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Abstract

This paper concentrates on many-sorted calculi for equations, equational implications
and conditional equations (or quasi-equations). It attempts to unify the three of them
not only on their names, say dependent equations and quasi-dependent equations for the
equational implications and conditional equations (or quasi-equations) respectively, but
aslo on their semantical results which will be totally presented in Birkhoff’s approach.
Their deduction systems are written as D, D? and D? respectively. The completeness of
D is not new, but a proof of it (to be presented) is very unique and deserves an special
attention. A new concept of cross-fully invariant congruences is introduced to capture
the completeness by Birkhoff’s method, which does not have its place in single-sorted
case. The completeness of D? is achieved with a pay-off on total derivability. The calculi
for D? and DY presented in [14] and in [11] respectively will be shown unsound. The
right one for D% is found with a pay-off on total derivability. Although the calculus
in [11] can be served as an alternative for the right one, a sound and complete DY is
remained open. Nevertheless, the results, especially the ones related to D9 , suggest us to
look for an universal equational form to unite the three equational forms. One candidate
is briefly proposed.
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1 Introduction

Various equational theories, including their corresponding software system environments,
have been developed dramatically in recent years and still on their fast growing. These
theories are based on calculus of equations (or equational logic), calculus of equational
implications or/and calculus of conditional equations (or quasi-equations). Interestingly,
those calculi were developed individually as their names suggest. Little effort has been
made to unify the three of them (not just two of them). One reason for this may
be the fact that the theoretical work on the calculi seems unrelated. For example, a
completeness proof of one calculus is irrelevant to another. It is my attempt in this
paper to establish the close relationship among the three calculi, i.e. to provide their
soundness and completeness in one approach, the traditional Birkhoff’s approach. As a
result of this, I suggest the names of dependent equations and quasi-dependent equations
for the equational implications and the conditional equations (or the quasi-equations)
respectively as an emblematic efford, which is demonstrated in the title of this paper.
Further on the unification, an universal equational form to unite the three equational
forms is proposed and will be named as the universal equation.

An equation t ~ 3 u is presented with a variable indexed ~ rather than an universal
quantifier over the equation VX.t ~ u as is presented in [4, 8] Let ¥ be a signature,
V be the collection of variables indexed by Sort(%), Tg(X ) be the term X-algebra
with variables in X C V, t,u be terms in Tx(X ), A be a T-algebra and o be a X-
homomorphism from TZ(X ) to A, written as a : Ty_;(X ) — A. Sometimes, we will omit
the signature ¥ in our ternunology for simplicity reason. For equation ¢ =~ ¢ u, we define
that

1. Aja =t ~puiff a(t) = a(u); and
2. AEt~puiff Aja =1 ~¢ u, for every a: Tg(X) — A.

We should be aware of that A |= ¢ ~ ¢ u is a semantical property (or meta-property)
of algebra A. Intuitively, it is the indistinguishability of A. Obviously, we will have
more interest on the indistinguishability if it is universal. More precisely, ¢t and « are in-
distinguishable iff for every algebra A, A |=t ~ ¢ u. It is very important and convenient
if we have an inference-rule system, D, which can deduce all indistinguishable terms.

For example, given a collection T' of equations, I' -t ~ ¢ u implies I = £ ~ 3 u, where
T'ht~y uexpressest ~g u € D(T) and I' |= ¢ ~ 4 u means that for every algebra
A, A =t~puif A=T; and vice versa. This is the commonly named soundness and
completeness of the calculus D.

Similarly, we can give definitions for dependent indistinguishability and quasi depen-
dent indistinguishability as follows, and their inference systems as D¢ and D? respec-
tively.



1. dependent equation yg — Ay :

(a) A vy Agiff either not A =7z 0or A | Ay
where 7z ranges over collections of equations, Az ranges over equations, and’
A | vz means A | Al for each Af; € v;.

(b) Ty~ Agif A ¢ implies A |= v¢ — Ay for every algebra A;
where I'? range over collections of dependent equations and A |= I'Y means
for each 7% = Ay € I A 7% = Al

2. quasi-dependent equation vz < Ag:

(a) AEvz— Aziff A,a | vz implies A,a | Az for every a : T,(Z) — T,(Z);
where A,a |= 7z means A,a = A} for each A} € vz.

b)) Ty —Agif A= I'? implies A |= vg < Ay for every algebra A;
where T'? range over collections of quasi-dependent equations and A = I'
means for each 732 s A'X. el AE 7,)2’ — Al

Note that when 4z = 0, either a dependent equation 4z — Az or a quasi-dependent
equation vz — Az is the equation Ajz.

The soundness and completeness of many-sorted equational calculus D, once be-
ing believed a trivial extension of single-sorted one, was first claimed by Goguen and
Meseguer in [6] and demonstrated that the naive belief did not hold. The full version of
the proof appears in [8]. Their proof involves building higher-order function spaces from
term algebras and verify that these higher spaces form clones (see [3] for basic properties
of clones). Since they only allow arbitrary finite quantification over equations, they have
to borrow the co-limit result from category theory [12] in eliminating quantification over
equations. Ehrig and Mahr follows the outline of their proof [6] and provide a proof in
[4]. There has been some confusion between these two proofs, see [5] and [9].

Different from the above two, the proof of soundness and completeness of D, to be
presented, is totally along the usual Birkhoff’s approach (see [1, 3, 10] for usual Birkhoff’s
approach in single-sorted case). It introduces a new concept of cross-fully invariant
congruences to capture the completeness, instead of building higher order function spaces
from term algebras and verifying them as clones as [8] does, and unlike [4] excluding
possible empty carriers. The new concept does not have its place in single-sorted case,
and I believe that this is its first appearance in literature. The necessary and sufficient
condition for variable index free D is derived unlike [8] using the co-limit result of category
theory [12]. This also helps to clarify the confusion between [5] and [9]. This approach
is conceptually simpler and more coherent in extending to include dependent equations
and quasi-dependent equations. It also provides information about models, say what
is an equationally definable, dependent equationally definable and/or quasi-dependent
equationally definable classes of algebras (see [2, 13] as examples about models of quasi-
dependent equations), which can not be easily derived in other approach such as [8] if it
is not impossible, especially in the case of quasi-dependent equations.

Some misclaims about the soundness and completeness of D¢ and DY in literature
are clarified, say in [11, 14].

[14] made a false claim of a sound and complete calculus for equational implications
(his terminology for dependent equations) for single-sorted case. Essentially, his calculus
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is D¢ (which is sound and complete with respect to equations only) except that his
substitution is the generalized one (in the single-sorted situation). Because of this, his
calculus is neither sound nor complete, counter-examples for his claim will be presented. .

By extending D%, we can still reach a sound and complete deduction map D4, But
the map D? is not known as a monotonic function. Because of this, we lose the ability
of total symbolic manipulation of dependent equations, i.e. total derivability of valid
dependent equations. Fortunately, we have D2, which has the total valid derivability of
dependent equations only with respect to equations.

For quasi-dependent equations, [11] made a wrong claim that its calculus of condi-
tional equations (its terminology for quasi-dependent equations) is sound and complete.
In principle, this calculus is the same as 133_. Therefore, it can not be sound but com-
plete. An counter-example against soundness of DY will be presented. However, Df’l_~ is
sound and complete with respect to dependent equations. Also it is different from DJ.
So, it does not fail to be a good alternative for D? (if it does exist, see Section 6).

Similar to the dependent equations, we do not have a total derivability for valid quasi-
dependent equations either. But we do have a total valid derivability of quasi-dependent
equations only with respect to equations. In general, from a syntactical characterization
(or derivability) point of view, the situation for quasi-dependent equations is worse than
the one for dependent equations, since we even do not know how to get a deduction map
which totally captures the semantical quasi-dependent indistinguishability regardless of
whether it is monotonic. There are some literature about the models of the quasi-
dependent equations, see quasi-variety in [13, 2] for an example.

As a summary for derivabilities, we have sound and complete calculi D, D¢ and D%
for equations, dependent equations and quasi-dependent equations only with respect to
equations.

With regard to the valid deduction systems of D% and D9, there are some open
problems remained to be solved. For instance, whether is there a sound and complete
deduction map D97 However, their completeness of valid derivabilities are established
but only with respect to equations.

The tremendous success of syntactical characterizations for each individual D, D?
and D9 in the traditional Birkhoff’s approach shows the close relationship among equa-
tions, dependent equations and quasi-dependent equations. This leads us to think of a
unification of the three equational forms syntactically. I discover that {v,, — A,,|m €
M} — (v — A) can serve the purpose. For example, when M = { it is a pure quasi-
dependent equation, further if ¥ = 0 it is a pure equation; when all 4’s are empty it is
a pure dependent equation, of course further if M = 0 it is a pure equation. Therefore,
we can name {Y,, < An|m € M}~ (y — A) as an universal equation. It semantical
definition is omitted, which can be easily given as its notation suggests. Based on the
work presented in this paper, the soundness and completeness of the deduction map D*
for the universal equations can be developed analogously and they are deliberatively left
out. Nevertheless, the interested readers can do it as an exercise.

Due to the space reason, I will present the main results with few proofs. However,
full results with proofs will be collected in a chapter of my forthcoming thesis [15].



2 Equational Calculus with Variable Index

Upon equations, there is an essential difference between single-sorted algebras and many-
sorted algebras, namely , the potential empty carriers. This fact can be demonstrate as
follows :

Fact 2.1 (role of variable index) :

1. A Et~g puimplies A |=t ~ ¢ u, provided that there is a (total and non-empty)
map a from X UY to A.

2. Al=t~puimplies At~y o u.

Following a quite standard procedure, we can get a theorem which is similar to
Birkhoff’s theorem, formally,

Theorem 2.2 (Birkhoff’s Theorem) : The following three statements are equiv-
alent,

1. Tz(f)/KeTX(A) Et Nz U;

2 AEt~gu;
3. <t,u>€ Kerg(A);

where Ker g(A) is the kernel congruence of A (defined as NaTg(2)—A ker(a), which

is, in turn, defined as ker(a) =4 {< t,u > |a(t) = a(u)}) and TE(X')/KeTX(A) is the
quotient algebra.

This result can be easily extended to a theorem, formally,

Theorem 2.3 (Birkhoff’s Theorem) : Let K be a collection of X-algebras, then
the following three statements are equivalent

1. Tg(X)/ Naex Kerg(A) Et~g u;
2. AlEt~guforeach A €Kk;
3. <t,u>€ Naex Kerg(A);

Remind you of that the above two theorem are related to the variable indexed X.
But the index X play two differrent roles. One is an index for equations and the other
is the free generator of the quotient term algebra, which reflects the size of the quotient
algebra. The below results are intended to clarify the impact of the different roles.

Theorem 2.4 (Relationship among Different Indexed Term Algebras) : Let
t,u € Tg(X), we have the following :

1. T5(X)/Naex Kerg(A) k= t ~ gy u implies Tg_g)i") /Naex Kerg(A) Et g,
provided that there is a homomorphism o : T (X UY) — Ty(X).

2. TE(X: U 17)/ nAeKZ KG’I‘XU?(A) f= t Moy U implies ngf)énAEK Ke_’):X(A) '=
t = ¢ u, provided that there is a homomorphism a : Ty(X UY) — Tg(X);

3. Tx(X)/ Naex Kerg(A) =t ~ ¢ u implies Tx(X)/ Naecc Kerg(A) =t ~p pu



4. Tg(XUY)/ Naex Kergup(A) |t ~g,p uimplies Ts(XUY)/ Naex Kergup(A) E
g u;

5. Ts(XUY)/ Naex Kerg ¢(A) |t ~ ¢ uimplies Ts(XUY)/ Naex Kerg #(A) [:
t~g pu

6. Tg(X)/ Naex Kerg(A) E t ~4 u implies Ty(X UY)/ Naex Kerg p(A) E
tp o Uu;
XUy

7. Ts(X)/Nacx Kerg(A) | t ~4 u implies Tx(X UY)/Nacx Kerg p(A) E
g ou;

8. Te(X UY)/Naex Kerg p(A) = t g p v implies T(X)/Nacx Kerz(A)
t~a o U.
XUuY

The first two items of Theorem 2.4 show the role of the variable index in equations
and the last two are more interesting. They express that the quotient term algebras with
larger. sizes preserve the equation which is satisfied by a quotient term algebra with a
smaller size, and vice versa. Other items listed in Theorem 2.4 is an efford to help readers
to understand the inter-relationship among the members of a consequence family (to be
defined) in next section (Section 3). Also, the order among the items partly reflects a
logical way in their proofs.

The key point in the proof of Theorem 2.4 is the very carefull manipulation of variable
index and the fact that for every a : TE(X') — TE(Y)/ Naex Kerg(A), there is a
homomorphism & such that o = v o &, where vy is the natural homomorphism from

the term algebra Tx(Y) to its quotient algebra. This fact also leads us to introduce the
Cross-fully Invariant Congruence, since ¢& can be viewed as a substitution.

Let 6 be a family of fully invariant congruence on A € K, 0 is said to be cross-
fully invariant over K iff for all A,B € K, and for every < a,a’ >€ 6, we have that
< afa),a(a’) >€ 4B for each a : A — B. (Note : this definition coincides with the
fully invariant congruence if || = 1). Note that the concept of cross-fully invariant
congruences does not appear in literature before, as far as I know.

With the introduction of cross-fully invariant congruence, we can establish a similar
Birkhoff’s Completeness Theorem for Equational Calculus in many-sorted case.

Theorem 2.5 (Soundness and Completeness of D) : The least cross-fully
invariant congruence is the same as the the least fixpoint of the deduction map D defined
as below, given any T,

1. (1dent1ty) ue;f(p)

2. (reflectivity) ‘i%f()ﬁ
3. (symmetricity) — te%j(p)
4. (transitivity) — = U:; QEIE«)F



OET i tm™ g um EL(JH=[2|=|x])
d(i)ZXa(ﬁ)GDx(f‘)
t pu€ely 0T (X)-Tx (¥)

a(t)xpa(u)eDg()

The variable indices in the cross-substitution rule play a crucial role; otherwise we
can derive true ~ false as strikingly demonstrated in [6].

The main idea in the proof of Theorem 2.5 runs as follows : all sound equations in the
family of term algebras forms least cross-fully invariant congruence over the collection
of all those term algebras.

5. (compositionality)

6. (cross-substitution)

3 Elimination of Variable Index in Equational Calculus

As we point out previously in Theorem 2.2, the index X plays two different Eoles. Ig
Theorem 2'4’.. these different roles have been represented by different index X and Y
such as Tx(X)/Naex Kerg(A) k= t ~p u. For simplicity, we collect all these ¢ ~p u
and name them the consequence family {éX(K)YIX,? CV}ie <tu>e C’X(IC)? iff
Tg(X)/ Naex Kerg(A) }: t ~p u. So, the index X in C’Xo(IC)? reflects the size of term
algebras, and the index Y indicates the index for equa‘uons Thus _Wwe_can deﬁne that
D is variable eliminatable (or variable index-free) iff for all X,¥ cV,X CY such that
(2) Cx(K)p (s (R)x T (2)= Cx(K)g and (b) Cp(K)y fTE(X)xTE(X Cx(K)g. .

On the other hand, Theorem 2.4 can be restate as follows : let X,Y C Vand X C Y,

Cyp(K)z

. ~ S
U CopOp oyt @ C2K)plry@)xte@ € C2(K)2
DX(’C)X'

where C means that the containment holds (only) if there is a homomorphism « :
Ts(¥) — Ts(X).

The contaiment, not obtained from Theorem 2.4, is the one with ? beside U, i.e.
C 2(K)g C Cy(IC) g- This can be easily checked. Hence, if we can eliminate Ja on the
top of C from the above, we will get a variable index free D. This observation leads to
the following theoréem, formally,

Theorem 3.1 (variable eliminatable condition) : Given signature %, the fol-
lowing three statements are equivalent :

1. for all 3,5 € Sort(¥), Tx(X;); # 0, where X; is a singleton set, i.e. there is only
one variable for sort j and no other variable;

2. forall Y CV and Y # 0, Tg(Y); # 0 for each i € Sort(%);

3. the variable index in D is eliminatable, i.e. variable index free.

This result is very strong. It confirms that the single-sorted D is variable index
free and also justify the commonly used technique of getting variable index free D by
introducing extra constants to the signature X of every sort.
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4 Dependent Equational Deduction

Before proceeding further, we look at the models of dependent equations first. This:
provides certain interesting information.

Fact 4.1 (models of dependent equations) : Let I'? be a collection of dependent .
equations (N.B. ) — Ay is an equation, A for short), Eq(l'%) =g {AplAg € ey,
pr(T?) =4 Eq(T?)U{Ag|Az € v¢ for some 1z = Ay € I} and cl(T?9) =4 Eq(T?)U
{Aglvyg— Az e T for some Tz}

1. if Algs poey F Vx> then Algy pyrayuiymngy 2 Alds o)

2, I.fAlgE’Eq(f‘d) = Yz, then Algz,Eq(fd)u{,yiHAg} < Algz,Eq(I"d)
Algzypr(f‘d) AlgE,PT(f‘d)
3, Algs pyey and Algs p,5ay 0 Algs gfa
e c ‘ <
Algz,cl(fd) Algz’cl(f‘d)

4. if Algs, g, ey | Ay for each Ay € pr(T%) — Eq(T9), then Algs ra = Algs, . pay N
lgz,cz(fd)

The first item of Fact 3.1 seems a bit surprising, since our common sense tells us that
the number of models should decrease if adding new axioms (axioms can be dependent
equations in this case). The item states the opposite of it.

For dependent equations, we can easily obtain an extension of Theorem 2.3, formally

Theorem 4.2 (a similar Birkhoff’s theorem) : The following three statements
are equivalent,

1. K I= Tz AX,‘
2. M <lmyUm >€ Naex Kerg(A) for all m (or simply vg C Naex Kerg(A)), then
<t,u>€aex Kerg(A) (or simply Ay € Nacx Kerg(A);

3. Te(X)/ Naex Kerg(A) =1z — Ag.

An indexed map D2 from the indexed product P(P(V x Tx(V) x Tx(V)) x (V x
Tg(V) x Tg(V))) to itself is said to be a deduction map of dependent equations iff it is
defined as follows : let I'? be a family of collections of dependent equations. Then,

. . yarA 'Efd
1. (identity) yz+A g €D (Pd)

. t€Ty (X
2. (reflectivity) Otz gt€DA (T)

tt' €Ty (X)
~gt'mt'egteD? (I9)

3. (symmetricity) -

£t 2" €Ty (X)
H ot bt st €DE (I'D)

4. (transitivity) =7
—-X
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tm )t mET}] (X)
{En gt m1<mL A=l }so ()= go (¢ )eDE (I4)

5. (compositionality)

QHAX EF‘j?;a:Tz(X)—»Tg (Y)
Ba(A g )eDd (T9)5
a(7¢) is its natural extension to a collection of equations (note : a(@) = 0).

6. (substitution) , where a(t ~ ¢ t') =4 o(t) ~p a(t’) and

P—A 7 €09y 7 CTx (X)x Ty (X)
% I—)AX EDi (Fd)

7. (axiom introduction)

ey o PN )

8. (modus ponens)

The deduction closure I'? is the least fixed point of D% containing I'¢, written as
LD (T?) or simply DE(T'?).

For the soundness and completeness of D¢ with respect to equations, we have that
the soundness and completeness of D with respect to S-equations are ¢(Dd(I“l))|' =
nAGAIgE o K(A), where ¢(D2 (I‘d)X)I'~= {<t,t/ >0 —txgt e D4(T)}. This can

be achieved by the same reasoning as we did to D, with the fact that the rules from 1
to 6 and 8 of D? include all rules of D.

The soundness and completeness of D% for all possible dependent ¥-equations are
whether we have that vz — Ap € uD2(T9) iff 7z € uD?(T9) implies Age uDe (1)
(ie. 0= Ap € UDd(I‘d) When b — Al € uDd(I‘d) for every A' E vg)- The
proof for the soundness direction is easy. But for the completeness dlrectlon, we have a
counter-example, see Example 4.3 below. Therefore, D2 is incomplete for the dependent
equations.

Example 4.3 (counter-example for completeness of ﬁd_) : A counter-example
for completeness of D? is provided as follows : let i be a sort in I » Xi; = {c«} and other
2.; =0, A be an algebra < A, A > where A; = {o,+} and A,,(a) = * for every a € A;,

= {C*(CE) =z} c*(y)7c*(x) zy) c*(y) = c*(c*(x)) Xz} c*(y)}' The remaining is
to show & ~(; 1 y + ¢c.(T) ~ (54} ¥ is not derivable by D2, I give a hint and leave it as
an exercise. (Hint : to show this, you can define n,(t) as the number of ¢, occurring in
t and show that every derivable ?'i“%?" has the property of t = t’ or n.(t) + n.(¢') > 1.)
vz Ay €% ;0:T5 (X)»Tx(P)

alvg)—a(A g)eDE (),
Why? (Hint : because the generalized rule is not sound, see Example 4.3 and include
T Npoyy} T Y Xpoyy Y into the I'? and consider c,(z) iratyy'} Cx(2)
Y {zo gy} ¥ Which is a result of a generalized substitution; on the other hind, this
provide a counter-example against the soundness of Selman’s equatlonal implication
calculus in [14]).
The deduction map D? is defined as : given any e,

The substitution rule (6 in D?) can not be generalized to

Vg HA)? EUDi (fd)
Tz I-—}AX EDd(fd)

g ZUD? (F4);A 5 T5 (X)x T (X)
g Ay €D2(I'd)

2.

where LID?(T?) means the least fixed point of D¢ contained ' with the usual inclusion
order. Sometimes we will omit U for simplicity.
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Since D2 is complete for equations and D? does not increase the derivable equations
of D%, we have that D? is sound and complete with respect to equations. For soundness
and completeness of D¢, we have a theorem below.

Theorem 4.4 (soundness and completeness of D?) : D? is a sound and
complete deduction system of dependent 3-equations for any given I, ie. Y Ag €.
J?d@d) iff yg C DYT?) implies Ag € DUT?) (i.e. § — Ag € DY) when § — A', €
DT for~every Al €7g)

Since D¢ is not monotonic (due to 2 of f)d), there is an interesting question left
below,

Open Problem 4.5 (monotonic D9?) : Whether can we combine the two defini-
tions of D% and D? together into one (for D?) such that the new D? is monotonic?

Since a dependent equation 7¢ — A is actually an equation Ap if v = @, the
condition for variable index-free deduction system D? is still the same as it previously
expressed in section 3.

5 .Quasi-dependent Equational Deduction

First of all, we will try to find out the relationship between dependent equations and
quasi-dependent equations. For this purpose, we define an obvious translation between
dependent equations and quasi-dependent equations. Formally, We define a natural
translation ¢-d from quasi-dependent equations to dependent equations as g-d[[yg —
Agll =4t 7 — Ag. It is easy to verify that ¢-d is semantically sound since A =
Yz < Ay implies v — Ag. Then, we extend it naturally to translate a collection
of quasi-dependent equations to a collection of dependent equations. The models be-
tween dependent equations and quasi-dependent equations under the translation have
the following property : given a I'? and let I'? be ¢-d[[T'?]], since A |= Yg < Ay implies
A = 74 — Ag, we would have Algg rq © Algs, pa. Hence, Algg ra =t ~ 4 t' implies
Algzyfq Ft~g t'. Another way to understand this property is that for a (non-empty)
K, K |= v# — Az implies K |= v +— Ag. Such an observation leads us to understand
that DY) [eqS DY(T9)[,, (i-e. whenever an equation can be deduced by D¢, it can also
deduced by D9, if there is a sound and complete Dq) With a surprise, I discover that
Birkhoff method (i.e. using fully invariant congruences and their quotient algebras to
capture a completeness) is not powerful enough to reach a sound and complete deduction
system D9 for quasi-dependent equations. However, we are still able to reach a sound
and complete D? only with respect to equations (valid equations are the central concern
in many cases anyway). Actually, the obtained 13?,_ is complete but not sound, as we will
see the result.

On contrast of equational case, i.e. Theorem 2.3, we do not have the three equivalent
statements for quasi-dependent equations rather we only have two equivalent statements
corresponding to it. Formally,

Theorem 5.1 (a similar Birkhoff’s theorem) : Let K be a class of X-algebras.
Then, following two statements are equivalent :

1. TE(X:)/KG’I'X(A) I: Tg = AX“

2. for every & : Tg(X) — Tg(X), if&(yg) C Kerg(A), then &(Ag) € Ker g(A).

10



From above, we understand that quasi-dependent deduction have a very close relation
with dependent deduction. This close relation has been explicitly expressed, say in 2 of
the above. Such a relation enables us to define a Di which is an extension of D¢

Although we do not have three equivalence, we do have two equivalent statements of
the above and plus an (extra) implication below. .

Theorem 5.2 (quasi-dependent equation character): A |=vyp — Ay implies

that for every & : Tg(X) — Tx(X), if&(yg) C Kerg(A), then &(Ag) € Kerg(A).
The deduction map DY is defined as follows : let I'? be a family of collections f‘g.{. of
Y-equations, dependent X-equations and quasi-dependent Y-equations,

YAy el 'y,?HA,?Ef‘q

1. (identity) "Bz €DL (%) T Bz €DT(T9)

ivity) —t€T2X)
2. (reflectivity) Dt gteDl (T9)

/€Ty (X)
t gt! st/ g te DY (T9)

3. (symmetricity)

£ €Ty (X)
Yo g th yestoe gt €D (T9)

4. (transitivity) =gv

'E‘m 1t—;m ETE (X)
mll<m< (=170 (P g0 (F)eD? (T9)

5. (compositionality) TP
m g

vg—Ag€la:Ty (X‘)—-:TE (¥)
a(vg)—a(Agz)eDL()y
vz A g €l {0 A eMAL ey }i0: T (X)—Tx (¥)
a(vg)—a(Az)eD? (T)y

6. (substitution) and

p—A 5 €[y 5 CTx (X)x Ty (X)

7. (axiom introduction) e A g €D (T7) )
X &

! A ef\q; g A _‘Gf‘q AIG’YI
X X X X P
g oA €DI(TY)

8. (modus ponens) Z and

'y;? HA';? Gf‘q;{'y)-{ —Ag ele |A'G’Y}}
vz O—)A;’? €D (I4)

. . . g Ag ele
9. (replacement of quasi-dependent equations by dependent equations) 7B g €D )
For the soundness and completeness of DL with respect to equations we know that
the rules from 1 to 6, 8 and 9 of the above implies all rules of D. So, the soundness and
completeness of D? with respect to Y-equations can be obtained by a same reasoning
as the one for D. :
Analogous to D, we can define a DJ. Formally, A deduction map D is defined as :
given any I'?,
vz A 3 €UD (T9) yg—A g €uD? (1)
'ygt—rAiGDg(Fq) ) AT ’Y)'{HAXGDZ(F'I)

vg ZUDL (19);A 5 €T5 (X)xTx(X)

2.
YA g GDz(Fq)
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For the soundness and completeness of Dq with respect to dependent equations,
with the same reasoning as the one for D%, we come to that D is sound and complete
with respect to dependent equations. At the meantime, this gives a positive answer to
whether D¢ (if exists) and D¢ are equivalent under the translation g-d if we only consider
equations. }

Further extension of Dg is Dq Formally, a deduction map D is defined as : given
any I'Y,

ch_,Aze[)ql(fq) and ngAgeﬁql(f‘q)
" A geDi(Ty)” vg—AgzeDi (T9)

9. {olyg ) 2)€DY(F) | Tx (X)~T5 (¥)}
vz Az €D (T9)

With regard to the soundness and completeness of D, we have that D is sound
and complete with respect to dependent equations, since ﬁfl is sound and complete with
respect to dependent equations and 151 does not add more dependent equations. But,
in general, we do not even have a soundness, see Example 5.3 below.

Example 5.3 (counter-example against soundness of D3 $): A counter-example
of that for every & : Tg(X) — Tx(X), ifa(vg) C Kerg(A), then &(Ag) € Kerg(A)
implies A |= vy < Ay. It also is a counter-example against the soundness of Kaplan’s
condition equational calculus in [11]. Let T'¢ = {c,(z) ~ ~ 2y} Cx(¥)s Cu(T) 2z ) e(y) —
cx(cx(®)) 242y} cx(¥)}, and A be the algebra in Example 4.3. Thus, Az~ 1y —
() 2z} y but for every & : Tx(X) — Tg(X), if &(z ~ oy ¥) © Kerg(A), then
&(cx(7) (o) ¥) € Kerg(A).

Below we show an example, which demonstrates the necessity of Dq

Example 5.4 (necessity of D $) @ show that c.(2) ~(z3 ¥ — c*(c*(m)) Ny} Y
is not deductible without 2 of the definition of [)?,_ (hint : all deductible yg — t ~ ¢t/
without 2 of the definition of DL has the property that t = t' or 0 < min{n.(t), n.(t')}
in Example 5.3.

In reality, what 2 of Di does is to collect all those dependent equations which
are closed under substitutions and make them become quasi-dependent equations. But
such a collecting gets more quasi-dependent equations than necessary (see the previous
counter-example against soundness of D! -

In another words, D?l_ is actually complete but not sound for quasi-dependent equa-
tions. We state it as a theorem below.

Theorem 5.5 : Given any I'?,

. Df"_ is a sound and complete deduction system with respect to equations.
° D?,_ is a sound and complete deduction system with respect to dependent equations.

e 1~)i is complete but not sound deduction system for quasi-dependent equations,

although it is a sound and complete deduction system of Tx(V)/K (Algy 1q) for
quasi-dependent equations.

Since a quasi-dependent equation v — A g is an equation A g if v is empty, the
condition for variable index free Di should be the same as it states in Theorem 3.1.

12



6 Conclusion

After all, we have presented sound and complete deduction systems D, D% and DZ.
for equations, dependent equations and quasi-dependent equations only with respect to

equations. These results are good enough for us to have natural deduction systems (or
calculi) corresponding to them. Since a deduction system to be a calculus (only) if the

corresponding deduction map is monotonic, we point out the following facts :

o UD(T) = Upenas D(T) for every T,
o UDY(TH) = UnenNat DT (T'?) for every T'¢ and
o UDL(TY) = Unenar DT (F'9) for every 9.

This also explain why we sometime interchange the terms of the deduction systems and
their calculi.

Mis-claims in [11, 14] have been clarified. Counter-examples against their claims have
been presented.

About D9, I discover that Birkhoff’s approach is not powerful enough to totally
capture it. Therefore, to conclude this paper, I name the existence of D? as an open
problem and raise some closely-related questions below.

Open Problem 6.1 : Whether is there a condition, under which 153_ totally captures
valid quasi-dependent equations?

Open Problem 6.2 : Is there a sound and complete deduction system D? for quasi-
dependent equations?

The last problem is related to the derivability of the valid quasi-dependent equations.

Open Problem 6.3 : Is there a sound and complete monotonic deduction system
D1 for quasi-dependent equations?
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