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Abstract

This paper presents indezed categories, which model uniformly defined families
of categories, and suggests that they are a useful tool for the working com-
puter scientist. An indexed category gives rise to a single flattened category as
a disjoint union of its component categories plus some additional morphisms.
Similarly, an indexed functor (which is a uniform family of functors between
the component categories) induces a flattened functor between the correspond-
ing flattened categories. Under certain assumptions, flattened categories are
(co)complete if all their components are, and flattened functors have left ad-
joints if all their components do. Several examples are given.



1 Introduction

Category theory has played an 1mporta,nt role in clarifying, generalising, and developing
results in both the theory and practice of computing. Many examples occur in algebraic
specification, which used initiality in the very beginning to explicate the concept of ab-
stract data type [Goguen, Thatcher & Wagner 76|, and later used final objects [Wand 79},
left adjoints [Thatcher, Wagner & Wright 82, Ehrich 82], colimits [Burstall & Goguen 77],
comma categories [Goguen & Burstall 84}, 2-categories [Goguen & Burstall 80, 84al, and
sketches [Gray 87, Wells & Barr 88]. Some early applications of category theory to various
topics may be found in the collection [Manes 75|, and some recent apphcatxons to program-
ming language semantics of 2-categories, Kleisli categories, and indexed categories may be
found in [Moggi 88, 89]. The present paper even manages to use Kan extensions.

Institutions [Goguen & Burstall 85, 86] use category theory to formalise the concept
of logical system. Topics studied here include specification languages (Clear [Burstall
& Goguen 80|, ASL [Sannella & Tarlecki 84], Extended ML [Sannella & Tarlecki 86]),
implementations [Beierle & Voss 85, Sannella & Tarlecki 87], observational equivalence
[Sannella & Tarlecki 85], free constructions [Tarlecki 85, 87], and model theory [Tarlecki 86].
Tt is hard to see how this work could be done adequately without categorical tools.

This paper is the third in a series [Goguen & Burstall 84, 84a] intended to introduce
concepts and techniques from category theory to the working computer scientist. Its goal
is to present indexed categories. Many-sorted algebras are a prime example with which
the reader may already be familiar: for each many-sorted algebraic signature ¥, there
is a category Alg(X) of Z-algebras, and a signature morphism o: ¥ — X' induces a
functor Alg(s): Alg(Z') — Alg(Z), which we call a -reduct. Thus, there is a functor
Alg: AlgSig® — Cat from the (index) category of signatures to the category of cat-
egories. The mathematics literature [Johnstone & Paré 78] develops indexed categories
“up to coherent isomorphism” and is not very accessible to the average computer scien-
tist. In contrast, this paper develops “strict” indexed categories, which are defined “up to
equality,” a special case that often arises in theoretical computer science.

Any indexed category gives rise to a “flattened” category by taking the disjoint union
of the component categories and adding reduct morphisms. A flattened indexed category
has a projection functor which maps each object to the index of the component category
from which it came. This is the “fibred category” [Grothendieck 63] presented by the
indexed category. [Benabou 85] argues that fibred categories formalize the same intuition
as indexed categories, but are easier to work with and conceptually simpler. However, his
argument does not apply to our strict indexed categories, which are simpler still, and are
not proposed for use in foundations, but only as a tool in computer science.

Colimits have been used to “put together” many different kinds of structure, including
general systems [Goguen 71, Goguen & Ginali 78], theories [Burstall & Goguen 77, 80],
and labelled graphs [Ehrig et al 81]. The dual limit concept, particularly the special case
of equalizer, has also been applied, for example to study unification in computing and
in linguistics [Goguen 89a]. It is especially convenient to use these comstructions when



every diagram has a (co)limit, i.e., when the category is (co)complete. Section 3 shows
that under certain conditions, if all component categories are (co)complete, then so is the
flattened category. This simplifies (co)completeness proofs for some categories.

Given two categories indexed over the same category, an indexed functor between
‘them is a family of functors between their component categories that is consistent with
the functors induced by the index morphisms. An indexed functor induces a flattened
functor between its flattened source and target categories. If all the components of an
indexed functor have left adjoints, then so does the flattened functor. This can simplify
proofs that some functors have left adjoints. See Section 4.

Although these results may be in the folklore, they seem not to have been previously
published!. We believe they deserve an exposition for the working computer scientist. We
assume familiarity only with basic category theory and universal algebra; such material
may be found in [Burstall & Goguen 82, [Mac Lane 71], [Herrlich & Strecker 73|, [Arbib
& Manes 75] and other places; see also [Goguen 89] for some intuitions. Composition is
denoted % (semicolon) in any category, and written in the diagrammatic order; identities
are denoted id, possibly with subscripts. Our exposition proceeds in what [Benabou 85]
calls “naive category theory,” without commitment to dny particular foundation; indeed,
nearly any foundation that has been proposed for category theory is adequate for this
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2 Indexed Categories

It may be surprising to realise that categories over a collection of indices are quite com-
mon. In many natural examples, the categories in a family are uniformly defined, in the
sense that any index morphism induces a translation functor between the corresponding
component categories; moreover, the translation goes in the opposite direction from the
index morphism in these examples. Here is a simple example that is still quite typical:

1 After reading a draft of this paper, John Gray pointed out that [Gray 65] develops similar ideas for
fibred categories. In particular, his Theorem 4.2 and Proposition 4.1 yield our Theorem 1.

2A reader who is nervous about foundations may, for example, check that each of our constructions can
be placed at an appropriate level in a hierarchy of universes such as that described in [Mac Lane 71].



Example 1: Many-sorted sets. Given a set S, there is a category SSET(S) of S-sorted
(or S-indexed) sets, with S-sorted functions as morphisms,

SSET(S) = [S — Set],

where Set is the category of sets, [ — Set] is the category of functors from S to Set
with S viewed as a discrete category and with natural transformations as morphisms under
vertical composition (cf. [Mac Lane 71, IL4, p.40]). We may write X: § — Set as (X,)ses
where X, = X(s) for s € S, and write g: X - Y in SSET(S) as (gs: X, — Y5)ses- ’

“Since indices are sets, index morphisms are functions, and f: S1 — 52 induces a
functor SSET(f): SSET(S2) — SSET(S1) defined as follows:

o on objects: Given X € |SSET(S2)|, let SSET(f)(X) = f;X: S1 — Set (noting
that X: S2 — Set), i.e., for s1 € S1, let (SSET(f)(X))a1 = Xs(s1)-

e on morphisms: Given g = (gs2: Xo2 — Ya2)s2es2: X =Y in SSET(S52), let
SSET(f)(Q) = (9f(s1)= Xf(al) - Yf(sl)>leSI: iX—fiY.

These induced functors are independent of how index morphisms are decomposed, in the
sense that SSET(f; f') = SSET(S"); SSET(f); i.e., SSET is a (contravariant) functer,

SSET: Set” — Cat.

O
This motivates the following:

Definition 1: An indezed category C over an indez category Ind is a functor Ind” — Cat.
Given an index ¢ € |Ind|, we may write C; for the category C (¢), and given an index
morphism a: i — j, we may write C, for the functor C(o): C(j7) — C(z). Also, we may
call C; the #** component category of C, and C, the translation functor induced by o. [0

This presents a contravariant functor as a (covariant) functor from the opposite of its
source category. While it might seem equally reasonable to present it as a functor from
its source category to the opposite of its target category, this would give an unnatural
direction to the component morphisms of natural transformations between such functors.

Often, we want to consider the components of an indexed category together in a single
“fattened” category obtained by forming a disjoint union of the components and adding
some new morphisms based on the index morphisms; this is the so-called “Grothendieck
construction” [Grothendieck 63].

Example 1 (continued): Flatfening the indexed category SSET: Set”” — Cat yields the
category SSet = Flat(SSET) of many-sorted sets, defined as follows:

e objects: are many-sorted sets with an explicitly given sort set, i.e., they are pairs
(S, X) where S is a set (of sorts) and X: S — Set.
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o morphisms: A morphism (S, X) — (S', X') is-a pair (f, g) where f: § — S'isa
function and ¢g: X — f; X' is an S-sorted function (g,: X, — X}(s)) s€S-

e composition: is defined component-wise, re-indexing the second component: Given
(f, g): (8, X) = (8", X") and (f', ¢'): (S', X') = (5", X"), let

(f, gy {f's @) =(f; 1", 9): (S, X) = (5", X"),
where g = g; SSET(£)(¢') = (953 0y X = Xp(s(s)))ses-
q
Definition 2: Given an indexed category C: Ind®? — Cat, define the category Flat(C)

as follows:
e objects: are pairs (¢, a) where ¢ € [Ind| and a € |C;|.

e morphisms: from (i, a) to (j, b) are pairs {0, f) where o: ¢ — j is a morphism in
Ind and f: @ — C,(b) is a morphism in C;.

e composition: Given morphisms (o, f): (i, a) — (j, b) and (p, ¢): (s, b) — (k, c) in
Flat(C), let
' (@, £); {p, 9) = (030, £;Calg)): (3, @) = (k, ¢).

Such a flattened category has a functor extracting the first component of its pairs,
which is another important feature of the Grothendieck fibration.

Definition 3: Given an indexed category C: Ind” — Cat, define its projection functor
Projc: Flét(C) —>‘Ind
as follows:
o .on objects: Given an object (i, a) in Flat(C), let Projc({¢, a)) = ¢.

e on morphisms: Given a morphism (o, f) in Flat(C), let Projc({o, N)=o.

We conclude this section with some further examples.

Example 2: Many-sorted algebraic signatures. Given a set S, the category of S-sorted
algebraic signatures is the functor category

ALGSIG(S) = [S* — Set|



where S™ is the set of all finite nonempty sequences of elements of S, regarded as a discrete
category; equivalently, ALGSIG(S) = SSET(S*). Thus, an S-sorted algebraic signature
is a family of sets (of operation symbols), one for each finite nonempty sequence of elements
of §; such a sequence represents the rank, i.e., the arity and result sorts, of the operation
symbols in the set that it indexes. An S-sorted algebraic signature morphism is a renaming
of operation symbols that preserves their rank. . \

The map S — S+ extends to a functor (_)*: Set — Set, and the indexed category of
algebraic signatures is®

ALGSIG = (_)*; SSET: Set” — Cat.

The translation functor ALGSIG(f): ALGSIG(S') - ALGSIG(S) induced by a func-
tion f: § — S' extracts an S-sorted algebraic signature from an S'-sorted algebraic sig-
nature using f to rename sorts: Given an S’-sorted algebraic signature %! and a sequence
S1...8, € ST, the operation symbols of rank 81...8, in the S-sorted algebraic signature
ALGSIG(f)(Z') are exactly the operation symbols of rank f(s1)...f(sn) € (S"* from X'

Flattening ALGSIG gives the usual category of algebraic signatures (e.g., [Burstall &
Goguen 82)),

AlgSig = Flat(ALGSIG),

whose objects are pairs (S, (Z,),es+) Where S is a set (of sorts) and each L, is a set (of
operation symbols of rank r). A morphism from (S, (Z,),es+) to (', (E})re(sn+) is a pair
(f,g) where f: § — S' is a sort renaming and ¢ = (g,: T, — E’f+(r)),€5+ is an operation
symbol renaming that preserves rank (as modified by f). O

Example 3: Many-sorted algebras. For our purposes, this is perhaps the prototypical
indexed category. Given an algebraic signature X, then ALG(X) has X-algebras as its
objects and £-homomorphisms as its morphisms. Given an algebraic signature morphism
o: T — ¥, then ALG(0) is the usual o-reduct (or generalized forgetful) functor

ot ALG(Z') — ALG(S),

as defined, for example, in [Burstall & Goguen 82|. Thus, the category AlgSig of algebraic
signatures provides indices for the indexed category of many-sorted algebras,

ALG: AlgSig” — Cat.

An object in the flattened category Flat(ALG) of many-sorted algebras is a many-sorted
algebra with an explicitly given signature; and a morphism from (Z, A) to (X', A') is a
signature morphism o: £ — X' and a Z-homomorphism h: A — A |o- Similar “crypto-
morphisms” occur in the specification literature, e.g., [Kamin & Archer 84|. O

3This is slightly inaccurate, since it identifies the functor ()*: Set — Set with its opposite,
(()*)°P: Set” — Set®®; although equal as functions, they are different as functors, i.e., as morphisms in
Cat.



Example 4: Diagrams. A diagram in a category T is a functor to T from a small source
category, say G, which is its shape. This is essentially equivalent to the more elementary
definition of a diagram as a graph with nodes labelled by objects of T and edges labelled by
morphisms of T having appropriate source and target (e.g., see [Goguen & Burstall 84]).
Thus, the category FUNC(T)(G) = [G — T] of functors from G to T is the category of
diagrams with shape G in T. Then

FUNC(T): Cat”” — Cat
is an indexed category with
o component categories: FUNC(T)(G) = [G — T.

o translation functors: ®: G — G' induces FUNC(T)(®): [G' — T] = [G — T], a
functor defined on objects by FUNC(T)(®)(D') = ®; D’ for D": G' — T.

Flattening FUNC(T) gives the category Func(T) = Flat(FUNC(T)) of functors into
T, or diagrams in T. A morphism from D: G - T to D": G' - T in Func(T) is a
functor ®: G — G' plus a natural transformation ¢: D — ®; D' (between functors in
[G — T]). [Goguen 71] applies a similar category in General Systems Theory. O

Example 5: Theories. The notion of institution introduced in [Goguen & Burstall 85] ‘
provides an appropriate framework for considering theories in arbitrary logical systems.
An institution I consists of:

1. a category Sign (of signatures);

2. functor Mod: Sign” — Cat (giving for each & € |Sign| a category Mod(Z) of
X-models);

3. a functor Sen: Sign — Cat (giving for each £ € [Sign| a (typically discrete)
category Sen(X) of Z-sentences); and

4. for each T € |Sign|, a (satisfaction) relation =5 C [Mod(Z)| x Sen(Z),

such that the following satisfaction condition holds for each o: £ — X' in Sign, each
m' € [Mod(Z')| and ¢ € Sen(X),

m' |=g Sen(o)(p) <> Mod(o)(m') == ©.

Given o: £ — X', we may write Sen(o) as just o and Mod(o) as _|,.

This definition involves two indexed categories: Mod, indexed by Sign, and Sen,
indexed by Sign°®. However, we want to focus here on the indexed category TH of
theories in I, which arises naturally in the study of specifications over I. Given I € |Sign|,
a L-presentation is a set of D-sentences, ¥ C Sen(Z). Any such W generates the set of its
logical consequences,



Clg(®) = {p € Sen(X) | for all m € Mod(Z), m |= p whenever m & vl

A S-theory is a T-presentation T' that is closed under semantic consequence, i.e., such that
T = Clg(T). Let TH(X) denote the poset category of E-theories ordered by inclusion.
This extends to an indexed category

TH: Sign®”” — Cat
in which given o: ¥ — X' and a Z'-theory T',
TH(o)(T") = {p € Sen(Z) | o(p) € T'}.

The satisfaction condition implies that this is a X-theory, and it is straightforward to check
that TH(o) is a functor, i.e., a monotone map.

Flattening this yields Th = Flat(TH), the usual category of theories in an institution
I [Goguen & Burstall 85]: its objects are pairs (T, T) where ¥ is a signature and T is a
S.-theory; and its morphisms from (I, T) to (X', T") are signature morphisms o: X — b
such that o(p) € T' for all p € T

We can define a somewhat larger indexed category of presentations. Given 3, let
PRES(X) be the poset category of T-presentations in I. This yields an indexed category

PRES: Sign” — Cat
where given o: £ — X' in Sign and ¥ C Sen(X'),
PRES(0)(¥') = {p € Sen(XT) | o(p) € ¥'}.

We can add some further morphisms to the component categories: given X, let PRESL (Z)
be the category of X-presentations preordered by the semantic consequence relation, ¥' |=x
U iff ¥ C Cly(¥'). This gives an indexed category

PRES.: Sign” — Cat.

The satisfaction condition implies that PRES_(0): PRES|(X') — PRES(X), defined
just as PRES (o) above, preserves semantic consequence.

TH is an indexed subcategory of PRES in a sense that will be made precise in Example 8
of Section 4 below; similarly, PRES is an indexed subcategory of PRESL. O

Example 6: Institutions. We first recall the definition of institution morphism from
[Goguen & Burstall 85]. Given two institutions I = (Sign,Mod, Sen, (=) xe|sign|) 2nd
I' = (Sign', Mod', Sen’, (%) sreisign)) an institution morphism from I to I' consists of

1. a functor @: Sign — Sign’,
2. a natural transformation B: Mod — ®; Mod’, and

3. a natural transformation a: ®;Sen’ — Sen
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such that the following satisfaction condition holds for each ¥ € |Sign|, m € |Mod(X)|
and ¢' € Sen'(®(X)),
m =z ag(¢!) <= Bz(m) Fam) ¢

Intuitively, I is “richer” than I': @ extracts simpler I'-signatures from more complex I-
signatures; B extracts simpler I'-models from more complex I-models; and « translates
T'-sentences to I-sentences, which is possible since I is more expressive.

Institutions and institution morphisms, with composition defined component-wise in
a rather straightforward manner, form a‘category [Goguen & Burstall 85]. We wish to ..
describe it using indexed categories. It costs no more to generalise from logical systems in
which the meanings of sentences in models are true or false, to semantic systems in which ..
the meanings of sentences in models lie in an arbitrary category V. Following [Goguen &
Burstall 86]* after [Mayoh 85], the category Room(V) of V-rooms is the comma category

Room(V) = (|| | FUNCpi.(V)),

where |_|: Cat — Cat is the discretization functor and FUNCpis. (V): DCat” — Catis
the indexed category of functors into V restricted to discrete categories in DCat as source
(see Example 4). Thus, a V-room is a triple (M, R, § ) where M is a category, S is a discrete
category, and R: [M| — [§ — V]. A V-room morphism (£, g): (M, R, sy - (M, R, S")
consists of a functor £: M — M’ and a function g: §' — S such that the following diagram
commutes in Cat,

R

|M| =[S — V]
|£] g; ()
M| — = (8" — V]

that is, R'(f(m)) = g; R(m) for all m € [M], i.e.,

R'(f(m))(s') = R(m)(g(s))

for all m € [M| and &' € S’ (a ghost of the satisfaction condition).
The category of generalised institutions [Goguen & Burstall 86] with signature category
Sign is the functor category

INS(Sign) = [Sign®” — Room(V)].

4[Goguen & Burstall 86, Prop. 16] defines the category of V-rooms to be the comma category (|—|°? | V™)
where |__[P: Cat®® — Cat is the opposite of the discretization functor and V—: DCat — Cat is the
opposite of our FUNCp;,.(V): DCat” — Cat. Consequently, a V-room is a triple (M, R, S) where M
is a category, S is a discrete category, and R: [M| — [S§ — V] is a morphism in Cat®, ie., R is a functor
from [§ — V] to |M]. This is a bug, since R should go the opposite way.
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This extends to an indexed category
INS: Cat®” — Cat

where the translation functor INS(®): INS(Sign') — INS(Sign) is defined on objects
by INS(®)(I') = ®°°;T' for ®: Sign — Sign' a functor and I": Sign? — Room(V).
This naturally extends to morphisms in INS(Sign’). Finally, the flattened category of
generalised institutions is Ins = Flat(INS). The reader may check that if V is Bool, the
category with exactly two morphisms, both identities, then this definition coincides with
the explicit definitions of institution and institution morphism given above. O

3 Completeness of Flattened Categories

This section studies how limits and colimits in a flattened category relate to the corre-
sponding constructions in its index and component categories. Given a shape category G,
a category T is G-(co)complete if any diagram of shape G has a (co)limit in T, and a func-
tor is G- (co)continuous if it preserves the (co)limits of all diagrams of shape G. Then T is
(co)complete if it is G-(co)complete for all small G. Similarly, a functor is (co)continuous
if it preserves all small (co)limits.

3.1 Limits

There is no hope for constructing limits in a flattened category unless its index and com-
ponent categories have limits. The only additional assumption needed is continuity of the
translation functors.

Theorem 1: If C: Ind®® — Cat is an indexed category such that

1. Ind is complete,
2. C; is complete for all indices ¢ € [Ind|, and
3. C,: C; — C; is continuous for all index morphisms o: ¢ — J,

then Flat(C) is complete.

Proof: It suffices to prove that Flat(C) has all products and equalisers (cf. [Mac Lane 71,
Th.V.2.1, p.109]). |

Products: Given a family (i,, a,) for n € N of objects in Flat(C), let ¢ be a product
in Ind of the ¢, with projections 7,: ¢ — ¢, for n € N, and let a be a product in C; of
Cr.(@n) for n € N with projections f,: @ — Cy,(an) for n € N. Then we claim that
(i, a) with projections (mn, fa): (¢, @) — {(in, @n) is a product in Flat(C) of the (tny Gn)
forn € N.

Given an object (7, b) in Flat(C) with morphisms (0., gn): (J, ) — (T, Gn) in
Flat(C) for n € N, there exists a unique index morphism o: j — ¢ such that 37, = 0

9



in Ind for all n € N. Moreover, continuity of C, guarantees that C,(a) with projections
Co(fn): Cola) = Cy(Cr.(as)) for n € N is a product in C; of C,(Cr,(an)) = Co,(an)
for n € N. Hence, there exists a unique morphism g: b — C,(a) such that g; C,(fn) = gn
in C; for each n € N. Then (o, g): (j, b) — (¢, a) is a unique morphism in Flat(C) such
that (o, g); (Tn, fu) = (On, gn) for each n € N.

Equalisers: Given morphisms (o1, f1},{(02, f2): (¢, a) — (J, b) in
be an equaliser of ¢1,02: ¢ — j in Ind. Notice that C,(C,, (b)) =
C,(C,z2(b)). Let f: ¢ — C,(a) be an equaliser of C,(f1),C,(f2): C
Cj. We claim that (o, f): (k, ¢) — (¢, a) is an equaliser of (01, f1),
First observe that by construction we have
(O’, f)a (0‘1, f]-) = (0;013 f3 Cd(f1)>

= (0302, f; C,(f2))

= (0, f); {02, f2).
Next consider {p, g): (m, d) — (¢, a) such that

(p, 9)i (a1, f1) = (p, 9); (02, f2),

in Flat(C), i.e., p;ol = p;02 in Ind and g; C,(f1) = ¢; C,(f2) in Cp. By construction,
there exists a unique index morphism §: m — k such that 0; 0 = p in Ind. Moreover, since
Ca is continuous, Cy(f): Cy(c) — Cy(Cs(a)) = C,(a) is an equaliser of Cy(C,(f1)) =

C,(f1) and Ce(Co(f2)) = C,(f2): C,(a) = Co;p01(b) in Cr. Hence there is a unique
morphism h: d — Cy(c) such that h; Cy(f) = g in Cpn. Therefore (0, k): (m, d) — (k, c)
is a unique morphism in Flat(C) such that (8, k); {0, f) = {p, g). O

n Flat(C),let o: k — ¢
Coi01(8) = Coo2(b) =
ol
(02

, f2) in Flat(C)

A sharper result can be proved in much the same way: a diagram D: G — Flat(C)
has a limit in Flat(C) whenever D;Projc: G —.Ind has a limit in Ind such that the
component category corresponding to the limit index is G-complete and the translation
functors induced by index morphisms into the limit index are G-continuous.

3.2 Colimits

The construction of colimits in a flattened category is not quite so simple, since the proof
of Theorem 1 does not directly dualise. This is because in constructing limits, it was
easy to translate the objects (and morphisms) of component categories against index mor-
phisms using translation functors, whereas the analogous construction for colimits requires
translation along index morphisms. The following property provides this capability:

Definition 4: An indexed category C: Ind’? — Cat is locally reversible if for each index
morphism o: { — j in Ind, the translation functor C,: C; — C; has a left adjoint. Given
o: ¢ — j in Ind, let us denote an arbitrary but fixed left adjoint to C,: C; — C; by
F,: C; — C; and denote the unit of this adjunction by 7°: idg, — F; C,. O

This does not require C to be “globally reversible” in the sense that the family of left
adjoints forms an indexed (by Ind”) category. In general, F,,, # F,; F,. However:

10
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Fact 1: Given a locally reversible indexed category C: Ind” — Cat and index morphisms
o: i — § and p: j — k, there is a natural isomorphism

to,p: Foyp = Foi ¥y

Proof: F,;F, is left adjoint to C,p = CpCo (cf. [Mac Lane 71, Th. IV.8.1, p.101})
and any two left adjoints to the same functor are naturally isomorphic (cf. [Mac Lane 71,
Cor. IV.1.1, p.83]). In fact, given a € |Ci, then ¢,,,(a): Fop(a) — F,(¥,(a)) is given by

top(a) = (n°(a); Cs (n”(Fa(a))))#

and its inverse by

";.}:(a’) = ((na;p(a))#)#: F,(F,(a)) = Fop(a)-
where f# denotes the morphism “adjoint” to f (the reader may determine the adjunctions
to which the sharps in this formula refer). O

Definition 5: Given a locally reversible indexed category C: Ind” — Cat and an index
morphism p: ¢ — j, any morphism (g, g): (k, @) — (7, b) (with the same ¢) in Flat(C)
“lifts along p” to a morphism in C; given by

Ly((0, 9)) = to(a); Fp(g7): Fop(a) = F,(b).

d

Lemma 1: Under the notation and assumptions of Definition 5, given an index morphism
9: ; — m in Ind and given a morphism (p;0, f): (i, b) — {(m, ¢) in Flat(C), then
f#: F,(b) — Co(c) is a morphism in C; such that in Flat(C),

(a;Pa ”a;p(a»; (03 L,,((O‘, g));f#> = <0‘, g>; (p;a, f) (k’ a’) - (m’ c)‘
Proof: We check that in C;
1% (a); Co;p (L ({0 9));f#) =¢;C,(f): a — Coipi0(c)

as follows

n°?(a); Cosp(L, ({0, 9)); F) (Definition 5)
= 17%(c); Casp(t0,0(a)); C ,,,(F,,(g#) f*) (proof of Fact 1)
= n°(a); Co(n* (F,(a)); C ,p(Fp(g#)_ f#) (Co;p = Cp; Ca)
= 1°(a); Co(n*(F,(a)); Co(F,(g#)); Co(F¥)) (naturality of n*)
1° (a); Co(g#; 1% (b); C,(f7)) (f =n*(b); C,(f*))
"ﬂ(a)C( #); Co(f) (g =n°(a); Colg?) )

- = g;Co(f).

Corollary 1: Under the notation and assumptions of Definition 5
n°#(a); Cop(L,({0, 9))) =9;: C (1 (b))

11



Proof: By Lemma 1, since n*(b)* = idg,p). O
We are now ready for the main result:

Theorem 2: If C: Ind’” — Cat is an indexed category such that
1. Ind is cocomplete,

2. C; is cocomplete for all ¢ € [Ind|, and

3. C is locally reversible,

then Flat(C) is cocomplete.

Proof: Dually to the proof of Theorem 1, it suffices to prove that Flat(C) has all coprod-
ucts and coequalisers.

Coproducts: Given a family (i,, a,) for n € N of objects in Flat(C), let ¢ with injections
Pni tn — 1 be a coproduct in Ind of the i, for n € N, and let a be a coproduct in C;
of the F,_(a,) for n € N with injections f#: ¥, (a;,) — a for n € N. Now define
fa=n*" (an) C,.(f#): a, — C,,(a) for n € N. Then we claim that (¢, a) with injections
{Prs fr): (iny @n) = (3, a) for n € N, is a coproduct in Flat(C) of the (i, a,) forne N.
Given an object (j, b) and morphisms (Gny Gn): (iny @n) — (7, b) in Flat(C) forn € N,
there exists a unique index morphism o: ¢ — j such that p,;0 = 0, in Ind for all n € N.
Moreover, there is a unique g: a — Cq(b) such that f#;g = g¥: F, (as) — Co(b) for all
n € N (gF is well defined since g,: @, — C,,(Cs(b)) ). Now because
fa;Conlg) =n(an); Cy. (f#) C,.(9)
= npn(a’") CPn( n lg)
= 1°"(an); Cp, (9%)
= gﬂ y
in C;,, it follows that (g, g): (i, a) — (j, b) satisfies {pn, fu); (0, g) = (on, gn) in Flat(C)
for all n € N. Moreover, {0, g) is the only morphism in Flat(C) with this property: The
uniqueness of ¢ is obvious, and the uniqueness of g follows by its construction from the
fact that if, given ¢': a — C,(b) with f,;C,.(¢') = g» for all n € N, then f#;¢' = g# for
alln € N, and thus g = ¢'.
Coequalisers: Given morphisms (o1, f1),{02, f2): (i, a) — (5, b) in Flat(C), let
o: § — k be a coequaliser of ¢1,02: ¢ — j in Ind. Then in C; there are morphisms
(cf. Definition 5)
L,({o1, 1)), Lo({02, 2)): For0(a) — Fo(b).
Let f*: F,(b) — c be their coequaliser in C and let f = 77(b); Co(f*): b — Cy(c) in C;.
We now claim that (o, f): (j, b)) — (k, ¢) is a coequaliser in Flat (C) of the morphisms
(o1, f1),{02, f2): (3, @) — (j, b). First notice that by Lemma 1, in Flat(C) we have
(o1, f1); (o, f) = (o1;0, n°%(a)); (ids, Lo({o1, f); )
= (02;0, n°%7(a)); (ids, Lo ({02, f2)); f*)
= (02, f2); {0, f)-
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Now consider a morphism (p, g): (j, b) — {m, d) such that in Flat(C)

(01, f1);{p, g) = (02, f2);{p, 9),

i.e., such that o1;p = 02;p in Ind and f1;C,1(g9) = f2;Coz(g) in C;. Then by construc-
tion, there exists a unique index morphism §: £ — m such that o;8 = p in Ind. Moreover,
by Lemma 1
1°%(a); Cor,o (Lo ({01, f1));9%) = f1;Ca(g)
= f2; Co2 (g )
: = 1°%9(a); Cozo (Lo ({02, f2);97)
in C; (recall that o1;0 = 02;0 and that g*: F,(0) — Cy(d)). Hence, the properties
of adjunction imply L,((02, f2));9* = L,({ol, f1));g*. Thus, there exists a unique
morphism h: ¢ — Cy(d) such that f#;h = g# in Cy. o
Now (8, h): {(k, ¢) — {m, d) satisfies {o, f); (0, k) = {p, g) in Flat(C), since in C;
we have f;C,(h) = n°(b); C,(f*;h) = n°(b); C-(g*) = g. Moreover, (0, h) is the only
morphism in Flat(C) with this property: the uniqueness of § is obvious; and the uniqueness
of h follows from its construction (if f; C, (k') = g for some h': ¢ — Cy(d), then f #: bl = g¥,
and thus h = h'). O

A sharper result can be proved in much the same way: a diagram D: G — Flat(C)
has a colimit, in Flat(C) whenever D;Projg: G — Ind has a colimit in Ind such that
the component category corresponding to the colimit index is G-cocomplete and all the
translation functors induced by the index morphisms in the colimit cocone have left ad-
joints.

3.3 Applications

We can use these theorems to check completeness and/or cocompleteness for some inter-
esting categories. The results are already known, but our proofs are more direct.

Example 1 (continued): Consider again the indexed category SSET: Set”? — Cat .
of many-sorted sets. It is well known that for any set S, the category SSET(S) of S-
sorted sets i both complete and cocomplete, and of course the index category Set is
also both complete and cocomplete. Moreover, it is not hard to see that the functor
SSET(f): SSET(S') — SSET(S) is continuous for any index morphism (i.e., function)
f: § — S', and that it has a left adjoint (sending a S-sorted set (X,)ses to the S'-sorted set
(J{X, | f(s) = 8'})sresr where |} denotes disjoint union). Thus, Theorems 1 and 2 imply
that the (flattened) category of many-sorted sets SSet = Flat(SSET) is both complete
and cocomplete. I «

Example 2 (continued): Consider the indexed category ALGSIG: Set®” — Cat of
many-sorted algebraic signatures. Again, the index category and all component categories
are both complete and cocomplete, and the translation functors are continuous and have
left adjoints (this follows from the definition ALGSIG = (_)*; SSET since SSET has all
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these properties). Thﬁs, the category of algebraic signatures AlgSig = Flat(ALGSIG)
is both complete and cocomplete. O

Example 3 (continued): Consider the indexed category ALG: AlgSig®” — Cat of many-
sorted algebras. Again, the index category is complete and cocomplete (by Example 2
above), as are all component categories, and the translation (forgetful) functors are con-
tinuous and have left adjoints (the existence of left adjoints to these forgetful functors is
a non-trivial, but familiar, property; see [Burstall & Goguen 82| for an expository pre-
sentation). Also, cocompleteness of the category of X-algebras is not quite obvious: to )
form a coproduct of Z-algebras, form their disjoint union and then freely complete it to a
Y-algebra; coequalisers are not very hard. Theorems 1 and 2 now imply that the category )
Flat(ALG) of many-sorted algebras is both complete and cocomplete. This provides an
appropriate framework for operations like the amalgamated union of algebras over different
signatures, as used for example in [Ehrig & Mahr 85]. O

Example 4 (continued): Let T be any category and consider again the indexed category
FUNC(T): Cat” — Cat of functors into (or diagrams in) T. The index category
Cat is both complete and cocomplete. If T is complete, then so are all the component
categories. For, given G € |Cat|, limits in FUNCT(T)(G) = [G — T] are constructed
“pointwise” as limits in T “parameterised” by (objects of) G (cf. [Mac Lane 71, V.3,
p.112]). Moreover, the translation functors in FUNC(T) preserve limits constructed in
this way. Thus, Func(T) = Flat(FUNC(T)) is complete whenever T is.

Dually, if T is cocomplete, then the component categories are also cocomplete and the
translation functors are cocontinuous. But to apply Theorem 2, we need the translation
functors to have left adjoints; unfortunately, in general they do not.

It is interesting to compare this with Kan extensions (cf. [Mac Lane 71, X]). Given a
functor ®: G — G’ and a diagram F: G — T, then a left Kan ezxtension of F along ® is
an object F! € |[FUNC(T)(G')| free over F € [FUNC(T)(G)| with respect to the functor
FUNC(T)(®): FUNC(T)(G') — FUNC(T)(G), with unit morphism 7g: F — & F, a
natural transformation between functors in [G — T]. If every diagram F: G — T hasa left
Kan extension along ®, then the translation functor FUNC(T)(®): FUNC(T)(G') —
FUNC(T)(G) has a left adjoint. Dualising the construction of a right Kan extension
[Mac Lane 71, Th.X.1, p.233-4], we obtain:

Proposition 1: Given & G — G', and F: G — T, and n' € |G|, let (@ | n') be the
comma category of objects ®-over n' (cf. [Mac Lane 71, p.46-7]), and let Pz (® | n') = G
be the obvious projection functor, and let D,» = P,; F: (@ | n') — T. Now suppose that
for each n' € |G'|, the diagram D,: (® | n') — T has a colimit '(n') € |T|. Then
the assignment n' — F'(n') extends to a functor F': G' — T, using the colimit property
of F'(n') for ' € |G'| in the usual way. Moreover, there is a natural transformation
ng: F — &;F' such that np,: F — F'(®(n)) is the morphism in the colimiting cocone for
F'(®(n)) corresponding to the object (n, idg(,)) € |(® | ®(n))| for each n € |G|. Finally,
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F' with the unit ny is a left Kan extension of F along ®. O

Proposition 2: Given a functor ®: G — G' with G small and a cocomplete category T,
any functor F: G — T has a left Kan extension along ®. O

Even though the category of all diagrams in T need not be cocomplete when T is, we
have

Proposition 3: Let SCat be the category of all small categories, let T be a category, h
and let '
SFUNC(T): SCat” — Cat

be the indexed c—ategory of small diagrams in T, defined as the restriction of FUNC(T)
to SCat®. Then the category SFunc(T) = Flat(SFUNC(T)) of small diagrams in T is
cocomplete whenever T is. O

Example 5 (continued): Given an institution I, consider the indexed category of theories
in I, TH: Sign®” — Cat. Given T € |Sign|, clearly THs is a complete lattice, i.e.,
is complete and cocomplete as a category. Moreover, it is not hard to see that given
a signature morphism o: £ — X', then TH,: THy — THsy, has a left adjoint which
maps a D-theory T' to the T'-theory generated by the set {o(p) | ¢ € T} of X'-sentences.
Thus, Theorem 2 implies that the flattened category Th = Flat(TH) of theories in I is
cocomplete whenever the category Sign of signatures is cocomplete. It is even easier to
see that the categories Pres = Flat(PRES) and Pres. = Flat(PRES}) are cocomplete
whenever Sign is. A similar result holds for completeness, but is less interesting. O

Example 6 (continued): Given an arbitrary category 'V, consider the indexed category
INS: Cat® — Cat of institutions. Recall that INS(Sign) = [Sign” — Room(V')] for
Sign € |Cat|. Arguments as in Example 4 above show that Ins = Flat(INS) is complete
provided that the category Room(V) is complete. For this we can use the following
general result on comma categories (its dual is stated in [Beierle & Voss 85|, and proved
in detail in [Tarlecki 86]; a slightly weaker result is given in [Mac Lane 71, Lemma in V.6
and [Goguen & Burstall 84, Prop. 2]).

Lemma 2: Given categories A,B,K and functors F: A — K and G: B — K, if A and
B are complete and if G: B — K is continuous, then (F | G) is complete. [

Recall that we defined Room(V) = (|| | FUNCpi.(V)) where | |: Cat — Cat
and FUNCp;,.(V): DCat” — Cat. Since Cat is complete and DCat, the category of
discrete categories, is cocomplete (hence DCat® is complete), the only thing to check is
the continuity of FUNC p;,.(V). This follows from the construction of colimits in DCat
and limits in Cat: The coproduct in DCat of any family of discrete categories S,, for
n € N is just their disjoint union 8 = Wuey Sa. It is not hard to see that the functor
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" category [§ — V] is (isomorphic to) the product of the categories [S, — V], for n € N.
Then, the coequaliser in DCat of any two functors F,G: S1 — S2 is given as the natural
quotient functor H: S2 — S2/= where = is the least equivalence on (objects of) S2 such
that F(s) = G(s) for all s € S1; and S2/= is the quotient (discrete) category. Again, it is
not hard to see that the functor category [S2/= — V| is isomorphic to the subcategory of
[S2 — V] that contains as objects all functors D: 82 — V such that F;D = G;D, and
similarly for morphisms. The isomorphism is given by the functor '

FUNCpio(V)(H): [S2/= — V] = [S2 — V].

Thus FUNCp;,.(V)(H) is an equaliser in Cat of the functors FUNCp;,(V)(F) and -
FUNCp;.(V)(G). ,

Summing up, FUNCp;..(V) maps coproducts in DCat to products in Cat and co-
equalisers in DCat to equalisers in Cat. Hence FUNC pise(V) is continuous as a functor
from DCat” to Cat. Thus, by Lemma 2, Room(V) is complete, and thus the category
Ins of institutions is complete.

Since morphisms in Ins have richer institutions as their source, limits, not colimits,
are appropriate for “putting institutions together,” and hence the complgteness of Ins is
relevant. O

4 Endexéd Functors

Definition 6: An indezed functor F from one Ind-indexed category C: Ind” — Cat
to another D: Ind® — Cat is a natural transformation F: C — D, that is, for each
¢ € |Ind|, a functor F;: C; — D; such that F,-;D¢7 = C,; F; for each 0: i — j in Ind.

Ind: - Cat:
F;
) Cs ‘Dt
o C, D,
] C; D
J f] Fj 3

This gives a category INDEXEDCAT(Ind) of Ind-indexed categories, with the obvious
vertical composition of morphisms. [

Example 7: Powerset functor. Given a set S, let us define the S-sorted powerset functor
Ps: SSET(S) — SSET(S) as follows: Ps maps an S-sorted set (X;)s.es to the S-
sorted set (2%¢),es of the powersets of its components; and Ps maps an S-sorted function
(gs: X, — Y,)ses to the S-sorted family (29: 2% —» 2%} 5 of the corresponding image
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functions, 29(A) = {g.(z) | z € A} for any A C X, and s € §. It is not hard to see that
P = (Ps)seSet| forms an indexed functor P: SSET — SSET. O

Example 8: Recall that Example 5 defined three indexed categories

TH: Sign’? — Cat
PRES: Sign’ — Cat
PRES.: Sign” — Cat

where TH; is a subcategory of PRESy, for each & € |Sign|, which in turn is a subcategory
of (PRESy)z. It is not hard to see that the families of inclusion functors, from THy to
PRES;3 and from PRESy, to (PRES)y indexed by signatures X € |Sign| form indexed
functors, from TH to PRES and from PRES to PRES..

This motivates the following definition: An indexed category C: Ind” — Cat is an
indezed subcategory of D: Ind”? — Cat (they must have the same category of indices) iff
D; is a subcategory of C; for each 7 € |[Ind|, and the family of inclusion functors forms an
indexed functor from D to C. This can be somewhat generalised by considering indexed
subcategories D over a subcategory of indices of C. O

Flattening extends from indexed categories to indexed functors.

Definition 7 : Let Ind be a category. Then the flatten funcior,
Flatpg: INDEXEDCAT(Ind) — Cat,

is defined as follows:

e on objects: Given C: Ind”® — Cat, then Flaty,g(C) is the flattened category of
Definition 2.

e on morphisms: Given an Ind-indexed functor F: C — D (for C,D: Ind” — Cat),
then the functor Flatyna(F): Flatma(C) — Flatyaq(D) is defined as follows:

e on objects: Given (i, a) € |Flatgna(C)], let Flatlnd(F)’((i, a)) = (i, Fi(a)). .
o on morphisms: Given a morphism (o, f): (i, a) — (J, o) in Flata(C), let

Flatia(F) (o, £)) = (o, Fi(f)): (5, Fi(a)) — (7, F;(b)) in Flatina(D), recall-
ing that Da(Fj (b)) = F,(Ca(b))

We may write Flat instead of Flatnq. It is straightforward to show it is a functor. O

Intuitively, flattened indexed functors leave the first element of their arguments un-
changed, but use it to select the appropriate component category for the indexed functor
to operate upon. In a sense, flattening an indexed functor forms the disjoint union of its
components. The similarity of Definition 6 to the definitions of Example 4 (the category
of functors into a fixed target category) suggests the following:
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Example 9: Indezed categories. The indexed category of indexed categories is defined by
INDEXEDCAT = OP;FUNC(Cat): Cat” — Cat,

where OP: Cat” — Cat’ maps a category K to its opposite K°?, and maps a functor
F: K — M to its opposite F°?: K? — M. (It makes a nice puzzle to define OP =
((L)°?)°?.) Thus, given Ind € |Cat|, let

INDEXEDCAT(Ind) = [Ind” — Cat]
as in Definition 6, and given ®: Ind — Ind' and C": (Ind')?? — Cat, let
INDEXEDCAT(8)(C') = °;C": Ind” — Cat.

Flattening yields the category IndexedCat = Flat(INDEXEDCAT) of indexed cat-
egories, with its objects an index category and an indexed category over it, and its
morphism from (Ind1, C1: Ind1”® — Cat) to (Ind2, C2: Ind2°® — Cat) pairs (@, F)
where ®: Indi — Ind2 is a functor and F: C1 — ®°?; C2 is a natural transformation.

For example, let us consider the relationship between the indexed categories of many-
sorted algebras (Example 3) and of many-sorted sets (Example 1). First, there is a functor
Sorts: AlgSig — Set which maps a signature to its set of sorts (in fact, this is the
projection functor of Definition 3). Then, given an algebraic signature T, there is a forgetful
functor (e.g., [Burstall & Goguen 82])

Ug: Alg(D) — SSET(Sorts(Z))

which maps a Z-algebra to its many-sorted carrier. It is not hard to check that the family
U = (Uz)se|algsig) forms a natural transformation U: ALG — Sorts”?; SSET, so that
(Sorts, U): (AlgSig, ALG) — (Set, SSET) is a morphism of indexed categories.

Let us note that Flat = (Flatinq)mde|Cat| as defined in Definition 7 is also an indexed
functor, from the Cat-indexed category INDEXEDCAT to the constant Cat-indexed
category that assigns the category Cat to each index (and the identity functor on Cat to
each index morphism. O

Part of our original motivation for looking more carefully at indexed categories was
to reduce a family of adjunctions (between component categories) to a single adjunction
(between flattened categories); a somewhat parallel motive appears in “getting a charter
from a parchment” [Goguen & Burstall 86].

Definition 8: Let U: C — D be an Ind-indexed functor. Then U has a left adjoint
locally iff U;: C; — D; has a left adjoint for each index ¢ € [Ind|. O

Theorem 3: Given an Ind-indexed functor U: C — D which has a left adjoint locally,
then Flat(U): Flat(C) — Flat(D) has a left adjoint.
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Proof: Given an object (i, a) in Flat(C), then U;: C; — D; has (let us say) left ad-
joint F;: D; — C; with unit n;: idg, — Fi; Ui Now we claim that (i, F;(a)) is a free
object in Flat(D) over (i, a) with respect to the functor Flat(U), having as its unit
(id;, ni(a)): (3, a) — (3, Ui(Fi(a))) = Flat(U)({i, Fi(a))). For, let (j, b) be an object in
Flat(D), let (o, f): (i, @) — Flat(U)({s, b)) = (4, U;(b)) be a morphism in Flat(C),
and let f#: F;(c) — b be the unique morphism in D; such that n;(a); Us(f#) = f
in C;. Then (o, f#): (i, F;(a)) — (J, b) is the only morphism in Flat(D) such that

(ids, m:(a)); {0, f*#) = (o, f) in Flat(C). O '

Example 10: The AlgSig-indexed forgetful functor U: ALG — Sorts”;SSET was
defined in Example 9, and it is well known that each Ug: ALG(Z) — SSET(Sorts(Z))
has a left adjoint. Theorem 3 implies that the flattening of these forgetful functors,

Flat(U): Flat(ALG) — Flat(Sorts”; SSET),

has a left adjoint obtained by flattening the local left adjoints. O

Example 11: There is a Sign-indexed inclusion functor from the indexed category TH
of theories to the indexed category PRES of presentations in an arbitrary institution I
(cf. Example 8). It is clear from the definitions in Example 5 (where these categories were
defined) that.for each signature T € |Sign|, the inclusion functor from THy to PRESy has
a left adjoint (i.e., THy is a reflexive subcategory of PRESs in the sense of [Mac Lane 71,
V.3, p.88-9]). In fact, the left adjoint is the closure operator Cly: PRESy — THy defined
in Example 5. Theorem 3 now implies that the category Th = Flat(TH) of theories in I
is a reflective subcategory of Pres = Flat(PRES), the category of presentations in I. O

Theorem 3 suggests a different way to prove the cocbmpleteness of flattened categories.
Given a shape category G and a target category T, the diagonal functor

AS: T - [G — T
is defined as follows:

o on objects: Given t € |T|, let A§(t) be the “constant” diagram, i.e., the functor that
maps each object of G to ¢ and each morphism in G to the identity on ¢.

e on morphisms: Given f: t1 — 2 in T, let AS(f): AS(1) — A% (t2) be the “con-
stant” natural transformation, A (f). = f for each n € |G|.

Fact 2: Given ca.tegofies G and T, then T is G-cocomplete iff the diagonal functor
A§: T — |G — T] has a left adjoint.

Proof: Given a diagram D: G — T, the free object over D with respect to A'Cf is a
- colimit of Dj the unit is the colimiting cocone on Dj; and vice versa, the colimit of D is a
free object over D with respect to A%. O
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Now we follow this hint in proving a slightly stronger form of Theorem 2.

Theorem 2': Given a category G, let C: Ind®” — Cat be an indexed category such that
1. Ind is G-cocomplete,
2. C; is G-cocomplete for all ¢ € [Ind|, and

3. G is locally reversible.

Then Flat(C) is G-cocomplete.

Proof: C gives rise to an Ind-indexed category DIAGg of G-diagrams in C as follows:
e component categories: Given ¢ € [Ind|, then DIAGE(5) =[G — Cil.

e translation functors: Given o: ¢ — j in Ind, define the functor
DIAGS(0): [G — Cj] — [G — C;] on objects by DIAGE(0)(D) = D;C, for
D: G — C;; it extends to morphisms in [G — C;] in the obvious way.

Now, we have the diagonal Ind-indexed functor
AS: C — DIAGS

defined by (A§ ), A§: C; = [G — C;| for i € [Ind|. (It is not hard to check that
this is indeed an mdexed functor.) Moreover, by assumption 2 and Fact 2, AC has a left
adjoint for each ¢ € |Ind|. Hence by Theorem 3,

Flat(AS): Flat(C) — Flat(DIAGE)

has a left adjoint. We can identify Flat(DIAGC) with a subcategory of [G — Flat(C)]
which, roughly, contains the G-diagrams in Flat(C) that fit entirely into one of the com-
ponent categories of C, where a diagram D: G — Flat(C) is “in” Flat(DIAGS) iff
D;Projc: G — Ind is a constant functor, and a diagram morphism 6 is “in” Flat (DIAGC)
iff § horizontally composed with Projg yields a constant natural transformation.

The corresponding faithful functor J: Flat(DIAGS) — [G — Flat(C)] may be de-
fined as follows:

o on objects: Given (i, D) € |[Flat(DIAGE)| (ie., ¢ € [Ind| and D: G — C;), the
G-diagram J({¢, D)): G — Flat(C) is defined as follows:
e on objects: J((i, DY)(n) = (i, D(n)) for n € |G|. |
o on morphisms: J({i, D))(e) = (id;, D(e)) for any morphism ¢ in G.
e on morphisms: Given a morphism (v, a): (¢, D} — (7, E) in Flat(DIAGg), where
4: i — j is an index morphism and o: D — E;C, is a morphism in [G — Ci,

then J({v, @)): J({(i, D)) — J({j, E)) is the natural transformation defined by
I((v, @) (r) = (7, &(n)): (i, D(n)) — (4, E(n)) for n € |G].
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Tt is not hard to see that J({, a)) is indeed a natural transformation, and that J is a
faithful functor.

The following identifies Flat(DIAGS) with its image under J in [G — Flat(C)] and
refers to J as an inclusion functor. Unfortunately, Flat(DIAGC) is in general a proper
subcategory of [G — Flat(C)], and so the proof of Theorem 2’ is not yet finished. One
can directly check that

Afias(c) = Flat(A§); 3.
Since we already know that Flat(A§) has a left adjoint, to show that A:ﬁglat(C) has a left
adjoint it is enough to prove that J has a left adjoint (cf. [Mac Lane 71, Th. V.8.1., p.101]).
Thus, the following lemma will complete the proof: -

Lemma 2: The inclusion functor J has a left adjoint, i.e., Flat(DIAGE) is a reflexive
subcategory of |G — Flat(C)] (cf. [Mac Lane 71, V.3, p.88-9] for the definition and basic

facts about reflexive subcategories).

Proof (of Lemma 2): Given a G-diagram D: G — Flat(C), we are to find its reflection
in Flat(DIAGS), that is, a G-diagram R(D): G — Flat(C) in Flat (DIAGE) together
with a diagram morphism 7p: D — R(D) such that for any diagram D' in Flat (DIAG )
and morphism 6: D — D' there exists a unique 6#: R(D) — D' in FIat(DIAGg’) such
that np; 6% = 6 in |G — Flat(C)].

So, given an arbitrary diagram D: G — Flat(C), let D(n) = (in, an) for n € |G|,
and D(e) = (0, fo): {fny @n) = (im, Gm) for &2 n = m in G, let ¢ be a colimit in Ind
of D; Projo: G — Ind, with injections p,: %, — ¢ for n € |G| (Ind is G-cocomplete by
assumption 1). Now define R(D): G — Flat(C) as follows:

e on objects: R(D)(n) = (i, F,.(a,)) for n € |G|.
e on morphisms: R(D)(e) = (id;, Lp,,,((”e, D)) @& ¥, (an)) — — (i, ¥, (am))

fore: n—m in G.

Recall that indeed L, ({0.; fe)): Foupm(@n) = Fpo(an) = Fpn (@) (see Definition 5).

Let us check that R(D) is a functor, that is, it preserves identities and composition. It is
obvious that it preserves identities (Definition 5 implies that L,, ((idn, ids,)) = F,, (¢ds,) =
1dy p..(an))' For composition, given e: n — m and d: m — k in G, we have to show that in
C;

pm((“ﬂ fe)) Pk((ad’ fd)) pk((aea fe)i {oas fd))
This may be checked by going back to C;,: On the one hand, in C;, we have
1" (an); Cpu(Lps ({0e, foiloa, fa)))
= 1°*(an); Cpn (Lpi ((0e; 045 fe3 Co.(fa)))) (Cor. 1, pn = 0%; 04; Pi)
= fe; Co.(fa); Copioa(n®(ax)),

while, on the other hand, in C;, we have :
177 (@n); Con (Lpm ({oe, fe)); L, ({04, fa))) (Cor. 1, pn = Te; Pm)
= £+ Co, (17" (am)); Co.(Com (Lps (00, fa)))) (Cor. 1, pm = 04; Pr)
= fe; Co.(f2); Co.(Cou(n’*(az)))-
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Hence, in C;,

ner (an); CPn( Pm ((aea fe)s L ox ((Uda fd))) = n’" (a'n); C,. (Lek ({oe; fe)s (o4, fd)))a
which by properties of adjunctions implies that indeed

Pm((aﬁ fe)) Pk((ad’ fd)) - Pk((aea fe) (04, fd))

Clearly, R(D) is in Flat(DIAGE). Having defined R(D) as above, there is an obvious way
to define np: D — R(D): for n € |G/, let np(n) = (pn, 7°"(an)): (in, an) — (s, ¥, (an)). ’

We have to check that np is a natural transformation. Given e: n — m in G, we need to

show that '
D(e); np(m) = np(n); R(D)(e),
that is, that

(0ey fe)s {Pms nP™(am)) = (Pn, 1" (an)); (1dis Ly ({0, fe)))-

Since 0.; pm = pn by construction, the only thing to check is that

fe; Co, (nﬂm (a'm)) =n (a'n); C,. (me ((03,' f))s

which follows directly from Corollary 1. Now we claim that R(D) is a reflection of D in
Flat(DIAGS) with unit 7p: D — R(D). Given a diagram D' in Flat(DIAGE) and a
diagram morphism §: D — D', say that D'(n) = (j, b,) for n € |G/, and D'(e) = (id;, g.)
for e: n — m in G with g,: b, — b, in C; (such an index j € |Ind| exists since D' is in
Flat(DIAGS)). Also, say that §(n) = (0, hn): (in, an) — (4, bn) for n € [G].

By construction, there exists a unique index morphism v: ¢ — j such that pp;y = On
for each n € |G|. We now define the diagram morphism §#: R(D) — D' by 6#(n) =
(v, kE): (i, F, (an)) — {J, bn) for n € |G|, where h%: F, (a,) — C +(bs) is the unique
morphism in C; that satisfies %= (a,); C,.(h#) = hn: an — C,,(C,(bs)). First, let us
check that 6% is indeed a morphism in Flat(DIAGg); the non-trivial part is to verify
that 6# is a natural transformation, that is, for any e » — m in G that -

6%(n); D'(e) = R(D)(e); §* (m),
or equivalently, that
(v, BE); (ids, g2) = (idsy Ly, ((0ns £0)))3 (1 BE)-
We must prove that in C; -
hE;Calge) = L ({02 fo))3 -
To see this, notice t‘hat by consfruction in C;,
1°*(@n); Cpn (k3 C4(g2)) = hn; Can (ge)
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and by Lemma 1 (since p, = 0¢; m)

1°*(80); Cpu (Lo ({0es f2)); BE) = fei Co,(Bm)-

However, since §: D — D' is a natural t;ansformation,
D(e); 6(m) = 5(n); D'(c),

that is
(ae, fe); <0m, hm) = <0na hn>; (idja ge)a

which implies that
fes Ca; (hm) = hn; CG,. (ge)-

Hence, putting these equations together,
7’ (an); C,, (hf§ C(g.)) = 1"*(an); Cpn (Lpn ({0, fe)); hﬁ.) .

Thus indeed, :
h; C4(g€) = Ly, ({0, fe)); W

We now claim that 6#: R(D) — D' is a unique morphism in Flat(DIAGS) such that
np; 6% = 6. First, we have to verify that np(n);6#(n) = 6(n) for n € |G|, i.e., that

(Pns 1" (an)); (1, AE) = (On, ha),

or equivalently, that
(Pn; V> 17" (@n); Cp, (RE)) = (On, hn),

which is clearly true. Moreover, the construction guarantees that 6%(n) is the only mor-
phism in Flat(C) such that Projc(6*(n)) = v and np(n);6%(n) = é(n). Since the
uniqueness of v is obvious, this gives the uniqueness of 6% and completes the proof of
Lemma 2, and hence of Theorem 2'. [0 O

We do not apologise for giving a second proof of this theorem; on the contrary, we feel
its details are worth examining, especially the “reflection lemma” (Lemma 2).

5 Summary

This paper has presented indexed categories and given examples supporting the view that
they are a useful tool for structuring and clarifying certain constructions and proofs in
computer science. Given an indexed category C, we have constructed a “flattened” cate-
gory Flat(C) containing the components of C. We have also introduced indexed functors,
and shown how to flatten them. Finally, we have shown that flattening preserves the
important properties of completeness, cocompleteness, and existence of left adjoints.
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