LFCS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

DIALOG: A Theorem-proving Environment

designed to unify Functional and

Logic programming

* Juswuodiaug Buinoid-walosy] Vv :001vId

by
Mark Tarver

,, ECS-LFCS-89-80
LFCS Report Series (also published as CSR-298-89)
LFCS May 1989
Department of Computer Science
University of Edinburgh
The King's Buildings

Edinburgsh EH9 3JZ Copyright © 1989, LFCS



DIALOG: A Theorem-Proving Environment Designed To
Unify Functional And Logic Programming

Mark Tarver,
mt@uk.ac.ed.lcs,
LFCS, Department Of Computer Science, University Of Edinburgh.

April 10, 1989

DIALOG is a prototype logic programming language designed to facilitate the
construction of interactive theorem-proving systems in the medium of LISP. DIALOG
has two principal parts:-

1. A functional programming component that allows the user to enter functional

definitions in a high-level pattern-matching notation reminiscent of HOPE and
ML.

2. A logic programming component that runs on many-sorted logic and which will
be capable of coping with queries up to many-sorted first-order logic.

Functional Programming In DIALOG

The functional component of DIALOG allows the user to construct pattern-directed
invocations of function calls. The form of DIALOG function definitions is:-

(defML <identifier>
<pattern;> — <action;>

<pattern,> — <action,>)

The DIALOG interpreter tracks through each <pattern; > until it finds a match
and then it executes the corresponding action. A typical DIALOG functional def-
inition is the occurs check function occcheck which checks for the occurrence of an
element in a given list, and returns nil if it finds it and t if it does not.

(defML occcheck
-atom? — t
x[x:y] =[]
x [atom? : y] — (@ occcheck x y)
x [y : 2] = (@ and (@ occcheck x y) (@ occcheck x z)))
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The colon is the list seperator in DIALOG which takes the place of | in PROLOG;
atom? is a sorted variable that matches only atoms. @ indicates function application
while _ is the wild card symbol, as in PROLOG and ML, that matches any term. In
LISP, the occcheck function would appear as:-

(defun occcheck (X Y)
(cond ((atom Y) t)
((equal X (car Y)) nil)
((atom (car Y)) (occcheck X Y))
(t (and (occcheck X (car Y)) (occcheck X (cdr Y))))))

The DIALOG compiler receives DIALOG function definitions and compiles them
down into low-level LISP code.

DIALOG recognises as a variable either x y z or any atomic symbol ending in
?. Variables themselves are either unsorted or sorted. A sorted variable is a variable
which is lambda-bound as the identifier of a LISP predicate - which itself can be either
hand-written as part of a possibly foreign LISP program or DIALOG-generated from
a defML definition. Sorted variables only match to their respective arguments if these
arguments satisfy the relevant predicates. Sorted variables need not be declared
as such to the DIALOG compiler since the compiler will check to see if variables are
lambda-bound during compilation. In certain cases, it is necessary to declare variables
as sorted to the compiler because there is no ordering of definitions which will issue
in the appropriate code.

(defML propwff1?
x — (@ propwff? x))

(defML propwff2?
x — (@ propwff? x))

(defML propwff?
atom? — t
[~ propwff?] — t
[propwffl? => propwiff2?] — t
[propwff1? & propwff2?] — t
[propwif1? V propwff2?] — t
[propwffl? <=> propwff2?] — t
-—1[D

In the example above propwff? is a defML definition which uses its own identifier
as a sorted variable. Per impossible propwff? cannot be defined before its own defini-
tion so there is no way of registering propwff? as sorted by lambda-binding. Instead
propwff? can be declared as sorted by entering it as such in the environment header

of a DIALOG file.



(environment (sorted propwff? ...))

Context Sensitive Pattern Recognition

DIALOG supports contert-sensitive pattern recognition. Context sensitive pattern-
recognition is required when pattern-matching cannot be decided on the basis of
applying one-place predicates to elements of the input, but requires the use of at
least two-place predicates in the pattern matching stage. This requirement often
arises when the issue of whether a term fits the pattern is determined by terms that
have preceded it. DIALOG permits the embedding of the appropriate function call
in the pattern itself to decide context-sensitive issues. The top-level of the unify
function illustrates use of embedded function-calls to extend DIALOG to context-
sensitive pattern-recognition.

(defML unify
XX —t
var? x (@ occcheck var? x) — (@ setq frame [[var? x] : frame])
x var? (@ occcheck var? x) — (@ setq frame [[var? x| : frame])
list1? list2? (@ = (@ length list1?) (@ length list2?))
: — (@ unifyl list1? list27))

Here the requirement that unification satisfy the occur-check and that unification
between two lists can only succeed if the two lists are of equal length are encoded as
context-sensitive features in the pattern-matching process. The rule on introducing
function calls on the LHS of a defML pattern-action pair is that any variables in the
function call must precede the function-call itself. Thus

(@ occcheck var? x) var? x — (@ setq frame [[var? x] : frame])

is not well-formed, since var? and x are used without being introduced prior to
their use within the function-call.

The Logic Programming Component of DIALOG

DIALOG supports logic programming through its use of defLOG definitions. These
definitions are used to enter Horn-clauses to the DIALOG interpreter. The form of a
defLOG definition is:-

(defLOG <identifier>
<head; > « <body, >

<head,, > « <body, >)



For instance the definition of APPEND in the defLOG syntax would be:-

(defLOG APPEND
[I1xx«
[x: xs?] y [x: z] «— (APPEND xs? y z))

In the Edinburgh standard syntax this would be written as:-

append([ ].X.X).
append([X|XS],Y,[X|Z]) :- append(XS,Y,Z).

Two reasons determined the departure of DIALOG from the Edinburgh standard
syntax. First, it was thought desirable that all DIALOG definitions should have
a similar syntax. This syntax is LISPlike in character and reflects the origens of
the DIALOG interpreter. Secondly DIALOG syntax is clearer and shorter than the
Edinburgh standard syntax for PROLOG. The relevant predicate is cited only once
instead of being repeated. This requires the user to group clauses belonging to the
same logical procedure together which is good programming practice. The preva-

lence of commas and stops in PROLOG, which was shed at an early stage in the
development of LISP, is likewise shed in DIALOG.

Unlike PROLOG, function symbols in DIALOG defLOG definitions can be gen-
uine carriers of function-calls. The following program, one of the first written for
the DIALOG interpreter, defines a semantic tableau theorem-prover PROP for the
propositional calculus. The interplay between DIALOG’s functional and logic pro-
gramming components is reflected clearly in this simple program which takes only 67

lines of DIALOG.

(defML propwft?
atom? — t
[~ propwff?] — t
[propwffl? & propwff2?] — t
[propwff1? V propwff2?] — t
[propwffl? => propwff2?] — t
[propwff1? <=> propwff2?] — t
[[All var?] propwff?] — t
[[Some var?] propwff?] — t
= 1)

(defML propwff1?
propwiff? — t

-—=11

(defML propwff2?
propwff? — t

-—1)



(defML propwffs?
[ ] -t
[propwff? : y] — (@ propwffs? y)

-—1[1
(defML contradictory?
1=1]

[x : y] — (@ or (@ contradictoryl? x y) (@ contradictory? y)))

(defML contradictoryl?

(defML literal?

atom? — t
[~ atom?] — t
-= 1D
(defML consistent?
[]—t
[literal? : y] — (@ consistent? y)
-=11)
(defML hasdisjunct?
[1—1]
-V]:]—1t

[- : y] = (@ hasdisjunct? y))

(defML splitdisjunctl
1—11]
[xVy]l:z] =[x: 7]
[x:y] — [x : (@ splitdisjunctl y)])

(defML splitdisjunct2
[1—1]
[xVyl:2z] —=1y: 4]
[x : y] = [x : (@ splitdisjunct2 y)])



(defML mk-canonical
[[x&y]:z] = [xy: (@ mk-canonical z)] _
[[x=>y]:2] = [[[~x] Vy] : (@ mk-canonical z)] .
[[x <=>y]: 2] = [[x=>y] ]y =>x] : (@ mk-canonical z)]
[[~[~x]]: z] = [x: (@ mk-canonical z)]
[[~x&yll:zl = [l[~x]V]~y]: (@ mk-canonical z)]
[~xVyll:zl = [[~x[~y]: (@ mk-canqmcal z)]
[[~[x=>9y]]:2] = [x[~y]: (@ mk-canonical z)] .
[[~ x<=>y]]: 2] = [[Ix & [~ y[] V [y & [~ X]]] : (@ mk-canonical 2)]
[x: y] = [x : (@ mk-canonical y)])

(defLOG SEMANTIC_TABLEAU
propwff? propwffs? « (BUILDTREE [[~ propwff?] : propwffs?]))

(defLOG BUILDTREE
contradictory? «—
consistent? « (OUTPUT invalid)
hasdisjunct? « (BUILDTREE (@ splitdisjunctl hasdisjunct?))
(BUILDTREE (@ splitdisjunct2 hasdisjunct?))
x « (BUILDTREE (@ mk-canonical x)))

The logi¢ programming component of PROP is expressed in the final two defLOG
definitions. Free use is made of sorted variables to shorten the program and help
make it clearer. Thus SEMANTIC_TABLEAU receives as terms a propwff? and a list
of propwffs?, and passes control to BUILDTREE having negated propwff? and added
it to propwffs?.

BUILDTREE solves goals by showing that nodes of the tableau tree are
contradictory?. contradictory? is of course a sorted variable which is defML-defined
near the top of the program. If a node is found to be consistent? then control is passed
to OUTPUT which always returns to the top-level after printing its argument. If the
node contains a disjunct then splitdisjunctl and splitdisjunct? split the node around the
disjunct to generate two daughter nodes which are in turn passed to BUILDTREE.
Finally mk-canonical is a function that puts each propwff? into canonical form by
applying the usual well-known laws - deMorgan, double negation etc.

Loop Detection In DIALOG

One outstanding deficiency of PROLOG as a theorem-prover is that it will easily
enter loops, if given an .unsuitable set or ordering of clauses. Sometimes PROLOG
will behave in this manner even if an answer to the user’s query is deducible from
the clauses held in memory. The simplest way to produce this behaviour is to enter
a symmetry axiom.

brother(X,Y) :- brother(Y,X).



The query brother(dick,tom)? will cause the following (endless) series of goals:-

brother(dick,tom),
brother(tom,dick),
brother(dick,tom),...

This form of looping is by far the most common in PROLOG programs, Ster-
ling and Schapiro [35] refer to such rules as left-recursive. A rather rarer variety is
exemplified in the following example:-

Jjewish(bar-hillel)?
jewish(X) :- jewish([mother,X]).

Here the query causes a different, but also endless, series of goals to be generated:-

Jjewish(bar-hillel),
jewish([mother, bar-hillel]),
jewish([mother,[mother,bar-hillel]]),...

In the symmetry case, the path of the computation repeats itself in a cyclic fashion,
whereas the second case there is no such repetition. It is useful and important to
distinguish between these two kinds of looping so we can call the first eyclic looping
and the second non-cyclic looping.

There can be no effective procedure for coping with all looping: i.e. no decision
procedure that would tell us that a Horn-clause program was going to loop endlessly.
Given that pure PROLOG is Turing-equivalent[39] this would entail the solvability
of the Halting Problem. However it is possible to detect and allow for cyclic looping.
Loop detection is either static, if it is performed at assertion time by the analysis of
the logic program, or dynamic, if it is performed at run-time by the interpreter.

DIALOG uses dynamic loop detection. The DIALOG interpreter maintains a
history of the search process which is lambda-bound throughout the computation.
The history is stored in an extremely compacted form and does not, as may be
thought, increase in size with each new lambda-binding. DIALOG checks this history
with after each successful unification to determine if a goal has called itself. If so,
the continuation is to fail the next call and to backtrack. Loop detection functions
in linear time relative to the length of the branch of the search-tree currently being
extended. :

Unlike PROLOG, DIALOG is forgiving of the way in which clauses are ordered and
written. This makes possible a more declarative approach to logic programming and
to experiment with programming techniques that the PROLOG programmer would
not touch. For instance, suppose that we wished to implement a theorem-prover for
modal logic in which procedures MODTAC and FOLTAC are used. MODTAC applies
tactics appropriate to modal logic problems, and FOLTAC tactics appropriate to FOL
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problems. We want MODTAC to be able to give and receive control from FOLTAC.
The natural way to implement this is to have MODTAC call FOLTAC, and then have
FOLTAC call MODTAC after it has finished breaking down the problem to a more
manageable form. In a given proof, control may pass between MODTAC and FOLTAC
several times before a fixpoint relative to both is generated. The natural way to
encode this is:-

<MODTAC clauses>

((MODTAC problem?) «— (FOLTAC problem?))
<FOLTAC clauses>

((FOLTAC problem?) «— (MODTAC problem?))

However in PROLOG, this form of encoding is an invitation to disaster since
there is an indirect left-recursion in the relations betwen FOLTAC and MODTAC.
The consequence is that a great deal of thought has to be expended on seeing that
MODTAC and FOLTAC interrelate properly. In DIALOG , this ”ball-passing” form of
programming is perfectly safe since THORN will fail a call when one procedure fails
to effect a change in the problem. DIALOG allows tactical composition; the layering
of tactical procedures upon one another in a way that PROLOG does not support.

User Intgraction In DIALOG

One of the main goals of DIALOG was to slash the time taken to develop theorem-
provers. Since interactive capability is considered a prerequisite in modern theorem-
proving implementations; some care was given to providing DIALOG with an inbuil
interactive capability so that any DIALOG implementation would automatically be
provided with an interactive front end to the users own creation.

This was done through recognising that the concept of an advanced interface to
a post-PROLOG logic programming language could be identified with a front end
to a theorem-prover. The principle difference between a trace package in orthodox
languages and a front end to a theorem-prover, is that a trace package lets you view
a process without giving you the capability to interfere with it. The DIALOG trace
package gives this capability and so the difference disappears.

If the user types in the command (interact <identifier> ... <identifier>), where
each <identifier> is the name of a defLOG definition, then the DIALOG interpreter
will pause after each successful unification involving one of the identifiers, print the
goalstack and the rule being used and query the user as to what action is desired. A
typical step in the user interaction might look like this:-

Step 1

Rule Applied: (SEMANTIC_TABLEAU propwff? propwffs?)
« (BUILDTREE ((~ propwff?) propwffs?))

Problem Becomes: (BUILDTREE ((~ (p V q)) p q))

What Now?



A request for help will cause the following display to appear.

fIF e, continue forwards

B/B e, backtrack (fail the current goal)
ff/FF <number> ............ fast forward <number> inferences
fb/FB <number> .......... fast back to step <number>

a/A e, abort (return to DIALOG top level)
see/SEE .....cceevevnenn. see the proof so far

ev/EV <expr> ............. evaluate <expr>

The DIALOG interpreter will respond appropriately.

The command (uninteract <identifier> ... <identifier>) will make each <identifier>
function non-interactive.

SLAM

The heart of the defLOG interpreter is a virtual machine for efficiently processing
defLOG definitions. This machine is SLAM (the Sorted Logic Abstract Machine). An
exact description of SLAM is beyond the scope of this paper, but is included in Tarver
[40]. At present SLAM processes many-sorted Horn-clause logic, but when complete
SLAM will take DIALOG as far as many-sorted first-order logic. As with all virtual
machines, SLAM has a small set of recognised virtual machine instructions which in
DIALOG are wired to low-level LISP code.

In Tarver [40], SLAM is described in terms of a hierarchy of abstract machines,
PAM (the Pattern Matching Abstract Machine), a machine called p-WAM (short for
pseudo-WAM) and SLAM itself. Each machine is more powerful expressively than
its predecessor. PAM uses pattern-matching and backtracking. p-WAM can tackle
unification and is functionally as powerful as the PROLOG interpreter. SLAM in its
entirety will encompass many-sorted FOL with embedded function calls. In order of
efficiency, PAM is faster than p-WAM which is faster than SLAM.

In DIALOG, there is only one machine; SLAM. By issuing the appropriate compiler
directives the user can tell the DIALOG compiler that he wishes the code to have
the functionality of a given machine. Thus the command PAM in the environment
header will have the effect of making SLAM behave as if it were PAM. In effect what
the compiler does is wire SLAM instructions to a different set of LISP instructions
and mask, or ignore, certain SLAM directives.

Performance, Compactness And Portability

DIALOG-generated LISP code from defML definitions is about 2-3 times slower than
the equivalent hand-written LISP code. Programs written in the functional subset of
DIALOG are however nearly twice as compact as the corresponding LISP program;

9



showing that writing in DIALOG is programming at a higher level than can be
obtained with LISP. DIALOG is bootstrapped; the functional subset of the language
occupies only 300 lines of DIALOG code.

Because DIALOG is bootstrapped and the DIALOG interpreter generates very
low-level LISP, implementations written in DIALOG are extremely portable. At
present DIALOG runs only in Franz Lisp. But an experienced programmer who
understands the object code of the DIALOG could port DIALOG to any Lisp system
(DEC-10 Lisp, Common Lisp, Zeta Lisp, Scheme etc) within a few days. Disk space
allocation is surprisingly small for so powerful a system; 100K will suffice to store the
entire LISP source code and a current micro could probably run DIALOG without
too much trouble. In Edinburgh we are looking forward to running DIALOG on an
Apple Macintosh.

As regards the logic programming component of DIALOG, comparisons with PRO-
LOG are misleading. PROLOG is in many ways a lower-level programming language
than DIALOG; automatic loop-detection and proof-maintenance are not free features
of the PROLOG interpreter as they are of DIALOG. The fairest test of relative per-
formance was gained by generating LISP code from DIALOG defLOG definitions and
bowdlerising it by removing all the extra machinery that PROLOG does not enjoy.
The resulting code was 15 times faster than the standard code. The following defLOG
definition of MEMBER was tested in this way with MEMBER declared under PAM.

(defLOG MEMBER
x[x:]«
x [-: y] « (MEMBER x y))

MEMBER ran at 3300 LIPS on a MICROVAX when the object LISP code was run
through the Franz LISP compiler. This performance was only 3 times slower than
the that of the native LISP member function. It compares well to C-PROLOG which
ran at 1200 LIPS on the same problem - nearly three times slower than the DIALOG
MEMBER. More recent releases of LISP would certainly improve performance, but
so far no comparative tests have been carried out.
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