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The structure of free closed categories:

C. Barry Jay
LFCS
Dept. of Comp. Sci.
University of Edinburgh
Edinburgh, UK. EH9 3JZ

12th September, 1989

Abstract A new and simple method of describing all canonical natural
transformations on closed categories is given by using internal languages to
determine the structure of free closed categories.

0. Introduction

Coherence questions for symmetric, monoidal closed categories (hereafter called closed
categories) can be resolved by examining the free closed categories on (finite) generating
sets of objects. To describe each homset it suffices to list, perhaps with repetitions, its
morphisms and then to decide when two such are equal. Using a different formulation of
the problem, Kelly - Mac Lane [6] gave such a list with conditions under which the hom-
set has at most one element. Then Voreadou [21] showed, in principle, how to reduce the
list to the homset. Here is presented a radically simpler description, including an elegant
new algorithm for determining equality of morphisms. The main result of [6] is recovered
as a corollary.

Every morphism f : X — Y of a free closed category V' can be decomposed as
gh where h: X — Z has a definite and g:Z— Y an indefinite form. Roughly speaking,
definite forms are built from evaluations and indefinite forms are evaluation free. The de-
composition above is far from unique, but the choices for Z can be restricted sufficiently to
use it in listing the morphisms of the homsets.

The kernel of the proof of decomposition can be traced to Gentzen's technique of
cut-elimination [18], which was first applied to categorical coherence problems by Lambek
[7,8], where it asserts, roughly, the redundancy of unfettered composition of morphisms.
It appeared again in [6], in the work of Minc [15,16] for relevance logic (which indirectly
settled the coherence question for closed categories), and also in [21], the complexity of
which arises because cut-elimination was designed to establish the existence of morphisms
(i.e., deductions), not their equality. For more detailed accounts of the influence of cut-
elimination see [9,14] and the related [11,19,20]. '

The decision procedure for equality of morphisms given here is quite independent

of the listing of the morphisms. Instead, it is employs a typed language & "(A) for the
free closed category on a set A of objects, which is closely related to the language
&£'(V) for a monoidal category V' as developed in [3,4,5,17] and similar in spirit to
those for cartesian closed categories [10] and toposes [1]. If {,f':X— Y are morphisms
and x € X is a variable then

f=f'in V iff f(x)=f'(x) in £'(V)
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where = is an equivalence relation on the terms. This result also holds in & "“(A) with the
added feature, due to freeness, that equivalence of terms is decidable in linear time. First,

we need only consider those terms whose type (an object of V') is either a generating ob-

ject, I or a hom-object, which allows the suppression of the canonical monoidal mor-
phisms, and second, definite and indefinite terms are distinguished. Definite terms are
equivalent iff they are built from equivalent terms: indefinite terms are equivalent iff they
remain so upon evaluation (see Example 2.2).

‘1. Free closed categories

Let (V,®,l,a,l,r,c) be a symmetric monoidal category. The set of expansions of a set
S of morphisms of I is its closure under identities, and tensoring with identity mor-
phisms. The set of iterates of S is its closure under identities, tensoring and composing.
Every iterate of S is equivalent to a composite of its expansions [12], e.g. if f : X—Y
and g:Z— T arein S then

feg=(fel)(1leg) : X®Z—->YeT
Recall [2] that V is closed if, for each of its objects X, the functor (-) ® X has a

right adjoint
: X,-1: -9

Thus, there are morphisms, natural in Y

dv,x : Y—[X,YeX] (placemarker)
ex,y : [X,Y]®eX—-Y (evaluation)

which satisfy the triangle laws for an adjunction

1
1

e(del): YoX—[X,YeX]leX—-YeX
[1,eld:[X,Y]-[X,[X,Y]®X]-I[X,Y]

and also, hom [=,~]: V9P x ¥V — V is functorial in both positions. Corresponding to

morphisms f: X®Y — Z and g:X—[Y,Z] are their transposes under the tensor-hom
adjunction

f= [1,fldx,v:X—I[Y,Z]
g=e(gel): XY —>Z

A functor F: 7V — ‘W between closed categories is a strict closed functor if it pre-
serves the tensor, unit and hom strictly, e.g.

F(X®Y)=FX®FY

The category Cl consists of the small, closed categories and the strict functors.
Let | |:Cl— Set be the forgetful functor mapping a closed category to its set of
objects. The existence of its left adjoint F is guaranteed by the general adjoint functor
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theorem; categories in the image of I are called free closed categories which we will now
study in greater detail.

Fix a set A of generating objects. The set of objects [FA| of F A is defined in-
ductively by

@) AC|FA|
G Iel|FA]
i HKX,Ye|FA|then X®Y €|FA|and[X,Y]elFAI.

‘The closure of [ under (iii) is the set of constant objects. The forms for the morphisms of
F A are generated by

(1.1) Allidentities are forms.
(1.2) All components of associativities, units, symmetries, placemarkers and
evaluations are forms, called generating forms.

(13) Iff:X—Yandg:Z— T are forms then {®@g: X@®Z—Y®T and
[f,g):[Y,Z]1—=[X,T] are, too. Also, if Y = Z then gf : X— T is a form.

The closure of the components of a, 1, r and ¢ under tensoring and composition are the

central forms. If two forms can be shown to represent the same morphism of F A merely
by applying the axioms for the monoidal structure then they are equal. Expansions and
iterates of forms are defined just as for morphisms. The length of a given construction is
the number of applications of (1.3) it requires. Whenever induction on the length is per-

formed, a given construction is assumed. The morphisms of F A are equivalence classes

of forms for the smallest equivalence relation (=) generated by the axioms for a closed
category.

There is a (2-)category which is the theory of monoidal categories [3]. This is not
so for closed categories since placemarker and evaluation are examples of dinatural trans-
formations [13], whose composition is not well-defined. Instead it will suffice to examine
the free closed categories.

Each instance of a generator appearing in the construction of an object X of FA
may be given a sign in the following manner

@) If X is a generator it has positive sign.

(i) If X=Y ®Z then the generators in Y and Z keep their sign in X .

(i) If X =[Y,Z] then the generators in Y change their sign in X while the
generators in Z keep theirs.

X is balanced if each generator in X appears exactly once with each sign.

A pair (X,Y) of objects of FA is a graph if [X,Y] is balanced. Replacing each
pair of instances of a generating object in (X,Y) by a pair of linked, unlabelled nodes
yields a graph in the sense of [6]. Also, note the similarity of these graphs to the scope or
generality of [7,8]. Then let f e FA(X,Y) be a morphism and V be a closed category.
The morphisms E(f) as & : FA— V ranges over the strict, closed functors are the
components of a dinatural transformation, called an allowable natural transformation [6].

Thus, f may be thought of as the generic component of the transformation: two allowable
transformations are equal in every closed category iff their corresponding generic compo-
nents are equal as morphisms. Define the set of canonical transformations with graph



(X,Y)tobe FA(X,Y). Their description is the coherence problem for closed cate-
gories.

The prime objects of F A (so called because they are not products of others) are
the generating objects, I and the hom-objects. Obviously, every object X has a unique
prime factorisation X = @ X as a multiple (bracketed) tensor of the Xj which are prime,

the prime factors of X. If I is a prime factor (and X *I) then it is trivial. The derived fac-
tors of an object is a set of prime objects given by

(@D Generating objects and I have only themselves as derived factors.
(i)  The derived factors of X®Y are those of X and those of Y.
(i)  The derived factors of [X,Y] are those of Y and [X, Y] itself.

The multiplicity L(P,X) (respectively, derived multiplicity ¥(P,X)) of a
prime object P in X is the number of times P occurs in X as a prime (respectively, de-
rived) factor. The multiplicity L{X) of X is the total number of its prime factors.

Example 1.1 The derived factors of X' = ([W,X]1@X)®[X,Y] are [W,X], X,
[X,Y]and Y which are all of derived multiplicity 1 except that ¥(X,X')=2. 0O

Let f: X— Y be a form. Its rank p(f) is the number of placemarkers and homs
appearing in its construction, e.g.

p(lle,dl,cld) = 4

The forms are ordered by f 2 g (respectively, f>g) if f = g and p(f) = p(g)

(respectively, p(f) > p(g)).
The generating indefinite forms are the placemarkers and homs. Their iterates are
the indefinite forms, which are prime if their codomain is, and zrivial if the identity. Let

g :Z— X be an indefinite form and Y be an object. Then
ex,y(1eg):[X,YI®eZ->Y

is a generating definite form. Tterates of these and central forms are called definite forms
(since, like definite integrals, they are evaluated). It isn't meaningful to speak of indefinite

morphisms of FA since any form f:X—[Y,Z] is equivalent to an indefinite repre-
senting (1)~
f=[1,e(fel1)ld (1.4)

of higher rank. Conversely, if g : X —[Y,Z] is a non-trivial indefinite form then its
transpose g:X ®Y — Z is defined so as to have lower rank by

A={1®g' ifg =dg’ (1.5)
ke(g'®h) ifg=[h,klg’ ‘

Otherwise the transposes of forms are defined just as for morphisms.



Lemma 1.2 Let g: X — Y be an indefinite form.

(@) If Y is a generating object or I then g is a trivial indefinite.

b) IfY=Y1®Yothen X=X1®X2 and g =g1®g2 where each
gi:Xj; = Y, is indefinite.

© If o : Y — Y' is a central form then there is another such &': X— X' and an
indefinite form g': X'— Y satisfying g =g'ox .

Proof Trivial inductions yield the results, with (a) and (b) used to prove (c). O

Theorem 1.3 Given a form f:X — Y of FA there is an object Z chosen from a finite

set of objects determined by X and Y and forms h: X — Z definite and g:Z—Y in-
definite such that

f=gh (1.6)

Proof We begin by proving that f > gh for some g and h as above (but without re-
strictions on Z). The induction is firstly on p(f) and secondly on the length of its con-

struction. If f is an identity, generating form, tensor or hom then the result is immediate. If
it is a composite
f=h'g':X—>Z'—>Y

then we may assume the result for g' and h' and, without loss of generality, that g is an

expansion of a generating indefinite and h' is a central form or generating definite (no ex-
pansion is here required by Lemma 1.2(b)). If the latter is central then apply Lemma

1.2(c). Otherwise, h'= e(1®g") is some generating definite form and

- {€(1®S")(1®k)=e(1®g"k) ifg'=1®k
h'g'= le(1og")(k®1)2 k(1®g")  ifg' =kl

The latter case is essentially cut-elimination. Thus (1.6) is satisfied for some object Z.
The prime factors of Z are all derived factors of X. More precisely, for any prime

object P = [ we have
w(P,Z)< v(P,X)

There are only finitely many Z which satisfy this condition and also
l(I,Z) < p(Y)

which latter we force as follows. Let Y = @ Y ; be a prime factorisation and let
g=Qgi:VZi—> VY,

Choose a central form A = @ A;: ®Z';— ® Z; such that each Z'; has no trivial factors.
Then g\ = ®g;iA; is equivalent to some indefinite g’ by (1.4). Note that, in general, this
may cause an increase in the rank, e.g.

gh=dr-1<[1,r1e1ld:Z'=[U,(Z'®1)® U]



By defining h' = A~1h we obtain f = g'h’ where (I,Z") < u(Y) as required. O
Given an object X of F A let its size be the number o (X) of hom-objects em-
ployed in its construction.

Theorem 1.4 Given objects X and Y in F A there is an algorithm for constructing a

finite list FA°(X,Y) of forms containing at least one representative for each morphism
in FA(X,Y).
‘Proof Clearly, if f = gh is constructed as in Theorem 1.3 then

o(Z) s min{oc(X),c(Y)}

By induction on o (X) +o(Y) it suffices to list merely the definite and indefinite
forms. Consider { a definite form. If it is central then the number of possibilities is deter-

mined by counting appropriate permutations of the prime factors of X. Otherwise, it is
constructed using a generating definite form, i.e.

f=h'ha
where o : X — X' is central, h : X' — X" is an expansion of a generating definite
e(1eg):[U,VIeW—-[U,VIeU—-V
and h': X" — Z is a form. By choosing o appropriately, we may further assume
p(I,X') = p(I,W) < p(U)

as in Theorem 1.3. Thus, there are finitely many possible choices of X' and o¢ and for

each such, FA°(W,U) and FA°(X",Y) exist by induction.
Alternatively, if f is indefinite we may assume that Y =[U,V] is a hom. Then

the indefinites in FA °(X,[U, V1) are the transposes of the forms in FA°(X®U,V),
which exists by induction. O

Example 1.5 For A = {W,X,Y} we will represent all the morphisms

X' =([X,W]leX)e[X,Y] —» [X,WeY]=Y'
The derived factors of X' are given in Example 1.1. The forms that result are

@ [1,(1®e)ald(e®l):X'=Weo[X,Y]-Y'

® [1,(e®@l)a~l(1@c)ald(1l®ec)a:X'—[X,WIleY—-Y"
© [1,(e®e)ald:X'=»X'—Y'

@ [1,(eel)a"l(1ec)a((1®ec)a®1)ld:X'»X'—Y"

In fact, there are only two distinct morphisms represented, depending upon which the
copies of X are used to evaluate each of the two homs (see Example 2.2). O



Example 1.6 Let A = {X}. Then the forms in FA°(X*** @ X * * ) (where
X* denotes [X,I]) can be separated into those where X * * * is ‘evaluated'

e(1®g)__)

and g: X * * — X ¥ ¥ ig cither the identity or given by transposition, i.e. [1,eld or"
'[1,2(1 ®[1,eld)1d; or that where X * * is 'evaluated’

% x c e(lok*)

with k =[1,ecld: X2 X* % Thus FAC(X* ¥ % X% *X) consists of the

transposes of the forms above and the identity. O

Clearly, more efficient algorithms can be found for listing the representatives of the
morphisms. Indeed, it seems likely that the morphisms can be given unique normal forms.
This is not our main purpose here, however, since the chief problem in practice is to decide
the issue of equality of forms, which we tackle directly.

2. The Form Language

In order to complete the description of the homsets of FF A we must be able to determine
when forms are equivalent, which is done by comparing the corresponding terms in the

form language &"(A) for F A wherein equivalence of terms is a decidable property. The
types of " (A) are the objects X of FA whose corresponding terms are denoted

t € X. Terms of type I are called scalars. The general definition of terms will also specify
the definite and indefinite terms, which are constructed by analogy with the corresponding
forms, and the unitary terms, which are the closure under tensoring of the indefinite terms
and the unitary, definite terms, i.e. those definite terms which are not scalars, and the sole
unitary scalar. An arbitrary term will be constructed as a scalar multiple of a unitary term,
which in general will be neither definite nor indefinite. The terms form the smallest set
closed under the following conditions.

(2.1) To each prime type X = | is associated countably many variables, which are uni-
tary, definite terms.

(2.2) x €]lis a unitary, definite scalar.
(2.3) Let X = @ X; be a prime factorisation and for each i let t; € X; be a unitary

term. Then @ t; € @ X; is a unitary term, definite (respectively, indefinite) if
each t; is.
24) Letg:X—Y be a prime indefinite form and t € X be a definite term. Then

g(t) €Y is an indefinite term (1(t) = t).
(2.5) Lett € X be a unitary term and ¢ € [X,® Y] be a definite term where each Y

is prime. Then each @i(t) € Y is a definite term, unitary iff Y; = I.
2.6) If {u;lj €J} is a finite (unordered) set of scalars which are not unitary then TTu;
is a scalar (TT denotes the multiplication of the canonical monoidal structure on I).



(2.7) Ifuis ascalar and t € X is a unitary term then u.t € X is aterm (.t = t and
u.% = ). '

A general term thus has standard form
t=u.®(gi(s;)) (2.8)

where U is a scalar, each s; € X; is a unitary, definite term and each gi: X;— Yiisa
prime, indefinite form (perhaps trivial). For example, if X € X,z € Z and

pel[XolY,ZoY],loW]

are variables and g : X — X' is a prime indefinite form then there is the term

t'= @l(xed(z)).(g(x)ep2(xed(z))) e X'0W

Each gi(s;) is a prime factor of t . Its factors are all the terms ® t j where the t;'s
form a set of prime factors of t.Unlike some earlier languages in this style (e.g. [4]), the
terms t; of (2.3) (which may include variables) are not required to be distinct. However,
the basic terms, which are the definite terms constructed by tensoring copies of * and
some distinct variables, remain unchanged. Two terms t € X and t' € X' are orthogonal

if they are constructed using different variables. The terms @1i(t) of (2.5) are the
components of the evaluation 9(t) of ¢ at t which is defined below.

The rank p(t) of a term t € X is the number of generating indefinites occuring
in its construction, though the indefinites employed in an evaluation should only be

counted once, no matter how many of its components arise, e.g. the term t' above has
rank Q(g)+1.If s=t and p(s) 2 p(t) thens2t.

Tensors and scalar multiples of terms are defined as follows. With t as in (2.8) and
t'=v.®(h;(s;)) another standard form then

tet' = (u.v).(®gi(s;)))®(®h;(s';)
v.t =(v.u)®g;i(s;)

where u.v = TT ({u;}U{v;}). Hence, if t € X®Y is unitary then t = X®y fora

unique pair of terms X € X and y € Y by (2.8). Now consider the application of func-

tion symbols. Let f: X — Y be a form and u.t € X be a term in which t is unitary.
Define

f(u.t)=u.f(t)

where f(t) is given by induction, first on p(f) + p(t), and second on the length of f 's

construction. Each case below considers one possibility for f and expresses t as a tensor
or standard form, as appropriate.

@ 1t)=t
) a((x19x2)®x3)=%x10(x20x3)



a_l(X1®(X2®K3)) = (X1 ®X7) ®X3
Gi) 1(x®x)=x ; I71(1) = (% @t)
iv) r(xex)=x s rol(t) = (tex)
V) c(x1®x2)=%X20%4

i) e(p®z)=9¢(z) = {@ (pi(Z) if @ is definite
g(s®z) if ¢ = g(s) is a standard form

(i) g.(®gi(s;) =(g.®g;)(s) ifg:X—Y is a prime indefinite.
(viii) (kh)(t) = k(h(t)) provided kh is not a prime indefinite.
ix) (hek)(x1®x3)=h(x1)®k(x,).

That (vi) and (ix) are well-defined follows by induction on p(f) + p(t) and the length,
respectively.
Note that if f is a definite form and t is basic then £(t) is not in general definite

since its standard formis u'.t' € Y where t'€Y is definite and u' is a scalar.
This language is not dependent on the results of Section 1 but has been con-
structed in parallel with them. In particular, (vi) echoes cut-elimination.

We now introduce an extremely simple relation = on the terms which will be used
to determine whether forms are equivalent or not. It is the smallest relation satisfying

(2.9) x=xif x € X is a variable or * .
(2.10) If 9 = Y €[X,Y] are definite terms and s = t € X are unitary terms then

@i(s) = Pi(t) € Y; for any prime factor Yiof Y.

(2.11) If s,t €[X,Y] are unitary terms, of which at least one is indefinite, and X € X is
a basic term orthogonal to s and t then s(x) = t(x) implies s = t.

(2.12) If s; = t; € X; are unitary terms of prime type for 1<i<m and uj= v are
non-unitary, definite scalars for j €J then (TTu;).®s; = (TTv;).®t;.

Theorem 2.1 Let A be a set. Then = is a decidable equivalence relation on the terms of

L"(A).

Proof No equivalence is the conclusion of two distinct clauses above. Thus, every
equivalence has a unique proof, the converses of (2.10) - (2.12) follow and it suffices to
consider definite and indefinite terms of prime type.

Reflexivity and symmetry of the relation are immediate. Let r=s=1t € X be
terms. The proof of transitivity is by induction on p(r) + p(s) + p(t). If they are all
definite then r = t follows by (2.9) or (2.10). Otherwise, one of them is indefinite and
X =[Y,Z]is a hom. Let y € Y be a basic term orthogonal to r, s and t. Then
r(y) = s(y) = t(y) which implies r(y) = t(y) by induction. Consequently
r = t as required.

For decidability, note that if an equivalence s = t of terms follows from some
other such s; = t; by one of (2.10) - (2.12) then p(s;) + p(t;) < p(s) +p(t) with
equality only if s; and t; have shorter constructions than s and t, while variables are
equivalent iff equal. O



Example 2.2 Let ¢ € [X,W], ¢ € [X,Y] and x,x"' € X be variables and apply
the forms of Example 1.5 to ({((p ® X) ® ¢) € X' and then evaluate the resulting terms at
X' to obtain terms of type W®Y .

@ [1,(1ee)ald(e®l)((pex)0P)(x") =[1,(1@e)ald(p(x) @) (x")
= (1®e)al(d(p(x)®y))(x")
= (1ee)a((p(x)®y)ex’)
=(10e)(p(x)0(yox’))
= p(x)®P(x')

Similarly, the other forms yield (b) @(x") ® Y(x) (c) 9(x)® Y(x') and

(@ @¢{x")®Y(x). Thus, the terms of (a) and (c) are equivalent, as other those of (b)
and (d), but neither pair is equivalent to the other. Hence

[1,(1®e)ald(e®l)((pex)0y) =[1,(e®e)ald ((pex)®Y)

and similarly for the other pair. It will follow from Theorem 2.6 that the corresponding
forms are equivalent. O

Example 2.3 Let @ € [X,Y] be a variable. Then
[1,e]ld(g)(x) = e(d(9)(x)) =e(gp@x) = ¢(x)

Thus, [1,eld(¢) = ¢ by (2.11) which is desirable since [1,e]d = 1 as forms. From
this it will follow that applying each of the three forms in which X * * * is 'evaluated' in
Example 1.6 to 9@y € X* * * @ X* * yijelds ¢ (). By contrast, applying the form
in which X * * is evaluated to (¢ ®  yields

¢([1,gld(@)) # @(y) g

Proposition 2.4 Iff = {': X— Yare forms and x = X' € X are terms then
f(x) = f'(x"). .
Proof Use induction on p(f) + p(f') and secondarily, the length of their constructions.

Consider all possible proofs of f = {'. For most of the axioms for closed categories the
desired equivalence follows directly, as is easily checked. Now consider the other axioms.

Let v € Y' be a basic term orthogonal to X.
(i) Functoriality of hom: given [h',k'I[h,k]:[Y",Z"]—=[Y",Z'] then

[h"k'I[h,k](x)(y) = k'([h,kl(x)(h'(y))
k'k(x(hh'(y)))
k'k(x'(hh'(y)))
[hh',k'k](x")(y)

oo

where the only equivalence holds by induction (with f = f' = k'k) since
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x(hh'(y)) =x'(hh'(y))

by definition. Thus [h',k'l[h,kl(x)=[hh',k'k](x") (similarly [1,1](x)=x").
(ii) Naturality of placemarkers: given g:X — X' then

([1,g@1]ldx,v(x))(y) =(g®l)(x®@Y)
=(gol)(x'ey) (induction)
= (dx',v'g(x'))(y)
+ (iii) Second adjunction law:

([1,eldpy:,z7,y) () (y) = e(d(x)(¥)) =x(y) = x'(y)

Alternatively, let f and {' be equivalent by construction, e.g.

f=I[g,hl:[Y",Z"]->[Y",Z']

and f'=[g',h'] where g=g'and h=h'. Then g(v)=g'(y) by induction and
x(g(y))=x"(g'(y)) by definition whence

h(x(g(y)))= h'(x'(g'(¥)))

again by induction. If f and ' are composites or tensors of equivalent pairs of forms then
the result follows similarly. O

Lemma 2.5 Let ¢ € [X,Z] and x € X be a terms where ¢ is definite and X is unitary.
If s=1 €Y are terms in standard form and ¢ is evaluated in s at X then there is an
X' = X at which ¢ is evaluated in t.

Proof Use induction on the length of the proof of s= 1.0

Lemma 2.6 Letf:X1®Xo2—Y1®Yobeaformand X=X1®x2€ X1 ® X2 be
a definite term with
f(x18x2)=y10y2

where the prime factors of X; only appear in y; . Then there are forms fj: X;— Y; for

1=1,2 such that
f=£f1®f»

Proof Setf=pf'c where ot : X1®Xos—>Zand p:T—Y1® Y, are central
forms and f':Z— T is some form. The proof is by induction on the length of the con-
struction of f'.

6)) If ' is a generating form or identity then the result holds trivially.

@ IKf=ghforsomeh:Z—Tandg:T—Y1®Y, of shorter construction

than f' then there is a central ¥ : Z— Z1 ® Z such that

Yha(x1©x2) =110ty

11



where the prime factors of X; only appear in t;. Thus ¥ho = hi®h, for some
h;:X;— Z; by induction. Similarly pg¥~1=g; ®g2 and ‘

f=gihi@g2h2
@) IKEf=g1®g2:Z21®Z2—2Y1®Yothen x= 1@ andp =p1®fo

by monoidal coherence.
‘v)  That f' = [h,k] is a hom is impossible. 00

Theorem 2.7 Let X € X be a factor of h(z) where z € Z is a basic term and
h:Z— X' is a definite form (e.g. X is a basic term). If {,f': X — Y are forms satisfying
f(x) = £'(x) then f = {'. Hence equality of morphisms in FA is decidable.

Proof The proof is by induction on p(f) + p(f') and secondly, on the lengths of their

constructions. Consider the case where one of them, say, f is constructed using a gener-
ating definite. Without loss of generality,

f=k(e(leg)®l): ([U,VI®W)®Z—Y

where g : W — U is an indefinite form and k :-V®Z—Y is a form. Let
x=(pow)®z

Then @ is evaluated in £(x) at g(w) and so is evaluated at some u = g{w) in the
standard form of f'(x) by Lemma 2.5. Thus !

f'=k'(e®1)h
for some forms

h:([U,Vlew)eZ—([U,VIeU)e®Z
and kK':V®Z'— Y satisfying h(x) = (p®u)®2z' for some z' € Z'. Now
h>(1eg)eh’

for some forms h':Z—Z"' and g' : W — U by two applications of Lemma 2.6 and 0
we may assume that h' = 1. Hence g = g' by induction and without loss of generality
they are equal. Let s = (e(1®g)®1)(x). Consequently, k(s) = k'(s) and 50

k = k' by induction, which yields the result.
Alternatively, both forms are constructed without the use of generating deﬁmte S.

Then f 2 g where o : X — X' is central and we may assume £’ is indefinite. Let

g=0g:9Xi—20®Y; |
f'=@f'i:@X'i—=®Y;

12



where Y = ® Y; is a prime factorisation. If X = ® x; and o (x) = ® X' then
gi(x';) = f'i(x;) whence the definition of equivalence forces the variables of x; and
X'; to agree, and thus the existence of central forms otj: X — X' satisfying

o i(xi) = X'y

Thus o = ® ot by coherence and we may assume Y = [Y",Z'] is a hom since each x;
satisfies the hypothesis for X. Choose a basic term y € Y ' orthogonal to X. Then

fr(xey)=f(x)y)=1'(x)y)=({)~(x0y)

Thus f~ = (f') ~ by induction and so f = f'by transposition.
Thus f = f' as required. Thus morphisms of FF A are equal iff their application to a
basic term yields equivalent terms, which is decidable. O

Corollary 2.8 Morphisms of FA which have definite forms are epimorphisms.
Proof Let the definite form be h of the theorem with X' = X. O

Corollary 2.9 (Voreadou) There is an algorithm for constructing the set of distinct
canonical transformations having a given graph.

Proof Theorem 1.4 allows us to give a complete list of candidates for the canonical
transformations (possibly with duplications) and Theorem 2.7 is used to pare the list back

to one representative for each transformation. O

An object X is proper (respectively, constant-free) if its construction employs no
objects of the form [Z,C] where C is constant and Z is not (respectively, employs no
constants, unless X = I). Clearly, every proper object is isomorphic to a constant-free ob-
ject. A canonical transformation < with graph (X,Y) is proper if X and Y are.

Theorem 2.10 (Kelly-Mac Lane) If ot and B are proper canonical transformations with
the same graph then o =p.

Proof Let [X,Y] be balanced with X proper. Without loss of generality, X is constant-
free. Let s,t € Y' be terms built using only the variables of some basic term x € X. It
suffices to prove s =t which is done by induction on p(s) +p(t). Since X is con-
stant-free, s and t are unitary and, without loss of generality, of prime type. If either s or
t is indefinite then Y' = [Z,T]is a hom and s = t since s(z) = t(2) for any basic

term Z € Z by induction. Alternatively, if s = @i(s') and t = PJ(t') are both definite
then i = j and @ and Y have the same type since [X,Y] is balanced. Consequently s’
and t' also have the same type. Hence ¢ =  and s' = t' by induction, which yields
the result. Finally, if s is a variable then so is t and they are equal. O
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