
backward substitution function & to functions épeyw, Which reduce the backward
substituted terms by means of distributivity preserving rewriting functions Rew.
This generalization leads to a hierarchy of sets of finite constants, each one wrt the
concrete choice of Rew. While the size of a set of finite constants strongly depends
on this choice the principle of finiteness always remains the same. Therefore we
believe that the notion of finite constants gives new insight in the nature of the
constant propagation problem.
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