LECS

souajeAinbg [euoieAasqo BiA

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Optimal Data Flow Analysis
via Observational Equivalence

by

Bernhard Steffen

sisAfeuy moj4 eieq rewndo

ECS-LFCS-89-82

LFCS Report Series ‘ (also published as CSR-300-89)
LFCS May 1989
Department of Computer Science

University of Edinburgh

The King's Buildings Copyright © 1989, LFCS

Edinburgh EH9 3JZ

Copyright © 1989, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Optimal Data Flow Analysis via Observational
Equivalence

Bernhard Steffen *

Abstract

In [18] a three level model was presented to establish a concept of com-
pleteness or optimality for data flow analysis algorithms in the framework of
abstract interpretation [2]. The notion of observational equivalence which we
introduce here generalizes the idea of the three level model, which can only
deal with hierarchies of abstract interpretations. Investigating this more
general notion, it actually turns out that the three level model is general in
a theoretical sense: it determines the most abstract computation level which
delivers complete results. However, consideration of other aspects of data
flow analysis profit from the extra generality of our observation directed ap-
proach. For example the completeness or optimality proof for a “real life”
optimizer could be shortened significantly this way .

1 Motivation

Large software projects require sophisticated environments to support well struc-
tured and reliable programming. Unfortunately all too often developers are un-
willing to use high level programming languages (which provide these facilities)
because of efficiency reasons. Consequently, optimizing compilers are constructed
to increase their practicability. The quality of an optimizing compiler depends on
data flow analysis. An important step in the systematization of data flow anal-
ysis has been taken by Cousot/Cousot [2] by introducing the notion of abstract
interpretation. Abstract interpretation is a framework that allows observation
of program behaviour at different levels of abstraction. It can be used to define
correctness and optimality of a data flow analysis algorithm.

Correctness has been studied in [2] using a two level model of abstract in-
terpretations. However, to analyse optimality of a data flow analysis algorithm
the second level of this model has been split into two parts [18]. The resulting

*Laboratory for Foundations of Computer Science, University of Edinburgh—The author is
supported by the Science and Engineering Research Council grant GC/D69464
!This paper also appeared in [19)].

model, therefore, has three levels: a basic level (related to the static semantics of
2]), a computation level and an observation level. The advantage of this model
is to separate the environment of a data flow analysis algorithm, given by a full
semantics and questions about the program behaviour, from the specification of
an algorithm answering these questions.

In this paper we discuss the generality and limitations of the three level model.
To do so we first adapt the notion of observational equivalence [5, 16] for models
of abstract interpretations. Second, we generalize the notion of a fully abstract
model (cf. [8]) in the sense of [18], which deals only with the hierarchical sit-
uation of the three level model, to a situation without this restriction. Third,
we introduce a product construction between models of abstract interpretations.
This construction yields an abstract semantics that embodies both of its argument
models in a ”synchronized” way. It is appropriate for discovering similarly behav-
ing parts of arbitrary models of abstract interpretations. And fourth, we use the
”synchronization” mechanism delivered by the product construction to prove our
main result: fully abstract models provide the most abstract computation levels
that are observationally equivalent to a given basic level (Equivalence Theorem
3.13).

As a consequence of this result we conclude the generality of the three level
model, since, given an environment for a data flow analysis algorithm, the (in a
theoretical sense) ideal computation level (which is given by the fully abstract
model), can be determined within the three level model.

On the other hand the practical implementation of a data flow analysis al-
gorithm requires a specific representation of the abstract domain, the algorithm
operates on. Such a representation usually leads to an abstract interpretation (i.e.
computation level) which cannot be seen as an abstraction of the full semantics.
Thus, the concrete implementation of a data flow analysis algorithm does not fit
into the three level model, but it can be handled in our observation directed ap-
proach. This has been successfully used in proving the completeness or optimality
of a “real life” optimizer.

The theoretical development in this paper is accompanied by the very concrete
development of a special data flow analysis which we call order analysis. On
the one hand this analysis is restricted enough to allow an efficient and optimal
implementation. On the other hand it is general enough to illustrate the main
aspects of the theory.

2 Preliminary Definitions

We directly introduce the syntax of our programming language as the class of
all (nondeterministic) flow graphs over a set N, which represents the occurrences
of elementary statements. A flow graph over N is a quadruple G = (N, E,s,e),

where (N, E) is a connected and directed graph with node set NCN and edge
set ECNxN. s and e (start and end node) denote a special element of N
without predecessor and successor nodes respectively. We write P(G) for the set
of all finite paths from s to e of a given flow graph G, FG for the set of all
flow graphs over N and LFG for the set of all linear flow graphs over N, i.e.
LFG={G e FG||P(G)| =1}.

Remark 2.1 Paths will be identified with linear flow graphs, i.e. P(G)C LFG.

The semantics of flow graphs will now be introduced as the MOP-solution in
the sense of Kam and Ullman [7]. This is a form of operational semantics which
simply collects all “final state descriptions” that are derivable by executing finite
paths (a denotational approach, such as the MFP-solution in the sense of Kam
and Ullman, would deliver exactly the same results). For this we need a complete
semi-lattice (C,U,C, L, T) with bottom element L and top element T. The
elements of C serve as descriptions for the situations which may occur at an
arbitrary program point.

Definition 2.2

1. Let [], : N — (C — C) be a function, which relates to every node neN
an additive function [n], from C to C, i.e.:

Vne NVTCC. [»](UT) =U{[r](c)|ceT}

In this case, we call ([],,C) an abstract interpretation or a local abstract
semantics.

2. Let ([1,,C) be a local abstract semantics and [] : FG — (C — C) be the
globalization of [], i.e.: VG € FG Ve e C.

[l lne](c) if G=(ny,...,n;) € LFG
[G1(e) =df{ U{[[]];’]](c)lllgel(P)(G)} orme ™

(here “X;Y(..)” means “Y(X(..))”). Then ([],C) is called the (global)
abstract semantics induced by ([],,C).

This delivers a uniform framework for describing the state transformation se-
mantics of an imperative programming language (in the sense of the collecting
semantics [12]) as well as the abstract semantics which is induced by a data flow
analysis algorithm, see [17] or [18].

We illustrate the concepts and results presented in this paper by an example
which we call order analysis. This analysis might be especially useful for physicists
to optimize computations by suppressing higher order terms. Think of approx-
imations using the Taylor-development, perhaps in particular of applications in

3

perturbation theory, where the behaviour of very small perturbations is studied.
There, physicists often reduce their attention to the first two terms, the constant
term and the first order term, because the higher order terms can be considered
as insignificant in those contexts. Using such application dependent information
leads to powerful program transformations and therefore to fast code. The order
analysis delivers a simple kind of finite interpretation which allows an efficient and
optimal data flow analysis. But it is also complex enough to illustrate the main
ideas developed in this paper.

Example: Let V be a set of variables, II be the set of polynomials p over
unknowns z,y,.. € V,i.e. p is of the form:

ay ¥R gk x L dap kxR yRok Loy, * ook yRe kL

(the kind of the coefficients a; is unimportant for our considerations) and N be
the set of all assignments of the form v:= ez (v€V,ex €II). Then our program-
ming language L consists of the set of all nondeterministic flow graphs whose
nodes are occurrences of elements n € N. To keep things simple we furthermore
assume that there is only one variable = and that this variable is initialized by a
value z, at run time.

Note: The order analysis developed further on is important whenever z, is known
to be very small (ie.: 2z, < 1), a very reasonable assumption in many physical
applications.

Finally, we need the set II, of all polynomials over o and the function o : II; — w
that assigns to all its arguments the exponent of the highest z,~power that can
be factored out. This setup allows to define abstract semantics on several levels
of abstraction. We start with two of them:

First, Sp=4 ([15,Cp), where Cp=4 P(Il;) with C = C (P(Il,) denotes
the powerset of Ily) and [z:=t]g(x) = {t[to/z]]t, € 7}, for all = € P(II,)
and (z:=t) € N (#[z/y] is the polynomial that results from the substitution
of all occurrences of y by z in t). Sg describes the symbolic evaluation of a
program. Here the set of all possible program states is characterized by means
of the collection of those program terms over the initial value z, that can be
represented by x at a certain program point. We choose this semantics as our
basic level (indicated by the index “B”), because it is powerful enough to represent
the complete behaviour of any program in L .

Second, S,=4 ([1., C.) reduces attention to the order of the variable z wrt the
initial value z,. It is defined by C, =4 wU{w} with C=> and [z:=1t],(n) =
o(tlzo"/z]), for all (z:=t) € N and n € w. We choose the index “e” here
because this semantics only considers the (smallest) exponent of z occurring in
a given term. Later we will see that S, optimally reflects the order analysis and
that it is possible to further abstract the underlying semantics without loosing

optimality, whenever the minimal order of insignificance is known. In this stage
of the development of our example one observation is important:

S, can be regarded as an abstracted version of Sg.

This can be formalized using the notion of an abstraction function:

Definition 2.3 Let §,=([],,C\) and S=([1,,C;) be two abstract semantics.
- We call a function A : C; — C, an abstraction function, if A is additive and
surjective and fulfils the correctness condition Vn € N. [n];;AC 4;[n],. In
this case we write S, <, S;.

In order to describe the mutual relationship between these levels we additionally
use the notion of an adjoint (or concretization) function A® defined by:

Vee G, A*(c)=4 U{c | A(¢') = ¢}

Remark 2.4

1. The additivity requirement of the semantic functionals and the abstrac-
tion functions is an important restriction that is responsible for most of the
properties we obtain. The surjectivity requirement is essentially technical,
present only to simplify the development of the theory.

2. Pairs of the form (A, A®) are pairs of adjoint functions in the sense of
Cousot and Cousot [4]. Notice that A2 is monotonic, but in general not
additive.

The abstraction function Ap, between Sg and S, is given by
Apge(m)=min{o(t) |t € 7}

in our example. Thus Ap.*(n) consists of all terms ¢ with o(t) > n (We will
proceed using this notation, which specifies source and target of the abstraction
function by its index expression.) It is easy to see that Ap, is both additive and
surjective, and that it fulfils the correctness requirement. Finally let us introduce
the notion of isomorphism:

Definition 2.5 Two abstract semantics S, and S, are called isomorphic, if there
exists an additive and bijective abstraction function A : C; — C, such that
[Gl;; A=A;[G], for all G € FG. In this case we write S, =, S, or just

This notion of isomorphism exactly meets the usual intuition. In particular
61 =4 S, implies that A is bijective and that S, & ,~1 S holds.

3 Observational Equivalence

This section is based on the fact that, given an abstract semantics S=([],0),
a complete semi-lattice Q (“€” stands for “observation”) and an additive and
surjective function A:C — (, § induces a semantic functional (or a behaviour)

[].:FG— (2 = Q) on Q by:
VGEFG’. [[G]IA=df Aa;EG]I;A.

In the following we abbreviate this situation by S—, Q.

Example: Let us now assume that it is enough to consider only the constant
term and the first order term to obtain reasonable results and that we are only
interested in whether the variable z contains a significant result at the end of the
program or not, i.e. whether o(z) < 2 or not. (Think perhaps of the situation
where z contains a value of disturbance after a special amount of time. In this
situation this observation level expresses whether the disturbance will be definitely
damped after a while or not.) This gives the observation level Co=4 {L, T} with
1L C T and the abstraction functions Ag, and A,y that indicate the information
“definitely insignificant” (i.e. each possible value has order > 2) by L and the
complement (“possibly significant”) by T.

Data flow analysis is concerned with the problem of efficiently answering ques-
tions about program behaviour as precisely as possible. The complete program
semantics and the behaviour of a data flow analysis algorithm can be formulated
as abstract semantics. And it is also possible to characterize the aspects of interest
of (or questions about) the program behaviour using a complete (semi-)lattice (the
question level). Thus it turns out that we have to search for “minimal” abstract
semantics which simulate the complete program semantics wrt the observation
level, i.e. for “minimal” representatives of the following equivalence relation Q)

Definition 3.1 Let Q be an observation level. Then we define:

1. Given an abstract semantics S satisfying S— Q, we call the pair (S,A) a
model of 0.

2. Two models (S,A) and (S',A’') of Q are called Q-equivalent or obser-
vationally equivalent wrt Q, (S,A) rq (S, A"), iff they induce the same
behaviour on Q, de. iff [1, = [1,-

Remark 3.2 This approach is “observation directed”. It does not consider a

standard semantics, it only deals with the behaviour induced on a certain ob-

servation level. Thus the following development differs in its “orientation” from
the considerations in [2, 3, 4] because the approach of Cousot / Cousot, the data
flow analysis framework, is “semantics directed” (i.e. directed towards a standard

6

semantics). In particular, Cousot / Cousot do not consider a seperate observation
level.

Obviously we have:

Lemma 3.3 =g is an equivalence relation on the set of all models of Q.

- Let us now illustrate the nature of the generalization that we obtain by replacing
optimality (or completeness) wrt the three level model by observational equiva-
lence. The three level model deals only with hierarchical situations like:

Diagram 3.4

[L

S C, > C) (basic level)
A,
. v [1, M
S, C, > C, (computation level)
Ay
2 Z L 2
Q 0 (observation or question level)

Consequently, only abstractions of a given basic level are considered as compu-
tation levels. In contrast, the more general notion of observational equivalence
covers the following situation as well:

Diagram 3.5

I

NXKS

I

(inducing level)

(observation level)

Example: Let us consider S=df Sea S’zdj Sb’ def Co, A=df Aeo, A,=df Ab07
where the definition of A, (and also the definitions of Apg,, Agtas Actar Abta
and Aj,o, which we will use later on in our example) is straightforward, and where
Sy=4s ([15, Cs) is defined by: Cy=4 P ({t|t€Ily A o(t)< 2}) with C=C (the
index “b” stands for “bound”) and [:= t],(n) = {t[to/z] | to €™ A o(t[te/z]) < 2},
forall (z:=%) € N and 7 € C;. Then (S, A) and (8, A’) are two observationally
equivalent models of O (see Definition 8.1(2)) which cannot be “ordered” by
‘means of an abstraction function. Thus, they are incomparable within the three
level model, but equivalent in the general model illustrated by Diagram 3.5.

Nevertheless, the main result of this paper shows that the three level model is
general in a theoretical sense: the ideal computation level (which is given by the
fully abstract model) can be determined within the three level hierarchical model.
This is because there exists a most abstract semantics, the fully abstract model,
that is observationally equivalent to a certain basic level. (Indeed, the notion of
a fully abstract model in [18], which is defined wrt the three level hierarchical
model, characterizes the same family of abstract semantics as the more general
notion introduced here. The difference consists only of the necessity to specify
the abstraction context here. This was unnecessary in [18] with its fixed standard
situation.). We will now proceed by developing this general result.

3.1 Fully Abstract Models

In order to avoid nonstandard models, we have to reduce the domain of an abstract
semantics to its reachable part which is introduced as “RL(..)” in Definition

3.6(1). This technical reduction is essential to obtain the uniqueness of fully
abstract models.

e

Definition 3.6 Let S, <, S, and S, -, Q. Then we introduce:
1. RI(8), A1, 8, Ag, Q) =4 { A2%4,% [G 3 As(c) | GEFG A ce 0}

2. BL(8,,A,,8,, Ay, Q) denotes the smallest complete sub-(semi-)lattice of C,
that contains RI(S,, A, S,, A, Q).

8. BS(81, A &, Ay, Q=4 ([1, BL(S:, A1, S, Az,), where [] is defined as

follows:
VG € FG.
[CLl BLS A Sty i BL(S, AL Sy, Ay, Q) s closed
[G] =df under |]]2
1 otherwise

4. & is called locally optimal wrt S, and A,, iff A n]iAy=[n], for
all n e N.

The following notion of a fully abstract model generalizes the notion introduced
in [18] by replacing “abstract semantics” by “model of Q”. Thus fully abstract
models are no longer abstract semantics but models of 2. — Originally, the notion
of full abstractness was introduced by Milner [8] in the context of the A—calculus.

Definition 3.7 Let S, Q and A fulfil §— Q. A pair (S;,A,) with S—, Q
is called a fully abstract model for S, wrt Q and A, iff an abstraction function
Ay with 8§ <4, 8, exists, satisfying the following four properties:

1. A=A1;A2

2. S =R5(51, A1, 5, 4z, Q)
3. 8, is locally optimal wrt S, and A,
4. Ve, € RI(S,ID,S,, A, Q).
Ay(c) = A44(¢) <= YG € LFG. [Gl; A() = [Gl;; A(e)
where ID is the identity on the semantic domain of S,.

We denote the set of all those fully abstract models (S,, A;) by ®(Sy, 4, Q).

Example:

Concerning the order analysis, S;,=4 ([] 7a1Cra)s defined by Cj,=4{0,1,2}
with E= > and [z:=1t],,(n)=min {2, o(t[z,"/z]) } for all (z:=t) € N and
n€{0,1,2}, is a fully abstract model of Sg wrt Cp and Ago (see section 3.3).
(Here, “fa” stands for “fully abstract”.)

The following two results are central:

Theorem 3.8 (Existence and Uniqueness Theorem)

Let S, Q and A satisfy S;—y Q. Then there exists a fully abstract model (S, Ag)
for & wrt Q and A, and we have the following uniqueness result:

®(5,,4, Q) = {(Sh, AL) | JA. 52,84 A Ay= A% Ar).

The second result, Theorem 3.9, gives us the opportunity to cut off the abstraction
process at the level of a fully abstract model without any loss wrt the equivalence

properties we are interested in. This is important, because it allows easy proofs
by induction. ‘

Theorem 3.9 Let (S,, A;) € B(S;, Ay; Ay, Q) with S, <4, S;. Then we have:
VG e FG. A%;[G] 4, =[G],
In particular: (S, Ay; Ag) mqy (S5, A3)

3.2 The Product

Our main result, the Equivalence Theorem 3.13, requires the construction of a
connecting isomorphism between two arbitrarily given observationally equivalent
fully abstract models. This isomorphism can be elegantly constructed by means
of the following product construction:

Definition 3.10 The product (S,A)x (8, A") of two models (S, A) and (S', A")
of Q is defined by (S, A)x (8", A)=g4 ([1,,C,), where C, is the smallest com-
plete semi-lattice contained in the cartesian product CxC' of the semantic do-
mains of S and S’ that includes

() {(A%5[G](e), A5[GT(e)) | GEFG A ce O}

and []]p is the semantic functional characterized by componentwise application,
i.e.:

Vne N V(e) e C. [n](c, =g ([n](e), [n](c)).

The point of this definition is the choice of the semantic domain Cy,. Let us
illustrate the effect of this choice by means of the order analysis.

Example: (x) restricts the domain of a product to consistent pairs, i.e. pairs,
where the two components can be generated by means of a common “history”. In
particular, constructing the product of one model with itself essentially delivers
the relevant part of this model. For example:

(Sar Aa0) X (Spar Asao) = RS(Stq,ID,St4, Atao, Co) = (Star Asao)

On the other hand, if we consider a programming language with two variables
and y, and if we construct the product of the abstract semantics (S, A) concerning
z and the abstract semantics (S’, A’) concerning y, then these two argument
semantics are completely independent. Consequently, the “product domain” is
the full cartesian product C'xC".

Finally let us be more sophisticated. Suppose that we are not only interested
in the question of whether an expression must be insignificant (perhaps to de-
cide, whether an expression will be definitely damped after a while), but also
in the question of whether it might be insignificant (perhaps to discover the
perturbations that are definitely stable in time). To deal with both of these
questions in parallel, we must determine the whole range of the order of an
expression restricted to the set {0,1,2}. We therefore define the dual model
(S1e, Afe0)=4 ((Ce, []#20), Af20) of (SfayAgao) by: Clo=4{0,1,2} with
C=< and [Jfe=4 [];, (ie. just by “dualizing” the semantic domain). In
this case, the semantic domain of (S,, Af,0) % (572, A790) is given by:

10

Diagram 3.11

{0,2) “every value is possible: no information”
1,2) (0,1

L “inconsistency: marks unreachable code”

(Here, the first and second component represent the values wrt S;, and Sfe
respectively.) The consistency requirement (*) is responsible for the loss of (2,1),
(1,0) and (2,0) and the completeness requirement for the new artificial element
1. Intuitively you can regard L as the collapse of the three inconsistent informa-
tions mentioned. In practice, L serves as the initial information of the iterative
data flow analysis process for computing the optimal range information.

The following (immediate) properties of our product construction are essential for
the proof of the Equivalence Theorem 3.13:

Lemma 3.12
Let (S, A) and (S', A") be models of Q and S"=4 (S, A)x(8', A"). Then we have:

(1) 8" is an abstract semantics.
Also, let $=RS(S,ID,S, A,), S'=RS(S,ID,S", A", Q) and pr resp. pr' be
the projection functions of C to its first resp. second component. Then we have:
C(2) S5, (S, A)X(S,4) and S'<,. (S, A)x (S, AY)
(3) (S,A)x(8",A)=,,.4 @ and (S, A)x(S", A= a0
(4) S resp. S’ are locally optimal wrt (S, A)x (8", A") and pr resp. pr'

11

3.3 The Equivalence Theorem

'The main result of this paper (Equivalence Theorem 3.13) generalizes the

Equivalence Theorem of [18], which only deals with the three level hierarchical
model (see Diagram 3.4).

Theorem 3.13 (Equivalence Theorem)
- Let (S,A) and (S',A") be two models of Q. Then we have:
(S,4) =g (§,4") <= (S, 4, 0) = (5,4, Q).

According to the Existence and Uniqueness Theorem 3.8 and Theorem 3.9
we obtain that fully abstract models are (up to isomorphism) the most abstract
models of their observational equivalence class.

Sketch of the Proof:

Whereas the implication “<=" is rather straightforward, the implication “=" is
complicated. The problem here is to “synchronize” elements (S A) € 9(S5,4, Q)
and (&, A" € (S, A, Q) in such a way that we are able to construct the con-
necting isomorphism. Fortunately the product defined in the last section exactly
delivers this kind of “synchronization”. In fact, using this product construction,
the whole proof can be sketched in four steps by means of the following diagram:

S
S‘XS’

A ﬁ S S’ y A’
Q

First, we reduce the statement of the theorem to the case where the models con-
cerned are fully abstract themselves. That allows us to use the parts (2), (3), and
(4) of Lemma 3.12. Second, we consider the product of the two fully abstract
models mentioned in the first part and show that the projection functions pr and

Diagram 3.14
S)

12

pr' are bijective. That can be done using Theorem 3.9 twice. Third, we consider
the function pr—1;pr’ (which is bijective due to the second step) and show that it
is indeed an isomorphism between the fully abstract models (S, A) and (&, A7).

Finally, we show A= (pr-1;pr'); A’ and apply the Existence and Uniqueness
Theorem 3.8 to finish the proof. Details can be found in [17].

Example: The complete setup of our example can be summarized as follows:

Ss

Diagram 3.15
We conclude by arguing that:

1. (S8, ABo)» (S Aso), (S Aco) and (Sf,, Afeo) are indeed all members of
the same Cp—equivalence class K, and

2. (St4yAfa0) is the unique fully abstract model of K.

Here the following theorem is essential:

Theorem 3.16 Let S, <, 8§ and S, Q. Then we have:
Vn € w. Al;[nB2 = ﬂ:n]lﬁAl = (SZ7A2) NQ (ShAl;A2)

13

This theorem is a consequence of the Simulation Theorem [18]. However, a direct
proof by induction on the size of a certain argument program is straightforward
as well.

(1) directly follows by means of Theorem 3.16. Thus, according to the
Equivalence Theorem 38.13, it remains to show that (SfarAtao) is the most
abstract member of K. To prove this, let us assume that there exists a more
abstract model (S,,A,.) € K (“ce” stands for “counter example”). Further-
"more realize that a more abstract computation level than Cj, must have domain
Co (up to isomorphism), and that Ay, (2) must be L for correctness reasons.
This is already enough to yield an “observable difference” between (Stes Aceo) and

(Sfas Afao) and therefore a contradiction: the correctness condition (see Defini-
tion 2.3) delivers:

[2:=2?].(T)

[z:=22]..(As0(1))

C Ago[z:= 22]'fa.O(]‘))
Ata0(2)

= 1

Thus [z:=22] ([2:=0],.(T))=L. On the other hand:

Aseo(lz= 2] 1, ([2:=0]1(A10%(T)))) = Aseo(lz:=22];,(0))

Afa.O(O)
= T

4 Applications and Future Work

The three level model presented in [18] was the basis for the construction of the
analysis algorithm of a run time optimizer which has been implemented in a
multitarget, multilanguage compiler system. Indeed, using the three level model it
could be shown that the analysis algorithm computes complete information about
arbitrary flow graphs: it detects whenever two terms are transparently equivalent
[15], i.e. it detects all equivalences between program terms which do not depend
on specific properties of certain term operators [17, 18].

In contrast to the three level model itself, the generalization presented in this
paper is powerful enough to deal even with the specific representation of the
abstract domain data flow analysis algorithms operate on, e.g. it allows a uniform
completeness (or optimality) proof of the concrete implementation of our analysis
algorithm, a problem which was tackled separately in the original proof. This
property stresses the power of our observation directed approach. It covers not
only abstractions, but also concretizations or data refinements [6] in a very general
way.

14

Although our framework of observational equivalence for abstract interpretations
is conceived for imperative languages, its basic idea applies to functional, logical
and parallel languages as well. In fact, it is possible to develop a similar, language
independent setup in the categorical framework (cf. [20]).

Abstract interpretation is already introduced and successfully used for func-
tional languages, for example, for strictness analysis [1, 9, 10, 13]. More general
is the two level semantics approach of Nielson/Nielson [11, 13, 14] which widens
the range of data flow analysis applications by introducing an explicit distinction
between run time types and compile time types. It has to be checked to what -
extent our ideas apply to these topics.

5 Acknowledgements

I owe very much to Flemming Nielson, Michael Mendler, Andrzej Tarlecki, Don
Sannella, Colin Stirling, Jens Knoop, Jordi Farrés, Karla Bornig and Bob Harper
for helpful comments about and discussions of the ideas which led to this paper.

References

(1] G. L. Burn, C. L. Hankin, and S. Abramsky. The theory of strictness analysis
for higher order functions. Science of Computer Programming, 7:249-278,
1986.

[2] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fixpoints.
In 4th POPL, pages 238-252, 1977.

[3] P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:
Mathematical foundations. ACM Sigplan Notices, 12:1-12, 1977.

[4] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In 6th POPL, pages 269-282, 1979.

[5] R.De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83-133, 1984.

[6] C. A. R. Hoare and H. Jifeng. Data refinement in a categorical setting.
Technical report, Oxford University, Computing Laboratory, Programming
Research Group, February 1988.

[7] J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7:309-317, 1975.

15

[8] R. Milner. Fully abstract models of typed lambda calculi. Theoretical Com-
puter Science, 4:1-22, 1977.

[9] A. Mycroft. Abstract Interpretation and Optimizing Transformations for Ap-
plicative Programs. PhD thesis, Edinburgh Univ., Dept. of Comp. Sci., 1981.

[10] A. Mycroft and F. Nielson. Strong abstract interpretation using power do-
mains. In JCALP ’83, pages 536-547. LNCS 154, 1983.

[11] F. Nielson. Abstract interpretation of denotational definitions. In STACS
'86, pages 1-20. LNCS 210, 1986.

[12] F. Nielson. A bibliography on abstract interpretations. ACM Sigplan Notices,
21:31-38, 1986.

[13] F. Nielson. Strictness analysis and denotational abstract interpretation. In
14th POPL, pages 120-131, Munich, West-Germany, 1987.

[14] H. R. Nielson and F. Nielson. Pragmatic aspects of two-level denotational
meta-languages. In ESOP 86, pages 133-143. LNCS 213, 1986.

[15] B. K. Rosen, M. N. Wegmann, and F. K. Zadeck. Global value numbers and

redundant computations. In 15th POPL, pages 12-27, San Diego, California,
1988.

[16] D. Sannella and A. Tarlecki. On observational equivalence and algebraic

specifications. Journal of Computer and System Sciences, pages 150-178,
1987.

[17] B. Steffen. Abstrakte Interpretationen beim Optimieren von Programm-

laufzeiten. Ein Optimalitdtskonzept und seine Anwendung. PhD thesis,
Christian-Albrechts-Universitit Kiel, 1987.

[18] B. Steffen. Optimal run time optimization - proved by a new look at abstract
interpretations. In TAPSOFT ’87, pages 52-68. LNCS 249, 1987.

[19] B. Steffen. Optimal data flow analysis via observational equivalence. In MFCS
'89, Lecture Notes in Computer Science. Springer Verlag, 1989.

[20] B. Steffen and M. Mendler. Compositional characterization of observable

program properties. LFCS report series, LFCS, Edinburgh Univ., Dept. of
Comp. Sci., 1989.

16

