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The Definition of Standard ML:
Changes from Version 3

David Berry
Robin Milner

January 22, 1990

The definition of Standard ML published in book form [Robin Milner, Mads Tofte
and Robert Harper, The Refinition of Standard ML, MIT, 1990] contains some
minor changes from Version 3 [this document]. Most of these were required to
ensure the existence of principal signatures as claimed in Section 5.13. The others
are minor syntactic clarifications.

In addition to these changes, the book also has a new preface which replaces
the prefaces to the first three versions of the definition, and several minor changes
to the presentation. ,

Line numbers and page numbers refer to Version 3. The page numbers in the
book are more or less the same up to and including Page 35 of Version 3, and one
greater thereafter.

Section 2.2.
Line 6: The + sign has been deleted from before 3.32E5.

Line 8: Printable characters are those numbered 33-126.

Line 16: The escape sequence \"c is allowed for any ¢ with number 64-95. The
number of \"c is 64 less than the number of c.
Section 2.8.

Page 9: An optional op is allowed before a longcon or a longezcon in an atomic
pattern. This change also applies to Page 72 in Appendix B.



Section 4.9.
The text up to and excluding the last paragraph is replaced with the following:

A type structure (6, CE) is well-formed if either CE = {}, or 0 is a
type name . (The latter case arises, with CE # {}, in datatype dec-
larations.) All type structures occurring in elaborations are assumed
to be well-formed.

A type structure (¢,CE) is said to respect equality if, whenever ¢
admits equality, then either ¢ = ref (see Appendix C) or, for each
CE(con) of the form Vo® (7 — a™t), the type function Aa® .7 also
admits equality. (This ensures that the equality predicate = will be
applicable to a constructed value (con,v) of type 7®)t only when it is
applicable to the value v itself, whose type is T{T(k) / a(k)}.) A type
environment TE respects equality if all its type structures do so.

Let TE be a type environment, and let T" be the set of type names
t such that (¢, CE) occurs in TF for some CE # {}. Then TF is said
to maximise equality if (a) TE respects equality, and also (b) if any
larger subset of T' were to admit equality (without any change in the
equality attribute of any type names not in T') then TE would cease
to respect equality.

Section 4.10.

Rules 19 and 20 both have an extra premise, and the associated comment has
changed:

C ® TE t datbind = VE,TE  V(t,CE) € RanTFE, t ¢ (T of C

TFE maximises equality ~
C  datatype datbind = (VE,TE) in Env

(19)

C ®TE F datbind = VE,TE  V(t,CE) € RanTE, t ¢ (T of C)
C o (VE,TE)\ dec = E TE maximises equality

C |- abstype datbind with dec end = Abs(TE, E)

(20)

(19),(20) The side conditions express that the elaboration of each
datatype binding generates new type names and that as many of
these new names as possible admit equality. Adding TFE to the
context on the left of the I captures the recursive nature of the
binding.



Section 4.12.
The following initial paragraph has been added:

The notion of enrichment, E > E', between environments E = (SE,TE,VE, EE)
and E' = (SE',TE',VE',EE') is defined in Section 5.11. For the

present section, E > E’ may be taken to mean SE = SE' = {}, TE =

TE', EE = EE', DomVE = DomVE' and, for each id € Dom VE,

VE(id) = VE'(id).

Section 5.5.
The following requirement has been added:

We also require that

1. In every sentence A I phrase = A’ inferred by the rules given in Section 5.14,
the assembly {A, A’} is admissible.

2. In the special case of a sentence B F sigexp = S, we further require that the
assembly consisting of all semantic objects occurring in the entire inference of
this sentence be admissible. This is important for the definition of principal
signatures in Section 5.13.

Section 5.9.
The phrase “We claim that” has been replaced with “It can be shown that”.

Section 5.12.
The phrase “We claim that” has been replaced with “It can be shown that”.

Section 5.13.

This section has been completely replaced with the following:

The definitions in this section concern the elaboration of signature
expressions; more precisely they concern inferences of sentences of the
form B\ sigexp => S, where S is a structure and B is a basis. Recall,
from Section 5.5, that the assembly of all semantic objects in such an
inference must be admissible.

For any basis B and any structure S, we say that B covers S if for
every substructure (m, E) of S such that m € N of B:

1. For every structure identifier strid € Dom E, B contains a sub-
structure (m, E') with m free and strid € Dom E'

2. For every type constructor tycon € Dom E, B contains a sub-
structure (m, E') with m free and tycon € Dom E’

3



(This condition is not a consequence of consistency of {B,S}; infor-
mally, it states that if S shares a substructure with B, then S mentions
no more components of the substructure than B does.)

We say that a signature (N)S is principal for sigezp in B if, choosing
N so that (N of BYN N =0,

1. B covers S
2. Bt sigexp = S
3. Whenever B | sigezp = S', then (N)S>S'

We claim that if sigexp elaborates in B to some structure covered by
B, then it possesses a principal signature in B.

Analogous to the definition given for type environments in Sec-
tion 4.9, we say that a semantic object A respects equality if every
type environment occurring in A respects equality.

Now let us assume that sigexp possesses a principal signature ¥y =
(Np)Sy in B. We wish to define, in terms of X, another signature
Y, which provides more information about the equality attributes of
structures which will match ¥;. To this end, let T}, be the set of type
names ¢ € N, which do not admit equality, and such that (¢,CE)
occurs in Sy for some CE # {}. Then we say ¥ is equality-principal
for sigexp in B if

1. ¥ respects equality

2. ¥ is obtained from ¥, just by making as many members of Tj
admit equality as possible, subject to 1. above

It is easy to show that, if any such ¥ exists, it is determined uniquely
by X,; moreover, X exists if ¥ itself respects equality.

Section 5.14.

The requirement that (N)S be principal in Rule 65 (and the associated comment)
has been changed to requiring that it be equality-principal.
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Preface to Version 3

The need for this third Version of the definition of Standard ML has arisen because
of the discovery of an error concerning signature matching. We have also taken the
opportunity to make a number of minor changes as a consequence of comments
and corrections which we received following the printing of Version 2. Most of the
changes are just clarifications of the document. For instance the use of op has been
clarified (see Section 2.6 and Figure 7); a piece about core language programs has
been inserted (Section 8) and a piece about resolving ambiguities during parsing
has been inserted (Appendix B). A complete list of changes, even the most trivial,
is available from the authors on request. The few important changes are (with
references referring to Version 3):

Type Explication (This is the most important change.) To ensure that given
any signature ¥ and any structure S there is at most one realisation via
which S matches ¥ (and that matching can be done by an algorithm which
does not invoke higher order unification), the signature ¥ is required to be

type-explicit, see the new Section 5.8, page 33. Thus for example
signature SIG =

sig
type ’a t;
val x: int t;
datatype ’a t = C
end
is now an illegal signature declaration, since the specification which specifies
the type constructor t, used in the type of x, is overridden by the specifica-
tion of another type constructor t.

Consistency The definition of consistency of type structures, which was mis-
takenly too restrictive, has been corrected (Section 5.2, page 32).

Exceptions Two new exceptions Abs and Neg have been introduced correspond-
ing to the operations abs and ~.

Character Set Strings are assumed to be built out of characters drawn from an
alphabet of 256 characters (see Section 2.2).

Type Constraints Type constraints on non-expansive expressions are allowed
and do not make the expression expansive (Section 4.7, page 20). Thus
the right-hand side of val x= []:’_a list is non-expansive. Moreover,
the function expression on the right-hand side of a recursive value binding

is allowed to be constrained by type constraints (Section 2.9, page 8, last
bullet).

Edinburgh, 1 May 1989
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Preface to Version 2

This second Version of the definition of Standard ML incorporates some correc-
tions to Version 1 [16], and also some extensions. As far as the Core language is
concerned, it is consistent with the informal description [15] as modified by [23]
and [1].

Great care was taken to make Version 1 clear, accurate and complete, and great
care has been taken to revise it in the same spirit. The language may undergo
changes in the future, but we have adopted a very conservative policy keeping
changes to a bare minimum. Any future Version of this document will indicate
precisely how it differs from its predecessor.

We shall first list the the changes from Version 1 and then list the few parts of
the language which are considered somewhat experimental. Readers not familiar
with Version 1 may skip the following list of changes.

CHANGES

Unless otherwise stated, references refer to Version 2.

1. The title of the document has been changed from “The Semantics of Stan-
dard ML” to “The Definition of Standard ML” since the document defines
the language, syntax as well as semantics.

2. Appendix E describing how ML evolved has been added, see page 80.
3. An Index and a list of references have been added, see pages 89 and 86.

4. As envisaged in the preface to Version 1, a uniform treatment of exceptions
and constructors has been adopted. The idea is explained in [1]. The changes
to the semantics are consistent with the changes detailed in [1].

5. A new section, Section 8, pages 62-63, defining the syntax and semantics
of Programs has been added. In particular, the interactive nature of the
language has been made explicit.

6. The “applied” functor forms (Version 1, Section 3.4) have been given the sta-
tus of derived forms and moved to Appendix A, page 67, while the “pure”
forms (Version 1, Section 3.6) have been moved to the grammar itself (Sec-
tion 3.4, pages 12 and 14). This entails that functors can be applied to
structure expressions as well as to declarations.

7. The Closure Restrictions on signature expressions and functors (Version 1,
Section 3.7) have been relaxed, see Section 3.6 page 14.
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8.

10.

11.

12.

13.

A new section “Signature Matching” has been inserted in the static semantics
for Modules, see page 35. In this, it is clarified that matching a structure
against a signature is a combination of instantiation and enrichment. In
addition, the definition of functor signature matching has been simplified
using the notion of signature matching, see page 44.

A type discipline for polymorphic references and exceptions has been pro-
vided. To this end, a distinction between imperative and applicative type
variables has been introduced (page 16), together with the notions of impera-
tive types (page 19) and non-expansive expressions (page 20). The definition
of instantiation of type schemes is modified so that imperative type variables
are instantiated with imperative types only, and the definition of the closure
operation is modified to distinguish between expansive and non-expansive
expressions (page 21). The modified inference rules are: the rule for value
declarations (rule 17, page 25); the rules for exception bindings (rules 31
and 32, page 27); and the rule for declarations as structure-level declara-
tions (rule 57, page 37).

Rule 85 in Version 1 concerning type sharing was wrong. It did not al-
low sharing between a type and a datatype. The corrected rule (rule 89,
page 41) allows such sharing. For two type structures to satisfy a sharing
equation, their type names (or more generally, their type functions), must
be the same; however, the rule now allows the one type structure to have
an empty constructor environment and the other to have a non-empty con-
structor environment, in accordance with the general principle that different
consistent “views” can coexist.

The treatment of explicit type variables has been changed so that the scope
of explicit type variables can be given by syntactic rules, see Section 4.6
page 19. These rules replace the rules given in [15]. The latter depended on
traversing the program text in a particular order and one could give examples
where, for instance, the textual ordering of the components of a pair would
be significant for the scoping. The new rules do not have this defect.

The treatment of abstype has been corrected. Let dec’ be a declaration of
the form abstype datbind with dec end and let tycon be a type constructor
declared by datbind. If the elaboration of datbind makes tycon an equal-
ity type, then the equality on tycon can be used in the body, dec, but the
equality is not exported outside dec’. In Version 1, the equality was “ex-
ported” unintentionally. Thus the definition of Abs is revised (page 22) and
the inference rule for abstype has been changed (page 25).

The symbol # is introduced as a reserved word (page 3). Moreover, it is
admitted in symbolic identifiers (page 4).



14. We use the term “constructor binding” instead of “datatype construction”.
The syntactic classes are renamed accordingly. For instance, a declaration
of a single datatype now takes the form

datatype tyvarseq tycon = conbind

13. It has be clarified that the equality attributes of bound type variables in
type functions are not significant (page 19), and that the equality attributes
of bound type variables in type schemes are significant (page 19). To
take an example, the two type declarations type ’a t = ’a list and
type ’’a t = ’’a list are equivalent, but the two value specifications
val x: ’a -> ’a and val x: ’’a =-> ’’a are not.

16. The rule for functor signature expressions has been corrected, see rule 95,
page 42. The result part of a functor signature resulting from the elaboration
of a functor signature expression must be principal.

This concludes the list of changes from Version 1. We now list the few parts
of the language that are considered somewhat experimental and where feed-back
from users is needed and encouraged.

o The derived forms of functors (Appendix A) are somewhat experimental.
It is sometimes convenient to be able to apply a functor to, say, a single
value or a single type, rather than demanding that functors be applied to
structures only; on the other hand, having both forms in the language may
result in programming mistakes.

¢ The type discipline for polymorphic references and exceptions in the present
version is built on the system developed and proved sound by Tofte [29].
As Damas’ system [8], it is built on the idea of a boolean attribute of
type variables. David MacQueen has suggested a more refined discipline,
currently implemented in the New Jersey compiler, where the binary at-
tribute is replaced by a weakness level, which is a natural number. While
the present type discipline is simpler to use and understand than the more
refined scheme, experience may show that the simple scheme admits too
few programs. Since programs that are admitted under the simple scheme
are also admitted under the more refined scheme, it seems sensible to start
out with the simple scheme. The New Jersey compiler is currently being
modified to support both schemes.

o No syntax has yet been added to the language which dictates exactly where
functor specifications may be used. However, it is envisaged that if a com-
piler is asked to separately compile a functor ¢ which makes reference to
a functor identifier f, then the compiler will demand a specification for f.
Moreover, it is envisaged that the compiled g should only be imported into a
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basis if that basis contains a functor f which matches the given specification
according to the definition given in Section 5.15, page 44 .

Edinburgh, 1 August 1988
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Preface to Version 1

Great care has been taken to make this document clear, accurate and complete.
Despite this we have called it “Version 1”, since we expect to amend it for various
reasons.

First, neither the greatest clarity nor the greatest accuracy is possible in a doc-
ument of this complexity without feedback from readers. We therefore encourage
readers to send us suspected errors, and to indicate points which are not clear to
them. Although we do not intend to turn this document a pedagogic exposition,
we shall willingly add short illuminating comments.

Second, the design of ML Modules — particularly the grammar - is still some-
what experimental, even though it is considerably refined from its original form.
As a result of experimental use it may be changed or extended, and these changes
or extensions will be defined in later versions of the present document.

Third, though the ML Core Language is more stable — simply because it has
been subjected to more experiment — changes here may also occur. Wherever
possible they will be “upwards compatible” - that is, the validity and semantics
of existing programs will be preserved. One change is at present under discussion,
and (for reasons of human resource) we are not delaying the issue of this document
to include it. The proposed change is to the exception facility; it will not only
add power but will also simplify the language — in particular, it will unite the
notions of handler and match. This simplification is so significant that it deserves
consideration even though it slightly violates the principle of upwards compatible
change. But if it is adopted it will be possible to automate the necessary small
modifications to existing programs.

Version 1 treats the ML Core Language and its Input/Output facilities as
defined in Standard ML by Robert Harper, David MacQueen and Robin Milner
(Report ECS-LFCS-86-2, Edinburgh University, Computer Science Department),
but incorporating the changes defined in Changes to the Standard ML Core
Language by Robin Milner (Report ECS-LFCS-87-33). As explained above, the
Modules part of the language described here is considerably refined from that
presented by MacQueen in ECS-LFCS-86-2.

Any future Version of this document will indicate precisely how it differs from
its predecessor.

Edinburgh, 13 August 1987
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1 Introduction

This document formally defines Standard ML.

To understand the method of definition, at least in broad terms, it helps to
consider how an implementation of ML is naturally organised. ML is an interac-
tive language, and a program consists of a sequence of top-level declarations; the
execution of each declaration modifies the top-level environment, which we call a
basis, and reports the modification to the user.

In the execution of a declaration there are three phases: parsing, elaboration,
and evaluation. Parsing determines the grammatical form of a declaration. Elab-
oration, the static phase, determines whether it is well-typed and well-formed in
other ways, and records relevant type or form information in the basis. Finally
evaluation, the dynamic phase, determines the value of the declaration and records
relevant value information in the basis. Corresponding to these phases, our for-
mal definition divides into three parts: grammatical rules, elaboration rules, and
evaluation rules. Furthermore, the basis is divided into the static basis and the
dynamic basis; for example, a variable which has been declared is associated with
a type in the static basis and with a value in the dynamic basis.

In an implementation, the basis need not be so divided. But for the purpose
of formal definition, it eases presentation and understanding to keep the static
and dynamic parts of the basis separate. This is further justified by programming
experience. A large proportion of errors in ML programs are discovered during
elaboration, and identified as errors of type or form, so it follows that it is useful to
perform the elaboration phase separately. In fact, elaboration without evaluation
is just what is normally called compilation; once a declaration (or larger entity)
is compiled one wishes to evaluate it ~ repeatedly — without re-elaboration, from
which it follows that it is useful to perform the evaluation phase separately.

A further factoring of the formal definition is possible, because of the structure
of the language. ML consists of a lower level called the Core language (or Core for
short), a middle level concerned with programming-in-the-large called Modules,
and a very small upper level called Programs. With the three phases described
above, there is therefore a possibility of nine components in the complete language
definition. We have allotted one section to each of these components, except that
we have combined the parsing, elaboration and evaluation of Programs in one
section. The scheme for the ensuing seven sections is therefore as follows:

_ Core Modules  Programs

Syntaz | Section 2 | Section 3

Static Semantics | Section 4 | Section 5 | Section 8
Dynamic Semantics | Section 6 | Section 7

The Core provides many phrase classes, for programming convenience. But
about half of these classes are derived forms, whose meaning can be given by
translation into the other half which we call the Bare language. Thus each of



2 1 INTRODUCTION

the three parts for the Core treats only the bare language; the derived forms
are treated in Appendix A. This appendix also contains a few derived forms for
Modules. A full grammar for the language is presented in Appendix B.

In Appendices C and D the initial basis is detailed. This basis, divided into
its static and dynamic parts, contains the static and dynamic meanings of all
predefined identifiers.

The semantics is presented in a form known as Natural Semantics. It consists
of a set of rules allowing sentences of the form

A phrase = A’

to be inferred, where A is often a basis (static or dynamic) and A’ a semantic
object — often a type in the static semantics and a value in the dynamic semantics.
One should read such a sentence as follows: “in the basis A, the phrase phrase
elaborates — or evaluates — to the object A”. Although the rules themselves
are formal the semantic objects, particularly the static ones, are the subject of a
mathematical theory which is presented in a succinct form in the relevant sections.
This theory, particularly the theory of types and signatures, will benefit from a
more pedagogic treatment in other publications; the treatment here is probably
the minimum required to understand the meaning of the rules.

The robustness of the semantics depends upon theorems. Some of these are
stated but not proved; others are presented as “claims” rather than theorems —
often they have been proved for a skeletal language, and although we are confident
of their truth their proofs in the context of the full language will present an
interesting challenge to a computer-assisted proof methodology, to attain complete
certainty.



2 Syntax of the Core
2.1 Reserved Words

The following are the reserved words used in the Core. They may not (except =)
be used as identifiers. In this document the alphabetic reserved words are always
shown in typewriter font.

abstype and andalso as case do datatype else

end exception fn fun handle if in  infix
infixr 1let local nonfix of op ~open orelse
raise rec then type val with withtype while
¢> > °1 {43, 5 ... - = = >

2.2 Special constants

An integer constant is any non-empty sequence of digits, possibly preceded by a
negation symbol (~).

A real constant is an integer constant, possibly followed by a point (.) and
one or more digits, possibly followed by an exponent symbol E and an integer
constant; at least one of the optional parts must occur, hence no integer con-
stant is a real constant. Examples: 0.7 +3.32E5 3E"7 . Non-examples:
23 .3 4.E5 1E2.0 .

A string constant is a sequence, between quotes ("), of zero or more printable
characters, spaces or escape sequences. We assume an underlying alphabet of 256
different characters (numbered 0 to 255) which is such that the characters with
numbers 0 to 127 coincide with the ASCII character set. Each escape sequence is
introduced by the escape character \ , and stands for a character sequence. The
allowed escape sequences are as follows (all other uses of \ being incorrect):

\n A single character interpreted by the system as end-of-line.
\t Tab.
\"¢c The control character ¢, for any appropriate c.

\ddd The single character with number ddd (3 decimal digits de-
noting an integer in the interval [0, 255]).

\u "

\\ \

\f++f\  This sequence is ignored, where f - f stands for a sequence of

one or more formatting characters.

The formatting characters are a subset of the non-printable characters includ-
ing at least space, tab, newline, formfeed. The last form allows long strings to be
written on more than one line, by writing \ at the end of one line and at the
start of the next.

We denote the class of special constants by SCon, and we shall use scon to
range over SCon.



4 2 SYNTAX OF THE CORE

Var (value variables ) long
Con (value constructors ) long
ExCon (exception constructors) long
TyVar (type variables )

TyCon (type constructors ) long
Lab (record labels )

Strld  (structure identifiers )  long
Figure 1: Identifiers

2.3 Comments

A comment is any character sequence within comment brackets (* %) in which
comment brackets are properly nested. An unmatched comment bracket should
be detected by the compiler.

2.4 Identifiers

The classes of identifiers for the Core are shown in Figure 1. We use var, tyvar to
range over Var, TyVar etc. For each class X marked “long” there is a class longX
of long identifiers; if # ranges over X then longz ranges over longX. The syntax of
these long identifiers is given by the following:
longe = = identifier
stridy..--.strid,.x  qualified identifier (n > 1)

The qualified identifiers constitute a link between the Core and the Modules.
Throughout this document, the term “identifier”, occurring without an adjective,
refers to non-qualified identifiers only.

An identifier is either alphanumeric: any sequence of letters, digits, primes (’)
and underbars (.) starting with a letter or prime, or symbolic: any non-empty
sequence of the following symbols

P ho& s # + -/ 2 <= > 7 @\ " ¢~ | o«

In either case, however, reserved words are excluded. This means that for example
# and | are not identifiers, but ## and |=| areidentifiers. The only exception
to this rule is that the symbol =, which is a reserved word, is also allowed as
an identifier to stand for the equality predicate. The identifier = may not be
re-bound; this precludes any syntactic ambiguity.

A type variable tyvar may be any alphanumeric identifier starting with a prime;
the subclass EtyVar of TyVar, the equality type variables, consists of those which
start with two or more primes. The subclass ImpTyVar of TyVar, the imperative
type variables, consists of those which start with one or two primes followed by
an underbar. The complement AppTyVar = TyVar \ ImpTyVar consists of the
applicative type variables. The other six classes (Var, Con, ExCon, TyCon, Lab
and Strld) are represented by identifiers not starting with a prime. However, * is



2.5 Lexical analysis 5

excluded from TyCon, to avoid confusion with the derived form of tuple type (see
Figure 22). The class Lab is extended to include the numeric labels 1 2 3 ...
i.e. any numeral not starting with 0.

TyVar is therefore disjoint from the other six classes. Otherwise, the syntax
class of an occurrence of identifier id in a Core phrase (ignoring derived forms,
Section 2.7) is determined thus:

I

1. Immediately before “.” —i.e. in a long identifier — or in an open declaration,

- id is a structure 1dent1ﬁer. The following rules assume that all occurrences
of structure identifiers have been removed.

2. At the start of a component in a record type, record pattern or record
expression, id is a record label.

3. Elsewhere in types id is a type constructor, and must be within the scope
of the type binding or datatype binding which introduced it.

4. Elsewhere, id is an exception constructor if it occurs in the scope of an excep-
tion binding which introduces it as such, or a value constructor if it occurs
in the scope of a datatype binding Wthh introduced it as such; otherwise it
is-a value variable.

It follows from the last rule that no value declaration can make a “hole” in the
scope of a value or exception constructor by introducing the same identifier as a
variable; this is because, in the scope of the declaration which introduces id as a
value or exception constructor, any occurrence of id in a pattern is interpreted as
the constructor and not as the binding occurrence of a new variable.

By means of the above rules a parser can determine the class to which each
identifier class belongs; for the remainder of this document we shall therefore
assume that the classes are all disjoint.

2.5 Lexical analysis

Each item of lexical analysis is either a reserved word, a numeric label, a special
constant or a long identifier. Comments and formatting characters separate items
(except within string constants; see Section 2.2) and are otherwise ignored. At
each stage the longest next item is taken.

2.6 Infixed operators

An identifier may be given infix status by the infix or infixr directive ,
which may occur as a declaration; this status only pertains to its use as a var, a
con or an excon within the scope (see below) of the directive. (Note that qualified
identifiers never have infix status.) If id has infix status, then “ezp, id exp,” (resp.
“paty id pat,”) may occur — in parentheses if necessary — wherever the application
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“id{1=exp,,2=exp,}” or its derived form “id (ezp, ,exp,)” (resp “id (pat, ,pat,)”)
would otherwise occur. On the other hand, an occurrence of any long identifier
(qualified or not) prefixed by op is treated as non-infixed. The only required use
of op is in prefixing a non-infixed occurrence of an identifier id which has infix
status; elsewhere op, where permitted, has no effect. Infix status is cancelled
by the nonfix directive. We refer to the three directives collectively as fixity .
directives.

The form of the fixity directives is as follows (n > 1):

infix (d) idy - id,

n

infixr (d) id; --- id

nonfix id, :-- id,

where (d) is an optional decimal digit d indicating binding precedence. A higher
value of d indicates tighter binding; the default is 0. infix and infixr dictate
left and right associativity respectively; association is always to the left for different
operators of the same precedence. The precedence of infix operators relative to
other expression and pattern constructions is given in Appendix B.

The. scope of a fixity directive dir is the ensuing program text, except that if
dir occurs in a declaration dec in either of the phrases

let dec in -++ end

local dec in -+- end

then the scope of dir does not extend beyond the phrase. Further scope limitations
are imposed for Modules.

These directives and op are omitted from the semantic rules, since they affect
only parsing.

2.7 Derived Forms

There are many standard syntactic forms in ML whose meaning can be expressed
in terms of a smaller number of syntactic forms, called the bare language. These
derived forms, and their equivalent forms in the bare language, are given in Ap-
pendix A.

2.8 Grammar

The phrase classes for the Core are shown in Figure 2. We use the variable atezp
to range over AtExp, etc.
The grammatical rules for the Core are shown in Figures 3 and 4.
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AtExp atomic expressions
ExpRow  expression rows
Exp expressions

Match matches

Mrule match rules

Dec declarations

ValBind  value bindings
TypBind type bindings
DatBind datatype bindings
ConBind  constructor bindings
ExBind  exception bindings

AtPat atomic patterns
PatRow  pattern rows

Pat patterns
Ty type expressions
TyRow type-expression rows

Figure 2: Core Phrase Classes

The following conventions are adopted in presenting the grammatical rules,
and in their interpretation:

The brackets () enclose optional phrases.

For any syntax class X (over which z ranges) we define the syntax class Xseq
(over which zseq ranges) as follows:

rseq u= = (singleton sequence)
(empty sequence)
(zy,-,2,) (sequence, n > 1)

(Note that the “..” used here, meaning syntactic iteration, must not be
confused with “...” which is a reserved word of the language.)

Alternative forms for each phrase class are in order of decreasing precedence;
this resolves ambiguity in parsing, as explained in Appendix B.

L (resp. R) means left (resp. right) association.
The syntax of types binds more tightly than that of expressions.

Each iterated construct (e.g. match, ---) extends as far right as possible;
thus, parentheses may be needed around an expression which terminates
with a match, e.g. “fn match”, if this occurs within a larger match.



atexp

exprow

exp

match

mrule
dec

valbind

typbind
datbind
conbind

exbind

scon

(op)longvar
(op)longcon
(op)longezcon

{ (exprow) }

let dec in ezp end
(exp)

lab = exp ( , exprow)

atexp

exp alexp

exp, id exp,

exp : ty

exp handle maich
raise ezxp

fn match

mrule ( | match)
pat => exp

val valbind

type typbind

datatype datbind

abstype datbind with dec end
exception exbind

local dec; in dec, end

open longstrid, --- longstrid,,

decy (;) dec,
infix (d) id, --- id,
infixr (d) id; - id,,

nonfix id, --- id,,

pat = exp (and valbind)
rec valbind

tyvarseq tycon = ty (and typbind)

2 SYNTAX OF THE CORE

special constant
value variable

value constructor
exception constructor
record

local declaration

expression row

atomic
application (L)
infixed application
typed (L)

handle exception
raise exception
function

value declaration
type declaration
datatype declaration
abstype declaration
exception declaration
local declaration
open declaration (n > 1)
empty declaration
sequential declaration
infix (L) directive
infix (R) directive
nonfix directive

tyvarseq tycon = conbind (and datbind)

(op)con (of ty) ( | conbind)
(op)excon (of ty) (and exbind)

(op)excon = (op)longezcon (and exbind)

Figure 3: Grammar: Expressions, Matches, Declarations and Bindings
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atpat

patrow

pat

ty

tyrow

scon
(op)var
longcon
longezcon

{ (patrow) }
( pat)

lab = pat ( , patrow)

atpat

(op)longcon atpat
(op)longezcon atpat
paty con pat,

pat, excon pat,
pat : ty

(op)var(: ty) as pat
tyvar

{ (tyrow) ¥}

tyseq longtycon

ty -> ty

(ty)

lab : ty ( , tyrow)

2.9 Syntactic Restrictions

No pattern may contain the same var twice. No expression row, pattern row

wildcard

special constant
variable

constant

exception constant
record

wildcard
pattern row

atomic

value construction

exception construction
infixed value construction
infixed exception construction
typed

layered

type variable

record type expression

type construction

function type expression (R)

type-expression row

Figure 4: Grammar: Patterns and Type expressions

or type row may bind the same lab twice.

No binding valbind, typbind, datbind or ezbind may bind the same identifier

twice; this applies also to value constructors within a datbind.

In the left side tyvarseq tycon of any typbind or datbind, tyvarseq must not
contain the same fyvar twice. Any tyvar occurring within the right side

must occur in tyvarseq.

For each value binding pat = exp within rec, exp must be of the form
fn match, possibly constrained by one or more type expressions. The derived
form of function-value binding given in Appendix A, page 67, necessarily

obeys this restriction.
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3 Syntax of Modules

For Modules there are further reserved words, identifier classes and derived forms.
There are no further special constants; comments and lexical analysis are as for the
Core. The derived forms for modules concern functors and appear in Appendix A.

3.1 Reserved Words
The following are the additional reserved words used in Modules.

eqtype functor include  sharing
sig signature struct structure

3.2 Identifiers

The additional syntax classes for Modules are Sigld (signature identifiers) and
Funld (functor identifiers); they may be either alphanumeric — not starting with a
prime — or symbolic. The class of each identifier occurrence is determined by the
grammatical rules which follow. Henceforth, therefore, we consider all identifier
classes to be disjoint.

3.3 Infixed operators

In addition to the scope rules for fixity directives given for the Core syntax, there
is a further scope limitation: if dir occurs in a structure-level declaration strdec
in any of the phrases -

let strdec in --- end

local strdec in --- end
struct strdec end

then the scope of dir does not extend beyond the phrase.

One effect of this limitation is that fixity is local to a generative structure
expression — in particular, to such an expression occurring as a functor body. A
more liberal scheme (which is under consideration) would allow fixity directives
to appear also as specifications, so that fixity may be dictated by a signature
expression; furthermore, it would allow an open or include construction
to restore the fixity which prevailed in the structures being opened, or in the
signatures being included. This scheme is not adopted at present.

3.4 Grammar for Modules

The phrase classes for Modules are shown in Figure 5. We use the variable strexp
to range over StrExp, etc. The conventions adopted in presenting the grammatical
rules for Modules are the same as for the Core. The grammatical rules are shown
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StrExp structure expressions
StrDec structure-level declarations
StrBind structure bindings

SigExp signature expressions
SigDec signature declarations
SigBind signature bindings

Spec specifications
ValDesc value descriptions
TypDesc type descriptions
DatDesc datatype descriptions

ConDesc constructor descriptions
ExDesc exception descriptions
StrDesc structure descriptions
SharEq sharing equations
FunDec functor declarations

FunBind functor bindings
FunSigExp functor signature expressions

FunSpec functor specifications
FunDesc functor descriptions
TopDec top-level declarations

Figure 5: Modules Phrase Classes

in Figures 6, 7 and 8.

It should be noted that functor specifications (FunSpec) cannot occur in pro-
grams; neither can the associated functor descriptions (FunDesc) and functor sig-
nature expressions (FunSigExp). The purpose of a funspec is to specify the static
attributes (i.e. functor signature) of one or more functors. This will be useful,
in fact essential, for separate compilation of functors. If, for example, a functor
g refers to another functor f then — in order to compile ¢ in the absence of the
declaration of f — at least the specification of f (i.e. its functor signature) must
be available. At present there is no special grammatical form for a separately
compilable “chunk” of text — which we may like to call call a module — containing
a fundec together with a funspec specifying its global references. However, be-
low in the semantics for Modules it is defined when a declared functor matches a
functor signature specified for it. This determines exactly those functor environ-
ments (containing declared functors such as f) into which the separately compiled
“chunk” containing the declaration of ¢ may be loaded.
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strezp = struct strdec end generative
longstrid structure identifier
funid ( strexp ) functor application
let strdec in strezp end local declaration
strdec = dec declaration
structure strbind structure
local strdecy in strdec, end local
empty
strdecy (;) strdecy sequential
strbind = strid (: sigezp) = strezp (and strbind)
sigexp = sig spec end generative
sigid signature identifier
sigdec = signature sigbind single
empty
sigdec, (;) sigdec, sequential
sighind = sigid = sigexp (and sighind)

Figure 6: Grammar: Structure and Signature Expressions

3.5 Syntactic Restrictions
e No binding strbind, sighind, or funbind may bind the same identifier twice.

o No description valdesc, typdesc, datdesc, exdesc, strdesc or fundesc may
describe the same identifier twice; this applies also to value constructors
within a datdesc.
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spec

valdesc
typdesc
datdesc
condesc
exdesc
strdesc

shareq

val valdesc value

type typdesc type

eqtype typdesc eqtype

datatype datdesc datatype

exception exdesc exception

structure strdesc structure

sharing shareq sharing

local spec, in spec, end local

open longstrid, --- longstrid,, open (n > 1)

include sigid, --- sigid,, include (n > 1)
empty

specy (;) specy sequential

var : ty (and valdesc)

tyvarseq tycon (and typdesc)

tyvarseq tycon = condesc (and datdesc)
con {of ty) ( | condesc)

ezcon (of ty) (and ezdesc)

strid : sigexp (and strdesc)

longstrid, = --- = longstrid,, structure sharing
(n = 2)
type longtycon, = --- = longtycon,, type sharing
(n>?)
shareq, and shareq, multiple

Figure 7: Grammar: Specifications

13
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unaec = Tfunctor funbin singie
fund f Sfunbind ingl
empty
fundecy (;) fundec, sequence
Junbind = funid ( strid : sigexp ) (: sigezp’) = strezp functor binding
(and funbind)
unsigexp = ( strid : sigexp ) : sigexp’ functor signature expression
g P g g
funspec = functor fundesc functor specification
empty
funspec, (;) funspec, sequence
fundesc = funid funsigezp (and fundesc)
topdec u= strdec structure-level declaration
sigdec signature declaration
fundec functor declaration

Note: No topdec may contain, as an initial segment, a shorter top-
level declaration followed by a semicolon.

Figure 8: Grammar: Functors and Top-level Declarations

3.6 Closure Restrictions

The semantics presented in later sections requires no restriction on reference to
non-local identifiers. For example, it allows a signature expression to refer to
external signature identifiers and (via sharing or open ) to external structure
identifiers; it also allows a functor to refer to external identifiers of any kind.

However, implementors who want to provide a simple facility for separate com-
pilation may want to impose the following restrictions (ignoring references to iden-
tifiers bound in the initial basis By, which may occur anywhere):

1. In any signature binding sigid = sigexp , the only non-local references in
sigezp are to signature identifiers.

2. In any functor description funid ( strid : sigexp ) : sigexp’ , the only non-
local references in sigezp and sigezp’ are to signature identifiers, except that
sigexp’ may refer to strid and its components.

3. In any functor binding funid ( strid : sigezp ) (: sigexp’) = strexp , the only
non-local references in sigezp, sigexp’ and strezp are to functor and signature
identifiers, except that both sigezp’ and strexp may refer to strid and its
components.

In the last two cases the final qualification allows, for example, sharing constraints
to be specified between functor argument and result. (For a completely precise
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definition of these closure restrictions, see the comments to rules 66 (page 39), 91
(page 42) and 96 (page 42) in the static semantics of modules, Section 5.)

The significance of these restrictions is that they may ease separate compi-
lation; this may be seen as follows. If one takes a module to be a sequence of
signature declarations, functor specifications and functor declarations satisfying
the above restrictions then the elaboration of a module can be made to depend
on the initial static basis alone (in particular, it will not rely on structures outside
the module). Moreover, the elaboration of a module cannot create new free struc-
ture or type names, so name consistency (as defined in Section 5.2, page 32) is
automatically preserved across separately compiled modules. On the other hand,
imposing these restrictions may force the programmer to write many more shar-
ing equations than is needed if functors and signature expressions can refer to free
structures.
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4 Static Semantics for the Core

Our first task in presenting the semantics — whether for Core or Modules, static or
dynamic - is to define the objects concerned. In addition to the class of syntactic
objects, which we have already defined, there are classes of so-called semantic
objects used to describe the meaning of the syntactic objects. Some classes contain
simple semantic objects; such objects are usually identifiers or names of some kind.
Other classes contain compound semantic objects, such as types or environments,
which are constructed from component objects.

4.1 Simple Objects

All semantic objects in the static semantics of the entire language are built from
identifiers and two further kinds of simple objects: type constructor names and
structure names. Type constructor names are the values taken by type construc-
tors; we shall usually refer to them briefly as type names, but they are to be
clearly distinguished from type variables and type constructors. Structure names
play an active role only in the Modules semantics; they enter the Core semantics
only because they appear in structure environments, which (in turn) are needed
in the Core semantics only to determine the values of long identifiers. The simple
object classes, and the variables ranging over them, are shown in Figure 9. We
have included TyVar in the table to make visible the use of « in the semantics to
range over TyVar.

aor tyvar € TyVar type variables
t € TyName type names
m € StrName structure names

Figure 9: Simple Semantic Objects

Each o € TyVar possesses a boolean equality attribute, which determines
whether or not it admits equality, i.e. whether it is a member of EtyVar (defined
on page 4). Independently hereof, each o possesses a boolean attribute, the im-
perative attribute, which determines whether it is imperative, i.e. whether it is a
member of ImpTyVar (defined on page 4) or not.

Each ¢ € TyName has an arity k& > 0, and also possesses an equality attribute.
We denote the class of type names with arity k£ by TyName(®.

With each special constant scon we associate a type name type(scon) which is
either int, real or string as indicated by Section 2.2.

4.2 Compound Objects

When A and B are sets Fin A denotes the set of finite subsets of A, and A i g
denotes the set of finite maps (partial functions with finite domain) from A to B.
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The domain and range of a finite map, f, are denoted Dom f and Ran f. A finite
map will often be written explicitly in the form {a; ~ b;,---,a; — b}, k > 0;
in particular the empty map is {}. We shall use the form {z + e ; ¢} — a form
of set comprehension — to stand for the finite map f whose domain is the set of
values @ which satisfy the condition ¢, and whose value on this domain is given
by f(z) =e. :
When f and g are finite maps the map f + g, called f modified by g, is the
finite map with domain Dom f U Dom g and values

(f +9)(a) =if a € Domg then g(a) else f(a).

The compound objects for the static semantics of the Core Language are shown
in Figure 10.

7 € Type = TyVar URecType U FunTypeU ConsType
(T4, 7%) or 7} € TypeF
(ay,,ay) or al® € TyVar®
¢ € RecType =Lab B Type
T — 7' € FunType = Type x Type
ConsType = UgsConsType®)
7™t € ConsType® = Type* x TyName®
8 or Aa®).r € TypeFcn = UpsoTyVar® x Type
o or Va®).r € TypeScheme = U;soTyVar® x Type
Sor(m,E) € Str=StrName x Env
(0,CE) € TyStr = TypeFcn x ConEnv
SE € StrEnv = Strld & Str
TE € TyEnv = TyCon TyStr
CE € ConEnv = Con 3 TypeScheme
VE € VarEnv = (Var U Con U ExCon) 2 TypeScheme
EE € ExConEnv = ExCon 3 Type
E or (SE,TE,VE,EE) € Env = StrEnv x TyEnv x VarEnv x ExConEnv
T € TyNameSet = Fin(TyName)
U € TyVarSet = Fin(TyVar)
Cor T,U,E € Context = TyNameSet x TyVarSet x Env

Figure 10: Compound Semantic Objects

Note that A and V bind type variables. For any semantic object A, tynames A
and tyvars A denote respectively the set of type names and the set of type variables
occurring free in A. Moreover, imptyvars A and apptyvars A denote respectively
the set of imperative type variables and the set of applicative type variables oc-
curring free in A.
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4.3 Projection, Injection and Modification

Projection: We often need to select components of tuples — for example, the
variable-environment component of a context. In such cases we rely on variable
names to indicate which component is selected. For instance “VE of E” means
“the variable-environment component of E” and “m of S” means “the structure
name of S”.

Moreover, when a tuple contains a finite map we shall “apply” the tuple to an
argument, relying on the syntactic class of the argument to determine the relevant
function. For instance C(tycon) means (TE of C)tycon.

A particular case needs mention: C(con) is taken to stand for (VE of C)con;
similarly, C(ezcon) is taken to stand for (VE of C)excon. The type scheme of a
value constructor is held in VE as well as in TE (where it will be recorded within
a CE); similarly, the type of an exception constructor is held in VE as well as in
EE. Thus the re-binding of a constructor of either kind is given proper effect by
accessing it in VE, rather than in TFE or in EE.

Finally, environments may be applied to long identifiers. For instance if
longcon = strid,.---.strid,.con then E(longcon) means

(VE of (SE of --+(SE of (SE of E)strid,)strid,---)strid,)con.

Injection: Components may be injected into tuple classes; for example,
“VE in Env” means the environment ({},{},VE,{}).

Modification: The modification of one map f by another map g, written f+g,
has already been mentioned. It is commonly used for environment modification, for
example E + E'. Often, empty components will be left implicit in a modification;
for example E + VE means E + ({}, {}, VE, {}). For set components, modification
means union, so that C' + (T, VE) means

((Tof CYUT, Uof C, (Eof C)+VE)

Finally, we frequently need to modify a context C by an environment E (or a
type environment TE say), at the same time extending T of C to include the type
names of E (or of TF say). We therefore define C @ TE, for example, to mean
C + (tynames TE,TE).

4.4 Types and Type functions
A type T is an equality type, or admits equality, if it is of one of the forms

e o, where oo admits equality;
o {lab, — 7y, -+, lab, — 7.}, where each 7; admits equality;

o 7(Mt, where ¢ and all members of 7(*) admit equality;
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o (7)ref.

A type function 6 = Aa(¥).7 has arity k; it must be closed - i.e. tyvars(r) C a(®)
— and the bound variables must be distinct. Two type functions are considered
equal if they only differ in their choice of bound variables (alpha-conversion). In
particular, the equality attribute has no significance in a bound variable of a type
function; for example, Aa.a — « and AB.8 — B are equal type functions even
if o admits equality but B does not. Similarly, the imperative attribute has no
significance in the bound variable of a type function. If ¢ has arity k, then we write
t to mean Aalk).a(k)t (eta-conversion); thus TyName C TypeFcn. § = Aal®.1 is
an equality type function, or admits equality, if when the type variables a(¥) are
chosen to admit equality then 7 also admits equality.

We write the application of a type function 8 to a vector 7(*) of types as (k4.
If = Aa®).7 we set T = r{r(*) /a(F)} (beta-conversion).

We write 7{0(*)/t(¥)} for the result of substituting type functions () for type
names t(*) in 7. We assume that all beta-conversions are carried out after substi-
tution, so that for example

(r®){Aa®).7/t} = 7{r*) [ a(®)}.

A type is imperative if all type variables occurring in it are imperative.

4.5 Type Schemes

A type scheme o = Va!¥).7 generalises a type 7/, written o > 7/, if 7/ = 7{r (%) /a(¥)}
for some 7(¥), where each member 7; of 7(*¥) admits equality if o; does, and 7 is
imperative if o; is imperative. If o/ = V3(!).7/ then o generalises ¢, written o > o,
if o > 7/ and B contains no free type variable of . It can be shown that o > o/
iff, for all 7/, whenever ¢/ = 7" then also o = 7.

Two type schemes ¢ and o/ are considered equal if they can be obtained from
each other by renaming and reordering of bound type variables, and deleting type
variables from the prefix which do not occur in the body. Here, in contrast to the
case for type functions, the equality attribute must be preserved in renaming; for
example Yo.a — a and V4.8 — B are only equal if either both o and 8 admit
equality, or neither does. Similarly, the imperative attribute of a bound type
variable of a type scheme is significant. It can be shown that o = o’ iff ¢ > ¢’ and
o~ o. :

We consider a type T to be a type scheme, identifying it with V().r.

4.6 Scope of Explicit Type Variables

In the Core language, a type or datatype binding can explicitly introduce type
variables whose scope is that binding. In the modules, a description of a value,



20 4 STATIC SEMANTICS FOR THE CORE

type, or datatype may contain explicit type variables whose scope is that descrip-
tion. However, we still have to account for the scope of an explicit type variable
occurring in the “: ty” of a typed expression or pattern or in the “of ty” of an
exception binding. For the rest of this section, we consider such occurrences of
type variables only.

Every occurrence of a value declaration is said to scope a set of explicit type
variables determined as follows.

First, an occurrence of « in a value declaration val valbind is said to be un-
guarded if the occurrence is not part of a smaller value declaration within valbind.
In this case we say that o occurs unguarded in the value declaration.

Then we say that o is scoped at a particular occurrence O of val valbind in a
program if (1) « occurs unguarded in this value declaration, and (2) a does not
occur unguarded in any larger value declaration containing the occurrence O.

Hence, associated with every occurrence of a value declaration there is a set U
of the explicit type variables that are scoped at that occurrence. One may think of
each occurrence of val as being implicitly decorated with such a set, for instance:

valp x = (let val{:a} Idl:’a->’a = fn z=>z in Id1 Id1 end,
let valpigy Id2:’a->’a = fn z=>z in Id2 I42 end)

vali:a} x = (let valyy Id:’a->’a = fn z=>z in Id Id end,
fn z=> z:’a)

According to the inference rules in Section 4.10 the first example can be elab-
orated, but the second cannot since ’a is bound at the outer value declaration
leaving no possibility of two different instantiations of the type of Id in the appli-
cation Id Id.

4.7 Non-expansive Expressions

In order to treat polymorphic references and exceptions, the set Exp of expressions
is partitioned into two classes, the expansive and the non-expansive expressions.
Any variable, constructor and fn expression, possibly constrained by one or more
type expressions, is non-expansive; all other expressions are said to be expansive.
The idea is that the dynamic evaluation of a non-expansive expression will neither
generate an exception nor extend the domain of the memory, while the evaluation
of an expansive expression might.

4.8 Closure

Let 7 be a type and A a semantic object. Then Clos(7), the closure of 7 with
respect to A, is the type scheme Va(*).7, where a(¥) = tyvars(7) \ tyvars A. Com-
monly, A will be a context C. We abbreviate the total closure Closgy(7) to Clos(7).
If the range of a variable environment VE contains only types (rather than arbi-
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trary type schemes) we set
Clos4,VE = {id  Clos (1) ; VE(id) = 7}

with a similar definition for Clos ,CFE.

Closing a variable environment VE that stems from the elaboration of a value
binding valbind requires extra care to ensure type security of references and ex-
ceptions and correct scoping of explicit type variables. Recall that valbind is
not allowed to bind the same variable twice. Thus, for each var € DomVE
there is a unique pat = exp in valbind which binds var. If VE(var) = 7, let
Closg,yanpina VE(var) = Ya(¥).7, where

ol®) = { tyvars 7 \ tyvars C, ?f exp %s non-exPansive;
apptyvars 7 \ tyvars C, if ezxp is expansive.

Notice that the form of valbind does not affect the binding of applicative type
variables, only the binding of imperative type variables.

4.9 Type Environments and Well-formedness

A type environment takes the form
TE = {tycon; — (0;,CE;) ; 1 <i < k}
and is well-formed if it satisfies the following conditions:

1. Either CE; = {}, or 6; has the form ¢; and each CE;(con) has the form
Va®).(r — al¥)t;). The latter case occurs when tycon; is a datatype con-
structor; it is conveniently distinguished from an ordinary type constructor
by possessing at least one value constructor.

2. If tycon,; is a datatype constructor different from ref, so that TE(tycon,) =
(ti, CE;) with CF; # {}, then t; admits equality only if, for each CE;(con) =
Va®).(r — a®t;), the type function Aa®).r also admits equality. Further-
more, as many such ¢; as possible admit equality, subject to the foregoing
condition.

This ensures that the equality predicate = will be applicable to a constructed
value con(v) of type 7(¥)¢; only when it is applicable to the value v itself,
whose type is 7{r(F) /a(®)}.

3. Different datatype constructors are bound to different type names; i.e., if i =
j and TE(tycon;) = (t;, CE;) and Dom CE; # 0 and TE(tycon;) = (t;, CE;)
and Dom CE; # { then t; # t;.
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All type environments occurring in the rules are assumed well-formed.
For any TE of the form

TE = {tycon; — (¢;,CE;,) ; 1 <1 < k},

where no CE; is the empty map, and for any E we define Abs(E,TE) to be the
environment obtained from F and TE as follows. First, let Abs(TE) be the type
environment {tycon; — (¢;,{}) ; 1 < ¢ < k} in which all constructor environ-
ments CF; have been replaced by the empty map. (The effect of this first step
is to convert each tycon; into an ordinary type constructor.) Let i, b be new
distinct type names none of which admit equality. Then Abs(E,TE) is the result
of simultaneously substituting #! for t;, 1 < ¢ < k, throughout E + Abs(TE). (The
effect of this second step is to ensure that the use of equality on an abstype is
restricted to the with part.)
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4.10 Inference Rules

Each rule of the semantics allows inferences among sentences of the form
Al phrase = A’

where A is usually an environment or a context, phrase is a phrase of the Core, and
A' is a semantic object — usually a type or an environment. It may be pronounced
“phrase elaborates to A’ in (context or environment) A”. Some rules have extra
hypotheses not of this form; they may be called side conditions.

In the presentation of the rules, phrases within single angle brackets () are
called first options, and those within double angle brackets (()) are called second
options. To reduce the number of rules, we have adopted the following convention:

In each instance of a rule, the first options must be either all present
or all absent; similarly the second options must be either all present
or all absent.

Although not assumed in our definitions, it is intended that every context
C =T,U, E has the property that tynames E C T. Thus T may be thought of,
loosely, ‘as containing all type names which “have been generated”. It is necessary
to include T' as a separate component in a context, since tynames E may not
contain all the type names which have been generated; one reason is that a context
T,0,E is a projection of the basis B = (M, T), F,G, E whose other components
F and G could contain other such names — recorded in T but not present in E.
Of course, remarks about what “has been generated” are not precise in terms of
the semantic rules. But the following precise result may easily be demonstrated:

Let S be a sentence T,U, E +- phrase = A such that tynames E C T,
and let S’ be a sentence T",U’, E' I phrase’ = A’ occurring in a proof
of S; then also tynames E' C T".

Atomic Expressions CF atexp = T

(1)

C F scon = type(scon)

C(longvar) = 1
C t longvar = 7

C(longcon) =
C t longecon = 7

C(longezcon) = 1

C F longexcon = 1
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(C F exprow = o) (5)
C F { (ezprow) } = {}(+ o) in Type

CtFdec=E CoElrerp=rT (©)
CtF let dec in ezp end = 7

Cremp=rT
CFH(exp)=>r

(7)
Comments:

(2),(3) The instantiation of type schemes allows different occurrences of a single
longvar or longcon to assume different types.

(6) The use of @, here and elsewhere, ensures that type names generated by
the first sub-phrase are different from type names generated by the second

sub-phrase.
Expression Rows C I exprow = p
Crep=r (C F exprow = o) 8
C Flab = exp ( , exprow) = {lab — 7}(+ o) )
Expressions Chemp=r
Ct atexp = 7 ©
CF atexp = 7
Clrexp=1—1r C | atezp = 7/
(10)
Cl exp atexp =1
Chezxp=r Chity=r (1)
Clerp: ty=r
Chep=r C F match = exn — 7
(12)
C I ezp handle match = T
CF e.xp = exn 13)
Ctraiseezp=r
C F match = 1
CF fn match = 7 (14)
Comments:

(9) The relational symbol | is overloaded for all syntactic classes (here atomic
expressions and expressions).

e
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(11) Here 7 is determined by C and ty. Notice that type variables in ty cannot
be instantiated in obtaining 7; thus the expression 1:’a will not elaborate
successfully, nor will the expression (fn x=>x):’a->’b. The effect of type
variables in an explicitly typed expression is to indicate exactly the degree
of polymorphism present in the expression.

(13) Note that 7 does not occur in the premise; thus a raise expression has
“arbitrary” type.

Matches |C F match = 7|

Ct mrule = 1 (C F match = 1)
C F mrule ( | match) =

(15)

Match Rules [C F mrule = 7|

C & pat = (VE, 1) C+VEV exp = 7/
Clropat=>erp =71 — 7

(16)

Comment: This rule allows new free type variables to enter the context. These
new type variables will be chosen, in effect, during the elaboration of pat (i.e., in
the inference of the first hypothesis). In particular, their choice may have to be
made to agree with type variables present in any explicit type expression occurring
within ezp (see rule 11).

Declarations |C F dec = F|
C + U I valbind = VE VE' = Closg ,oind VE UNtyvarsVE' =0 (17)
C \ valy valbind = VE' in Env
C | typbind = TE (18)
C + type typbind = TE in Env
C@®TEt dathind = VE,TE  V(t,CE) € RanTE, t ¢ (T of C) 19)
C I datatype datbind = (VE,TE) in Env (

C®TE & dathind = VE,TE  V(t,CE) € RanTE, t ¢ (T of C)

C & (VE,TE) F dec = E 20)

C + abstype datbind with dec end = Abs(E,TE)

Ct exbind = EE VE = EF (21)
C I exception ezbind = (VE, EE) in Env
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CtF decy = E; C@E,\ decy, = E,

C I~ local dec; in dec, end = E, (22)

C(longstrid,) = (my, Ey) -+ C(longstrid,) = (m,, E,) (23)
C F open longstrid, --- longstrid, = E, + -+ + E,,

Ctr = {} in Env (24)

C I_ deCl = E1 C b E1 }_ dCCZ = E2 (25)

Ct dec, ;) dec, = E, + E,

Comments:

(17) Here VE will contain types rather than general type schemes. The closure of
VE is exactly what allows variables to be used polymorphically, via rule 2.

Moreover, U is the set of explicit type variables scoped at this particular
occurrence of val valbind, cf. Section 4.6, page 20. The side-condition on U
ensures that these explicit type variables are bound by the closure operation.
On the other hand, no other explicit type variable occurring free in VE will
become bound, since it must be in U of C, and is therefore excluded from
closure by the definition of the closure operation (Section 4.8, page 21) since
U of C C tyvars C.

(19),(20) The side condition is the formal way of expressing that the elaboration of
each datatype binding generates new type names. Adding TE to the context
on the left of the |- captures the recursive nature of the binding. Recall that
TE is assumed well-formed (as defined in Section 4.9). If tynames(E of C) C
T of C and the side condition is satisfied then C @ TE is well-formed.

(20) The Abs operation was defined in Section 4.9, page 22.

(21) No closure operation is used here, since EE maps exception names to types
rather than to general type schemes. Note that EE is also recorded in the
VarEnv component of the resulting environment (see Section 4.3, page 18).

Value Bindings. |C F valbind = VE|

Ctpat= (VE,r) Clesp=1 (Cl valbind = VE')
C b pat = exp (and valbind) = VE (+ VE')

C + VE F valbind = VE
C  rec valbind = VE

(26)

(27)

Comments:
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(26) When the option is present we have Dom VENDom VE' = () by the syntactic
restrictions.

(27) Modifying C by VE on the left captures the recursive nature of the binding.
From rule 26 we see that any type scheme occurring in VE will have to be a
type. Thus each use of a recursive function in its own body must be ascribed
the same type.

Type Bindings C F typbind = TE

tyvarseq = a(*) Ctity=r (C I typbind = TE)
C t tyvarseq tycon = ty (and typbind) =
{tycon — (Aa®) .7, {})} (+ TE)

Comment: The syntactic restrictions ensure that the type function Aa(®.r satisfies
the well-formedness constraints of Section 4.4 and they ensure tycon ¢ Dom TE.

(28)

Data Type Bindings C + datbind = VE,TE

tyvarseq = ofk) C,a®t - conbind = CE (C F datbind = VE,TE)
C t tyvarseq tycon = conbind (and datbind) =
ClosCE(+ VE), {tycon ~ (t,ClosCE)} (+ TE)

Comment: The syntactic restrictions ensure Dom VE N Dom CE = §) and tycon ¢
DomTE.

(29)

Constructor Bindings C,7F conbind = CF
(Crty=1)  ((C,7F conbind = CE)) (30)
C,7 F con (of ty) (( | conbind)) =
{con = 7} (4 {con — 1" — 7} ) ((+ CE))

Comment: By the syntactic restrictions con ¢ Dom CE.
Exception Bindings |C F ezbind = EE|
(CFty=7 risimperative) ((C F exbind = EE)) (31)

C F excon (of ty) ((and ezbind)) =

{ezcon ++ exn} (+ {ezcon — 7 — exn} ) ((+ EE))

C(longexcon) =7  (CF exbind = EE) (32)

C - excon = longezcon (and exbind) = {ewcon — 7} (+ EE)

Comments:
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(31) Notice that 7 must not contain any applicative type variables.

(31),(82) There is a unique EE, for each C and exbind, such that C & exbind =

EE.

Atomic Patterns C't atpat = (VE,T)
TF = ([07) )
C F scon = ({}, type(scon)) (34)
C+ var = ({var — 7},7) (35)
C(longcon) > (k)¢ ‘ 36)

C t longcon = ({}, 7®)¢) (
C(longezcon) = exn 97
C F longezcon = ({}, exn) (87)
(C F patrow = (VE, g)) (38)

C F {(patrow) } = ( {}{+ VE), {}(+ ¢) in Type)
Ct pat = (VE,T) (39)
Ck(pat) = (VE,1)
Comments:
(35) Note that var can assume a type, not a general type scheme.
Pattern Rows C t patrow = (VE, g)
40
Ck...=>{}Lo (40)
Ct pat = (VE,7)  (CF patrow = (VE',0)  lab ¢ Domp) (a1)
C t lab = pat ( , patrow) = (VE(+ VE'), {lab — 7}{+ 0))

Comment:

(41) By the syntactic restrictions, Dom VE N Dom VE' = {.
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Patterns Ctpat = (VE,T)
C t atpat = (VE, 1) (42)
CF atpat = (VE,T)
C(longcon) = 7' — 1  Ct atpat = (VE, ') (43)
C + longcon atpat = (VE,T)
C(longezcon) =7 — exn  Ct atpat = (VE,7) (44)
C  longexzcon atpat = (VE, exn)
Ctpat= (VE,7) Clrty=rT (45)
Ctpat: ty= (VE,r)
Ct var = (VE, 1) (Crty=r7)
C t+ pat = (VE', 1) (46)
Ct var(: ty) as pat = (VE + VE', 1)
Comments:
(46) By the syntactic restrictions, Dom VE N Dom VE' = {).
Type Expressions Crhty=r
tyvar = a
C | tyvar = « (47)
(C F tyrow = p) (48)
C F { (tyrow) } = {}{+ o) in Type
tyseq = ty,---ty, Chty, =7 (1<i<k)
C(longtycon) = (6, CE) (49)
C I tyseq longtycon = T(k)g
Chty=r Ckity = (50)
Crity->ty=>7—1
Ckhty=r
1
CH(ty)=>r (51)

Comments:

(49) Recall that for 7(*) to be defined, # must have arity k.
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Type-expression Rows C F tyrow = o

Chty=r (C I tyrow = g)
Ctlab: ty(, tyrow) = {lab — 7}{+ o)

Comment: The syntactic constraints ensure lab ¢ Dom p.

(52)

4.11 Further Restrictions

There are a few restrictions on programs which should be enforced by a compiler,
but are better expressed separately from the preceding Inference Rules. They are
as follows:

1. For each occurrence of a record pattern containing a record wildcard, i.e. of
the form {lab,=pat,,---,lab,,=pat,,, ...} the program context must deter-
mine uniquely the domain {lab,,:--,lab,} of its record type, where m < n;
thus, the context must determine the labels {lab,, ., -, lab,} of the fields
to be matched by the wildcard. For this purpose, an explicit type constraint
may be needed. This restriction is necessary to ensure the existence of prin-
cipal type schemes.

2. In a match of the form pat, => exp, | --- | pat,_ => ezp, the pattern sequence
paty,...,pat, should be irredundant; that is, each pat; must match some
value (of the right type) which is not matched by pat, for any i < j. In the
context fn match, the match must also be exhaustive; that is, every value
(of the right type) must be matched by some pat;. The compiler must give
warning on violation of these restrictions, but should still compile the match.
The restrictions are inherited by derived forms; in particular, this means that
in the function binding vaer atpat; - atpat,(: ty) = ezp (consisting of one
clause only), each separate atpat; should be exhaustive by itself.

4.12 Principal Environments

Let C be a context, and suppose that C + dec = E according to the preceding
Inference Rules. Then E is principal (for dec in the context C) if, for all E’ for
which €'+ dec = E’, we have E > E'. We claim that if dec elaborates to any
environment in C then it elaborates to a principal environment in C. Strictly,
we must allow for the possibility that type names which do not occur in C, are
chosen differently for E and E'. Moreover, some imperative type variables may
occur free in E without occurring free in C. The stated claim is therefore made
up to such variation.
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5 Static Semantics for Modules

5.1 Semantic Objects

The simple objects for Modules static semantics are exactly as for the Core. The
compound objects are those for the Core, augmented by those in Figure 11.

M € StrNameSet = Fin(StrName)
N or (M,T) € NameSet = StrNameSet x TyNameSet
Yor (N)S € Sig= NameSet x Str
® or (N)(S,(N")S") € FunSig = NameSet x (Str x Sig)
G € SigEnv = Sigld 2 Sig
F € FunEnv = Funld 3 FunSig
Bor N,F,G,E € Basis = NameSet x FunEnv x SigEnv x Env

Figure 11: Further Compound Semantic Objects

The prefix (N), in signatures and functor signatures, binds both type names
and structure names. We'shall always consider a set N of names as partitioned
into a pair (M, T') of sets of the two kinds of name.

It is sometimes convenient to work with an arbitrary semantic object A, or
assembly A of such objects. As with the function tynames, strnames(A) and
names(A) denote respectively the set of structure names and the set of names
occurring free in A.

Certain operations require a change of bound names in semantic objects; see
for example Section 5.7. When bound type names are changed, we demand that
all of their attributes (i.e. imperative, equality and arity) are preserved.

For any structure S = (m, (SE,TE, VE, EE)) we call m the structure name or
name of S; also, the proper substructures of S are the members of Ran SE and
their proper substructures. The substructures of S are S itself and its proper sub-
structures. The structures occurring in an object or assembly A are the structures
and substructures from which it is built.

The operations of projection, injection and modification are as for the Core.
Moreover, we define C of B to be the context (T'of B, 0, E of B), i.e. with an empty
set of explicit type variables. Also, we frequently need to modify a basis B by an
environment E (or a structure environment SE say), at the same time extending
N of B to include the type names and structure names of E (or of SE say). We
therefore define B @ SE, for example, to mean B + (names SE, SE).
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5.2 Consistency

A set of type structures is said to be consistent if, for all (8, CE,) and (6,, CE,)
in the set, if , = 6, then

CE, = {} or CE, = {} or Dom CE, = Dom CE,

A semantic object A or assembly A of objects is said to be consistent if (after
changing bound names to make all nameset prefixes in A disjoint) for all S; and
S, occurring in A and for every longstrid and every longtycon

1. It mof S; = mof S,, and both S;(longstrid) and S,(longstrid) exist, then

m of Si(longstrid) = m of Sy(longstrid)

2. f mof S; =mof S, and both S;(longtycon) and S,(longtycon) exist, then

8 of Sy(longtycon) = 0 of Sy(longtycon)

3. The set of all type structures in A is consistent

As an example, a functor signature (IV)(S,(N’)S’) is consistent if, assuming
first that N N N’ =0, the assembly A = {S, 5'} is consistent.

We may loosely say that two structures S; and S, are consistent if {Sy, S,} is
consistent, but must remember that this is stronger than the assertion that S; is
consistent and S, is consistent.

Note that if A is a consistent assembly and A’ C A then A’ is also a consistent
assembly.

5.3 Well-formedness

Conditions for the well-formedness of type environments TFE are given with the
Core static semantics.

A signature (N)S is well-formed if N C names S, and also, whenever (m, E)
is a substructure of § and m ¢ N, then N N (names E) = §. A functor signature
(N)(S, (N")S") is well-formed if (N)S and (N')S’ are well-formed, and also, when-
ever (m/, E') is a substructure of S’ and m’ ¢ NUN', then (NUN")N(names E') =

An object or assembly A is well-formed if every type environment, signature
and functor signature occurring in A is well-formed.
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5.4 Cycle-freedom

An object or assembly A is cycle-free if it contains no cycle of structure naes;
that is, there is no sequence

Mo,y Mi_y, Mg = mg (k> 0)

of structure names such that, for each i (0 < i < k) some structure with name m;
occurring in A has a proper substructure with name m;,.

5.5 Admissibility

An object or assembly A is admissible if it is consistent, well-formed and cycle-
free. Henceforth it is assumed that all objects mentioned are admissible; in partic-
ular, the admissibility of each semantic object mentioned is taken as a condition
throughout the semantic rules which follow. (In our semantic description we have
not undertaken to indicate how admissibility should be checked in an implemen-
tation.)

5.6 Type Realisation

A type realisation is a map ¢y : TyName — TypeFcn such that ¢ and o1y (t)
have the same arity, and if ¢ admits equality then so does ory(t).
The support Supp ¢ty of a type realisation ¢1y is the set of type names ¢ for

which p1,(t) # t.

5.7 Realisation

A realisation is a function ¢ of names, partitioned into a type realisation ¢, :
TyName — TypeFcn and a function g, : StrtName — StrName. The support
Supp ¢ of a realisation ¢ is the set of names n for which w(n) # n. The yield
Yield ¢ of a realisation ¢ is the set of names which occur in some @(n) for which
n € Supp ¢.

Realisations ¢ are extended to apply to all semantic objects; their effect is to
replace each name n by ¢(n). In applying ¢ to an object with bound names, such
as a signature (NV)S, first bound names must be changed so that, for each binding
prefix (N),

N N (Suppp U Yieldp) =0 .

5.8 Type Explication

A signature (N)S is type-explicit if, whenever t € N and occurs free in S, then
some substructure of S contains a type environment TE such that TE(tycon) =
(t,CE) for some tycon and some CE.



34 & STATIC SEMANTICS FOR MODULES

5.9 Signature Instantiation

A structure S, is an instance of a signature &, = (N,)S,, written £,>5,, if there
exists a realisation ¢ such that ¢(S;) = S, and Suppy C N,. (Note that if &,
is type-explicit then there is at most one such ¢.) A signature X, = (N,)S, is an
instance of ¥y = (Ny)S;, written X,>%,, if £,>5, and N, N (names ©,) = 0. We
claim that X,>¥%, iff, for all S, whenever £,>5 then ©,>5.

5.10 Functor Signature Instantiation

A pair (S,(N")S") is called a functor instance. Given & = (N1)(S1, (N])S1), a
functor instance (Sj, (IV}).5}) is an instance of ®, written ®>(S;, (IN2)S}), if there
exists a realisation ¢ such that ¢(S,(N])S]) = (S, (IV})S}) and Supp ¢ C N,.
5.11 Enrichment

In matching a structure to a signature, the structure will be allowed both to
have more components, and to be more polymorphic, than (an instance of) the
signature. Precisely, we define enrichment of structures, environments and type
structures by mutual recursion as follows.

A structure S; = (my, E;) enriches another structure S, = (m,, E,), written
Sy = Sy, if

1. my =my
2. £, - FE,

An environment E, = (SE,,TE,,VE,, EE,) enriches another environment E, =
(SE,,TE,, VE,, EE,), written E, = E,, if

1. Dom SE; 2 Dom SE,, and SE;(strid) > SE,(strid) for all strid € Dom SE,
2. DomTE; 2 DomTE,, and TE;(tycon) > TE,(tycon) for all tycon € Dom TE,
3. DomVE; 2 Dom VE,, and VE,(id) > VE,(id) for all id € Dom VE,

4. DomEE; 2 Dom EE,, and EF,(excon) = EE,(excon) for all excon €
Dom FE,

Finally, a type structure (6, CE,) enriches another type structure (6,, CE,), writ-
ten (01, GE]_) bt (02, CE2), if

1. 91 =02

2. Either CE, = CFE, or CE, = {}
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5.12 Signature Matching

A structure S matches a signature ¥, if there exists a structure S— such that
¥y 2 8~ < S. Thus matching is a combination of instantiation and enrichment.
There is at most one such S-, given X; and S. Moreover, writing &, = (N;)Sy, if
¥y 2 S~ then there exists a realisation ¢ with Supp C N, and ¢(S,) = S-. We
shall then say that S matches ¥; via . (Note that if ¥, is type-explicit then ¢ is
uniquely determined by £, and S.)

A signature ¥, matches a signature X, if for all structures S, if S matches
Y, then S matches X;. We claim that X, = (NV,)S; matches £, = (V)9 if
and only if there exists a realisation ¢ with Suppy C N, and ¢(S;) < S, and
N, Nnames ¥, = 0.

5.13 Principal Signatures

Let B be a basis, and suppose that B I sigezp = S according to the rules below.
Then (N)S is principal (for sigezp in the basis B) if (Nof B)YNN = §, and for all $
for which B - sigezp => S’ we have (N)S>S5". We claim that if sigexp elaborates
to any structure S in B then it possesses a principal signature in B.
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5.14 Inference Rules

As for the Core, the rules of the Modules static semantics allow sentences of the
form

Al phrase = A’

to be inferred, where in this case A is either a basis, a context or an environment
and A’ is a semantic object. The convention for options is as in the Core semantics.

Although not assumed in our definitions, it is intended that every basis B =
N,F,G,E in which a topdec is elaborated has the property that namesF U
names GUnames E C N. This is not the case for bases in which signature expres-
sions and specifications are elaborated, but the following Theorem can be proved:

Let S be an inferred sentence B | topdec => B’ in which B satisfies the
above condition. Then B’ also satisfies the condition.

Moreover, if § is a sentence of the form B” F phrase => A occurring
in a proof of S, where phrase is either a structure expression or a
structure-level declaration, then B” also satisfies the condition.

Finally, if T, U, E & phrase = A occurs in a proof of S, where phrase
is a phrase of the Core, then tynames E C T.

Structure Expressions B\ strezp = S
Bt strdec = E m ¢ (N of B) Unames E 53
B I struct strdec end = (m, E) (33)
B(longstrid) = S 9
B - longstrid = S (54)
B - strezp = S

B(funid)>(S",(N"S") , S = S
Bt funid ( strezp ) = S’ (55)
B | strdec = E B® E | strezp = S (56)

B} let strdec in strexp end = S

Comments:

(53) The side condition ensures that each generative structure expression receives
a new name. If the expression occurs in a functor body the structure name
will be bound by (N’) in rule 99; this will ensure that for each application of
the functor, by rule 55, a new distinct name will be chosen for the structure
generated.
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(55) The side condition (N of B) N N’ = (} can always be satisfied by renammg
bound names in (N’)S’ thus ensuring that the generated structures receive
new names.

Let B(funid) = (N)(S;, (N’)S") Assuming that (IV)S; is type-explicit, the
realisation ¢ for which (S}, (N )8%) = (S",(N')S") is uniquely determined
by S, since S = S” can only hold 1f the type names and structure names
in § and S” agree. Recall that enrichment > allows more components and
more polymorphism, while instantiation > does not.

Sharing between argument and result specified in the declaration of the
functor funid is represented by the occurrence of the same name in both
Sy and 5%, and this repeated occurrence is preserved by ¢, yielding sharing
between the argument structure S and the result structure S’ of this functor
application.

(56) The use of @, here and elsewhere, ensures that structure and type names
generated by the first sub-phrase are distinct from names generated by the
second sub-phrase.

Structure-level Declarations | B F strdec = E|

Cof BF dec = E F principal in (C of B) (57

Bl dec= FE )

Bt~ strbind = SE 58

B} structure strbind = SE in Env (58)

B |- strdec, = E, B & E; |- strdec, = E, (59)
B F local strdec, in strdec, end = F,

B = {} in Env (60)

Bt strdec; = E;,  B@® E, I strdec, = E, (61)

B | strdec, (;) strdec, = E, + E,

Comments:

(57) The side condition ensures that all type schemes in E are as general as
possible.
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Structure Bindings | B | strbind = SE|

B - strezp = S (Bl sigezp=> %, 2> 8 <5)
((B + names S | strbind = SE))
B & strid (: sigexp) = strezp ((and strbind)) = {strid — S{")} ((+ SE))

(62)

Comment: If present, sigezp has the effect of restricting the view which strid
provides of S while retaining sharing of names. The notation S(') means S, if the
first option is present, and S if not.

Signature Expressions B |- sigexp = S
Bt E
. spec = (63)
Bt sig spec end = (m, E)
B(sigid)>S
Bt sigid = S (64)

Comments:

(63) In contrast to rule 53, m is not here required to be new. The name m
may be chosen to achieve the sharing required in rule 88, or to achieve the
enrichment side conditions of rule 62 or 99. The choice of m must result in
an admissible object.

(64) The instance S of B(sigid) is not determined by this rule, but — as in rule 63
— the instance may be chosen to achieve sharing properties or enrichment
conditions.

B | sigexp = ¥

B |- sigexp = S (N)S principal for sigezp in B
(N)S type-explicit
B |- sigezp = (N)S

(65)

Comment: A signature expression sigezp which is an immediate constituent of
a structure binding, a signature binding, a functor binding or a functor signature
is elaborated to a principal and type-explicit signature, see rules 62, 69, 95 and
99. By contrast, signature expressions occurring in structure descriptions are
elaborated to structures using the liberal rules 63 and 64, see rule 87, so that
names can be chosen to achieve sharing, when necessary.
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Signature Declarations B - sigdec = G
B I~ sigbind = G (66)
B |- signature sighind = G
B =0 (67
Bt sigdec; = G4 B + G, F sigdec, = G, (68)

B | sigdec, (;) sigdecy = G+ G,

Comments:

(66) The first closure restriction of Section 3.6 can be enforced by replacing the
B in the premise by By + G of B.

(68) A signature declaration does not create any new structures or types; hence
the use of + instead of &.

Signature Bindings B |- sighind = @G

B sigexp = T (B & sighind = G)
B | sigid = sigexp (and sighind) = {sigid — £} (+ G)
Comment: The principality condition implicit in the first premise ensures that the

signature found is as general as possible given the sharing constraints present in
sigezp.

(69)

Specifications Bt spec = E
C of B | valdesc = VE (10
B |- val valdesc = ClosVE in Env )
C of B\ typdesc = TE (71)
B F type typdesc = TE in Env
C of Bt typdesc = TE V(8,CE) € RanTE, 0 admits equality (12)
B | eqtype typdesc = TF in Env
Cof B+ TE\ datdesc = VE,TE (73)
B - datatype datdesc = (VE,TE) in Env
Cof Bt exdesc == EE VE = EE (74)
B I~ exception exdesc => (VE, EE) in Env
F strd E
Bt strdesc = S. (75)

B F structure strdesc = SE in Env
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B+ shareq = {}

B - sharing shareqg = {} in Env (76)
Bt spec, = E,| B + E, \ spec, = E, (77)
B | local spec, in spec, end = E,
B(longstrid,) = (my, E;) -+ B(longstrid,) = (m,, E,) (78)
Bt open longstrid, - longstrid,, = E{+ -+ E,

Bsigidy)> (may B) - Bsigid,)>(my B,) 79

B include sigid, --- sigid, = E, + -+ E,
Bt = {}in Env (80)
B |- spec; = E; B + E, + spec, = E, (81)

B\ specy (;) spec, = E, + E,

Comments:
(70) VE is determined by B and valdesc.

(71)—(73) The type functions in TE may be chosen to achieve the sharing hypote-
sis of rule 89 or the enrichment conditions of rules 62 and 99. In particular,
the type names in TFE in rule 73 need not be new. Also, in rule 71 the type
functions in TF may admit equality.

(74) EE is determined by B and ezdesc and contains monotypes only.

(79) The names in the instances may be chosen to achieve sharing or enrichment
conditions.

Value Descriptions |C F valdesc = VE|

Chty=>r  (CF valdesc = VE)
C F var : ty (and valdesc) = {var — 7} (+ VE)

(82)

Type Descriptions C F typdesc = TE

tyvarseq = a(F) (C F typdesc = TE) arity § = k
C I tyvarseq tycon (and typdesc) = {tycon — (0,{})} (+ TE)
Comment: Note that any 6 of arity £ may be chosen but that the construc-
tor environment in the resulting type structure must be empty. For example,

datatype s=c type t sharing s=t is a legal specification, but the type struc-
ture bound to t does not bind any value constructors.

(83)
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Datatype Descriptions C + datdesc = VE,TE

tyvarseq = a¥)  C,aMt & condesc = CE ~ (C V datdesc = VE, TE)

C | tyvarseq tycon = condesc (and datdesc) = (84)
ClosCE(+ VE), {tycon — (t,ClosCE)} (+ TE)
Constructor Descriptions C,7F condesc = CE
(CHty=71)  ((C,7F condesc = CE))
(83)
C,7F con (of ty) (( | condesc)) =
{con =7} (+ {con +— 7" — 1} ) ((+ CE))
Exception Descriptions |C + ezdesc = EE|
(Chty=r1 tyvars(r) =0)  ((C | exdesc = EE)) (36)
C F excon (of ty) ((and ezdesc)) =
{excon + exn} (+ {excon — 7 — exn}) ((+ EE))
Structure Descriptions | B F strdesc = SE |
B |- sigezp = S (Bt strdesc = SE) (87)
B & strid : sigexzp (and strdesc) = {strid — S} (+ SE)
Sharing Equations B\ shareg = {}
m of B(longstrid,) = +-- = m of B(longstrid,,) (88
B F longstrid, = .- = longstrid,, = {} )
6 of B(longtycon,) = --- = 0 of B(longtycon,,) ”
B F type longtycon, = -+ = longtycon,, = {} (89)
B |- shareq, = {} B |- shareg, = {} (90)

B |- shareg, and shareq, = {}

Comments:

(88) By the definition of consistency the premise is weaker than
B(longstrid,) = - = B(longstrid,,). Two different structures with the same
name may be thought of as representing different views. The requirement
that B is consistent forces different views to be consistent.
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(89) By the definition of consistency the premise is weaker than
B(longtycon,) = .-+ = B(longtycon,). A type structure with empty con-
structor environment may have the same type name as one with a non-empty
constructor environment; the former could arise from a type description, and
the latter from a datatype description. However, the requirement that B is
consistent will prevent two type structures with constructor environments
which have different non-empty domains from sharing the same type name.

Functor Specifications B I funspec = F
B | fundesc = F (91)
B | functor fundesc = F
e 92
Bt = {} (92)
B |- funspec, = F} B + F, + funspecy, = F, (93)

B & funspecy (;) funspec, = Fy + F,

Comments:

(91) The second closure restriction of Section 3.6 can be enforced by replacing
the B in the premise by B, + G of B.

Functor Descriptions B I fundesc = F

Bt funsigezp = ® (Bt fundesc = F)
Bt funid funsigezp (and fundesc) = {funid — ®}(+ F)

(94)

Functor Signature Expressions B | funsigexzp = &

B\ sigezp = (N)S B @ {strid — S} I~ sigexp’ = (N')S'
B ( strid : sigexp ) : sigexp’ = (N)(S, (N")S")

Comment: The signatures (N)S and (N')S’ are principal and type-explicit, see
rule 65.

(95)

Functor Declarations | B\ fundec = F
" BF funbind = F 56)

B F functor funbind = F (
(97)

BF = {}
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Bt fundec, = F, B + F, + fundec, = F,
B F fundec, (;) fundec, = F; + F,

(98)
Comments:

(96) The third closure restriction of Section 3.6 can be enforced by replacing the
B in the premise by B, + (G of B) + (F of B).

Functor Bindings B | funbind = F

Bt sigexp = (N)S B ® {strid — S} F strexp = 5
(B @ {strid — S} I sigezp’ = &/, &' > §» < §/)
N’ =names S’ \ ((N of B)UN)
((B F funbind = F))

B & funid ( strid : sigezp ) (: sigexp’) = strexp ((and funbind)) =
{funid — (N)(S,(N)S"()} ((+ F))

Comment: The principality requirement on (N)S implicit in the first premise
forces (IV)S to be as general as possible given the sharing constraints in sigexp.
The requirement that (V)S be type-explicit ensures that there is at most one
realisation via which an actual argument can match (N)S. Since @ is used, any
structure name m and type name ¢ in S acts like a constant in the functor body;
in particular, it ensures that further names generated during elaboration of the
body are distinct from m and t. The set N’ is chosen such that every name free

in (N)S or (N)(S, (N")S") is free in B.

(99)

Top-level Declarations B} topdec = B!

B\ strdec = E  imptyvars E = {)

1
B I strdec = (names F, E) in Basis (100)
B I sigdec = G imptyvars G = {) (101)
B |- sigdec = (names G, G) in Basis
Bt fundec = F imptyvars F = ) (102)

B\ fundec = (names F, F') in Basis

Comments:

(100)-(102) The side conditions ensure that no free imperative type variables
enter the basis.
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5.15 Functor Signature Matching

As pointed out in Section 3.4 on the grammar for Modules, there is no phrase
class whose elaboration requires matching one functor signature to another functor
signature. But a precise definition of this matching is needed, since a functor ¢
may only be separately compiled in the presence of specification of any functor f
to which g refers, and then a real functor f must match this specification. In the
case, then, that f has been specified by a functor signature

@, = (Nl)(Sn(N{)S{)
and that later f is declared with functor signature
0, = (N)(S3 (NV3)S3)

the following matching rule will be employed:
A functor signature @, = (N,;)(S,, (IV})S}) matches another functor signature,
®; = (N)(S1,(N!)S;), if there exists a realisation ¢ such that

1. (INV;)S; matches (N,)S; via ¢, and
2. go((Nz’,)Sé) matches (N!)S!.

The first condition ensures that the real functor signature @, for f requires the ar-
gument strezp of any application f(strezp) to have no more sharing, and no more
richness, than was predicted by the specified signature ®;. The second condition
ensures that the real functor signature @,, instantiated to (¢.S;,¢((IV])S})), pro-
vides in the result of the application f(strezp) no less sharing, and no less richness,
than was predicted by the specified signature ®,.
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v € Val={:=} USValUBasVal U Con
U(Con x Val) U ExVal
URecord U Addr U Closure

Record = Lab i3 Val

r €
e € ExVal = ExNameU (ExName x Val)
[e] orp € Pack = ExVal
(match, E,VE) € Closure = Match x Env x VarEnv
mem € Mem = Addr 5 Val
ens € ExNameSet = Fin(ExName)

(mem, ens) or s € State = Mem x ExNameSet
(SE,VE,EE) or E € Env = StrEnv x VarEnv x ExConEnv -
SE € StrEnv = Strld 88 Env

VE € VarEnv = Var & Val
EE € ExConEnv = ExCon %8 ExName

Figure 13: Compound Semantic Objects

nature of exception bindings; each evaluation of a declaration of a exception con-
structor binds it to a new unique name.

6.3 Compound Objects

The compound objects for the dynamic semantics are shown in Figure 13. Many
conventions and notations are adopted as in the static semantics; in particular
projection, injection and modification all retain their meaning. We generally omit
the injection functions taking Con, Con x Val etc into Val. For records r € Record
however, we write this injection explicitly as “in Val”; this accords with the fact
that there is a separate phrase class ExpRow, whose members evaluate to records.

We take U to mean disjoint union over semantic object classes. We also un-
derstand all the defined object classes to be disjoint. A particular case deserves
mention; ExVal and Pack (exception values and packets) are isomorphic classes,
but the latter class corresponds to exceptions which have been raised, and there-
fore has different semantic significance from the former, which is just a subclass
of values.

Although the same names, e.g. E for an environment, are used as in the static
semantics, the objects denoted are different. This need cause no confusion since
the static and dynamic semantics are presented separately. An important point
is that structure names m have no significance at all in the dynamic semantics;
this explains why the object class Str = StrName x Env is absent here — for the
dynamic semantics the concepts structure and environment coincide.
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6.4 Basic Values

The basic values in BasVal are the values bound to predefined variables. These
values are denoted by the identifiers to which they are bound in the initial dynamic
basis (see Appendix D), and are as follows:

abs floor real sqrt sin cos arctan exp 1n
size chr ord explode implode div mod
T %+ - = O < > K= >=
std_in std_out open_in open_out close_in close_out
input output lookahead end_of_stream

The meaning of basic values (almost all of which are functions) is represented by
the function

APPLY : BasVal x Val — Val U Pack
which is detailed in Appendix D.

6.5 Basic Exceptions

A subset BasExName C ExName of the exception names are bound to predefined
exception constructors. These names are denoted by the identifiers to which they
are bound in the initial dynamic basis (see Appendix D), and are as follows:

Abs 0rd Chr Div Mod Quot Prod
Neg Sum Diff Floor Sqrt Exp Ln
Io Match Bind Interrupt

The exceptions on the first two lines are raised by corresponding basic functions,
where © / * + - correspond respectively to Neg Quot Prod Sum Diff. The details
are given in Appendix D. The exception (Io,s), where s is a string, is raised
by certain of the basic input/output functions, as detailed in Appendix D. The
exceptions Match and Bind are raised upon failure of pattern-matching in
evaluating a function fn match or a valbind, as detailed in the rules to follow.
Finally, Interrupt is raised by external intervention.

Recall from Section 4.11 that in the context £n match, the match must be
irredundant and exhaustive and that the compiler should flag the match if it
violates these restrictions. The exception Match can only be raised for a match
which is not exhaustive, and has therefore been flagged by the compiler.

For each value binding pat = exp the compiler must issue a report (but still
compile) if either pat is not exhaustive or pat contains no variable. This will (on
both counts) detect a mistaken declaration like val nil = ezp in which the user
expects to declare a new variable nil (whereas the language dictates that nil is
here a constant pattern, so no variable gets declared). However, these warnings
should not be given when the binding is a component of a top-level declaration
val valbind; e.g. val x::1 = exp, and y = exp, is not faulted by the compiler
at top level, but may of course generate a Bind exception.
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6.6 Closures

The informal understanding of a closure (match, E,VE) is as follows: when the
closure is applied to a value v, match will be evaluated against v, in the environ-
ment E modified in a special sense by VE. The domain Dom VE of this third
component contains those function identifiers to be treated recursively in the eval-
uation. To achieve this effect, the evaluation of match will take place not in E+VE

but in E + Rec VE, where
Rec : VarEnv — VarEnv
is defined as follows:
¢ Dom(RecVE) = Dom VE
o If VE(var) ¢ Closure, then (Rec VE)(var) = VE(var)
o If VE(var) = (match', E', VE') then (Rec VE)(var) = (match’, E', VE)

The effect is that, before application of (match, E,VE) to v, the closure values
in Ran VE are “unrolled” once, to prepare for their possible recursive application
during the evaluation of match upon v.

This device is adopted to ensure that all semantic objects are finite (by con-
trolling the unrolling of recursion). The operator Rec is invoked in just two
places in the semantic rules: in the rule for recursive value bindings of the form
“rec valbind”, and in the rule for evaluating an application expression “ezp atezp”
in the case that exp evaluates to a closure.

6.7 Inference Rules

The semantic rules allow sentences of the form
s, At phrase = A', s’

to be inferred, where A is usually an environment, A’ is some semantic object
and s,s’ are the states before and after the evaluation represented by the sentence.
Some hypotheses in rules are not of this form; they are called side-conditions. The
convention for options is the same as for the Core static semantics.

In most rules the states s and s’ are omitted from sentences; they are only
included for those rules which are directly concerned with the state — either re-
ferring to its contents or changing it. When omitted, the convention for restoring
them is as follows. If the rule is presented in the form

A; & phrase, = A} A, b phrase, = Al
A, © phrase, = A’
A& phrase = A’
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then the full form is intended to be
So, Ay - phrase; = A, s, 8y, A; - phrase, = A, s,
8n—1, An I phrase, = A! s,
Sg, A phrase = A, s,

(Any side-conditions are left unaltered). Thus the left-to-right order of the hy-
potheses indicates the order of evaluation. Note that in the case n = 0, when there
are no hypotheses (except possibly side-conditions), we have s,, = s,; this implies
that the rule causes no side effect. The convention is called the state convention,
and must be applied to each version of a rule obtained by inclusion or omission of
its options. :

A second convention, the exception convention, is adopted to deal with the
propagation of exception packets p. For each rule whose full form (ignoring side-
conditions) is

3y, Ay F phrase; = A!, st Sny Ay I phrase, = A’ s!
s, A phrase = A’, s’

and for each %, 1 < k < n, for which the result Al is not a packet p, an extra rule
is added of the form

81, Ay b phrase; = Al, s Sgy Ay b phrasey, = p/, s/
8, A phrase = p', s’

where p’ does not occur in the original rule.! This indicates that evaluation of
phrases in the hypothesis terminates with the first whose result is a packet (other
than one already treated in the rule), and this packet is the result of the phrase
in the conclusion.

A third convention is that we allow compound variables (variables built from
the variables in Figure 13 and the symbol “/”) to range over unions of semantic
objects. For instance the compound variable v/p ranges over Val UPack. We also
allow z/FAIL to range over X U {FAIL} where = ranges over X; furthermore, we
extend environment modification to allow for failure as follows:

VE + FAIL = FAIL.

Atomic Expressions E - atezp = v/p

1
E & scon = val(scon) (103)

E(longvar) = v
EF longvar = v

(104)

1There is one exception to the exception convention; no extra rule is added for rule 119 which
deals with handlers, since a handler is the only means by which propagation of an exception can
be arrested.
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longcon = stridy..--.stridy.con

E I longcon = con (105)
E(longexzcon) = en (106)
E t longexcon = en
(E * exprow = r) (107)
E + { (exzprow) } = {}(+ r) in Val
Et dec = E’ E+4+FE'Fexp=v (108)
Et let dec in ezp end = v
Elexp=v
EF(Cerp) =v (109)

Comments:
(105) Value constructors denote themselves.

(106) Exception constructors are looked up in the exception environment com-
ponent of F. '

Expression Rows E  exprow = r/p

Etremp=v (E F exprow = r)
Etlab = exp ( , exprow) = {lab — v}{+ r)

Comment: We may think of components as being evaluated from left to right,
because of the state and exception conventions.

(110)

Expressions Etep=v/p
E - atexp = v (111)
EF atexp = v

E ‘- exp = con con # ref Et atexp = v (1)

E I exp atexp = (con,v)

EF exp=en Et atexp = v

(113)

E & exp atexp = (en,v)
s,E |- exp = ref ,s s',E & atexp = v,s" a ¢ Dom(mem of s") (114)

s, E - exp atexp = a, "+ {a — v}

s, EFexp= :=,s s EtF atexp={1—~a, 2 v},s" '(115)

s, E + exp atezp = {} in Val, s” + {a — v}
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Erep=b Et atezp=v APPLY (b, v) = v’

E v exp atexp = v’

E + exp = (match, E', VE) E & atezp = v
E'+ RecVE, v match = v

E & exp atezp = v

E* exp = (match, E', VE) Et atexp = v
E'+ RecVE, v match = FAIL

E |- exp atexp = [Match]

Erep=v
E - exp handle match = v

Etexp=[e] E,et match=v
E I exp handle match = v

Etexp=1[e E,el match = FAIL
E \- exp handle match = [e]

Etexp=e
E & raise ezp = [¢]

E & fn match = (match, E, {})

Comments:

51

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(114) The side condition ensures that a new address is chosen. There are no rules

concerning disposal of inaccessible addresses (“garbage collection”).

(112)~(118) Note that none of the rules for function application has a premise in
which the operator evaluates to a constructed value, a record or an address.
This is because we are interested in the evaluation of well-typed programs
only, and in such programs ezp will always have a functional type, so v will

be either a closure, a constructor, a basic value or :=.

(119) This is the orﬂy rule to which the exception convention does not apply. If
the operator evaluates to a packet then rule 120 or rule 121 must be used.

(121) Packets that are not handled by the match propagate.

(123) The third component of the closure is empty because the match does not

introduce new recursively defined values.
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Matches E,v F match = o' [p/FAIL
E,vF mrule = o'
E,vF mrule ( | match) = o' (124)
E, vt mrule = FAIL (125)
E, vt mrule = FAIL
E,v F mrule = FAIL E,v - match = v'/FAIL (126)

E + mrule | match = v'/FAIL

Comment: A value v occurs on the left of the turnstile, in evaluating a match. We
may think of a match as being evaluated against a value; similarly, we may think
of a pattern as being evaluated against a value. Alternative match rules are tried
from left to right.

Match Rules E,vt mrule = v [p/FAIL
E, vt pat = VE E+VEF exp = v
(127)
E, vt pat => exp = o'
E,v F pat = FAIL
, U - pat = (128)
E,v | pat => exp = FAIL
Declarations Et dec= E'[p
E & valbind = VE (129)
E + val valbind = VE in Env
E + exbind = EE (130)
E & exception exbind = EFE in Env :
E }" decl = El .E -+ El }_ dCCZ = E2 (131)
E I~ local dec; in dec, end = E,
E(longstrid,) = E; --- E(longstrid,) = E; (132)
E - open longstrid, --- longstrid, = E; + -+ E,
Et+ => {} in Env (133)
E F dec, = F, E+ E, F decy = F, (134)

Et- decy (;) dec, = E, + E,
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Value Bindings E \ valbind = VE [p
Etexp=v E, ot pat = VE (E + valbind = VE') (135)
E F pat = ezp (and valbind) = VE (+ VE')
Etexp=v E,vF pat = FAIL (136)
E & pat = exp (and valbind) = [Bind]
E + valbind = VE (137)
E F rec valbind = Rec VE

Exception Bindings E\ exbind = EE[p
en ¢ ensof s s’ = s+ {en} (s, E & exbind = EE,s") (138)

s, E F excon (and exbind) = {excon — en}(+ EE), s'{’)
E(longexcon) =en  (E | ezbind = EE) (139)

E+ excon = longexcon (and exbind) = {excon — en}(+ EE)

Comments:

(138) The two side conditions ensure that a new exception name is generated
and recorded as “used” in subsequent states.

Atomic Patterns E,vF atpat = VE/FAIL
Eor () (140)
v = val(scon)
E,vF scon = {} (141)
v # val(scon)
E, vt scon = FAIL (142)
E,vt var = {var — v} (143)
longcon = stridy.---.strid;.con v = con
E,vF longcon = {} (144)
longcon = strid,.---.strid,.con v # con (145)
E,vF longcon = FAIL
E(longexcon) = v (146)

E,v F longexcon = {}
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E(longezcon) # v

E,v - longezcon = FAIL (147)
v ={}(+r) in Val (E,r & patrow = VE /FAIL) (148)
E,v - { (patrow) } = {}(+VE/FAIL)
t
E,vt pat = VE/FAIL )

E,vF ( pat ) = VE/FAIL

Comments:

(142),(145),(147) Any evaluation resulting in FAIL must do so because rule 142,
rule 145, rule 147, rule 155, or rule 157 has been applied.

Pattern Rows E,r & patrow = VE [FAIL
(150)

Er-...=>{}
E,r(lad) F pat = FAIL

1
E,rt lab = pat ( , patrow) = FAIL (151)
E,r(lab) F pat = VE (E,r t patrow = VE'/FAIL) (152)
E,rt lab = pat ( , patrow) = VE(+ VE'/FAIL)
Comments:
(151),(152) For well-typed programs lab will be in the domain of r.
Patterns E,vtF pat = VE/FAIL
E,v F atpat = VE/FAIL (153)
E,v |- atpat = VE/FAIL
longcon = stridy..--.stridy.con # ref v = (con,v’)
E,v' - atpat = VE /FAIL (154)
E,v F longcon atpat = VE [FAIL
longcon = strid,.---.strid;.con # ref v & {con} x Val (155)
E, vt longcon atpat = FAIL
E(longezcon) =en v = (en,v’)
E,v'\ atpat = VE[FAIL (156)
E,v F longezcon atpat = VE[FAIL
E(l = x Val
(longezcon) =en v ¢ {en} x Va (157)

E,vt longexcon atpat = FAIL
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s(a)=v  s,E,vt atpat = VE/FAIL,s
s,E,al ref atpat = VE/FAIL,s

E,v | pat = VE/FAIL
E,vF var(: ty) as pat = {var — v} + VE/FAIL

(158)

(159)
Comments:

(155),(157) Any evaluation resulting in FAIL must do so because rule 142, rule 145,
rule 147, rule 155, or rule 157 has been applied.
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7 Dynamic Semantics for Modules

7.1 Reduced Syntax

Since signature expressions are mostly dealt with in the static semantics, the
dynamic semantics need only take limited account of them. Unlike types, it cannot
ignore them completely; the reason is that an explicit signature ascription plays
the role of restricting the “view” of a structure - that is, restricting the domains
of its component environments. However, the types and the sharing properties
of structures and signatures are irrelevant to dynamic evaluation; the syntax is
therefore reduced by the following transformations (in addition to those for the
Core), for the purpose of the dynamic semantics of Modules:

¢ Qualifications “of ty” are omitted from exception descriptions.

* Any specification of the form “type typdesc”, “eqtype typdesc”, “datatype
datdesc” or “sharing shareq” is replaced by the empty specification.

e The Modules phrase classes TypDesc, DatDesc, ConDesc and SharEq are
omitted.

7.2 Compound Objects

The compound objects for the Modules dynamic semantics, extra to those for the
Core dynamic semantics, are shown in Figure 14. An interface I € Int represents

(strid : I, strezp(: I'), B) € FunctorClosure
= (Strld x Int) x (StrExp(xInt)) x Basis

(IE, vars, excons) or I Int = IntEnv x Fin(Var) X Fin(ExCon)

€
IE € IntEnv = Strld & Int
G € SigEnv = Sigld & Int
F € FunEnv = Funld & FunctorClosure
(F,G,E)or B € Basis = FunEnv x SigEnv x Env
€

(G,IE) or IB IntBasis = SigEnv x IntEnv

Figure 14: Compound Semantic Objects

a “view” of a structure. Specifications and signature expressions will evaluate to
interfaces; moreover, during the evaluation of a specification or signature expres-
sion, structures (to which a specification or signature expression may refer via
“open”) are represented only by their interfaces. To extract an interface from a
dynamic environment we define the operation

Inter : Env — Int
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as follows:

Inter(SE, VE, EE) = (IE,Dom VE, Dom EE)

where
IE = {strid — Inter E ; SE(strid) = E} .
An interface basis IB = (G, IE) is that part of a basis needed to evaluate signature

expressions and specifications. The function Inter is extended to create an interface
basis from a basis B as follows:

Inter(F,G,E) = (G, IE of (Inter E))

A further operation
l: Env x Int — Env

is required, to cut down an environment E to a given interface I, representing the
effect of an explicit signature ascription. It is defined as follows:

(SE,VE, EE) | (IE,vars, ezcons) = (SE',VE', EE')

where
SE' = {strid — E | I ; SE(strid) = E and IE(strid) = I}

and (taking | now to mean restriction of a function domain)
VE' = VE | vars, EE' = EE | ezcons.

It is important to note that an interface is also a projection of the static value
Y of a signature expression; it is obtained by omitting structure names m and
type environments TF, and replacing each variable environment VE and each
exception environment EE by its domain. Thus in an implementation interfaces
would naturally be obtained from the static elaboration; we choose to give separate
rules here for obtaining them in the dynamic semantics since we wish to maintain
our separation of the static and dynamic semantics, for reasons of presentation.

7.3 Inference Rules
The semantic rules allow sentences of the form
s, Al phrase = A', s’

to be inferred, where A is either a basis or an interface basis or empty, A’ is some
semantic object and s,s’ are the states before and after the evaluation represented
by the sentence. Some hypotheses in rules are not of this form; they are called
side-conditions. The convention for options is the same as for the Core static
semantics.

The state and exception conventions are adopted as in the Core dynamic se-
mantics. However, it may be shown that the only Modules phrases whose evalua-
tion may cause a side-effect or generate an exception packet are of the form strezp,
strdec, strbind or topdec.
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Structure Expressions B\ strezp = E/p

Bt strdec = E

B - struct strdec end = E (160)
B(longstrid) = E 61)
B |- longstrid = E
B(fum'd) = (.stm'd : 1, strexp’(; I’),B')
B strexp = E B’ + {strid — E | I} - strezp’ = E' (6
Bt funid ( strexp ) = E'(] I')
Bt strdec = E B+ E & strexp = E' (163)

Bt~ 1let strdec in strexp end = E'

Comments:

(162) Before the evaluation of the functor body strezp’, the actual argument F is
cut down by the formal parameter interface I, so that any opening of strid
resulting from the evaluation of strezp’ will produce no more components
than anticipated during the static elaboration.

Structure-level Declarations B & strdec = E[p

Eof Bt dec= E'
Bt dec = FE' (164)
B+ strbind = SE (165)

B I structure strbind = SE in Env
B | strdec, = E, B+ E, F strdec, = E, (166)
B |- local strdec, in strdec, end = E,
1

Bt = {}in Env (167)
B strdec; = E, B + E, I strdecy, = E, (168)

B | strdec, (;) strdec, = E, + E,
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B\ strbind = SE/p

Structure Bindings
Bt strezp = E (Inter B \- sigezp = I)
((BF strbind = SE)) (169)
Bt strid (: sigexp) = strezp ((and strbind)) =
{strid — E(] I)} ((+ SE))

Comment: As in the static semantics, when present, sigezp constrains the “view”
of the structure. The restriction must be done in the dynamic semantics to ensure
that any dynamic opening of the structure produces no more components than

anticipated during the static elaboration.

IB | sigexp = I

Signature Expressions

IB * spec = 1
IB F sig spec end = [ (170)
IB(sigid) = I
(sigid) (171)

IB |- sigid = 1

IB |- sigdec = G

Signature Declarations

IB - sigbind = G 179

IB |- signature sighind = G (172)

IB | = {} (173)

IB F sigdec, = G, IB + G, F sigdec, = G, (174)

IB |- sigdec, (;) sigdec, = G, + G,

IB F sighind = G

Signature Bindings
IB I sigezp = I (IB F sigbind = G) (175)
IB - sigid = sigexp (and sighind) = {sigid — I} (+ G)

Specifications IBtF spec = 1
F valdesc = vars
IB F val valdesc = vars in Int (176)
F exdesc = excons (a77)

IB - exception exdesc = excons in Int
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IB t strdesc = IE

IB | structure strdesc = IE in Int (178)

IB | spec, = I, IB 4 IE of I F spec, = I,
- (179)

IB I 1local spec, in specy, end = I,
IB(longstrid,) =1; --- IB(longstrid,) = I, (180)
IB - open longstrid, -+ longstrid, = I; + -+ I,

IB(sigid) =1, --- IB(sigid,) =1, (181)

IB |- include sigid, --- sigid, = I, + -+ + I,
BF = {}in Int (182)
IB - specy = I IB+ IE of I) - spec, = I, (183)

IB - specy (;) spec, = I + I,
Comments:

(179),(183) Note that varsof I; and exconsof I; are not needed for the evaluation

of spec,.
Value Descriptions |k valdesc = vars|
(- valdesc = vars) (184)
b var (and valdesc) = {var} (U vars)
Exception Descriptions |- ezdesc = excons|
(F exdesc = exzcons) 185)
F excon (exdesc) = {excon} (U excons) (
Structure Descriptions |IB & strdesc = IE|
IB\ sigexp = 1 (IBt strdesc = IE) (186)
IB |- strid : sigexp (and strdesc) = {strid — I} (+ IE)
Functor Bindings BV funbind = F
Inter B I sigexp = I (Inter B + {strid — I} F sigexp’ = I')
((B & funbind = F)) (187)

Bt funid ( strid : sigexp ) (: sigexp’) = strezp ((and funbind)) =
{funid v (strid : I, strezp(: I'}), B)} {{(+ F))
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Functor Declarations Bt fundec = F
B+ funbind = F (188)
B F functor funbind = F
Br =0 (159)
Bt fundec, = Fy B + F, I fundecy, = F, (190)
Bt fundecy (;) fundec, = F, + F,

Top-level Declarations B I- topdec = B! [p
Bt strdec = E (191)

Bt strdec = E in Basis
Inter B | sigdec = G (192)

B - sigdec = G in Basis

B d

t fundec = F (193)

Bt fundec = F in Basis
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8 Programs

The phrase class Program of programs is defined as follows
program ::= topdec ; (program)

Hitherto, the semantic rules have not exposed the interactive nature of the
language. During an ML session the user can type in a phrase, more precisely
a phrase of the form topdec as defined in Figure 8, page 14. Upon the following
semicolon, the machine will then attempt to parse, elaborate and evaluate the
phrase returning either a result or, if any of the phases fail, an error message. The
outcome is significant for what the user subsequently types, so we need to answer
question such as: if the elaboration of a top-level declaration succeeds, but its
evaluation fails, then does the result of the elaboration get recorded in the static
basis?

In practice, ML implementations may provide a directive as a form of top-
level declaration for including programs from files rather than directly from the
terminal. In case a file consists of a sequence of top-level declarations (separated by
semicolons) and the machine detects an error in one of these, it is probably sensible
to abort the execution of the directive. Rather than introducing a distinction
between, say, batch programs and interactive programs, we shall tacitly regard all
programs as interactive, and leave to implementors to clarify how the inclusion of
files, if provided, affects the updating of the static and dynamic basis. Moreover,
we shall focus on elaboration and evaluation and leave the handling of parse errors
to implementors (since it naturally depends on the kind of parser being employed).
Hence, in this section the execution of a program means the combined elaboration
and evaluation of the program.

So far, for simplicity, we have used the same notation B to stand for both
a static and a dynamic basis, and this has been possible because we have never
needed to discuss static and dynamic semantics at the same time. In giving
the semantics of programs, however, let us rename as StaticBasis the class Basis
defined in the static semantics of modules, Section 5.1, and let us use Bgpar to
range over StaticBasis. Similarly, let us rename as DynamicBasis the class Basis
defined in the dynamic semantics of modules, Section 7.2, and let us use Bpyy to
range over DynamicBasis. We now define

B or (Bstat, Bpyn) € Basis = StaticBasis x DynamicBasis.

Further, we shall use Fgyay for elaboration as defined in Section 5, and Fpyy for
evaluation as defined in Section 7. Then F will be reserved for the execution of
programs, which thus is expressed by a sentence of the form

s, B |- program = B, s’

This may be read as follows: starting in basis B with state s the execution of
program results in a basis B’ and a state s’.
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It must be understood that executing a program never results in an excep-
tion. If the evaluation of a topdec yields an exception (for instance because of a
raise expression or external intervention) then the result of executing the pro-
gram “topdec ;” is the original basis together with the state which is in force when
the exception is generated. In particular, the exception convention of Section 6.7
is not applicable to the ensuing rules.

We represent the non-elaboration of a top-level declaration by

... FgraT topdec #. (This covers also the case in which a user interrupts the
elaboration.)

Programs s, B - program = B!, s’
Bgrat of B Fgrat topdec % (8, B & program = B’, s') (194)
8, B & topdec ; (program) = B("), s(")
Bgrar of B Fsyar topdec = By
8, Bpyn of B Fpyy topdec = p,s'  (s', B+ program = B’, s") (195)
s, B & topdec ; (program) = B(’), s'(")
‘BSTAT Of B }—STAT tOpdCC = Bg'i?lAT . .
s, Boyn of B Fpyy topdec = By, s' B'= B & (BSyr, BSiy)
(', B' - program = B", s") (196)

8, B I~ topdec ; (program) = B'("), s'(")
Comments:

(194) A failing elaboration has no effect whatever.

(195) An evaluation which yields an exception nullifies the change in the static
basis, but does not nullify side-effects on the state which may have occurred
before the exception was raised.

Core language Programs

A program is called a core language program if it can be parsed in the reduced
grammar defined as follows:

1. Replace the definition of top-level declarations by

topdec = strdec

2. Replace the definition of structure-level declarations by

strdec = dec
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3. Omit the open declaration from the syntax class of declarations dec
4. Restrict the long identifier classes to identifiers, i.e. omit qualified identifiers.

This means that several components of a basis, for example the signature and
functor environments, are irrelevant to the execution of a core language program.
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A Appendix: Derived Forms

Several derived grammatical forms are provided in the Core; they are presented in
Figures 15, 16 and 17. Each derived form is given with its equivalent form. Thus,
each row of the tables should be considered as a rewriting rule

Derived form == Equivalent form

and these rules may be applied repeatedly to a phrase until it is transformed into a
phrase of the bare language. See Appendix B for the full Core grammar, including
all the derived forms.

In the derived forms for tuples, in terms of records, we use 7 to mean the ML
numeral which stands for the natural number n.

Note that a new phrase class FvalBind of function-value bindings is intro-
duced, accompanied by a new declaration form fun fvalbind . The mixed forms
val rec fvalbind , val fvalbind and fun valbind are not allowed — though the
first form arises during translation into the bare language.

The following notes refer to Figure 17:

e There is a version of the derived form for function-value binding which allows
the function identifier to be infixed; see Figure 20 in Appendix B.

o In the two forms involving withtype , the identifiers bound by datbind and
by typbind must be distinct. Then the transformed binding datbind’ in
the equivalent form is obtained from datbind by expanding out all the
definitions made by typbind. More precisely, if typbind is

tyvarseqy tycony =ty, and --- and tyvarseq, tycon, =ty,

then datbind’ is the result of simultaneous replacement (in datbind ) of
every type expression tyseq; tycon; (1 < i < n) by the corresponding
defining expression

tyi{tyseq./tyvarseq;}

Figure 18 shows derived forms for functors. They allow functors to take, say,
a single type or value as a parameter, in cases where it would seem clumsy to
“wrap up” the argument as a structure expression. These forms are currently more
experimental than the bare syntax of modules, but we recommend implementors to
include them so that they can be tested in practice. In the derived forms for functor
bindings and functor signature expressions, strid is a new structure identifier and
the form of sigexp’ depends on the form of sigezp as follows. If sigexp is simply a
signature identifier sigid, then sigezp’ is also sigid; otherwise sigezp must take the
form sig spec, end , and then sigezp’ is sig local open strid in spec; end end.
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Derived Form Equivalent Form

Expressions ezp

@) {}

(expy , -+, exp,) {1=ezp,, ---, M=ezp,} (n22)
# lab fn {lab=var,...} => var (var new)
case exp of match (fn match) (exp)

if exp, then erp, else exp; | case ezp, of true => exp,
| false => exp,

erp, orelse exp, if ezp; then true else ezp,
erp, andalso exp, if ezp,; then ezp, else false
(expy ; ++ ; exp, ; exp) case exp; of (.) => (n2>1)
case ezxp, of (1) => exp
let dec in let dec in (n2>2)
exp, ; -+ ; exp, end (expy ; -+ ; exp,) end
while exp, do exp, let val rec var=£n () => (var new)

if exp, then (ezpy;var()) else ()
in var() end
Lezpy , -, eap,] €rpy; i v+ il €xp, :: nil (n>0)

Figure 15: Derived forms of Expressions

Derived Form Equivalent Form

Patterns pat

O {1}
(pat, , -, pat,) {1=pat,, --- , m=pat, } (n>2)
[pat, , -+, pat,] pat; :: --- 1@ opat, ::nil (n>0)
Pattern Rows patrow

| id(:ty) (as pat) (, patrow) [ id = id{:ty) (as pat) (, patrow) |
Type Expressions ty

[ ty, * - * ty, [ {1:ty,, -, Aty } | (n>2)

Figure 16: Derived forms of Patterns and Type Expressions
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Derived Form Equivalent Form

Function-value Bindings fvalbind

(op)var = £n var;=> --- fn var,=>
case (vary, --- , var,) of

(op)var atpaty,---atpat,,(:ty) = exp, (atpatyy, -, atpaty, )=>exp,(:ty)
|{op)var atpat,,---atpat,,(:ty) = exp, | Catpatyy , -+, atpaty, )=>expy(: ty)
I e | e
|(op)var atpat,,;---atpat,,,(:ty) = exp,, | | (atpat,y, -, atpat,,, d=>exp,(:ty)

(and fvalbind) (and fvalbind)
(m,n >1; vary, -+, var, distinct and new)

Declarations dec

fun fvalbind val rec fvalbind
datatype datbind withtype typbind datatype datbind' ; type typbind
abstype datbind withtype typbind abstype datbind'

with dec end with type typbind ; dec end

(see note in text concerning datbind’)
Figure 17: Derived forms of Function-value Bindings and Declarations

Derived Form Equivalent Form

Structure Expressions strezp
| funid ( strdec ) | funid ( struct strdec end ) |

Functor Bindings funbind
funid Cspec) (: sigexp) = | funid ( strid : sig spec end ) (: sigexp’) =
strezp (and funbind) let open strid in strezp end (and funbind)
(strid new; see note in text concerning sigezp’)

Functor Signature Expressions funsigezp
| (spec ) : sigexp | (strid : sig spec end ) : sigexp’ |
‘ (strid new; see note in text concerning sigezp’)

Top-level Declarations topdec
| ezp [ val it = exp |

Figure 18: Derived forms of Functors and Top-level Declarations
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B Appendix: Full Grammar

The full grammar of programs is exactly as given at the start of Section 8.

The full grammar of Modules consists of the grammar of Figures 5-8 in Sec-
tion 3, together with the derived forms of Figure 18 in Appendix A.

The remainder of this Appendix is devoted to the full grammar of the Core.
Roughly, it consists of the grammar of Section 2 augmented by the derived forms
of Appendix A. But there is a further difference: two additional subclasses of the
phrase class Exp are introduced, namely AppExp (application expressions) and
InfExp (infix expressions). The inclusion relation among the four classes is as
follows:

AtExp C AppExp C InfExp C Exp

The effect is that certain phrases, such as “2 + while --- do --- ”, are now dis-
allowed.

The grammatical rules are displayed in Figures 19, 20, 21 and 22. The gram-
matical conventions are exactly as in Section 2, namely:

o The brackets () enclose optional phrases.

e For any syntax class X (over which = ranges) we define the syntax class Xseq
(over which zseq ranges) as follows:

rseq = & (singleton sequence)
(empty sequence)
(zy,,2,) (sequence, n > 1)

(Note that the “.--” used here, a meta-symbol indicating syntactic repetition,
must not be confused with “...” which is a reserved word of the language.)

o Alternative forms for each phrase class are in order of decreasing precedence.
This precedence resolves ambiguity in parsing in the following way. Suppose
that a phrase class — we take ezp as an example — has two alternative
forms F; and F,, such that F; ends with an ezp and F, starts with an ezp.
A specific case is

Fi: if exp, then exp, else exp,
F,:  exp handle match

It will be enough to see how ambiguity is resolved in this specific case.

Suppose that the lexical sequence

is to be parsed, where exp stands for a lexical sequence which is already
determined as a subphrase (if necessary by applying the precedence rule).
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Then the higher precedence of F, (in this case) dictates that exp associates
to the right, i.e. that the correct parse takes the form

------ if .- then --- else (ezp handle --:) -+

not the form
«+ (¢« if --- then :-- else exp) handle ++- -+

Note particularly that the use of precedence does not decrease the class
of admissible phrases; it merely rejects alternative ways of parsing certain
phrases. In particular, the purpose is not to prevent a phrase, which is an
instance of a form with higher precedence, having a constituent which is an
instance of a form with lower precedence. Thus for example

if --- then while :-- do --+ else while --- do ---
is quite admissible, and will be parsed as

if --- then (while --- do ---) else (while -+~ do ---)

L (resp. R) means left (resp. right) association.
The syntax of types binds more tightly than that of expressions.

Each iterated construct (e.g. match, --- ) extends as far right as possible;
thus, parentheses may be needed around an expression which terminates
with a match, e.g. “fn match”, if this occurs within a larger match.
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atexp

exprow

appexp

infexp

exp

match

mrule

B APPENDIX: FULL GRAMMAR

scon
(op)longvar
(op)longcon
(op)longezcon
{ (ezprow) ¥
# lab

QO

Cexpy , -
Lezpy , -, eap,]
(expy ; +-+ ; exp,)
let dec in exp, ; ---
(exp)

, €xp,)

lab = exp ( , exprow)

atexp
appexp atexp

appezp
infexp, id infexp,

infexp

exp : ty

erp, andalso ezp,

exp, orelse erp,

exp handle match

raise exp

if exp, then erp, else expy
while exp; do exp,

case exp of match

fn match

mrule (| match)

pat => exp

; exp, end

special constant
value variable

value constructor
exception constructor
record

record selector
0-tuple

n-tuple, n > 2

list, n >0

sequence, n > 2

local declaration, n > 1

expression row
application expression

infix expression

typed (L)
conjunction
disjunction
handle exception
raise exception
conditional
iteration

case analysis
function

Figure 19: Grammar: Expressions and Matches
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valbind .

fvalbind

typbind
datbind
conbind

exbind

20
. —

val valbind

fun fvalbind

type typbind

datatype datbind (withtype typbind)

abstype datbind (withtype typbind)
with dec end

exception exbind

local dec; in decy end

open longstrid, --- longstrid,,

decy (;) dec,

infix (d) id, --- id,,
infixr (d) id; --- id,
nonfix id, -+ id,,

pat = exp (and valbind)
rec valbind

(op)var atpaty,---atpaty,(:ty)=ezp;
| {op)var atpat,,---atpat,,(: ty)=ezp,
|
I{op)var atpat,,,---atpat,,.(: ty)=ezp,,
(and fvalbind)

tyvarseq tycon = ty (and typbind)

tyvarseq tycon = conbind (and datbind)

(op)con (of ty) ( | conbind)
(op)excon (of ty) (and exbind)

(op) excon = (op)longezcon (and exbind)

71

value declaration
function declaration
type declaration
datatype declaration
abstype declaration

exception declaration
local declaration

open declaration, n > 1
empty declaration
sequential declaration
infix (L) directive, n > 1
infix (R) directive, n > 1
nonfix directive, n > 1

m,n >1
See also note below

Note: In the fvalbind form, if var has infix status then either op must be present,
or var must be infixed. Thus, at the start of any clause, “ op var (atpat, atpat’)
++-” may be written “(atpat var atpat’) ---”; the parentheses may also be dropped
if “:¢y” or “=” follows immediately.

Figure 20: Grammar: Declarations and Bindings
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atpat

patrow

pat

ty

tyrow

B APPENDIX: FULL GRAMMAR

- ' wildcard

scon special constant

(op)var variable

longcon constant

longexcon exception constant

{ (patrow) %} record

O 0-tuple

(paty , --- , pat,) n-tuple, n > 2

Lpaty , -+, pat,] list, n >0

( pat)

ces wildcard

lab = pat ( , patrow) pattern row

id(:ty) (as pat) (, patrow) label as variable

atpat atomic

(op)longcon atpat value construction
(op)longezcon atpat exception construction
pat, con pat, infixed value construction
pat, excon pat, infixed exception construction
pat : ty typed

(op)var(: ty) as pat layered

Figure 21: Grammar: Patterns

u= tyvar type variable
{ (tyrow) } record type expression
tyseq longtycon type construction
by, * -+ * Ly, tuple type, n > 2
ty => ty function type expression
(ty)

lab : ty ( , tyrow) type-expression row

Figure 22: Grammar: Type expressions
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Appendix: The Initial Static Basis

We shall indicate components of the initial basis by the subscript 0. The initial
static basis is

Bo = (Mm To)a Fo’ Gm Eo

where
o My =0
o 75 = {bool,int,real,string,list,ref, exn, instream, outstrean}
o Fo = {}
o Gy = {}

EO = (SEo,TEo, VEo, EE())

The members of T, are type names, not type constructors; for convenience we
have used type-constructor identifiers to stand also for the type names which are
bound to them in the initial static type environment TE,. Of these type names,

list and ref have arity 1, the rest have arity 0; all except exn, instream and
outstream admit equality.

The components of E, are as follows:

SE, = {}

VE, is shown in Figures 23 and 24. Note that Dom VE, contains those iden-
tifiers (true,false,nil, : :) which are basic value constructors, for reasons
discussed in Section 4.3. VE, also includes EE,, for the same reasons.

TE, is shown in Figure 25. Note that the type structures in TFE, contain the
type schemes of all basic value constructors.

Dom EE, = BasExName , the set of basic exception names listed in Sec-

tion 6.5. In each case the associated type is exn , except that EEy(Io) =
string — exn.
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C APPENDIX: THE INITIAL STATIC BASIS

NONFIX INFIX
var +> o var — o
map — Y’a’b.(’a— ’b) — Precedence 7 :
’a list — ’b list / +— real * real — real
rev +— Y’a.’alist — ’a list | div +— int * int — int
not — bool — bool mod - int * int — int
“ +— num — num * — num * num — num
abs +— num — num Precedence 6 :
floor +— real — int + i num * num — num
real +— int — real ~ = num * num — num
sqrt +— real — real — string * string — string
sin +~ real — real Precedence 5 :
cos +— real — real — Y’a’ax’alist — ’alist
arctan +» real — real Q@ — VY’a, ’alist
exp +— real — real * ‘a list — ’a list
In +— real — real Precedence 4 :
size +— string — int = — VY’’a. ’’a x ’’a— bool
chr +— int — string <> = V¥?%a, 7?3 x g — bool
ord +— string-— int < +— num * num — bool
explode > string — string list > = num * num — bool
implode +— string list — string <= +— num * num — bool
!' — V’a.’aref — ’a >= = num * num — bool
ref +— V’.a.’.a— ’_aref Precedence 3 :
true +— bool = — Y’a. ’aref x ’a— unit
false + bool o = V’a’b’c.(’b—’¢)
nil +— V’a.’alist * (?a— ’b) — (Pa— ’¢)
Notes:

e In type schemes we have taken the liberty of writing ty, * ty, in place of
{1 ty;,2 — ty,}.

o An identifier with type involving num stands for two functions — one in
which num is replaced by int in its type, and another in which num is
replaced by real in its type. Sometimes an explicit type constraint will be
needed if the surrounding text does not determine the type of a particular
occurrence of + (for example). For this purpose, the surrounding text is
no larger than the enclosing top-level declaration; an implementation may
require that a smaller context determines the type.

Figure 23: Static VE, (except for Input/Output and EE,)



var — o
std-in + instream
open-in + string — instream
input +~— instream * int — string
lookahead +» instream — string
close_in > instream — unit
end.of_stream - instream — bool

std.out +— outstream
open-out > string — outstream
output ++ outstream * string — unit
close.out — outstream — unit
Figure 24: Static VE, (Input/Output)
tycon +— {0, {cony = oy, con, — o} } (n>0)
wit = (A0, ()
bool + { bool, {true — bool, false — bool} }
int ~— { int, {}}
real + { real, {}}
string +— { string, {}}
list +— { list, {nil — V’a . ’a list,
it —=V’a. ’a*’alist — ’alist} }
ref — { ref, {ref—V’a.’a— ’aref}}
exn +— { exn, {3}
instream +— { instream, {}}
outstream + { outstream, {}}

Figure 25: Static TFE,
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D Appendix: The Initial Dynamic Basis

We shall indicate components of the initial basis by the subscript 0. The initial
dynamic basis is

Bo = Fo,GOan
where
o Fy = {}
¢ Gy = {}

® EO = E6+E(l),

Ej{ contains bindings of identifiers to the basic values BasVal and basic exception
names BasExName; in fact E} = SE;,VE,, EE| , where:

« SEy = {}
¢ VE, = {idw~ id ; id € BasVal} U {:= > :=}
o EB) = {id— id ; id € BasExName}

Note that VEG is the identity function on BasVal; this is because we have chosen
to denote these values by the names of variables to which they are initially bound.
The semantics of these basic values (most of which are functions) lies principally
in their behaviour under APPLY, which we describe below. On the other hand
the semantics of :=is provided by a special semantic rule, rule 115. Similarly, EE;
is the identity function on BasExName, the set of basic exception names, because
we have also chosen these names to be just those exception constructors to which
they are initially bound. These exceptions are raised by APPLY as described
below.

E{ contains initial variable bindings which, unlike BasVal, are definable in ML;
it is the result of evaluating the following declaratlon in the basis Fy, Gy, Ej. For
convenience, we have also included all basic infix directives in this declaratlon

infix 3 o

infix 4 <> €< > L= >=
infix 5 @
infixr &

~

infix 6 + -
infix 7 div mod / *

fun (F o G)x = F(G x)

fun nil @ M = M
| (x::L) eM=x::(L @M
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fun s ~ 8’ = implode((explode s) @ (explode s’))

fun map F nil = nil
| map F (x::L) = (F x)::(map F L)

fun rev nil = nil
| rev (x::L) = (rev L) @ [x]

fun not true = false
| not false = true

fun ! (ref x) = x

We now describe the effect of APPLY upon each value b € BasVal. For special
values, we shall normally use ¢, 7, n, s to range over integers, reals, numbers
(integer or real), strings respectively. We also take the liberty of abbreviating

“APPLY(abs, r)” to “abs(r)”, “APPLY(mod, {1 — 4,2 — d})” to “ mod d”, etc.

e “(n) returns the negation of n, or the packet [Neg] if the result is out of
range.

¢ abs(n) returns the absolute value of n, or the packet [Abs] if the result is
out of range.

o floor(r) returns the largest integer ¢ not greater than r; it returns the
packet [Floor] if ¢ is out of range.

e real(i) returns the real value equal to s.
o sqrt(r) returns the square root of r, or the packet [Sqrt] if r is negative.
e sin(r), cos(r) return the result of the appropriate trigonometric functions.

o arctan(r) returns the result of the appropriate trigonometric function in
the range +7/2.

o exp(r), 1n(r) return respectively the exponential and the natural logarithm
of r, or an exception packet [Exp] or [Ln] if the result is out of range.

o size(s) returns the number of characters in s.

e chr(i) returns the character numbered : (see Section 2.2) if i is in the interval
[0,255], and the packet [Chr| otherwise.
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¢ ord(s) returns the number of the first character in s (an integer in the
interval [0,255], see Section 2.2), or the packet [Ord] if s is empty.

o explode(s) returns the list of characters (as single-character strings) of
which s consists.

o implode(L) returns the string formed by concatenating all members of the
list L of strings.

¢ The arithmetic functions /,*,+,- all return the results of the usual arith-
metic operations, or exception packets respectively [Quot], [Prod], [Sum],
[Diff] if the result is undefined or out of range.

e imod d, ¢ div d return integers r,¢ (remainder, quotient) determined by
the equation d x ¢ + r = ¢, where either 0 < r < d or d < r < 0. Thus the
remainder has the same sign as the divisor d. The packet [Mod] or [Div] is
returned if d = 0.

o The order relations <,>,<=>= return boolean values in accord with their
usual meanings.

o v = v, returns true or false according as the values v; and v, are, or
are not, identical. The type discipline (in particular, the fact that function
types do not admit equality) ensures that equality is only ever applied to
special values, nullary constructors, addresses, and values built out of such
by record formation and constructor application.

¢ v; <> v, returns the opposite boolean value to v; = wv,.

It remains to define the effect of APPLY upon basic values concerned with in-
put/output; we therefore proceed to describe the ML input/output system.

Input/Output in ML uses the concept of a stream. A stream is a finite or
infinite sequence of characters; if finite, it may or may not be terminated. (It may
be convenient to think of a special end-of-stream character signifying termination,
provided one realises that this “character” is never treated as data). Input streams
~ or ingtreams — are of type instream and will be denoted by is ; output streams
— or outstreams — are of type outstream and will be denoted by o0s . Both these
types of stream are abstract, in the sense that streams may only be manipulated
by the functions provided in BasVal.

Associated with an instream is a producer, normally an I/O device or file;
similarly an outstream is associated with a consumer. After this association has
been established — either initially or by the open-in or open_out function — the
stream acts as a vehicle for character transmission from producer to program, or
from program to consumer. The association can be broken by the close_in or
close.out function. A closed stream permits no further character transmission;
a closed instream is equivalent to one which is empty and terminated.
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There are two streams in BasVal:
e std.in: an instream whose producer is the terminal.
¢ std_out: an outstream whose consumer is the terminal.

The other basic values concerned with Input/Output are all functional, and the
effect of APPLY upon each of them given below. We take the liberty of abbrevi-
ating “APPLY (open-in, s)” to “open-in(s)” etc., and we shall use s and n to
range over strings and integers respectively.

e open.in(s) returns a new instream is , whose producer is the external file
named s . It returns exception packet

[(Io,"Cannot open s")]
if file s does not exist or does not provide read access.

¢ open-out(s) returns a new outstream os , whose consumer is the external
file named s . If file s is non-existent, it is taken to be initially empty.

e input(is,n) returns a string s containing the first n characters of is , also
removing them from is . If only k¥ < n characters are available on is , then

— If is is terminated after these £ characters, the returned string s con-
tains them alone, and they are removed from is .

— Otherwise no result is returned until the producer of is either supplies
n characters or terminates the stream.

© lookahead(is) returns a single-character string s containing the next
character of is , without removing it. If no character is available on is then

— If is is closed, the empty string is returned.

— Otherwise no result is returned until the producer of is either supplies
a character or closes the stream.

e close.in(4s) empties and terminates the instream s .

o end.of_stream(is) returns true if lookahead(is) returns the empty string,
false otherwise; it detects the end of the instream is .

e output(os,s) writes the characters of s to the outstream os , unless os is
closed, in which case it returns the exception packet

[(To,"Output stream is closed")]

° close_out(os) terminates the outstream os .
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E Appendix: The Development of ML

This Appendix records the main stages in the development of ML, and the people
principally involved. The main emphasis is upon the design of the language; there
is also a section devoted to implementation. On the other hand, no attempt is
made to record work on implementation environments, or on applications of the
language.

Origins

ML and its semantic description have evolved over a period of about fourteen
years. It is a fusion of many ideas from many people; in this appendix we try to
record and to acknowledge the important precursors of its ideas, the important
influences upon it, and the important contributions to its design, implementation
and semantic description.

ML, which stands for meta language, was conceived as a medium for finding and
performing proofs in a formal logical system. This application was the focus of the
initial design effort, by Robin Milner in collaboration first with Malcolm Newey
and Lockwood Morris, then with Michael Gordon and Christopher Wadsworth
[11]. The intended application to proof affected the design considerably. Higher
order functions in full generality seemed necessary for programming proof tactics
and strategies, and also a robust type system (see below). At the same time,
imperative features were important for practical reasons; no-one had experience
of large useful programs written in a pure functional style. In particular, an
exception-raising mechanism was highly desirable for the natural presentation of
tactics.

The full definition of this first version of ML was included in a book [12] which
describes LCF, the proof system which ML was designed to support. The details of
how the proof application exerted an influence on design is reported by Milner [22].
Other early influences were the applicative languages already in use in Artificial
Intelligence, principally LISP [19], ISWIM [17] and POP?2 [5].

Polymorphic types

The polymorphic type discipline and the associated type-assignment algorithm
were prompted by the need for security; it is vital to know that when a program
produces an object which it claims to be a theorem, then it is indeed a theorem.
A type discipline provides the security, but a polymorphic discipline also permits
considerable flexibility.

The key ideas of the type discipline were evolved in combinatory logic by
Haskell Curry and Roger Hindley, who arrived at different but equivalent al-
gorithms for computing principal type schemes. Curry’s [7] algorithm was by
equation-solving; Hindley [14] used the unification algorithm of Alan Robinson
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[27] and also presented the precursor of our type inference system. James Mor-
ris [24] independently gave an equation-solving algorithm very similar to Curry’s.
The idea of an algorithm for finding principal type schemes is very natural and
may well have been known earlier. I am grateful to Roger Hindley for pointing
out that Carew Meredith’s inference rule for propositional logic called Condensed
Detachment, defined in the early 1950s, clearly suggests that he knew such an
algorithm [20].

Milner [21], during the design of ML, rediscovered principal types and their
calculation by unification, for a language (slightly richer than combinatory logic)
containing local declarations. He and Damas [9] presented the ML type inference
systems following Hindley’s style. Damas [8], using ideas from Michael Gordon,
also devised the first mathematical treatment of polymorphism in the presence
of references and assignment; recently Tofte [29] has produced a treatment which
differs in some respects, but is easier to follow and has a simpler semantic presen-
tation.

Refinement of the Core Language

Two movements led to the re-design of ML. One was the work of Rod Burstall
and his group on specifications, crystallised in the specification language CLEAR
[4] and in the functional programming language HOPE [3]; the latter was for ex-
pressing executable specifications. The outcome of this work which is relevant here
was twofold. First, there were elegant programming features in HOPE, particu-
larly pattern matching and clausal function definitions; second, there were ideas
on modular construction of specifications, using signatures in the interfaces. A
smaller but significant movement was by Luca Cardelli, who extended the data-
type repertoire in ML by adding named records and variant types.

In 1983, Milner (prompted by Bernard Sufrin) wrote the first draft of a stan-
dard form of ML attempting to unite these ideas; over the next three years it
evolved into the Standard ML Core Language. Notable here was the harmony
found among polymorphism, HOPE patterns and Cardelli records, and the nice
generalisations of ML exceptions due to ideas from Alan Mycroft, Brian Mon-
ahan and Don Sannella. A simple stream-based I/O mechanism was developed
from ideas of Cardelli by Milner and Harper. The Standard ML Core Language
is described in detail in a composite report [15] which also contains a description
of the I/O mechanism and MacQueen’s proposal for program modules (see later
for discussion of this). Since then only few changes to the Core Language have
occurred. Milner proposed equality types, and these were added, together with
a few minor adjustments [23]. The latest and final development has been in the
exception mechanism, by MacQueen using an idea from Burstall [1]; it unites the
ideas of exception and data type construction.
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Modules

Besides contributory ideas to the Core Language, HOPE [3] contained a simple
notion of program module. The most important and original feature of ML Mod-
ules, however, stems from the work on parameterised specifications in CLEAR
[4]. MacQueen, who was a member of Burstall’s group at the time, designed [18]
a new parametric module feature for HOPE inspired by the CLEAR work. He
later extended the parameterisation ideas by a novel method of specifying shar-
ing of components among the structure parameters of a functor, and produced a
draft design which accommodated features already present in ML - in particular
the polymorphic type system. This design was discussed in detail at Edinburgh,
leading to MacQueen’s first report on Modules [15].

Thereafter, the design came under close scrutiny through a draft operational
static semantics and prototype implementation of it by Harper, through Kevin
Mitchell’s implementation of the evaluation, through a denotational semantics
written by Don Sannella, and then through further work on operational semantics
by Milner and Tofte. (More is said about this in the later section on Semantics.)
In all of this work the central ideas withstood scrutiny, while it also became clear
that there were gaps in the design and ambiguities in interpretation. (An example
of a gap was the inability to specify sharing between a functor argument structure
and its result structure; an example of an ambiguity was the question of whether
sharing exists in a structure over and above what is specified in the signature
expression which accompanies its declaration.)

Much discussion ensued; it was possible for a wider group to comment on
Modules through using Harper’s prototype implementation, while Harper, Milner
and Tofte gained understanding during development of this semantics. In parallel,
Sannella and Tarlecki explored the implications of Modules for the methodology of
program development [28]. Tofte, in his thesis [29], proved several technical prop-
erties of Modules in a skeletal language, which generated considerable confidence
in this design. A key point in this development was the proof of the existence of
principal signatures, and, in the careful distinction between the notion of enrich-
ment of structures, which allows more polymorphism and more components, and
realisation which allows more sharing.

At a meeting in Edinburgh in 1987 a choice of two designs was presented, hing-
ing upon whether or not a functor application should coerce its actual argument
to its argument signature. The meeting chose coercion, and thereafter the produc-
tion of Section 5 of this report — the Static Semantics of Modules — was a matter
of detailed care. That section is undoubtedly the most original and demanding
part of this semantics, just as the ideas of MacQueen upon which it is based are
the most far-reaching extension to the original design of ML.
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Implementation

The first implementation of ML was by Malcolm Newey, Lockwood Morris and
Robin Milner in 1974, for the DEC10. Later Mike Gordon and Chris Wadsworth
joined; their work was mainly in specialising ML towards machine-assisted rea-
soning. Around 1980 Luca Cardelli implemented a version on VAX; his work was
later extended by Alan Mycroft, Kevin Mitchell and John Scott. This version
contained one or two new data-type features, and was based upon the Functional
Abstract Machine (FAM), a virtual machine which has been a considerable stim-
ulus to later implementation. By providing a reasonably efficient implementation,
this work enabled the language to be taught to students; this, in turn, prompted
the idea that it could become a useful general purpose language.

In Gothenburg, an implementation was developed by Lennart Augustsson and
Thomas Johnsson in 1982, using lazy evaluation rather than call-by-value; the
result was called Lazy ML and is reported in [2]. This work is part of continuing
research in many places on implementation of lazy evaluation in pure functional
languages. But for ML, which includes exceptions and assignment, the emphasis
has been mainly upon strict evaluation (call-by-value).

In Cambridge, in the early 1980s, Larry Paulson made considerable improve-
ments to the Edinburgh ML compiler, as part of his wider programme of improving
Edinburgh LCF to become Cambridge LCF [25]. This system has supported larger
proofs than the Edinburgh system, and with greater convenience; in particular,
the compiled ML code ran four to five times faster.

Around the same time Gérard Huet at INRIA (Versailles) adapted ML to
Maclisp on Multics, again for use in machine-assisted proof. There was close col-
laboration between INRIA and Cambridge in this period. ML has undergone a
separate development in the group at INRIA, arriving at a language and imple-
mentation known as CAML [6]; this is close to the core language of Standard ML,
but does not include the Modules.

The first implementation of the Standard ML core language was by Mitchell,
Mycroft and John Scott of Edinburgh, around 1984, and this was shortly fol-
lowed by an implementation by David Matthews at Cambridge, carried out in his
language Poly.

The prototype implementation of Modules, before that part of the language
settled down, was done in 1985-6; Mitchell dealt with evaluation, while Harper
tackled the elaboration (or ‘signature checking’) which raised problems of a kind
not previously encountered. The Edinburgh implementation continues to play the
role of a test-bed for language development.

Meanwhile Matthews’ Cambridge implementation also advanced to embrace
Modules, and now adheres to the Standard. This implementation has supported
applications of considerable size, both for machine-assisted proof and for hardware
design. It is now available commercially from Imperial Software Technology.

In 1986, as the Modules definition was settling down, David MacQueen began
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an implementation at Bell AT&T Laboratories, assisted by Andrew Appel, based
upon the Edinburgh work. They were shortly joined by Trevor Jim. At the time
of writing (May 1988) the first release of this implementation is completed, and
adheres to the Standard. Work continues to improve its performance.

The Bell and Cambridge implementations, the former led by MacQueen and
Appel, the latter by Matthews, are currently the most complete and highly en-
gineered. Other currently active implementations are by Michael Hedlund at the
Rutherford-Appleton Laboratory, by Robert Duncan, Simon Nichols and Aaron
Sloman at the University of Sussex (POPLOG) and by Malcolm Newey and his
group at the Australian National University.

Semantics

The description of the first version of ML [12] was informal, and in an operational
style; around.the same time a denotational semantics was written, but never
published, by Mike Gordon and Robin Milner. Meanwhile structured operational
semantics, presented as an inference system, was gaining credence as a tractable
medium. This originates with the reduction rules of A-calculus, but was developed
more widely through the work of Plotkin [26], and also by Milner. This was at
first only used for dynamic semantics, but later the benefit of using inference
systems for both static and dynamic semantics became apparent. This advantage
was realised when Gilles Kahn and his group at INRIA were able to execute early
versions of both forms of semantics for the ML Core Language using their Typol
system [10]. The static and dynamic semantics of the Core reached a final form
mostly through work by Mads Tofte and Robin Milner.

The modules of ML presented little difficulty as far as dynamic semantics is
concerned, but the static semantics of Modules was a concerted effort by several
people. MacQueen’s original informal description [15] was the starting point;
Sannella wrote a denotational semantics for several versions, which showed that
several issues had not been settled by the informal description. Robert Harper,
while writing the first implementation of Modules, made the first draft of the
static semantics. Harper’s version made clear the importance of structure names;
work by Milner and Tofte introduced further ideas including realisation; thereafter
a concerted effort by all three led to several suggestions for modification of the
language, and a small range of alternative interpretations; these were assessed
in discussion with MacQueen, and more widely with the principal users of the
language, and an agreed form was reached.

There is no doubt that the interaction between design and semantic description
of Modules has been one of the most striking phases in the entire language devel-
opment, leading (in the opinion of those involved) to a high degree of confidence
both in the language and in the semantic method.
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Literature

The present document is the definition of Standard ML; further versions of it will
be produced as the language develops (but the intention is to minimise the number
of versions). An informal definition, consistent with Version 2 of this document
as far as the Core Language is concerned, is provided by [15], as modified by [23]
and [1]. An elementary textbook covering the Core language has been recently
published, written by Ake Wikstrém [30]. Robert Harper [13] has written a shorter
introduction which also includes material on Modules.
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*, 4, 47, 66, 72, 74, 76, 78
{} (empty map), 17
+ (modification), 17, 18, 49
®, 18, 31
A (in type function), 17, 19, 27
V¥ (in type scheme), 17, 19
see also generalisation
a (see type variable)
o (see record type)
T (see type)
7(*) (type vector), 17-19
o (type scheme), 17, 19-21, 23, 27,
34, 41, 74, 75
Yalk), T (see type scheme)
— (function type), 17, 24, 29
} (restriction), 57
0 (see type function)
(8,CFE) (see type structure)
Aa®.r (see type function)
2 (see signature)
(N)S (see signature)
® (see functor signature)
(N)(S, (N")S") (see functor signature)
1y (type realisation), 33
@sir (structure realisation), 33
¢ (realisation), 33, 35, 44
> (see instance)
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> (see generalisation and enrichment)
F (turnstile), 2, 23, 24, 36, 48, 57, 62
Fpyn (evaluation), 62

FsraT (elaboration), 62

=, 2, 23, 36, 48, 57, 62

() (see options)

(), 38

A

a (see address)
Abs (abstype operation), 22, 25
abs, 47, 74, 77
Abs, 47, 77
abstype, 3, 8, 22, 25, 67, 71
abstype declaration, 8, 22, 25, 71
addition of numbers (+), 4, 47, 74, 76,
78
Addr (addresses), 45, 46
address (a), 45
fresh, 50
admissibility, 33
and, 3, 12-14, 71
andalso, 3, 66, 70
appending lists (@), 4, 74, 76
apperp (application expression), 68,
70
application, 8, 24
of basic value (APPLY), 47, 51,
7
of (function) closure, 51
of value constructor, 50
of exception name, 50
of ref, 50
of :=, 50, 74
infixed, 8
application of functor (see functor ap-
plication)
application of type function, 19, 29
application expression, 68, 70
applicative type variable (see type vari-
able)
APPLY (see application)

INDEX

AppTyVar (applicative type variables),
4
apptyvars (free applicative type vari-
ables), 17
arctan, 47, 74, 77
arity
of type name, 16
of type function, 19, 40
arrow type (see function type expres-
sion)
as, 3, 9, 29, 55, 72
assignment (:=), 46, 50, 74, 76
atexp (atomic expression), 7, 8, 23,
49, 66, 70
atomic expression, 7, 8, 23, 49, 66, 70
as expression, 8, 24, 50
atomic pattern, 7, 9, 28, 53, 66, 72
as pattern, 9, 29, 54, 72
atpat (atomic pattern), 7, 9, 28, 53,
66, 72

B

b (see basic value)
B (see basis)
B, (initial basis)
static, 73
dynamic, 76
bare language, 1
BasExName (basic exception names),
47,76
basic value (b), 45-47, 76-79
basis (B), 1
static, 23, 31, 36, 62, 73
dynamic, 56, 62, 76
combined, 62
Basis (bases), 31, 56, 62
BasVal (basic values), 45-47, 76-79
Bpyn (dynamic basis), 62
Bind (exception), 47, 53
bool, 73, 75
bound names, 31-33
Bgrar (static basis), 62
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C
C (context), 17, 18, 23-30

“Cannot open s”, 79
case, 3, 66, 70
CE (constructor environment), 17, 21,
22, 27, 42
chr, 47, 74, 77
Chr, 47, 77
Clos (closure of types etc.), 20, 21, 25,
27, 39, 41
close_in, 47, 75, 78, 79
close_out, 47, 75, 79
Closure (function closures), 46
recursion, 48
closure rules (signatures and functors),
14, 39, 42, 43
coercion of numbers (real), 47, 74,
77
comments, 4, 5
composition of functions (o), 74, 76
con (see value constructor)
Con (value constructors), 4, 46
conbind (constructor binding), 7, 8,
27,71
ConBind (constructor bindings), 7, 45
concatenating strings (), 4, 74, 76
condesc (constructor description), 11-
13, 41, 56
ConDesc (constructor descriptions), 11,
56
ConEnv (constructor environments),
17
“consing” an element to a list (::),
73-76
consistency :
of type structures, 32, 42
of semantic object, 32, 33, 41
constant (see also value constant and
exception constant)
special (see special constant)
construction (see value construction
and exception construction)
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constructor binding (conbind), 7, 8,
27,71
constructor description, 11-13, 41, 56
constructor environment (CE), 17, 21,
92, 27, 42
ConsType (constructed types), 17
contents of (see dereferencing)
context (C), 17, 18, 23-30
Context (contexts), 17
Core Language, 1
syntax, 3
static semantics, 16
dynamic semantics, 45
Core Language Programs, 63
cos, 47, 74, 77
cycle-freedom, 33

D

datatype, 3, 8, 13, 25, 39, 56, 67, 71
datatype binding, 7, 8, 27, 71
datatype declaration, 8, 25, 71
datatype description, 11, 13, 41
datatype specification, 13, 39, 56
datbind (datatype binding), 7, 8, 27,
71
DatBind (datatype bindings), 7, 45
datdesc (datatype description), 11, 13,
41
DatDesc (datatype descriptions), 11,
56
dec (declaration), 7, 8, 25, 52, 67, 71
Dec (declarations), 7
declaration (Core), 7, 8, 25, 52, 67, 71
as structure-level declaration, 12,
37, 58
dereferencing (!), 4, 74, 77
derived forms, 1, 6, 10, 65-67
Diff, 47, 78
digit
in identifier, 4
in integers and reals, 3
dir (fixity directive), 6, 8, 10
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directive, 8
div, 47, 74, 76, 78
Div, 47, 78
division of reals (/), 47, 74, 76, 78
do, 3, 66, 70
Dom (domain), 17
dynamic
semantics (Core), 45
semantics (Modules), 56
basis (see basis)

E

e (exception value), 46
[€] (see packet)
E (exponent), 3
E (environment)
static, 17, 22, 23, 25, 26
dynamic, 46, 49-55, 57, 58
EE (seé exception constructor envi-
ronment)
elaboration, 1, 2, 23, 36, 62
else, 3, 66, 70
empty
declaration (Core), 8, 26, 52, 71
functor declaration, 14, 42, 61
functor specification, 14, 42
signature declaration, 12, 39, 59
specification, 13, 40, 60
structure-level declaration, 12, 37,
58
en (exception name), 45, 53
end, 3, 8, 12, 13, 70, 71
end_of_stream, 47, 75, 79
enrichment (>), 34, 36, 38, 43
ens (exception name set), 46, 53
Env (environments), 17, 46
eqtype, 10, 13, 39, 56
equality
on abstract types, 22
of structures (sharing), 41
of type functions (sharing), 19, 41,
42

INDEX

of type schemes, 19
of values, 18, 74, 76, 78
equality attribute
of type name, 16, 18, 21, 22, 33,
39
of type variable, 4, 16, 18, 19
equality type, 18, 74
equality type function, 19
equality type specification, 13, 39, 56
equality type variable, 4, 16, 18, 19
escape sequence, 3
evaluation, 1, 2, 48, 57, 62
exbind (exception binding), 7, 8, 27,
53, 71
ExBind (exception bindings), 7
exception, 3, 8, 13, 25, 39, 52, 59, 71
exception binding, 7, 8, 27, 53, 71
exception constant (excon or longexzcon)
as atomic pattern, 9, 28, 53, 54,
72
exception construction
as pattern, 9, 29, 54, 72
infixed, as pattern, 6, 9, 72
exception constructor
as atomic expression, 8, 23, 50, 70
exception constructor environment (EE)
static, 17, 18, 27, 57
dynamic, 46, 53, 57
exception convention, 49-51, 63
exception declaration, 8, 25, 52, 71
exception description, 11, 13, 41, 60
exception name (en), 45
fresh, 53
exception name set (ens), 46, 53
exception packet (see packet)
exception specification, 13, 39, 59
exception value (e), 46
excon (see exception constant or con-
structor)
ExCon (exception constructors), 4
ExConEnv (exception constructor en-
vironments), 17, 46
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ezcons (exeption constructor set), 56,
60

ezdesc (exception description), 11, 13,
41, 60

ExDesc (exception descriptions), 11

execution, 1, 62

exhaustive patterns, 30, 47

exn, 24, 28, 29, 41, 73, 75

ExName (exception names), 45

ExNameSet (exception name sets), 46

exp (expression), 7, 8, 24, 50, 66, 70

Exp (expressions), 7

exp (exponential), 47, 74, 77

Exp, 47, 77

expansive expression, 20, 21

explode (a string), 47, 74, 78

expression, 7, 8, 24, 50, 66, 70

expression row, 7, 8, 24, 50, 70

exprow (expression row), 7, 8, 24, 50,
70

ExpRow (expression rows), 7

ExVal (exception values), 46

F

F (functor environment), 31, 42, 43,
56, 60, 61

FAIL (failure in pattern matching),
45, 49-55

false, 73-75

B (finite map), 16

Fin (finite subset), 16

floor, 47, T4, 77

Floor, 47, 77

fn, 3, 8, 9, 24, 51, 70

formatting character, 3

fun, 3, 65, 67, 71

funbind (functor binding), 11, 14, 43,
60, 65, 67

FunBind (functor bindings), 11

function (fn match), 8, 24, 51, 70

function declaration (see fun)

function type (—), 17, 24, 29
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function type expression (->), 9, 29,
72

function-value binding (fvalbind), 30,
65, 67, 71

functor, 10, 14, 42, 61

functor application, 12, 36, 58, 67

functor binding, 11, 14, 43, 60, 653, 67

functor closure, 56, 58, 60

functor declaration, 11, 14, 42, 61

as top-level declaration, 14, 43, 61

functor description, 11, 14, 42

functor environment (F), 31, 42, 43,
56, 60, 61

functor identifier (funid), 10, 12, 14

functor signature (@), 31, 42-44

functor signature expression, 11, 14,
42, 67

functor signature matching, 11, 44

functor specification, 11, 14, 42

FunctorClosure (functor closures), 56

fundec (functor declaration), 11, 14,
42, 61

FunDec (functor declarations), 11

fundesc (functor description), 11, 14,
42

FunDesc (functor descriptions), 11

FunEnv (functor environments), 31,
56

funid (functor identifier), 10, 12, 14

Funld (functor identifiers), 10

funsigezp (functor signature expres-
sion), 11, 14, 42, 67

FunSigExp (functor signature expres-
sions), 11

funspec (functor specification), 11, 14,
42

FunSpec (functor specifications), 11

FunType (function types), 17

fvalbind (function-value binding), 65,
67,71

exhaustive, 30
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G

G (signature environment), 31, 39, 56,
59

generalisation (>), 19, 23, 28, 29, 34

generative signature expression, 12, 38,

59

generative structure expression, 12, 36,

58
grammar, 1
for the Core, 6, 68
for Modules, 10

H
handle, 3, 8, 24, 51, 70

I

I (interface), 56, 59, 60
IB (interface basis), 56, 57, 59, 60
identifier (id), 4, 10
alphanumeric, 4
long, 4, 64
qualified, 4
symbolic, 4
IE (interface environment), 56, 60
if, 3, 66, 70
imperative attribute, 16, 19
imperative type, 19, 27, 28

imperative type variable (see type vari-

able)
implementation, 1, 62
implode (a string list), 47, 74, 78

ImpTyVar (imperative type variables),

4

imptyvars (free imperative type vari-
ables), 17, 43

in (injection), 18

in, 3, 8, 12, 13, 66, 70, 71

include, 10, 13, 40, 60

inference, 2

inference rules

static semantics (Core), 23

INDEX

static semantics (Modules), 36
dynamic semantics (Core), 48
dynamic semantics (Modules), 57
infexp (infix expression), 68, 70
InfExp (infix expressions), 68, 70
infix, 3,5, 6, 8, 71
infix expression, 6, 8, 68, 70
infix pattern, 6, 9, 72
infixed identifiers, 5, 6, 8, 10, 70-72,
T4
infixr, 3, 5,6, 8, 71
initial basis, 2, 73, 76
injection (in), 18
input, 47, 75, 79
input/output, 75, 78
instance (>)
of signature, 34, 35, 38, 40
of functor signature, 34, 36
in matching, 35
instream, 73, 75, 78
int, 73, 75
Int (interfaces), 56
IntBasis (interface bases), 56
integer constant, 3, 75
IntEnv (interface environments), 56
Inter, 56, 59, 60
interaction, 1, 62
interface (I), 56, 59, 60
interface basis (IB), 56, 57, 59, 60
interface environment (IE), 56, 60
Interrupt, 47, 63
To, 47,79
irredundant patterns, 30, 47
it, 67

L

L (left associative), 7, 69
lab (label), 4, 5
Lab (labels), 4, 5
let, 3
expression (Core), 8, 24, 50, 66,
70
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expression (Modules), 12, 36, 58
letter in identifer, 4
lexical analysis, 5, 6
list, 73, 75
list reversal (rev), 74, 77
1n, 47, 74, 77
Ln, 47, 77
local, 3
declaration (Core), 8, 26, 52, 71
declaration (Modules), 12, 37, 58
specification (Modules), 13, 40, 60
long identifiers (e.g. longezcon), 4, 64
lookahead, 47, 75, 79

M

m (structure name), 16-18, 31-34, 38,
41, 46
fresh, 36, 37
M (structure name set), 31, 36
map, 74, 77
match (match), 7, 8, 25, 52
irredundant, 30, 47
exhaustive, 30, 47
in closure, 46, 48
Match, 7
Match (exception), 47, 51
match rule, 7, 8, 25, 52
matching
signatures (see signature match-
ing)
functor signatures (see functor sig-
nature matching)
mem (memory), 46, 50, 55
Mem (memories), 46
memory (mem), 46, 50, 55
mod, 47, 74, 76, 78
Mod, 47, 78 '
modification (+)
of finite maps, 17
of environments, 18, 49

module, 11
Modules, 1
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mrule (match rule), 7, 8, 25, 52
Mrule (match rules), 7
multiplication of numbers (%), 47, 74,

76, 78

N

n (name, see structure name, type name -
and exception name)
N (name set), 31, 36
n-tuple, 66, 70, 72
name
of structure (m), 16-18, 31-34, 36-
38, 41, 46
name set (N), 31, 36
names (free names), 31, 32, 36, 43
NameSet (name sets), 31
Natural Semantics, 2
Neg, 47, 77
negation of booleans (not), 74, 77
negation of numbers (), 3, 47, 74, 77
nil, 66, 73-75
non-expansive expression, 20, 21
nonfix, 3, 6, 8, 10, 71, 74
nonfix identifiers, 6, 8, 10, 71, 74
not, 74, 77
num, 74

o

o (function composition), 74, 76
occurrence

substructure, 31
of (projection), 18, 31
of, 3

in case expression, 66, 70

in constructor binding, 8

in exception binding, 8, 45

in exception description, 13, 56
op, 3, 6

on variable or constructor, 8, 9,

70-72

in constructor binding, 8, 71
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open, 3, 8, 13, 26, 40, 52, 56, 60, 64,
67, 71
open_in, 47, 75, 78, 79
open_out, 47, 75, 78, 79
opening structures in declarations, 8,
26, 52, 71
opening structures in specifications,
13, 14, 40, 60
options, 7
first ({ )), 23, 38
second ((( ))), 23
ord (of string), 47, 74, 78
Ord, 47, 78
orelse, 3, 66, 70
output, 47, 75, 79
“Output stream is closed” , 79
outstream, 73, 75, 78

|

P (see packet)
Pack (packets), 46
packet (p), 46, 49, 51, 57, 62, 63
parsing, 1, 62
pat (pattern), 7, 9, 29, 54, 66, 72
Pat (patterns), 7
patrow (pattern row), 7, 9, 28, 54, 66,
72
PatRow (pattern rows), 7
pattern, 7, 9, 29, 54, 66, 72
layered, 9, 29, 55, 72
pattern matching, 30, 45, 47, 54
with ref, 54, 55
pattern row, 7, 9, 28, 54, 66, 72
polymorphic
functions, 23, 25, 28
references, 20, 21, 25, 43, 74
exceptions, 20, 27, 41, 43
precedence, 7, 68
principal
environment, 30, 37
signature, 35, 38, 39, 42, 43
Prod, 47, 78

INDEX

product type (*), 66, 72
program (program), 1, 62, 63
Program (programs), 62
projection (of), 18, 31

Q
qualified identifier, 4
Quot, 47, 78

R

r (record), 46, 50, 54
R (right associative), 7, 69
raise, 3, 8, 24, 25, 49, 51, 62, 70
Ran (range), 17
real
the type, 73, 75
coercion, 47, T4, 77
real constant, 3, 75
realisation (), 33, 35, 44
rec, 3, 8§, 9, 48, 53, 71
Rec (recursion operator), 48, 51, 53
record
r, 46, 50, 54
as atomic expression, 8, 24, 50,
66, 70
as atomic pattern, 9, 28, 54, 66,
72
selector (# lab), 3, 66, 70
type expression, 9, 29, 72
type (o), 17, 24, 28, 30
Record (records), 46
RecType (record types), 17
recursion (see rec, Rec, and fun)
ref
the type constructor, 73, 75
the type name, 19, 73-75
the value constructor, 45, 50, 54,
55, 74, 75, 77
reserved words, 3, 10
restrictions
closure rules (see these)
syntactic (Core), 9, 30
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syntactic (Modules), 12
rev, T4, 77

S

s (state), 46, 48, 50, 55, 57, 62, 63
S (structure), 17, 31, 32, 34, 36, 38,
46
SCon (special constants), 3
scon (see special constant)
scope
of constructor, 5, 18
of value variable, 5, 18
of fixity directive, 6, 10
of explicit type variable, 19, 20,
26
SE (structure environment)
static, 17, 18, 31, 34, 38, 41, 73
dynamic, 46, 57, 59, 76
semantic object, 2
simple (Static), 16
simple (Dynamic), 45
compound (Core, Static), 16, 17
compound (Core, Dynamic), 46
compound (Modules, Static), 31
compound (Modules, Dynamic),
56
sentence, 2, 23, 36, 48, 57, 62
separate compilation, 11, 14, 15, 44
sequential
expression, 66, 70
declaration (Core), 8, 26, 52, 71
functor declarations, 14, 43, 61
functor specification, 14, 42
signature declaration, 12, 39, 59
specification, 13, 40, 60
structure-level declaration, 12, 37,
58
shareq (sharing equation), 11, 13, 41,
56
SharEq (sharing equations), 11, 56
sharing, 14, 15, 37, 38, 40, 41, 44
equations, 11, 13, 41, 56
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specification, 13, 40
of structures, 13, 41
of types, 13, 41, 42
multiple, 13, 41
sharing, 10, 13, 40
side-condition, 48, 57
side-effect, 57, 63
sig, 10, 12, 38, 59
Sig (signatures), 31
sighind (signature binding), 11, 12,
39, 59
SigBind (signature bindings), 11
sigdec (signature declaration), 11, 12,
39, 59
SigDec (signature declarations), 11
SigEnv (signature environments), 31,
56
sigexp (signature expression), 11, 12,
38, 59
SigExp (signature expressions), 11
sigid (signature identifier), 10, 12, 38,
59
Sigld (signature identifiers), 10
signature (X), 31-35, 38, 39, 42-44,
57
signature, 10, 12, 39, 59
signature binding, 11, 12, 39, 59
signature declaration, 11, 12, 39, 59
in top-level declaration, 14, 43, 61
signature environment (G)
static, 31, 39, 43
dynamic, 56, 57, 59, 61
signature expression, 11, 12, 38, 59
signature identifier, 10, 12, 38, 59
signature instantiation (see instance)
signature matching, 35-38, 43
sin, 47, 74, T7
size (of strings), 47, 74, 77
spec (specification), 11, 13, 39, 59
Spec (specifications), 11
special constant (scon), 3, 16
as atomic expression, 8, 23, 49, 70
in pattern, 9, 28, 53, 72
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special value (sv), 45
specification, 11, 13, 39, 59
sqrt (square root), 47, 74, 77
sqrt, 47, 77
state (s), 46, 48, 50, 55, 57, 62, 63
State, 46
state convention, 49, 50
static
basis, 1, 23, 31, 36, 62, 73
semantics (Core), 16
semantics (Modules), 31
std_in, 47, 75, 79
std_out, 47, 75, 79
Str (structures), 17
strbind (structure binding), 11, 12, 38,
59
StrBind (structure bindings), 11
strdec (structure-level declaration), 11
12, 37, 58, 63
StrDec (structure-level declarations),
11
strdesc (structure description), 11, 13,
41, 60
StrDesc (structure descriptions), 11
stream (input/output), 78
StrEnv (structure environments), 17,
46
strezp (structure expression), 11, 12,
36, 58, 67
StrExp (structure expressions), 11
strid (structure identifier), 4
as structure expression, 12, 36, 58
Strld (structure identifiers), 4
string, 73, 75
string constant, 3, 75
StrName (structure names), 16
strnames (free structure names), 31
StrNameSet (structure name sets), 31
struct, 10, 12, 36, 58, 67
structure (S or (m,E)), 17, 31, 32,
34, 36, 38, 46
structure, 10, 12, 13, 37, 39, 58, 60

b

INDEX

structure binding (strbind), 11, 12, 38,
59
structure declaration, 12, 37, 58
structure description (strdesc), 11, 13,
41, 60
structure environment (SE)
static, 17, 18, 31, 34, 38, 41, 73
dynamic, 46, 57, 59, 76
structure expression (strezp), 11, 12,
36, 58, 67
structure identifier (strid), 4
as structure expression, 12, 36, 58
structure-level declaration (strdec), 11,
12, 37, 58, 63
in top-level declaration, 14, 43, 61,
63
structure name (m, see name)
structure name set (M), 31, 36
structure realisation (¢sg;,), 33
structure specification, 13, 39, 60
substructure, 31
proper, 31, 33
subtraction of numbers (-), 47, 74,
76, 78
Sum, 47, 78
SVal (special values), 45
Supp (support), 33
sv (special value), 45
symbol, 4
syntax, 3, 10, 45, 56, 68

T

t (type name), 16, 19, 21, 22, 25, 27,
30-34, 41, 75

T (type name set), 17, 31

TE (type environment), 17, 21, 22,

27, 34, 41, 57

then, 3, 66, 70

topdec (top-level declaration), 11, 14,
43, 61, 63

in program, 62, 63
TopDec (top-level declarations), 11



INDEX

top-level declaration, 1, 11, 14, 43, 61,
63

true, 73-75

truncation of reals (floor), 47, 74, 77

tuple, 66, 70, 72

tuple type, 66, 72

ty (type expression), 7, 9, 29, 45, 66,
72

Ty (type expressions), 7, 9, 45

tycon (type constructor), 4, 8, 9, 13,
17, 21, 22, 27, 29, 32, 34, 41,
75

TyCon (type constructors), 4

TyEnv (type environments), 17

TyName (type names), 16

tynames (free type names), 17, 36

TyNameSet (type name sets), 17

typbind (type binding), 7, 8, 27, 45,
T

TypBind (type bindings), 7, 45

typdesc (type description), 11, 13, 40,
56

TypDesc (type descriptions), 11, 56

type (1), 17-20, 23-25, 28, 29

Type (types), 17

type, 3, 8, 13, 25, 39, 41, 45, 56, 71

type (function on special constants),
16, 23, 28

type binding, 7, 8, 27, 45, 71

type constraint (:)

in expression, 8, 24, 45, 70
in pattern, 9, 29, 45, 72

type construction, 9, 29

type constructor (tycon), 4, 8, 9, 13,
17, 21, 22, 27, 29, 32, 34, 41,
75

type constructor name (see type name)

type declaration, 8, 25, 45, 71

type description (typdesc), 11, 13, 40,
56

type environment (TE), 17, 21, 22,
27, 34, 41, 57

type explication, 33-35, 37, 38, 43
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type-explicit signature (see type ex-
plication)
type expression, 7, 9, 29, 45, 66, 72
type-expression row (tyrow), 7, 9, 30,
45, 72
type function (9), 17-19, 21, 22, 27,
32-34, 40-42, 75
type name (t), 16, 19, 21, 22, 25, 27,
30-34, 41, 75
type name set, 17, 31
type realisation (¢, ), 33
type scheme (o), 17, 19-21, 23, 28,
34,41, 74,75
type specification, 13, 39, 56
type structure (6,CE), 17, 21, 22, 25,
27, 29, 32, 34, 39-42, 74, 75
type variable (tyvar, a), 4, 9, 16
in type expression, 9, 29, 72
equality, 4, 16, 18, 19
imperative, 4, 16, 17, 19, 21, 25,
27, 28, 30, 43
applicative, 4, 16, 17, 19, 21, 25,
27, 28
explicit, 19, 20, 25, 26
type vector (7)), 17-19
TypeFcn (type functions), 17
TypeScheme (type schemes), 17
tyrow (type-expression row), 7, 9, 30,
45, 72
TyRow (type-expression rows), 7, 9,
45
TyStr (type structures), 17
tyvar (see type variable)
TyVar (type variables), 4, 16
tyvars (free type variables), 17
tyvarseq (type variable sequence), 7

TyVarSet, 17

U
U (explicit type variables), 17, 18, 20,
25, 26
unit, 75
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unguarded type variable, 20

v

v (value), 46, 49-52
val (function on special constants), 45,
49, 53
Val (values), 46
val, 3, 8, 13, 25, 39, 52, 59, 71
valbind (value binding), 7, 8, 20, 21,
25, 26, 53, 71
simple, 8, 26, 53, 71
recursive, 8, 26, 27, 53, 71
Valbind (value bindings), 7
valdesc (value description), 11, 13, 40,
60
ValDesc (value descriptions), 11
value binding (valbind), 7, 8, 20, 21,
25, 26, 53, 71
simple, 8, 26, 53, 71
recursive, 8, 26, 27, 53, 71
value constant (con)
in pattern, 9, 28, 53, 72
value constructor (con), 4
as atomic expression, 8, 23, 50, 70
scope, 5, 18
value construction
in pattern, 9, 29, 54, 72
infixed, in pattern, 9, 72
value declaration, 8, 20, 25, 52, 71
value description (valdesc), 11, 13, 40,
60
value variable (var), 4
as atomic expression, 8, 23, 49, 70
in pattern, 9, 28, 53, 72
value specification, 13, 39, 59
var (see value variable)
Var (value variables), 4
VarEnv (variable environments), 17,
46
variable (see value variable)
variable environment (VE)
static, 17, 18, 20, 21, 25-29, 34,
40, 41, 57, 74, 75
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dynamic, 46, 48, 53, 54, 57, 76
vars (set of value variables), 56, 60
VE (see variable environment)
via ¢, 35, 44
view of a structure, 38, 41, 56, 58, 59

A\

well-formed
type environment, 21
signature, 32
functor signature, 32
assembly, 32, 33

while, 3, 66, T0

wildcard pattern (_), 9, 28, 53, 72

wildcard pattern row (...), 3, 9, 28,

30, 54, 72
with, 3, 8, 71
withtype, 3, 65, 67, 71

Y
Yield, 33




