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Logical Design of VLSI Circuit with Extension of Uncertainty
(or monotonic functional completeness of Kleene ternary logic)

Sun, Yong"

briefly revised October 1989

Brief Overview

We consider that traditional 2-valued boolean algebra is not sufficient in representing VLSI
circuit (say at gate-level), although it seems to be the case for combinational circuit. Instead of
introducing the common technique of register-and-transfers to represent sequential circuit, we
seek an alternative which is to define an invertor, a nor-gate and a nand-gate according to actual
circuit. We identify all uncertain voltages as one, which is denoted as L (bottom or uncertain
voltages). Other voltages with certainty are, as usual, denoted definitely as 0 (low voltage or
ground) and 1 (high voltage or power). The resulting logic turns out to coincide with Kleene
3-valued logic with generalized fixed-point operators.

Unfortunately, Kleene 3-valued logic is functionally incomplete. This means that not every
gate can be constructed from invertors, nor-gates and nand-gates if gates are viewed to be
equivalent to functions from their inputs to outputs. However, by applying cpo domain theory
[Plotkin 85] to our derived 3-valued logic system, we discover that this system is functionally
monotonic complete. This implies that all constructible gates share the following property :
whenever the certainty of input voltages of a gate increases, so does the certainty of output
voltages of the gate. As by-products, we also obtain two main facts about logical design of VLSI
circuit. ‘

(a) For any gate, if its inputs voltages are uncertain, then we can not expect to be certain
about its output voltages; and

(b) even if we can always supply voltages to inputs of every gate with great certainty, there
exists a comstructible gate which output voltages are always with uncertainty.

So far, out results are mainly semantical ones. We are very interested in pursuiting this
research further but from a different point of view, i.e. from the point of view of syntactical
derivability, since such research would enable us to derive mathematical secure circuit with more
reality to actual circuit design. Recent Avron’s work can be regarded as a few step toward this
direction [Avron 87, Avron 88]. We should also mention that Mukaidono has independently
obtained the same result in [Mukaidono 86], although his approach is not as coherent as ours.

*LFCS, Department of Computer Science, University of Edinburgh, King’s Buildings, Mayfield Road, Edin-
burgh EH9 3JZ, U.K. E-mail : sun%ed.lfcs@nsfnet-relay.ac.uk

tThe result of this report was obtained in February 1986. The present report is a revision of previous working
note, which was once presented in Edinburgh VLSI group’s workshop in Firbush 1986.
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1 Introduction to Uncertainty and General Fixpoint Operators

In tradition, we use 2-valued boolean functions to represent VLSI circuit at gate-level. 0 rep-
resents the low voltage (GROUND) and 1 stands for the high voltage (POWER). For instance,
an INVERTOR, a NAND-gate, and a NOR-gate are defined as follows :

1. INVERTOR
T 01
f-(z) 1 0
2. NAND
z 0 01 1
Y 0101
fyanp(z,y) 1 1 1 0
3. NOR
z 0 011
y 010 1
fyor(z,y) 1 0 0 O

It was very successful for combinational circuit, i.e. if we know inputs of a combinational circuit,
we can easily obtain the corresponding output of the circuit. However, this is not necessary true
for sequential circuits. It is simply because that 2-valued semantics model completely rules
out the possibility of representing floating voltages or oscillations inside the model. A tricky
example will illuminate this point. Suppose that there is an NAND-gate with a feedback which
is represented by following equation (see figure 1.1) :

z= fyanp(z,2) (1.1)

where fyanp(z,y) = —(z Ay) (we say that the function fysnp is the combinational function
of equation (1. 1).



T

figure 1.1.

Let us assume that the input of z is 1, then regardless what is the value of input z, say either 1 or
0, the value of the output z is always the negation of the value of the input 2. Since the input 2z
and the output z are connected to each other, we know that their values should be the same. But
they can be neither 1 nor 0, i.e. the value on line z is not possible to be represented in 2-valued
semantics models. However, the register-and-transfer technique was previously introduced in
literature to deal with this problem (see [Gordon 81] for instance). Nevertheless, we do not
think that such a solution is satisfactory and it does not reflect the physics of VLSI circuit.
Another practical example for uncertain voltages is in a flip-flop, see figure. 1. 2.
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figure 1.2.

Let us assume that £; = 29 = 1. Then what are the values on lines z; and 23?7 As we know,
there are two possibilities for stable values :

e z1=0and zp=1, or
e zy =1and 20 =0.

which one is proper is completely depended on the actual circuit (i.e. the implementation
or the delay of the individual gates, so-called racing hazard). Pre-assuming any one of the
two is a simple assumption but too artificial. Assuming the all possibilities will involves a
complicated non-determinism phenomenon. As a compromise, assuming a special uncertain

value to designate this seems to be a better choice.
As a conclusion, we introduce new values into 2-valued switching theory with general fixed-
point operators to preserve the advantage of digital logic in circuit design and to solve the
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mentioned problems at the meantime. For our present purpose, i.e. the design of VLSI systems,
uncertain inputs would eventually lead to uncertain outputs. In this sense, one extra value L
besides 0 and 1 is sufficient. Of course, by introducing more than one exyra value into switching
theory, we can get some other benefits (see [Epstein 74, Smith 81, Hurst 84, Rich 86] for some -
references). But this falls out of our main interest for the time being.

We define our semantics domain as a natural extension of B = {0,1}, i.e. By = BU{Ll} with
its natural partial order C, and as usual. That is, z C y means that the certainty of the voltage
on y is greater than the one on z. Examples of uncertain voltages are glitches, oscillations,
floating voltages and initial (internal) voltages of flip-flops. We can also extend the partial order -
C in B to any product of B pointwisely (or componentwisely). The definitions of monotonic and
continuous are, as usual, that (a) f is monotonic iff f(z) C f(y) for each pair  C y; and (b)
f is continuous iff lim{f(z,)} = f(lim{z,}) for every sequence {z,}. For convenience, we give
new definitions for the collection of an INVERTOR (negation), a AND-gate (conjunction) and
a OR-gate (disjunction), instead of the one of an INVERTOR, a NAND-gate and a NOR-gate,
in the extended domain B, as follows :

1. negation

x L
f-(z) L
2. conjunction
z 1L 1 0 1
Y Lo 1 L L
fa@my L0 L 0 L
3. disjunction
z l 1 1 0 1
Y 1l 0 1 1 L
f@y) L L1 L1

Informally, we understand the following points.

e For INVERTOR (negation), if we are not sure of input, we would not be sure of output.

e For AND-gate (conjunction), if one of its input is 0, and then whatever the another input
is, the output is controlled by the 0 input and its output is 0; if one of its input is 1, then
the output can not be controlled by this input, we have to know what is the another input.

e For OR-gate (disjunction), if one of its input is 1, then whatever the another input is, the
output is controlled by the 1 input and its output is 1; if one of its input is 0, and then
the ouput can not be controlled by this input, we have to know the another input.

Note that the above defined conjunction and disjunction are not strict (but monotonic and
continuous), and they coincide with the 3-valued logic defined in [Kleene 52].

Now, we turn our attention to introduce a general fixpoint operator, rather than the least
fixpoint operator (which is commonly used in computation theory). Let us use the previous
example of (1.1) (see figure 1.1) to bring in the idea of general fixedpoint operators. Suppose
the external input z = 1 and the initial internal input zq (isolated voltages) is 0. Then our
question is : what is the possible output z? To obtain an reasonable answer, we have the
following analysis :



o zont+1 = fnanp(l,z2n) = "29, = 1, and
o Zon+a = fnanD(1, Zant1) = 2Z2p11 = 0.

We understand that the sequence of {2, } is divergent mathematically, written as lim,,_, o0 2, = L.
In the physics of VLSI circuit, it means that the output voltages of the gate is oscillated.
However, if £ = 2y = 0, then 2, = 1 for all n > 0, i.e. the sequence {z,} is convergent, written.
as lim,,_,c0 2, = 1, and we say that when z = 0 (i) both 0 and 1 are convergent points of equation
(1.1), and (ii) 1 is the fixedpoint of equation (1.1).

Therefore, we know that (a) the output of the first case should be the uncertain value L, .
and (b) the output of the second case should be 1.

Formally speaking, given a (combinational) function 7 : B — B and initial value by € B,
where B is B™ for some m > 1 (or BXxBx..x B ) and B’ is B" for some n > 1 (or

m times

B x B X ...x B) (m >n), the output of f can be defined by the following :

n tites

1. the equation
< 21,29, ey 2, D= J(T1y T2y evey Tomeyy 21 225 ony 25)  (1.2)
where z; is the ith external input and z; is the jth internal input (feedback). Or

2. the general fixpoint operator fimy(curry(?)(wl, T3, .eey Tm—n))(Zo) Where

e curry: (B™ — B") x B™™ — B" such that
curry(?)(wl, Ly eeey wm—-’n)(zly 227.-"a Z’n) =df f(xla L2; o0 Tm—my 213 225 ++09 zn)
o fizgn : ( B® — B" ) x B™ — B™ such that

TN f(lim;eo b;)  if fis convergent at b
fizpn (f)( by ) =g { Fizge( £ )(B0) otherwise 0

where b;11 = f(b; ) for i > 0, and by =< b1,0,b3 0, -5 by 0 >, such that

o limp oo bip @f { b } is convergent
W0TdF Y otherwise

By cpo domain theory [Plotkin 85], the least fixpoint theorem and the well-founded property
of C in products of B, we know that fizp~ has its value if f is monotonic.

Technologically, we focus our attention on hardware which can be built by one-input one-
output INVERTOR, two-input one-output NAND-gate and two-input one-output NOR-gate;
theoretically, we need to show that this collection of basic circuits (or gates) is functionally
complete. Unfortunately, this is impossible since that Kleene 3-valued logic is well-know to
be functionally incomplete. However, in present paper, we are able to show that our model
is functionally monotonic complete. In other words, the Kleene 3-valued logic is functionally
monotonic complete. This implies that all contructible gates share the following property :
whenever the certainty of input voltages of a gate increases, so does the certainty of output
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voltages of the gate. As by-products, we also obtain two main facts about logical design of VLSI
circuit.

(i) For any gate, if its input voltages are uncertain, then we can not expect to be certain
about its output voltages; and

(i1) even if we can always supply voltages to inputs of every gate with great certainty, there
exists a contructible gate which output voltages are always with uncertainty. _

~ We also obtain some results which have theoretical interests, say the canonical (norm) forms
of Kleene 3-valued logic. After all, I hope that this paper would provide a more applicable
and theoretical sound model for hardware (behaviour). For easy understanding, we choose a -
semi-formal presentation to provide our results, which should not be regarded as a disadvantage.

At present, we deliberately omit the treatment of shared communication in circuit. For
example, we do not consider the case of that two components share one output line. In contrast
of non-sharing output lines, we do allow two or more components sharing input lines.

So far, our result are mainly semantical ones. We are very interested in pursuiting this
research further but from a different point of view, i.e. from the point of view of syntactical
derivability, since such research would enable us to derive mathematically secure circuit with
more reality to actual circuit design. Recent Avron’s work can be regarded as a few step toward
this direction [Avron 87, Avron 88]. Mukaidono independently obtained the same result in
[Mukaidono 86] through two stages (“regular” is his terminolgy for “monotonic”), i.e. he uses
one method to get a half of the result and then changes completely to a different method to get
the second half. Therefore, his approach is not as coherent (or systematic) as ours.

Lastly, we conclude this introduction section by a Hypothesis, which is presumed through
out this paper.

Hypothesis 1.1 : we assume that for any hardware, all the initial values on its feedback lines
are L's at the very first start (or at the very beginning).

2 Some Properties of Kleene’s 3-valued Logic

To help our future presentation, we briely state some useful properties of Kleene 3-valued logic
in this section. We will use infix notation -, A, V instead of prefix notation f., fr, fv
respectively for readability. e.g. we use

filz)=2z V -z

instead of
fill @) =o( fv, o(®(m, f.), diag))(=),
where (i) o is the usual compositional functional (function); (i) ® is the prefix notation for the
usual < f,g > functional; (iil) diag is the usual diagonalizer; and (iv) 7 is the usual projection
function.
There are some easy-checked laws and some easy-proved facts of Kleene 3-valued logic.
Laws 2.1 :

e (Negative Negation)

e (Fizedpoint of Negation)



(L to be considered as a constant, although it is un favourable in hardware)

e (A Idempotent)

TAr ==
e (\V Idempotent)
zVr=z
o (A Commutative)
TANYy=yANzx
o (\V Commutative)
zVy=yVz

e (L Absorption of Fxcluded Middle)
LA(zV-z)=L1
(we adopt the common order among { =, A, V })
e (L Absorption of Contradiction)

Lv(zA-z)=L1

e (0 Absorption of \)

OANz=0
(0 being considered as a constant)
o (1 Absorption of \)
1Nz=12
(1 being considered as a constant)
e (0 Absorption of \/)
OVz =g«
e (1 Absorption of /)
1ve=1

o (A Associative)
(zAYAz=zA(yAz)

e (\ Associative)
(zVy)Vz=zV(yVz)

e (A Distributive)
zA(yVz)=(@Ay)V(zAz)

e (\ Distributive)
sVyhz=(xVy)A(zVz)
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e (A Absorption)

zA(zVy)==z

e (\/ Absorption)

zV(zAy) =g

e (A De Morgan)

“(zAy)=-zV-y

e (\/ De Morgan)

o (A Kleene)

e (V Kleene)

~(zVy)=-z A"y

(zA-Z)A(yV-y) =z Az

(xA=z)V(yV-y)=yV-y

Note that some of the above laws are redundant.

Fact 2.2 :

e r1 ANza A ...
e 21 ATo A ...
e x1VzoV..
e z3 Vo V..
o T1 Aza A ...

e z1Vaa V...

A z,, = 0 iff for some z; = 0;

Az, = 1iff for all 2; = 1;

V &, = 0 iff for all z; = 0;

V z,, = 1 iff for some z; = 1;

A Ty, = L iff for all z; # 0; and some z; = L
V z,, = L iff for all z; # 1 and some z; = L.

Obviously, we have the following.
Theorem 2.3 : (Unfictitiousness)

Any hardware (with or without feedback) is un fictitious; or in other words, for any hardware
whether it is a (combinational) function f only (without feedback) or it is represented by recursive
equation like (1. 2) (with feedback), if all its input (including all the initial values of its feedback)

are L's, then its output are .L’s, ae well.
Proof Structural induction. Q.E.D.

This theorem means that, if nothing is the input of a device f, then nothing is also the
output of it. This also explains why it is hard (or probably impossible) to implement cycling

operation for Post many-valued logic system technologically.

In another point of view, if the input can not be deterministicly identified as 0 or 1, then the
output of f can not be, either. So, in order to increase the reliability of circuit (especially, the
sequential network), there must be some other technology or theory to reduce the asynchronous-
ness of inputs (or to guarantee the synchronizing inputs) [Chaney 73, Couranz 75, Marino 77,

Marino 81}.

Theorem 2.4 : (Working Theorem)

For any hardware, whether it has feedback or not, it will have its output at every moment.

Proof



e For the very start, we have Hypothesis 1.1, i.e. all initial values of feedback are L’s at
the very beginning. Then any moment after this, the initial values of feedback are provided
by the environment (Note that we purposely choose not to present environments in this
paper, simply because the existence of environments is irrelevant to the main results of
this paper, see section 6 for further comment).

e all basic functions {—,A,V} and construction functionals, like 7, curry, diag and o, are’
monotonic or continuous.

e According to the definition of output of feedback in Section 1, all the recursive equations -
involved have solutions by the well-founded property = and the Least Fixedpoint Theorem
[Plotkin 85, Scott 76].

e Therefore, the hardware has output at every moment.

Q.E.D.
This theorem told us that any built hardware will work but it is not to tell us that the built
hardware will work as expected.

3 Some Basic Theorems

For better understanding the future proof in section 4, and also for getting a better understanding
of feedback, we provide some necessary or simpler results in this section.

We say that the input(s) of a hardware is (or are) definite if it is (or they are) deterministicly
identified as 0 or 1 (i.e. an element in {0,1}*.) and a combinational device is the hardware
which has no feedback at all.

Then, we have the fact of Theorem 3.1 below.

Theorem 3.1 : (Combinational Theorem)

For any combinational hardware, i. e. any (combinational) function f, if all its inputs are all
definite, then all its output are definite, too.

Proof Structural induction Q.E.D.

From the above section (section 2), we knew that the circuit built up by negation, conjunction
and disjunction can not prevent the uncertain value L propagating. Hence, there is a question,

e “ Does a circuit can creat the uncertain value L or not, if all its inputs are definite?

Unfortunately, we know the answer already, it is “ yes 7, see figure 1.1.

Circuits do create the uncertain value. Even worse, there is a circuit whose outputs are
the uncertain value only, regardless of its input, i.e. the constant function f;, see next theorem
(Theorem 3.2). We call this kind of functions indeterminate functions (or nonsense functions).
This tells us that how worse a careless design would be.

Theorem 3.2 : (Indeterminate Lemma)

There is an indeterminate function.

Proof

Let fy(z, y) =a ~((z V =z )Ay) and

z=fy(z, z) (3.1)



z = fizp(curry( fy )(z))(2) (3.1)

where the linearizer curry is a construction functional. And whatever the initial value 2y and
the input z are, the output 2z of the hardware is L. Q.E.D.
The indeterminate function is showed in figure 3.1.

x_@_—_—jo—l:j o Z

figure 3. 1.

Because the output of (3.1) (or (3.1')) does not rely on the initial value zy and z, we can simply
regard it as a constant function f,( z ), or simply L.

Although indeterminate functions are unpleasant in hardware implementation, they play an
important role theoretically.

For the unary functions, we have a strict completeness.

Theorem 3.3 : (Unary Completeness)

All strict unary function (or circuit) can be built by { =, A, V }.

Proof

We use truth tables to define all unary functions

fi, fo, fu, foo f3, fao f5, fey f7

respectively as below,

z fr fo fi fo fs fa f5 fe6 [
L L+ 4+ 1 1 4+ L L L
o L L L 0 1 0 0 1 1
i L o0 1 L L o0 1 0 1

and build them one by one as follows:
e fi(z) see Theorem 3.2;

o fo(z)=—z V fi(=z)

e filz)=2aV fo(z).

o folz)==(-z V fi(z))

e f3(z)=fi( =)

o failz)=z A —z

e fs(z)==x

10



L fe(a','):"‘lw
e fri{(z)=2z V ~z

Q.E.D.

Combining unary constant functions 0 and 1 with Theorem 3.3, we would have the monotonic
unary functional completeness. In the remaining of the paper, we will see the significant roles-
of the first five unary functions f,, fo, fi, f2, fs, especially the first three.

Theorem 3.5 : (Definite Completeness or Hardware Completeness) :

If restricting input to definite ones, then for any possible (combinational) function f, it can be

built up by { =, A, V }.
Proof

® For each of those b; which satisfy
f(z1, o,
we choose

1. #; = ¢ (empty or nothing) if b; = 1,
9. H = —ifb; =0

to form a formula

ey & ) =1,

#11}1 A #2:1)2 AN A #mxm ( 3. 2 )

for m argument (input) z;.

e For all these (3. 2), we form a formula

(3.2)V(3. 2)V..V(3. 2)

We understand that

1. f(zy, 22, ..
2. if f( L1y Ty .-

This means that the input which satisfy

, T ) =11 (3. 3) =1;
, Ty ) = 0 then (3. 3) =0 (not converse)

(3.3)

(3.2)=0

are more than the input which satisfy

f( Ty, T2,

ey Ty ) = 0.

Therefore, we have to drop some (’s away (which is similar to the above).

® For each of those b; satisfy

f( L1y T2y wen

we choose

1 4= if b; =0,

11

) il:m)=-0,



9 A =eifb =1,

to form a formula
#12E1/\#2332/\.../\#m$m ( 3. 4)

and collect all those (3. 4) tdgether form a formula
(3. 4)V(3. 4)V..V(3. 4) (3. 5)

Now, we know that
f(wl, Ty «eey $m)=0 fo (3 4)—_—1

s Hence,

f=03.3)Vf((3 5))

Q.E.D.

From the above theorems, we know that there are two kinds of hardware (combinational
vs sequential), one has definite output while another doesn’t, when both of them have definite
input; i. e. one probably has uncertain outputs L’s because of feedback.

Because all hardware with feedback can be understood by its combinational functions, it is
better to forget the feedback and to concentrate our attention on combinational functions. At
this point of view, we extend our basic function set { =, A, V } to include all unary functions;
i.e.weuse {—, A, V, fi, fo, fi, f2» [fs, } as our basic function set. And we know that,
by doing so, we didn’t really extend the function space at all (in some sense), but increasing the
expressive power. We will assume this and not consider feedback any more from next section
(section 4) in this sense.

4  Functional Monotonic Completeness

In this section, we are going to prove the monotonic completeness.

Theorem 4.1 : (Monotonic Completeness)

For any monotonic function, it can be built up by the basic functions {—, A, V}, in the sense of
combinational functions (see the comment at the end of section 3).

At first, let’s introduce some new notations. Be aware of that all functions mentioned in this
and next section (section 5) are monotonic.

We will give the proof on one-output devices (f) only. Interested readers should not have
major difficulty in extending the proof to multi-output devices.

Given an f, let

e V(f)={< by, by e, by > | F(by, b, ..., by ) # U }, the set of inputs from which
f has definite ouputs.

o Vol f)={< by, by, e, by > | f(b1, b2, ..., by ) =0}, the set of inputs from which
f has o output.

e Vi(f)={< by, by, e, by > | f( b1, b2, ..., by ) = 1}, the set of inputs from which
f has 1 output.

It is obvious that we have

12



o V(f)=W(f)UWn(r);
e Vol fINVi( f) =0, where § means the empty set.

For a sub-domain V' of domain V', V' is up — closedif a € V', b € V and a C b, then b € V.
Naturally, by monotonicity we have

e Vo( f) is up-closed;
e Vi( f) is up-closed;
e V( f) is up-closed.

Given b, for all b;; # L, we define
VlO(f)(< N I bil, Ly L, b,,;z,_L, S I bik)J—a vy L >)
= {b* =< b3, b5, ..., by, > |

F(Ly ooy Ll Ly ooy Loy, Loy LB, Ly oy L) = 1
and b* satisfies #1%i A Foziy A .o AFpzi, =0}

where #; = = or € (for all j = 1,...k,) is according to bi;. 1. e. if b;; =1 then #i=¢eifb; =0
then #; = —.

Then, we have Vig( £ )(< L, ., L, iy, L, ooy L, by, L, .y L >) is up-closed; The

proof are based on monotonicity.

Also by monotonicity, we have that if F( L, ..., b, 1, ..., L, b;, L, ..., L) =1, then

Vb( f ) - Vl()( f )( < _L, Y _|_, b'i17 _J_, ey ..L, b'ik7 _L, oo 1 >)
It shows us that the corresponding phrase #izy A ... A #1x;, of
<U,..,U0b,0,..,0b,,U,..,U>

" might collect more 0's in Vio(f) than in Vo(f).
Now, we are ready to prove the completeness.
Proof (of Monotonic Completeness) For one output monotonic f,

e if all output of f are 1, then
(21, 22y ooy T ) =Lz VI V.o VEg ).
e if at least one of output of f is not L,

1. for each of those b; of b which satisfies

.f( Ty, T2y -y Ty ) = 17
we choose
(a) ZT; and #.,, = - if bz = 1,
(b) z; and #; =€ if b; =0,
(c) nothing if z; = L

13



to form a formula
Fi T Nz A AF g, (4.0)
(where all “nothing” are missing already) and we simplify it as
F1zi, Aoy, A AFp, (4.1)

(later, we will do the simplifying naturally and not mention it again) And we collect
all these ( 4. 1) together to form a formula )

(4. 1)Vv(4 1)v..v(4. 1) (4 2)
2. for each of those b; of b which satisfies

f(mh T2, ooy ZI}m):O

we choose

(a) z; and #; =-if b; =1,
(b) z; and #; =€if b; =0,
(c) nothing if z; =U

to form a formula
#1$i1 A #2£Ei2 A A #kxik ( 4, 3 )
And we collect all these (4. 3) together to form a formula

(4. 3)V(4 3)V..V(4 3) (4. 4)

e We discuss the all cases in above.

— if there is no case 1. then

f(z1, 22, oy T ) = fo( (4. 4) );
— if there is no case 2. then

(21, 2, s 2 ) = f1((4 2) );
— if there are both cases 1. and 2., we have

Vo( £) S Vil £)((4 1))

where ( 4. 1) is the corresponding input which is one of the ( 4. 1)’s chosen from.

Therefore,

Vo( F) C the intersection of those Vig( f)((4. 1))
(Later, we simply refer to this kind of the intersection as Vio( f ), ... etc.)
ie.

1. f( 3y, o, ooy Ty ) =11ff (4. 2) =1;
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2. if f( @y, 2, - Ty ) =0 then (4. 2)=0.

In other words, ( 4. 2 ) probably has 0’s more than needed, we should drop some

away by

(4. 2)Vfo((4 4)) (45)

So,
. f(zy, T2, vy Ty ) = (4. 5)
Q.E.D. ,
This theorem says that any monotonic combinational function can be built by {L,—,A, V}.

Through this proof, we can get canonical forms of Kleene 3-valued logic, which is the
subject of next section (section 5).

5 Canonical (Norm) Forms

By the proof of monotonic completeness in the last section, we find out that there is a possible
way to get canonical (norm) forms of Kleene system. In last section, we know that

5. 1. :

{(4-2)=1 iff  f(@1, T2, oy T ) =1
if f(x1, 2oy ooy T ) =0 then (4. 2)=0
and
5. 2.
{(4.4):1 iff  f(z1, T2, oy T ) =0
if f(zy, Ty ooy Ty ) =1 then (4. 4)=0
So,

f(xly L2y «evy mm):(4 2)Vf0((4 4))
Let’s use another notation in this section, i. e.
5. 3. :

f(xla L2y -y xm):(C]') \% fO((C 2))

where (C. 1)=(4. 2)and (C. 2) = (4. 4). Similar to the procedure getting ( C. 1) and
( C. 2) in last section, we can get

5. 4. : _
{(0.3)=0 iff  f(@1, T2, oy T ) =0
if f(z1, T2y ooy Ty ) =1 then (C. 3)=1
and
5. 5. :
{(0-4)=0 iff f(@1, T2, o T ) =1
if f(z1, Ty ooy Ty ) =0 then (C. 4)=1
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Then,
5. 6. :

f( L1y, T2y un

f( Z1, T2, ---

f(z1, z2, ..

, @m ) =(C. 3)Af((C. 1))
, Zm ) =(C. 1)V fo((C. 3))

» ¥m ) =(C. 3)Af3((C. 4))

(5. 3.), (5. 6.), (5. 7.) and (5. 8.) are four possibilities to get canonical forms of the system.
The disadvantage of them is that they require the function f has both 0 and 1 as its definite
output, i. e. each at least has one. Although a hardware which only has one definite 1 or 0 as
its output is possibly useful in ROM designing, it is reasonable to restrict our attention on the
functions which have both 1 and 0 as their definite output. But it is no reason to exclude that
kind of functions from canonical forms. Therefore, similar to the procedure getting (5. 1.), (5.

2.), (5. 4.) and (5. 5.), we can get

1.

Then,
5. 9.

f(wl’

f(xla

Vf(xla

f(xla

(C.5)=1

(C. 6)=0

g, ..

9, ..

Ty ...

Ty -

iff  f(z1, 2, oy Ty ) =1 or 0;

iff  f(z1, T2y oy Ty ) =1 or 0.

o 2w ) =(C. 1)V f((C. 5))
5 2m ) =(C. 3)Afi((C. 5))
;2w ) =(C. 1)V fo((C. 6))

, @m ) =(C. 3)Af5((C. 6))
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If weuse (5. 9.), (5. 10.), (5. 11.) and ( 5. 12.) as canonical forms, they do not care
about that, for any f, f has both 0 or 1 as its definite output or not; but they do care about
that f has definite output or not, that is, if f has no definite output (i. e. nonsense function
f1), then f can not be represented in the above four forms. It is also no reason to exclude f
from canonical forms, either. Now, we reach

(C. T)=fLA(C.6)V(C. 1)

and

(C. 8)=(fLV(C. 5))A(C.3)

where f| is treated as a constant; i. e. whatever its arguments are, it doesn’t matter. For
example, we could let it be fi(z; VaaV..Vay, Yor fi( 21 AzgA..Azp ). The (C. 7)
and ( C. 8) are really what we want for our canonical forms. Before we accept that, we must
be sure that it is unique in some sense. Luckily, by monotonicity, we can choose minimals in
V(£),Vio( £),Voi( f) and get corresponding ( C. 6 ) (or (C. 5)), (C. 1), (C. 3) (where
the minimal element of V' is an element of V', in which you can not find an another distinctive
element T the minimal element), which can also be reached by the laws of A absorption and
V absorption. Hence, (C. 7) and ( C. 8) are unique in the sense of monotonicity, they are
disjunctive and conjunctive canonical (norm) forms, respectively.

Theorem 5.1 : (Norm Theorem)

For any combinational (one-output) function, it has unique conjunctive and disjunctive canonical
(norm) forms in the sense of monotonicity.

6 Future Development

Upto now, our work is model-oriented. It will be very nice if we can develop a syntax-oriented
version. Recent work of Avron can be regarded as a few step toward this direction [Avron 87,
Avron 88]. There are some related issues which we would like to touch upon briely. We know
that the following are two possible ways to incorporate the idea of environments into a semantic
model.

e In the denotational approach, we can naturally introduce Env to represent environments,
say Env : Line — Voltage, then a hardware h can be a function from Input X Env to
Output X Env, where B = Voltage and Input = Quiput = B*. But in this way we will
lose the vigorous of the digital logic.

Going along this line, people can consult [Gordon 81].

o I am much more in favour of the equational presentation with certain extra information of
environments. How to incorporate these two along this line is remained for future research.

Since our approach is based on cpo (complete partial order), there is a prospective that
the formal methods used in program verification can be used in hardware verification in our
approach.
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