LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Automated Analysis of Mutual Exclusion
Algorithms using CCS

S99 Buisn swiyobly uoisnjox3 feniniy Jo sisAjeuy parewoiny

by
D. J. Walker

. ECS-LFCS-89-91
LFCS Report Series (also published as CSR-308-89)
LFCS August 1989
Department of Computer Science
University of Edinburgh
The King's Buildings

Edinburgh EH9 3JZ

Automated Analysis of Mutual Exclusion Algorithms
using CCS

Preprint of a paper to be published in Formal Aspects of Computing

D. J. Walker
Department of Computer Science
University of Edinburgh
Edinburgh EH9 3JZ, U K.

Abstract

A number of mutual exclusion algorithms are studied by representing
them as agents in the Calculus of Communicating Systems and using an
automated tool embodying some of the theory of the Calculus to analyse
the representations. It is determined whether or not each of the algorithms
preserves mutual exclusion and is live.

Keywords: CCS, Mutual Exclusion Algorithms, Concurrency Workbench

1 Introduction

During the last decade a number of algebraic calculi of concurrency and com-
munication have been introduced and studied. Each of these consists essentially
of a language for describing concurrent and communicating systems, a means of
assigning meaning to the terms of the language, and an array of techniques for
analysing systems. described in the language. The literature devoted to the inves-
tigation of these calculi contains many small illustrative examples. However in
relatively little published work are any of the calculi used to analyse somewhat
more substantial systems. One notable exception is Milner’s monograph [Mil80]
in which the Calculus of Communicating Systems (CCS) was introduced. This
work and its extension and elaboration [Mil89] contain a wide range of examples.
The most ambitious of these require such detailed calculation that they lie at the
limit of reliable pencil-and-paper application of the Calculus.

In order to investigate further the applicability of calculi such as CCS by
tackling case studies more substantial than those considered to date, it is thus
essential that suitable automated tools be available to aid in the analyses. The

1

Concurrency Workbench [CPS89a], [CPS89b] currently under development in a

joint SERC-funded project between the Laboratory for Foundations of Computer

Science in the University of Edinburgh and the Department of Computer Science’
in the University of Sussex, is such a tool. In addition to facilitating some appli-

cations of the Calculus, the Concurrency Workbench has been used successfully in -
teaching, and it is likely that it will prove useful in further theoretical work. The

purpose of the present paper is to report the outcome of an experiment in which

the Concurrency Workbench was used to investigate the behaviour of a number

of concurrent algorithms.

The difficulty in understanding and reasoning reliably about all but the sim-
plest concurrent algorithms has long been recognized. In this paper we study a
number of mutual exclusion algorithms. These algorithms have been considered
by many authors and a variety of techniques have been used to investigate their
properties (see e.g. [Dij65, Kn66, Lam86]). Thus there is a ready source of mate-
rial against which to compare the method and results of the present paper. This
method may be briefly summarized as follows:

1. The algorithms were represented as CCS agents.

2. Questions of interest concerning the algorithms were formulated precisely
within the framework of the Calculus.

3. The Concurrency Workbench was used to determine automatically the an-
swers to the questions.

For each of the algorithms two questions were considered:
1. Does the algorithm preserve mutual exclusion?

2. Is the algorithm live (in the sense that if a process requests execution of its
critical section, then it will eventually execute its critical section)?

CCS is by no means a purely algebraic calculus. For the semantics of the
language is given in terms of labelled transition systems and such systems are
natural models for modal and temporal logics. One point of this paper is to
illustrate the interplay between algebraic and logical techniques.

Many temporal properties of systems have been classified as either safety prop-
erties or liveness properties. Preservation of mutual exclusion and liveness in the
sense above are examples characteristic of these classes respectively. While it is
generally acknowledged that the Calculus is suitable for the study of safety prop-
erties of systems, it is sometimes asserted that within CCS no adequate treatment
of liveness properties is possible. We give here some evidence to indicate that this
assertion is unwarranted. For further discussion of this point see [St89a], [SW89b].

Some familiarity with CCS would be useful for reading this paper, though
the Preliminaries below contains a brief introduction to the Calculus, together
with some material on modal and temporal logics and a short description of the’
Concurrency Workbench. The following section begins with an illustration of the
method used to represent the algorithms as CCS agents, followed by a detailed -
discussion of the formulation within the Calculus of the questions of interest.
It contains also representations of mutual exclusion algorithms due to Dekker,
Dijkstra, Hyman, Knuth, Peterson and Lamport. The final section contains a
summary of the results of the analyses, some discussion of the methods of the
paper, and a brief summary of some related work.

2 Preliminaries

This section contains a very brief discussion of CCS, some material on modal and
temporal logics, and a brief description of the Concurrency Workbench.

2.1 The Calculus of Communicating Systems

Originally introduced in [Mil80], Milner’s Calculus of Communicating Systems
was the first of the algebraic calculi of concurrency and communication. In this
paper we use only the pure Calculus without explicit data communication. The
terms of its language (agents) are constructed by means of a number of operators
and a recursive definition mechanism. Agents are given a structured operational
semantics as a labelled transition system, with labels drawn from a set Act of
actions. The action set is of the form AUAU {7} where the sets A and A are in a
one-one correspondence via *. T is a distinguished silent action; all other actions
are visible. Among the operators are action prefixing, denoted a. (a € Act),
summation +, composition | and restriction \L (L C Act — {r}). The rules for
these operators include

e aP - P

o if P =+ P’ then P+ Q — P!

e if P 5 P’ then P|Q — P'|Q

o if P2 P’ and Q —% Q' then P|Q —Z» P'|Q”
e if P> P'and a,d ¢ L then P\L -+ P\L

In fact there is a second transition system associated with CCS. We shall call
the basic system above the — transition system. If P and Q are agents then for
a € A, the interpretation of P —=+ @ is that P may evolve into @) by performing
the action a which may be observed by the environment, whereas P -) means

that P may evolve autonomously into). The second, derived system, which we
call the = transition system, has instead the family {=%| a € AU {e}} where
== is the reflexive and transitive closure of ——, so that P == if P may
evolve into) by a sequence of (possibly zero) autonomous steps, and for a € A,
=25 = == 2355 50 that P == Q if P may evolve to Q by performing a preceded .
and succeeded by any number of silent actions.

Several notions of equivalence and approximation between agents may be de-
fined based on action capabilities, each providing some abstract notion of process
and a rich set of algebraic laws for manipulating agents. In this paper we refer
only to one of these: observation equivalence. For the definition of this we refer
to the standard reference for the Calculus: [Mil89]. An alternative introduction is

[Wa87].

2.2 Modal and Temporal Logics

Modal and temporal logics have been found to be appropriate for describing prop-
erties of concurrent and communicating systems. They have a vast literature.
Survey papers containing extensive bibliographies are [ES89, MP89, St89b], while
[St89a)] discusses temporal logics for CCS. Here we describe the logics used in this

paper.

Hennessy-Milner logic is a propositional modal logic with relativized modal
operators. Its formulae are given by

A u=true | mA | ANA | [a]A

where a ranges over the set of actions labelling the transition relations of the
models of the language. Such a model is of the form M = (S,{R, | a € Act})
where S is a set of states (agents) and each R, is a binary transition relation on
states. In this paper all the models we consider are finite subsystems of the CCS
— and = transition systems, so from now on we assume that S is finite. The
set | A| of states satisfying the formula A is defined as follows:

Jtrue] = S
|-Al = S-]A]
lAAB| = |A|n|B]
Ile]A] = {s€S|Vs.if sR,s' then s’ €| A|}

We write s = A if s €| A|. We have the derived operators: false = —true,
AV B = —~(—AA-B), and (a)A = —[a]~A. We shall use two further derived
operators: for K C Act, [K]A = AsexlalA and (K)A = V,ex(a)A. |
Hennessy-Milner logic characterizes the notion of bisimulation equivalence on
transition systems. However each formula describes only a finite part of the be-
haviour of agents, so it is useful to add recursively defined formulae. This leads

4

to the modal mu-calculus [Pr81, Ko83, SW89a] whose formulae are obtained by
adding to the description above the clauses

Au= ... | Z | vZ A

where Z ranges over a family of propositional variables, and where in vZ. A every-
occurrence of Z in A lies within the scope of an even number of negations!. This
language is interpreted over models of the form (S, {R, | a € Act},V) where V is
a valuation mapping variables to sets of states. The additional semantic clauses
are
1z, = V(2)
lvz.Al, = W{S'CS|SClAlvis 7}

where V[S'/Z] is the valuation V' which agrees with V except that V/(Z) = S".
By the syntactic restriction each | A, is monotonic in V and thus |vZ. A];,, is
the maximal fixed point of the the function AS’. | A |y s/7-

Such maximal fixed point formulae express invariance properties. For example

s EvZ. ((b)true A[a]Z)

expresses that at every point on every path from s consisting solely of a actions, a
b action is possible. The dual of the maximal fixed point operator v is the minimal
fixed point operator yu: pZ. A abbreviates —vZ.—A[Z := —Z] where [Z := -7
denotes syntactic substitution. Minimal fixed point formulae express eventuality
properties. For example

skEpZ ((b)true V (a)2)

expresses that there is some point along some path from s consisting only of a
actions at which a b action is possible. The modal mu-calculus is a branching time
temporal logic with considerable expressive power. In this paper we consider only
simple formulae with at most two fixed point operators. For some discussion of
how to formulate properties in a restricted portion of the modal mu-calculus see

[Lar89].

2.3 The Concurrency Workbench

The Concurrency Workbench [CPS89a, CPS89b] is a prototype automated sys-
tem designed to provide machine assistance in carrying out analyses of systems
described in CCS. It has been used to analyse communications protocols [Par87].
A user of the Workbench builds an environment of system descriptions of interest
at any one time, either interactively or by reading from a file, and then requests
that certain analyses be performed on them. Some sixty commands are currently
implemented. As a sample we mention that there are commands for:

'In general atomic propositions other than true would be included. The purpose of the
syntactic restriction is to permit a uniform interpretation of formulae.

5

e Exploring the behaviour of an agent.
o Constructing the state space of an agent.
o Checking for possible deadlocks in an agent.

o Determining whether or not two agents are related by bisimulation and test-
ing equivalences and preorders.

e Minimizing an agent w.r.t. observation-equivalence.

¢ Determining whether or not an agent satisfies a closed formula of the modal
mu-calculus.

e Supporting semi-automatic synthesis of agents solving certain equations.

The Concurrency Workbench is being developed in a joint SERC-funded project
between the Laboratory for Foundations of Computer Science in the University of
Edinburgh and the Department of Computer Science in the University of Sussex.
It is written in Standard ML. New analytical capabilities and a graphical interface
are currently being added.

The Workbench is intended to be useful both in understanding and in reason-
ing about systems. A person grappling with a system may ask certain questions
of the Workbench, which without machine assistance would require long, tedious
and error-prone calculations for their solution. The answers supplied will enhance
understanding, perhaps by suggesting new questions. The usefulness of a particu-
lar answer will of course depend on how informative it is to the person receiving it.
At present when asked to evaluate an assertion such as P = A the answer returned
by the Workbench is brief: true or false. The extraction and presentation in a
helpful format of information useful in guiding a user towards an understanding
of a particular answer will no doubt be of importance in future generations of

Workbench-like tools.

3 The algorithms and their representations as CCS
agents

In chapter 9 of [Mil80] (and chapter 8 of [Mil89]), Milner describes a means of
representing as CCS agents programs expressed in a concurrent imperative pro-
gramming language. The phrase-by-phrase translation may be viewed as defining
the constructs of the programming language as derived combinators of the Calcu-
lus. Since the Calculus has a rigorously defined meaning, the translation gives rise
to the possibility of formulating precisely within the framework of the Calculus
questions concerning the language and programs expressed in it, and of employing
the analytical techniques of the Calculus to answer questions so formulated.

As stated in the Introduction, in this paper we are concerned with a family of
mutual exclusion algorithms and with the following questions about each of them:

1. Does the algorithm preserve mutual exclusion?
2. Is the algorithm live?

In this section we illustrate the translation using an algorithm due to Dekker and
then consider how to formulate the questions of interest. Finally the translations
of the other algorithms are given.

It is somewhat tedious to apply the full translation of [Mil80] by hand (al-
though it would be straightforward to mechanize the process). For this reason a
slightly ad hoc representation of each of the algorithms is used. Each of the ad hoc
representations is, however, very similar to the corresponding agent obtained from
the full translation, and indeed the representations are believed to be observation
equivalent in each case.

3.1 Dekker’s algorithm

We consider first an algorithm due to Dekker (the formulation here is taken from
[PS85]). There are two processes P; and P,, two boolean-valued variables b; and
b, whose initial values are false, and a variable k¥ which may take the values 1 and
2 and whose initial value is arbitrary. The it process (¢ = 1,2) may be described
as follows (where j is the index of the other process):

while true do
begin
(noncritical section) ;
b; := true;
while b; do
if £ = j then begin

b; := false ;
while k¥ = j do skip ;
b; := true
end ;
(critical section) ;
k=g
b, := false

end ;

Note that P; indicates its wish to execute its critical section by setting b; to true;
note also the role of the variable k.

In translating into CCS each program variable is represented as a family of
CCS agents. A variable v of some type D is represented as a family {Vd | d € D}

7

of agents with access sorts {rd | d € D} U {wd | d € D} (‘r’ for ‘read’, ‘w’ for
‘write’) defined as follows:

Vd¥rd Vd+ S, pwe.Ve (deD)

Thus if the current value of v is d, that value may be read by any process which
may communicate with Vd by performing the action rd, while a value e may be
written to v by any process which may perform the action We. Thus reading from
and writing to a variable are modelled as atomic actions, reflecting a common
assumption in reasoning about mutual exclusion algorithms, and one adopted
throughout the present paper.

The access sort of each variable is disjoint from that of all other variables2.
Thus rather than simply ‘r’ and ‘w’ we use names unique to each individual
variable. For example, the variables b;, b, and k are represented as follows:

B]_'f = blrf. Blf -+ b1Wf. Bif -+ biwt. Blt

Byt % B.Tt.Byt + bywt.Byt + bywE.B,f

Byf & BorE.Byf + bywt. Byf + bywt. Byt

Byt & B,7t.Byt + bywt. Byt + bowt. Byf
K1 % 1K1+ kwi K1+ kw2.K2

K2 £ kr2.K2 +kw2.K2 + kwl. K1

The processes P; and P, are represented by the following agents (also called) P4
and Py:

P1 = biwt. P11
bgrf. P14 + bgrt. P12

o]
[
[

I

Py, = kri.Py; +kr2.b;wf.Pyy
Pz & kr1.bjwt.Pyy +kr2.7.Pys
Py ¥ enter,.exity.kw2.bwt.P,
P, ¥ But.Py

Pyy = byrf.Pyy +byrt.Pyy

Pyy & kr2.P,, +krl.byut.Pys
Pys & kr2.B,wt.Py, +krl.7.Pyg
Pos = enter,. exity. kwl.bywt. Py

2In this paper we need not consider the scoping of variables. However as described in [Mil80]
" (and [Mil89]), the restriction operator of CCS provides an elegant means of handling the scoping
of declarations.

1
of actions, enter; and exit;, representing, respectively, entry to and exit from

the critical section. Thus at any point during a computation, P; will be in its’
critical section if and only if P; may perform the action exit;. Note also that the

noncritical sections of the processes are not directly represented. In particuluar, -
we do not consider the possiblity that process P; may terminate in its noncritical

section. To model this possiblity we could modify the definition of agent P; to:

Note that the critical section of process P; is modelled in agent P; by a pair

P; f biwt. Py + 7.0
Doing this would necessitate some alteration to the treatment of the question of
liveness below, though the analysis of mutual exclusion would remain unchanged.
Finally the algorithm is represented by the agent Dekker defined by:

Dekker % (P, | P, | Byf | Bof | K1)\L

where L is the union of the access sort of the variables, and we assume that the
initial value of k is 1. The sort of Dekker is K = {enter,, exit,, enter,, exit,}.

We now consider how to express the questions concerning preservation of mu-
tual exclusion and liveness.

3.1.1 Mutual exclusion

To say that the algorithm preserves mutual exclusion means that at no point
during any computation may both processes be in their critical sections. As we
have seen above, process P; being in its critical section is modelled as the capability
of agent P; to perform the action exit;. Thus to establish that the algorithm
preserves mutual exclusion it suffices to show that the agent Dekker cannot evolve
into a state in which both exit, and exit, may be performed. We can express
this property as an infinite conjunction of formulae of Hennessy-Milner logic as
follows:

N\ [s]=((exity)true A (exity)true)

sck*
where s ranges over K*, the set of finite sequences of actions from K. We can give
a fixed point rendition of the property as the modal mu-calculus formula

PME = vZ.(—((exit;)true A (exity)true) A [K]Z)

where [K] is the derived operator defined in Section 2. Thus we say that Dekker’s
algorithm preserves mutual exclusion if

Dekker |= PME

Here we are working in the = transition system. To work in the — transition
system we would replace [K] by [KU {7}] in the above formula. In this case it does

9

not matter in which transition system we work: we find the same answer in both
cases.

In addressing the question of mutual exclusion it is convenient to work in the
= transition system. For let DekkerMin be such that DekkerMin = Dekker
and DekkerMin has the minimal number of states among all such agents. Then-
Dekker |= PME if and only if DekkerMin = PME. This is a consequence of the
following fact.

Fact If P ~ @ then for all formulae A of the modal mu-calculus, P |= A if and
only if Q | A3.

The Concurrency Workbench was used both to compute DekkerMin and to de-
termine whether or not it satisfies PME. Thus the amount of computation required
to carry out the model checking was reduced at the expense of the extra computa-
tion incurred by the minimization. In treating larger examples this saving would
assume greater importance. Even in the present example where the agent Dekker
has only a few hundred states significant savings were observed.

The above illustrates the method used to study the question of mutual ex-
clusion for each of the six algorithms considered in this paper. In each case the
representing agent has sort K = {enter;, exit,, entery,exity}. The results of the
analyses are collected in Section 4.

This completes the discussion of the formulation of the question of mutual
exclusion. We now consider the more difficult issue of liveness.

3.1.2 Liveness

It is possible to give a number of similar but distinct interpretations of the term
live as it might be applied to Dekker’s algorithm. In some of the papers cited
below in which mutual exclusion algorithms are studied, the interpretations of the
term are remarkably vague. Moreover, assumptions made in reasoning about the
algorithms are often not made explicit. Since we have a rigorous semantics for
the programming language, both the interpretation and the assumptions may be
formulated precisely. To fix ideas let us say that, roughly speaking, the algorithm
is live if whenever at some point in a computation a process P, requests execution
of its critical section, then at some later point P; will enter its critical section.
The first difficulty we encounter in trying to express within the framework of
CCS that the algorithm is live arises from the way in which a request by a process
to execute its critical section is represented in the agent Dekker. For process
P; performs such a request by setting b; to true, and this action is represented
simply as one of many T-actions: the CCS composition operator leaves no trace
of the origin of a particular T-action. It should be noted that other composition

3The converse also holds, under the assumption of image-finiteness of the transition system.

10

operators have been studied in which the actions arising from synchronizations
are distinct from one another. Examples include || of ACP [Ba86] and || of CSP
[Ho85]. The approach we adopt here makes use of probes. We have already seen’
an example of their use: the actions enter; and exit; in the definition of the
agent P; are probes. By inserting these actions at appropriate points we were able-
to model in terms of action capabilities what might otherwise be represented as
properties of states.

In SCCS [Mil83] it is assumed that actions are drawn from a commutative
monoid and the (synchronous) composition operator x is defined by the rule

PP Qg
PxQ-2pxq

One interesting possibility would be to modify the definition of the CCS composi-
tion operator by allowing actions to be tagged by probes which alone remain after
synchronization. The modified rule might be

p X9 p Q= Q'
P|Q — P'|Q’

where a(p) represents action a tagged with probe p. Then, e.g., a request by P,
might be modelled by the action b;wt(req;). Such a request would then be visible
as the performance of the action req; by Dekker.

The Concurrency Workbench currently supports only the operators of CCS so
we must take a different approach here. Recall that P; is defined by

Pi d___e_f bth. Pil

We modify this to
def =

Pi = bth. req;. Pil
The probes req; are not restricted in Dekker. Thus in any state of Dekker in
which an action req; is possible, process P; has ‘just’ made a request to execute
its critical section.

In this way we overcome the first difficulty in expressing liveness, namely that
of modelling when a request is made. Now we turn to the delicate question of how
to express that such a request is eventually met.

We are concerned with temporal properties of states of labelled transition sys-
tems. We note that in interpreting temporal logics it is customary to assume that
there is at least one transition emanating from each state, if necessary by graft-
ing loops labelled by imaginary labels onto offending states. The = transition
system is trivially a total system in this sense, since for any agent Q, Q == Q.
The — transition system is not in general total, though by examining the agents

11

P; it may be checked that the subsystems we consider are all total (this may be
checked using the Workbench).

A more refined interpretation of what might be meant by liveness of the algo-
rithm is the following.

Liveness, Interpretation 1 The algorithm is live if whenever at some
point in a computation a process P; requests execution of its critical
section, then in any continuation of the computation from that point
in which between them the processes execute an infinite number of
critial sections, P; performs its critical section at least once.

In terms of the CCS representation of the algorithm this means that there is no
infinite path 7 through the Dekker transition system containing an infinite number
of visible actions from K which is of the form 7« = s (req;) - 7’ where s is finite
and enter; does not occur in 7/. We shall consider an alternative interpretation
below but first we examine Interpretation 1 in detail.

We can express the liveness property by interpreting the following modal mu-
calculus formula over the = transition system:

Live = Live; ALive,

where
Live; = vZ. ([req;|pY. ((exit;)true V [K]Y) A [K]Z)

To see this consider the Dekker = transition system and note that for any Q
pY.(QV[K]Y)

expresses that along every path containing infinitely many visible actions Q holds
eventually, while
vZ.(Q A [K]Z)

expresses that along every such path Q holds invariantly.

Again we economize on computational effort by minimizing Dekker w.r.t ~ and
then determining whether or not the minimized agent satisfies Live. The results
obtained by following this procedure for each of the six algorithms are collected
in Section 4. Two of the algorithms, Knuth’s and Peterson’s, are live under this
interpretation.

An alternative to Interpretation 1, involving a different treatment of 7-loops in
the transition systems, is possible. The significance of such loops is clearly seen by
replacing [K] by [K U {7}] in the definition of Live;, and interpreting the modified
formula Live on the — transition systems: we find using the Workbench that
each of the six agents representing the algorithms does not satisfy it.

By examining the agents P; it is apparent that some of the 7-loops in Dekker
arise from infinite sequences of reading and writing of variables by a single process.
Indeed this phenomenon is common to all six algorithms. Note that the 7-loops

12

are not somehow introduced by the translation into CCS. Rather their presence
reflects the faithfulness of the translation.
Consider now the following alternative to Interpretation 1:

Liveness, Interpretation 2 The algorithm is live if whenever at any
point in any computation a process P, requests execution of its critical
section, then in any continuation of the computation from that point
there is a point at which P; enters its critical section.

From the above discussion we see that, given the semantics of the language, in
order to establish that any of the algorithms is live under Interpretation 2 we
must make some additional assumption. This is an important point which, as
mentioned earlier, is often not handled with the precision necessary to make clear
exactly what is established by certain arguments.

One characteristic of the trivial 7-loops arising from repeated reading and writ-
ing of variables by one of the processes is that the other process is excluded from
an infinite computation of the system. It is natural to ask whether it is only the
existence of such unfair computations which prevents any of the algorithms from
being live under Interpretation 2. In other words, if we consider as admissible only
those paths through each of the transition systems representing computations to
which each process contributes infinitely often, an assumption which can be viewed
as refining the semantics of the language, we may ask which of the algorithms is
live under Interpretation 2.

The assumption that each process contributes infinitely often to each infinite
computation is just one of the many fairness assumptions which have been studied
(see e.g. [Fr86]). Reasoning under such assumptions exposes remarkable subtleties
in some of the algorithms. 7-loops in the extended transition systems, the tran-
sition systems augmented with some means of delineating the admissible paths
through them, can in some cases arise from a delicate pattern of mutual blocking
by the two processes, resulting in starvation of them both. Moreover it is pos-
sible for an algorithm to be free from such starvation without being live under
Interpretation 2 (see Knuth’s discussion of Dijkstra’s algorithm [Kn66]).

An alternative to the above idea of interpreting formulae over extended tran-
sition systems incorporating fairness assumptions is to interpret formulae incor-
porating fairness assumptions over transition systems. Such formulae would be of
the form

F=P

where F expresses a fairness assumption and P a property of interest. Below we
consider this in more detail in the case of linear time logics, where a formula is
satisfied by a state if it is satisfied by each path from the state (for a discussion
of branching time see [EL8T].)

At the time of writing no linear time logic model checker is incorporated in the
Workbench so no automated analysis has been possible. However we close this

13

discussion by highlighting another apparent difficulty and indicating how it may
be overcome.

We saw above that some modification to the representations of the algorithms
was required in order to make visible a request by a process to execute its crit-
ical section. We face a similar problem in expressing that a process contributes-
infinitely often to a computation. We may overcome this difficulty as we did the
earlier one: by using probes. Perhaps the most attractive solution is to use the
modified composition operator described above and to tag each action of P; repre-
senting a read of write to a variable with a unique probet. We could then express
that P; contributes infinitely often to a computation by saying that each of its
probes is infinitely often not a possible action of Dekker. For P; does not con-
tribute infinitely often to a computation if and only if one of its actions is always
possible from some point in that computation.

We may then express the liveness of the algorithm under the fairness assump-
tion by letting K; be the set of probes of P; and defining

FairLive = FairLivey; A FairLive,
where

Fairlive; = \ GF[a]false = G((req;)true => F(exit;)true)
aEKi

where G and F are the linear time always and eventually operators.

It is anticipated that a model checking algorithm for a linear time mu-calculus
with relativized next operators (a logic subsuming many common linear time logics
and in which the above formula may be rendered) will soon be incorporated into
the Workbench (see [SW89b]).

This completes the discussion of the formulation of the questions of interest.
We now describe the other five algorithms and their representations.

3.2 Dijkstra’s algorithm

In Dijkstra’s algorithm [Dij65] it is assumed that there are n > 2 processes, global
variables

b,c : array [l..n] of boolean
k : integer

and that initially all components of b and of ¢ have value true and the value of k
isoneof 1,2,...,n. The ith process (= 1,2,...,n) may be represented as follows:

4By a more careful analysis of the agents we could reduce the number of probes required.

14

var j : integer ;
while true do

begin
(noncritical section) ;
bz] := false ;
L; : if k # ¢ then begin
cf¢] := true;
if b[k] then k :=1 ;
goto L;

end ;
else begin
clt] := false ;
for j :=1ton do
if (j # ¢ and —(c[j])) then goto L;
end ;
- (critical section) ;
c?] := true ;
b[7] := true
end ;

Note that process P; indicates its wish to execute its critical section by setting
b[:] to false. In light of later developments this algorithm seems remarkably
complicated. It was, however, the first published solution to a mutual exclusion
problem.

We give here the CCS representation in the case n = 2. In order to model
faithfully the assumption that any read of or write to a program variable is an
atomic action, we must use a more complicated representation of the variable &k
than in the previous cases. The reason for this is that we must ensure that if in
the course of executing the statement

if bk] then k := ¢

the 4th process has read the variable k but not yet read the variable b[k], then no
other process may access (and in particular change the value of) the variable k.
The following representation, suggested by Robin Milner, ensures this:

def

K1 kri.K1 + kwi.K1 + kw2.K2

+ get. (kyrl.put. K1 + kyri. put.K1)
K2 ¥ Er2.K2 + kw2.K2 + kwi. K1

+ get. (k;12. put. K2 + kyr2. put. K2)

The variables b; and b, are represented as in Dekker and ¢, and c, are repre-
sented similarly as agents Cyf and Cyt, and Cof and Cyt. The algorithm is then
represented by the agent Dijkstra defined by

Dijkstra & (P,|P,|Bit|Byt|Cyt|Cot]|K1)\L

15

where L is the union of the sorts of the variables and
def

P, b,wf.req.Pyy
Pyy & kri.Py+kr2. cowt.Py,
P, & gEeE. (kyri.(birt.put.kwl.Py + byrf.put. Pyy)
+ k2. (byrt. put. kwl.Pyy + byrf.put.Pyy))
Py X . (corf.Pyy + cort. Pis)
Py ¥ enter;.exity.Ciwt.bywt.Py
P, ¥ bywf.reqy. Py
Pyy ¥ kr2.Py; +kril.cout. Py,
Py, & get. (kor2. (b2rt. put. Kw2. Py + borf. put. Py)
+kprl. (byrt. put. kw2.Pyy + byrf.put.Pyy))
Pps % CowF.(cirf.Pyy + cyTt. Pyy)
Py def enter,. exit,. cowt. bowt. Py

3.3 Hyman’s algorithm

Hyman published [Hy66] a ‘simplification’ of Dijkstra’s algorithm in the case of
two processes. The following formulation is taken (with some change of notation)
from [PS85]. There are two processes P; and P,, two boolean-valued variables b,
and b, with initial value false, and a variable k¥ which may assume the values
1 and 2 and whose initial value is arbitrary. The ith process (i = 1, 2) may be
described as follows (where j is the index of the other process):

while true do
begin
(noncritical section) ;
b, := true ;
while % # ¢ do begin
, while b; do skip ;
k=1
end ;
(critical section) ;
b, := false
end ;

As the reader can perhaps see, Hyman’s simplification is not entirely satisfac-
tory. The CCS representation is the agent Hyman defined as follows:

def

Hyman = (Py[P,|B;£[Bof[K1)\L

16

where Byf, B,f and K1 are as in the definition of Dekker, L is the union of the
access sorts of the variables, and

"i—ﬁf biwt. reqy. P11

kri. P13 + kr2. P12
bzrf. kwl. P13 + bzrt. T. P12
en‘l:erl. exiti. b1Wf. P]_

def
def
def
P, = bywt.reqs. Py

Pyy ¥ kr2. Pyy +kri.Py,

& b, rf. Kw2. Py + byrt. 7. Pyy

Py3 = enter,.exit,.bywf.P,

Al

3.4 Knuth’s algorithm

Following the publication of Dijkstra’s algorithm [Dij65] and of Hyman’s letter
[Hy66], Knuth [Kn66] drew attention to some of the shortcomings of Hyman’s
simplification and to the fact that although Dijkstra’s algorithm is free from star-
vation it is not live, and suggested the following alternative.

We consider only the case when there are 2 processes. There are then 2 vari-
ables ¢;,c, which may take the values 0,1,2 and whose initial values are 0, and
a variable k which may take the values 1,2 and whose initial value is arbitrary.
The 3*h process (7 = 1,2) may be described as follows (where j is the index of the
other process):

while true do
begin
(noncritical section) ;
Lg: ¢;:=1;
L,: if k =i then goto L, ;
if ¢c; # 0 then goto L, ;

Ly c;:=2;

if ¢; = 2 then goto L, ;
k:=1;

(critical section) ;
k:=j;

c;:=0;

end ;

This algorithm is remarkably intricate (see [Kn66] for an interesting discus-
sion). The CCS representation, assuming the initial value of k to be 1, is the
agent Knuth defined as follows:

Knuth & (P; | P, | K1 | C;0 | Co0)\L

17

where L is the union of the sorts of the variables and

C,0
Cy1
Cy2

C,0
Cot
Cy2

Note in the above the presence of the agents P;g and the way in which the
statement goto L is represented. The reason for this choice is that only the first
c;wl action (setting ¢; to 1) is considered as signifying the initiation of an attempt

def
def
def

def

def

def
def

def

i

def

def

def
def

def
def
def
def
def
def

def

C1W0. C10 + C1W1. C11 -+ C1W2. 012 + cirO. C10
cin. 010 -+ C1W1. C11 + C1W2. 012 + C1r1. C11
C1W0. C10 + C1W1. C11 -+ C1W2. C12 + C1r2. C12

cow0.Cy0 4 cowl. Col + cow2.Cy2 + cor0.C50
cow0.Cy0 4+ cowl. Col 4+ cow2.C052 4 ¢cpr1. Gyl
C2W0. 020 + C2W1. 021 + C2W2. C22 + c2r2. C22

cywi.req;.Pyy

krl.Py3 + kr2.Pyo

Cor0.Pyg 4+ corl. Py 4 cor2. P4y
c1w2.Pyy

Cor0.Pyg + corl. Pyg + €or2.Pyg
kwl. enter;.exit;.kw2.c;w0.P,
cywl.Pyy

cowl. reqy. Py

kr2.Py3 + kri.Pqy,

¢110.Py3 + ¢c4r1.Pyy + c412.Pyy
Caw2.Pyy

€110, Pyg 4 ¢4r1. Pog + ¢112. Pog
kw2. enter,. exit,. kwl. cow0. P,

C2W1. P21

by process i to execute its critical section.

3.5 Peterson’s algorithm

In Peterson’s algorithm [PS85] there are two processes P, and P,, two boolean-
valued variables b, and b, each having initial value false, and one variable &
which may take the values 1 and 2 and whose initial value is arbitrary. The itk
process (¢ = 1,2) may be described as follows (where j is the index of the other -

process):

18

while true do

begin
(noncritical section) ;
b; .= true ;
ki=j;

while (b; and k = j) do skip ;
(critical section) ;
b; := false

end;

Peterson’s algorithm is an attractively simple refinement of ideas from some of
the earlier algorithms. The CCS representation of this algorithm (assuming the
initial value of k to be 1) is the agent Peterson below:

Peterson & (P, |P,|B,£|B,£[K1)\L

where where B;f, B,f and K1 are as in the definition of Dekker, L is the union of
the access sorts of the variables, and

P1 cl_e—f biwt. reqg. kw2. P11

& borf.Pyy + byrt. (kr2.7,.Pyy + kril. Pyy)

d‘—'—e‘f enterl. exiti. b1Wf. P1

def bzwt. reqs. kwi. P21
P21 = birf. P22 -+ birt. (krl T. P21 + kr2. P22)

= enter,.exit,.bywf.P,

3.6 Lamport’s algorithm

In Lamport’s ‘one-bit algorithm’ [Lam86] it is assumed that there are n > 2
processes and n boolean-valued variables each with initial value false. The ¢th
process (¢ = 1,2,...,n) may be described as follows:

19

var j : integer ;
while true do
begin
(noncritical section) ;
L‘i : bz := true H
forj:=1toz—1do
if b; then begin
b, := false ;
while b; do skip ;
goto L,
end ;
for j:==:1+1tondo
while b; do skip ;
(critical section) ;
b; := false
end ;

Notice that this algorithm is not symmetric. The CCS representation in the
case n = 2 is the agent Lamport defined as follows:

Lamport & (P4|Py|B1£|Bof)\L

where B;f and Byf are as in the definition of Dekker, L is the union of the sorts
of the variables, and

b]_Wt. req;. P11
P11 = bzrf.Plz +b2r't.T.P11
P12 = enteri. eXitl.b]_Wf.Pi

P, = bywt.reqy. Py

Pyy = byrf.Py3 +byrt.bywf. Py,
Pys = byrf.bowt.Py + byrt. 7.Pog
Py3 = enter,.exit,. bowf.P,

4 Experimental results, discussion and some re-
lated work

The table below summarizes the results obtained by following for each of the six
algorithms the procedure described in detail for Dekker’s algorithm in Section 3.

20

Preserves Mutual Exclusion | Is Live (Interpretation 1)
Dekker v X
Dijkstra Vv X
Hyman X X
Knuth v v
Peterson v WV
Lamport Vv X

Under Interpretation 1, Lamport’s algorithm is live for process P; but not for
process P,, in the sense that

Lamport = Live; A —Live,

As mentioned in Section 3, at the time of writing it has not been possible to
determine automatically which of the algorithms is live under Interpretation 2
because the Concurrency Workbench presently supports model checking only for
the modal mu-calculus.

The fact that each of the algorithms can be faithfully modelled as a finite-state
agent was important as currently only such agents may be analysed using the
Workbench. However within CCS it is quite possible to describe and reason about
systems which are not finite-state. Much work remains to be done in developing
implementable techniques for reasoning about wider classes of systems (see e.g.
[BBKS87], [JP89]).

The mutual exclusion algorithms were selected for study partly because al-
though they exhibit fairly intricate and subtle behaviour, their representations
are nonetheless small enough to be amenable to analysis through fairly unsophis-
ticated application of an existing tool. (The largest state space is that of the agent
Dijkstra with only 479 states.) The usefulness of calculi such as CCS, supported
by suitable automated tools, in aiding reasoning about abstractions of much larger
systems deserves further study.

Automated tools embodying calculi of concurrency have been developed at
INRIA (Sophia-Antipolis) by a group led by Gérard Berry. These tools, such as
AUTO and ECRINS, have been used to analyse a number of systems. Further
related work has been carried out by Kim Larsen in Aalborg. The existing links
between these researchers and the developers of the Concurrency Workbench will
be enhanced through the ERPSIT Basic Research Action CONCUR scheduled to
begin in autumn 1989.

The earliest references to temporal logic model checking of finite-state systems
are [CE81] and [QS81]. Edmund Clarke, in particular, has been a strong advocate
of this approach (see e.g. [CG87]). A large number of systems devoted to model
checking of finite-state systems now exist (see e.g. [Gren]), and many have been
used successfully to analyse hardware and communications protocols.

21

Acknowledgments

I am indebted to Joachim Parrow, Rance Cleaveland and Bernhard Steffen, the:
authors of the Concurrency Workbench, and to Jo Blishen who ported the Work-
bench to the New Jersey ML compiler. I would like also to thank Robin Milner, -
Kevin Mitchell and Colin Stirling for discussions about this work, and the referees
for their helpful criticisms. Part of this research was carried out while the author
was supported by a grant from the Venture Research Unit of BP.

References

[Ba86] Baeten, J., Procesalgebra, Kluwer programmatuurkunde (1986).

[BBK87] Baeten, J., Bergstra, J., and Klop, J.W., Decidability of bisimulation
equivalence for processes generating context-free languages, in Springer LNCS 299
(1987).

[CES81] Clarke, E., and Emerson, E.A., Design and synthesis of synchronization
skeletons using branching time temporal logic, in Springer LNCS 131 (1981).
[CG8T7] Clarke, E., and Griimberg, O., Research on automatic verification of finite-
state concurrent systems, Ann. Rev. Comput. Sci. 2 (1987).

[CPS88] Cleaveland, R., Parrow, J., and Steffen, B., The Concurrency Workbench:
Operating Instructions, University of Edinburgh report (1988).

[CPS89a] Cleaveland, R., Parrow, J., and Steffen, B., The Concurrency Work-
bench, to appear in [Gren] (1989).

[CPS89a] Cleaveland, R., Parrow, J., and Steffen, B., A Semantics based Veri-
fication Tool for Finite State Systems, to appear in Proc. Ninth Int. Symp. on
Protocol Specification, Testing and Verification, North Holland (1989).

[Dij65] Dijkstra, E.W., Solution of a Problem in Concurrent Programming Con-
trol, Comm. A.C.M. 8/9 (1965).

[EL86] Emerson, E.A., and Lei, C-L., Efficient Model Checking in Fragments of
the Propositional Mu-Calculus, in Proc. 22d Annual Symposium on Logic in Com-
puter Science (1986).

[EL87] Emerson, E.A., and Lei, C-L., Modalities for model checking: branching
time strikes back, Sci. Comput Prog 6 (1987).

[ES89] Emerson, E.A., and Srinivasan, J. Bmchmg time temporal logzc, in Springer
LNCS 354 (1989).

[Fr86] Francez, N., Fairness, Springer (1986).

[Gren] Proceedings of Workshop on Automatic Verification Methods for Finite
State Systems, Grenoble 1989, to appear in Springer LNCS series.

[Ho85] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall (1985).
[Hy66] Hyman, H., Comments on a Problem in Concurrent Programming Control,
Comm. A.C.M. 9/1 (1966).

[JP89] Jonsson, B., and Parrow, J., Deciding Bisimulation Equivalences for a Class

22

of Non-Finite-State Programs, in Springer LNCS 349 (1989).

[Kn66] Knuth, D.E., Additional Comments on a Problem in Concurrent Program-
ming Control, Comm. A.C.M. 9/5 (1966).

[Ko83] Kozen, D., Results on the Propositional p-Calculus, Theoretical Computer
Science 27 (1983). ’
[Lam86] Lamport, L., The Mutual Exclusion Problem Part II — Statement and
Solutions, J.A.C.M. 33/2 (1986).

[Lar89] Larsen, K., Proof Systems for Hennessy-Milner logic with recursion, to
appear in Information and Computation (1989).

[MP89] Manna, Z., and Pnueli A., The anchored version of the temporal frame-
work, in Springer LNCS 354 (1989).

[Mil80] Milner, R., A Calculus of Communicating Systems, Springer-Verlag (1980);
available as University of Edinburgh report ECS-LFCS-87-7.

[Mil83] Milner, R., Calculi for Synchrony and Asynchrony, Theoretical Computer
Science 25 (1983).

[Mil89] Milner, R., Communication and Concurrency, Prentice-Hall (1989).
[Par87] Parrow, J., Verifying a CSMA/CD-Protocol with CCS, University of Ed-
inburgh report ECS-LFCS-87-18 (1987).

[PS85] Peterson, J.L. and Silberschatz, A., Operating System Concepts, 224 ed.,
Addison Wesley (1985).

[Pr81] Pratt, V., A decidable mu-calculus, in Proc. 2224 ACM FOCS (1981).
[QS81] Queille J., and Sifakis, J., Specification and Verification of Concurrent Sys-
tems in CESAR, in Springer LNCS 137 (1981).

[St87] Stirling, C., Modal Logics for Communicating Systems, Theoretical Com-
puter Science 49 (1987).

[St89a] Stirling, C., Temporal Logics for CCS, in Springer LNCS 354 (1989).
[St89b] Stirling, C., Modal and Temporal Logics, chapter to appear in Handbook
of Logic in Computer Science, OUP (1989).

[SW89a] Stirling, C., and Walker, D., Local Model Checking in the Modal Mu-
Calculus, in Springer LNCS 351 (1989).

[SW89b] Stirling, C., and Walker, D., CCS, Liveness, and local model checking in
the linear time mu-calculus, to appear in [Gren] (1989).

[Wa87] Walker, D., Introduction to a Calculus of Communicating Systems, Uni-
versity of Edinburgh report, ECS-LFCS-87-22 (1987).

23

