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The Nonexistence of Finite Axiomatisations
for CCS congruences

Faron Moller
Lab for the Foundations of Computer Science
University of Edinburgh

Abstract. In this paper, we examine equational axiomatisations for con-
gruences over a simple sublanguage of Milner’s process algebra CCS. We
show that no finite set of equational axioms can completely characterise any
reasonably-defined congruence which is at least as strong as Milner’s strong
congruence. In the case of strong congruence, this means that the Expansion
Theorem of CCS cannot be replaced by any finite collection of equational
axioms. Moreover, we thus also isolate a source of difficulty in axiomatising
any reasonable non-interleaving semantic congruence, where the Expansion
Theorem fails to hold.

1 Introduction

There are a number of different approaches in existence to the algebraic description
of concurrent processes. One of the original and most influential treatments is that
of Milner’s CCS, the Calculus of Communicating Systems ([Mil80}, [Mil89]). In his
approach, Milner considers only a minimal set of primitive operators, in order to
maintain simplicity in his analyses. Thus he has for instance a constant represeﬁt-
ing the null process (nil 0), one operator allowing for sequentiality (atomic action
prefix a.), one operator allowing choice between various computation paths (non-
deterministic sum + ), and one operator allowing concurrent computation (parallel
composition | ). Milner’s approach is very much operational in nature, in particular
giving an operational notion of equivalence (the so-called bisimulation equivalence
of [Par81]), but also involves the development of equational theories for reasoning
about equivalences between process terms. _

In this paper, we consider equational axiomatisations for the above restricted
subset of the process calculus CCS, which we shall refer to as P. Hence, the
collection of terms P € P is defined by the following BNF-like notation:
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P u:=10]|aP| P+P| P|P

Here, the actions a range over some nonempty set Act. We shall often omit the
dot of the action prefix, and drop trailing 0’s from expressions, thus for instance
writing ab + ¢ instead of @.5.0 + ¢.0. Furthermore, concurrency will take the form
- of the full merge operator, so we are for the present prohibiting communication
between processes. However, we shall point out later how our results equally
apply to the same calculus with communication. With just this simple language,
we shall show that any reasonably-defined notion of congruence which is at least as
discriminating as Milner’s strong (observational) congruence must be axiomatised
by an infinite set of equations. In the case of strong congruence, the infinite
dimension is provided for by the axiom schema presented by Milner’s Expansion
Theorem.

Our notion of reasonably-defined congruence will include non-interleaving se-
mantic congruences which have been under study recently, such as the partial order
semantic congruence of [Bou86], the distributed bisimulation semantic congruence
of [Cas87], and the congruence of [Hen87]. Hence we shall have presented some
insight into the trouble found in these works in trying to completely axiomatise

their congruences where the infinitary Expansion Theorem is invalid.

2 Transitional Semantics

In this section, we provide our language with an operational semantic definition
based on the notion of labelled transition sytems. This method gives a derivation
relation on terms in our language which defines the possible actions which a term
may perform. Upon giving our transitional semantics, we define strong congruence
using the notion of bisimulation based on this transition system.

The transitional semantics for P is given in the usual fashion by the transition
system —C P x Act x P (written as P — @ for (P,a,Q) €—) defined to be
the least relation satisfying the inferential derivation laws presented in Figure 1.
Thus using the first rule we have a.P -2+ P, and for each of the other rules,
whenever we can derive the transition above the line, then we can derive the
transition below the line.

Our equivalence ~C P x P is then defined to be the largest relation satisfying
the following bisimulation condition: P ~ @) if and only if for all a € Act,

(i) P+ P' implies 3Q" such that Q =+ Q' and P' ~ Q'; and
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a.P =25 P

P2 P Q>
P+Q =P P+Q-%5¢Q
p-°p Q—-q
P|Q--P|Q PIQ-5P|Q

Figure 1: Derivation Laws

(i) Q@ =2 Q' implies AP' such that P -+ P' and P' ~ Q.

This relation can be shown to be a congruence over the language P, referred to
as strong (observational) congruence, and to be completely characterised by the
equational theory given in Figure 2. Notice that this gives an infinite axiomati-

Al (z4+y)+z=z+(@y+2) As. z4+z =z
Ay z4+y = y+z Ay, 240 =2
Ezp,,. Fort = > az; and w = Y byy;, (m,n>0)
=1 7=1
tlu = Zai(xilu) + ij(tlyj)

i=1 7=1

Figure 2: Axioms for P

sation, due to the presence of the axiom schema Ezp,,,, commonly referred to as
the Ezpansion Theorem. This paper will prove that such a sound and complete
axiomatisation for strong congruence is by necessity infinite. Moreover, we shall
show that this property holds of any reasonable congruence which is at least as
strong as strong congruence.

In the remainder of the paper, we shall often use = to represent semantic
equivalence ~, and = to represent syntactic identity modulo associativity and
commutativity of + and |. We shall also extend the transition system — to
allow P -+ R whenever there exists some P’ = R such that P -2+ P’.



3 Reasonable Congruences

In this section, we define a property of equivalences which we argue should be
exhibited by any “reasonable” equivalence over our language P. This property will
take the form of a sequence of laws which we argue represent sensible identities,
and thus should be valid with respect to any reasonable equivalence.

There is much division in concurrency theory regarding the question of exactly
what identities should hold in a sensible semantic equivalence (see, e.g., [deN8T]).
It is generally accepted that an equivalence should be a congruence, thus allowing
for the validity of substitutivity of program parts. Furthermore, there are argu-
ments that any terms which are identified should be at least strongly congruent
(e.g., [Mil89]); the arguments which distinguish observationally distinct processes
will hold valid for our hypothetical “reasonable” equivalence. Of course, this is
also arguably a somewhat strong restriction. For example, we are not allowing our
semantics to abstract away from internal events which should not be observable
to the environment. Also, we are ignoring several other sensible classes of equiv-
alences, for example those based on the notion of “testing” ([deN84], [Hen88]).
However, for the present paper, we shall maintain the strength of this restriction.

Outside of this, there is little agreement as to how fine a congruence should be.
Some strong arguments stem from the Petri net community and other proponents
of noninterleaving semantics (see, e.g., [Rei85], [Pra86]). The objections to the
weakness of observational congruence arise due to its property, expressed by the
Expansion Theorem, of identifying terms involving distinct causal dependencies
on their actions. For instance, a simple application of the Expansion Theorem
would quickly lead us to conclude that

a|b = ab + ba.

However, whereas on the left hand side of this statement, there is no causal de-
pendency expressed between the two actions @ and b — the two actions are simply
performed independently — the summands of the term on the right hand side
each express a definite causal relationship between the actions; in the first sum-
mand, action ¢ must occur before action b, whereas this situation is reversed in
the second summand. Such an interleaving semantic understanding of processes
reduces parallelism to a nonprimitive operation definable in terms of nondeter-
ministic choice and causal dependency. Objections arising against this viewpoint

stem from the belief that parallelism should not be expressed as above, but rather
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that it has fundamental properties which should guarantee it a place among the
set of primitive concepts.

The question now remains as to how far we can cut down on strong congru-
ence whilst still maintaining all of the identities which should hold in a reasonable
equivalence. Certainly we could strengthen it enough to avoid all possible objec-
tions to the treatment of concurrency. For instance, we may not want to allow the

following partial application of the Expansion Theorem:
a|lb=al|b+ abd

This could possibly be considered a valid law in some noninterleaving semantic
theory, as the concurrent nature of the atomic processes is still present on both
sides of the equation. However, it still allows for the introduction of causal de-
pendency where it had not previously existed, and as such is faced with the same
arguments faced originally by the Expansion Theorem.

However, we do not want to allow our “reasonable” congruence to be too fine.
For instance, Winskel’s event structure semantics ([Win83]), as well as the origi-
nal event structure semantics of Boudol and Castellani ([Bou86], Section 3) only
allow process terms to be identified if they are identical modulo the associativ-
ity, commutativity and 0-absorption of the + and | combinators, as well as the
associativity of a general sequential combinator in the latter case. Clearly these ap-
proaches are too strict, as they do not allow for any non-trivial identities, not even
the well-accepted idempotence of nondeterministic choice (law Aj of Figure 2).

What we argue here is that certain reduction laws should hold valid. For in-

stance, the following identity should be made in any sensible semantic congruence:

(z+y) | (ut+v) +z]lu+z|lo+ylut+ylo
= ¢|(uto) +yl(uto) + (z+y)]u + (z+y) | v.

This reduction law can be informally justified as follows. Every possible single-step
behaviour which one side of the equation can exhibit is matched by an identical
single-step behaviour on the other side of the equation within an identical parallel
context. For example, the possibility of the indeterminate process = proceeding
in the second summand z | v on the left hand side of the equation is matched
by the possibility of the same indeterminate process = proceeding in the third
summand (z +y) | u on the right hand side of the equation. Both allow the

indeterminate process z to proceed in the context in which it is running in parallel



with the indeterminate process u. Indeed, every closed instance of this law is
derivable in the equational theory of Figure 2, and hence this law represents a
valid observational equivalence law. However, this law does not introduce any
causal dependency where it did not previously exist. Indeed, it does not mention
~ any actions explicitly. Thus it is not open to the objections faced by the Expansion
Theorem.

We can generalise this law in several ways. Of interest to us for the proof of
our result is the following generalisation, which can be informally argued in the

same way as the above law.

E+n) (D) + Dels) + 2wl

= :c](éz,-) + yl(ézi) + i((ﬁy)lzi)

If we now consider the following sequences of process terms:

Ao €0 wo = 0
def def
Aipr = aA; Yir1 = 0 + A

then by an appropriate instantiation, we derive the following sequence of reduction

laws.
Red,. ¢3l@n + Y (a]A) + D (aa]A)
=1 3=1

= alp,+aale, + > (03] A)

i=1

We shall hence insist that any reasonable congruence over P should make the
identities expressed by the axiom schema Red,,. What we shall prove then is that
no finite set of equational laws which are sound with respect to strong congruence
can derive every instance of the schema Red,. This will be enough to prove that
no sensible congruence which is at least as strong as strong congruence can be
finitely axiomatised. This is true as any law which is sound with respect to such
a congruence will also be sound with respect to strong congruence, so no finite set
of laws which are valid for such a congruence can derive all instances of Red,,.

Notice that our result will hold over any nonempty set Act of atomic actions,
including the singleton set Act = {a}. The only assumption we make is that there
exists some action a € Act. Indeed, if this were not the case, then all terms would

be observationally equivalent to the nil term 0, and we would have a trivial finite
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equational axiomatisation. Furthermore, our result will still hold in the calculus
extended in the usual fashion with communication between processes through
synchronisation on complementary actions, under the reasonable assumption that
some action a is not its own complement.

4 The Nonexistence of Finite Axiomatisations

4.1 Approach to the Problem

We want to prove that no finite set of laws which are sound with respect to strong
congruence can prove every instance of the axiom schema Red,,. That is to say,
given any finite set 7 of such laws, there is some instance of Red,, for which there
is no finite proof tree in a natural deduction style proof system which uses only a
small collection of inference rules. These inference rules are as follows. Firstly, we
need to allow our axioms to be instantiated. Thus for every closed instantiation
p = q of évery axiom t = u in our set 7, we have the inference

p=g =1

Then we need only to allow inferences based on the laws of equational reasoning

(reflexivity, symmetry, transitivity, and substitutivity). These are as follows:

P=7p (refl) -éng—(symm) P =g’= g =T (trans)
P=4q Pi=q,, P2= P1=4q1, P2 =42
a.p = a.q (sub,) P1F P2 = ¢y +q (suby) PP = 4% (SUbI)

To accomplish our goal, we shall present a property ©,, of statements P = @
(where n is some integer depending on the finite set of axioms 7°) such that
whenever 0, holds for the conclusion of some rule of inference (as listed above), 6,
will hold for one of the premises of the rule as well. In particular, no instantiation
of any axiom will be able to introduce the property ©,. Hence we can conclude
that there cannot be a proof of any statement P = @) satisfying ©,,. Furthermore,
this property ©,, will'hold for the statement Red,,, thus giving our result.

4.2 Preliminary Results

In this section we make some technical definitions and state the technical lemmata

which we need to derive our main result in the following section. Firstly, we let



fo(t) represent the set of free variables appearing in the term ¢, and say that # is
a closed term if fv(t) = 0. Next, the proofs of several preliminary results are often
going to use induction on the depths |+ of terms as defined as follows.

Definition 4.1

0] =0 lp+q| = max (|p|, |q])
lz| = 0 lplgl = Ipl+lql
la.P] = 1+ |P|

Some simple but important properties of depth which we shall exploit in our
inductive proofs are given by the following proposition.

Proposition 4.2 For closed terms p,q # 0,

(@) ol >0;
(#) Iplal>lpllql.
(3i1) p s p' implies |p| > |p'|.
Next, we define an important semantic class of terms in which we shall be

interested.

Definition 4.3 A term p € P is prime iff it cannot be expressed as p = q | r for
any q,7 # 0.

Thus a prime term is one which cannot be decomposed into the parallel compo-
sition of simpler processes. The useful (and somewhat surprising) result about
these prime terms is given by the following proposition by Milner regarding the

decomposition of terms.

Proposition 4.4 (Unique Factorisation Theorem) Any process term p € P

can be expressed uniquely as a parallel composition of primes.

The utility of this proposition in the proof of our result is clear. By saying that a
term is prime, we are restricting the possible syntactic form of the term. Simple

tests for primality are given by the following proposition.

Proposition 4.5

(z) If p— 0, then p is prime.



i) Ifp =9 and p LN " where p' and p" are distinct primes such
p p
that p # p' | p", then p itself must be a prime.
(1) If p == p/, p LN p" and p = p", where p', p" and p" are

distinct primes, then p itself must be a prime.

We shall restrict our class of equivalences in one final mild way by insisting that
they all respect 0-absorption through both the + and | operators, and in the sequel
we shall want to deal exclusively with terms which do not contain unnecessary 0
summands or factors. With this in mind, we define # to be the term ¢ with all 0

summands and factors removed. Formally, we have the following definition.

Definition 4.6
t if lul =0 A fo(u) =0

5 tvu =1 @ if [t =0A fo(t) =0
. i+ 4 otherwise
.%;wa{ . t if lul =0 A fo(u) =0
tlu =< i@ ft|=0Afu(t) =0
t| 4 otherwise

We shall also restrict the type of axiom set which we shall allow in our proof
system, to exploit the above 0 absorption properties in our proofs. The special
class of axiomatisations will allow us to prove statements without invoking unnec-
essary O factors and summands. However, as we shall see, the restricted class will
not be a real restriction with respect to the properties of axiomatisability which
we are analysing. That is, given any arbitrary finite, sound and complete axioma-
tisation, we can produce another finite, sound and complete axiomatisation which
is in our special class of axiom sets.

The axiom sets to which we shall restrict ourselves will be saturated, as defined

as follows.

Definition 4.7 Let T be an arbitrary set of equational axioms. The saturation

of T is defined to be
| Sat(T) = T U 7,
where
T = {fo=t | H=ueT,5Cf(t)Ufo(u)
stto=1{%%} and uo=u{%}}.
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The important properties of Sat(7) are expressed by the following propositions.
Proposition 4.8 7'+t = u if and only if Sat(T) F 1 = u.
Proposition 4.9 7 is finite if and only if Sat(7T) is finite.

Thus from now on, we shall restrict ourselves to considering only saturated axiom
sets, that is, axiom sets 7 such that 7 = Sat(7). As we pointed out earlier, the
above results show that this assumption is not a restriction if we are interested in
finite, sound and complete axioms sets. However, an important simplification of
proofs is given as follows.

Proposition 4.10 If we have a proof of a statement P = @Q in our natural deduc-
tion style proof system parameterised by a saturated aziom set T, then replacing
p = q throughout the proof tree by p = § gives us a valid proof of the statement
P = Q. Thus using a saturated aziom set, a (shortest) proof of a result containing
no occurrences of 0 as a summand or as a factor need not contain any occurrence

of 0 as a summand or factor in any of its intermediate terms.

Proof:

It is not hard to see that any inference

-..?pizgi 'oo(rule)

can be changed to the valid inference

The only nontrivial case is in dealing with axioms. In this case, we
have

p=qt=1v

where p = q is aziom t = u instantiated by some substitution o. This
inference can be replaced by

(Zo = ﬁo)

Pp=4q
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where ty =1 {0/;} and ug=u {0/&}, where T = {:c l O, = 0}.
Clearly
by & = (o,

~
et

§ is aziom ty = iy instantiated with substitution & defined
. [

e

Thus we restrict our proof system to be parameterised by saturated axiom sets.
Next, we shall want to restrict our attention to just a certain subset of process
terms as defined as follows.

Definition 4.11 We define S, to be the derivation and a-prefiz of derivation
closure of the set {¢, | ©,}. That is, S, is the smallest set satisfying:

?’) P2 | Pn € Sn; and
i) PeS,, P-% P = PaP €S,

We can express this set explicitly as follows.
Proposition 4.12
Sn={palen} U{Ail4|0<i<2,0<i<n}
U{Aile. |0<i<2} u{e] 4 |0<i<n}
U{a(Ailen) | 0<i<2} U {a(e | 4) | 0<i<n}
U{ad;]4) |0<i<2,0<j<n it+j<n+1}.

Some technical properties which this set satisfies in which we shall be interested
are given by the following propositions.

Proposition 4.13 If P+ Q = 3.5 for some S C S,,, then P = }_T for some
TCS,.

Proof:
Let P 25 P',
Then 3.8 —+ P" = P’ so Py —» P" for some Py S C S,.
But then by Definition 4.11, a.P" € S,,.

Thus letting T = {a.P" € S, | 3P' = P" st P —% P'}, we have
P=3T. ]
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Corollary 4.14 If P = S8 for some S C S,, and P 5 P’ for some j > 0,
then there is some R € S,, such that R = P'.

Proof:

n ol o

Suppose P -+ P" £ P'.
Then by Definition 4.11, 3>5 %+ Py = P” for some P, € S,,;
Hence also by Definition 4.11, P, Y R=P forsome Re S,,. 0O

Proposition 4.15 Let m > 2, and 0 < r; < ry < --- < r,,. If there is some
P € S, such that for some Q, A,, + A,, +---+ A, +Q = P, with |P| < n, then

P = Ar1+Ar2+"'+Arm+Q = Yy
Proof:

Straightforward check through all of the possibilities for P € S,, given
by the alternate definition of S, of Proposition 4.12. O

We are now ready to define our property ©,, of statements P = () as described

above.

Definition 4.16 For U,V C P being two sets of terms, we first define ®£(U, V)
to be the proposition which states the following:
PeUUV = P=P, and P#£0, P +P",
and YU = YV = 35 forsome SCS,,
and AP €U st P = ¢, | ¢,
and BQeVstQ = 5| p,.

Thus @i(U, V) states (among other things) that the equation U = YV expresses
a (valid) equality between terms in which the term ¢, | @, is captured by a single
summand on the left hand side of the equality, but not by any single summand on
the right hand side.

We then define ©,(U,V) = OX(U,V) v XV, U).
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It is easy to check that the law Red, is of the form U = Y-V where 0,(U,V)
is true. We shall now proceed to show that given any finite saturated set of
strong congruence axioms, there is some n such that no equivalence 3 U =3V
where ©,(U, V) holds can be proven. To do this, we start with the following basic

lemmata.

Proposition 4.17 Letn > 1 and U,V C P be such that ©,(U,V). fPeUUV
is the term satisfying P = @, | ¢, then P = P, | P,, where Py = @, and P, = ¢,

Proof:

P2 | o = ¢ and 95 | 0n = a | @ # @y

Hence P # a.P', as a.P' 25 P' only.

Thus P = P'| P" where P',P" # 0.

Since o, and @, are prime, we must have that P' and P" are precisely
®q and py,.

Hence P = P, | P, where P, = ¢, and P, = ¢,,. 0

Proposition 4.18 Let t be an open term in P, and let o be a substitution such
that to = to, and such that for some x € fo(t), o, = ap, + aap,. Then to #

(PZ I Pn-
Proof:

Let t, o and x be as above.

t is of the form
tEt1+t2+"‘+tm,

where each t; £t +1".
Let k be such that z € fu(t}).
Thus t;, £ 0.
Ift, = bt', then z € fo(t), so [ta| > |t'o| > |0, =n+2;
but [y | pnl =n+2, s0to # ¢ | pp.
Ifty=t"|t", then z € fo(t') or z € fo(t"),
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so |to| = t'o| + [t"o| > |o,| = n + 2;
s0 again to # @, | @,.
Finally, if t, = = then to — ap,;

but @, | @n 7 @GPy, s0 again ta # @y | ¢, O

The following lemma is the main crux of our proof, that the properties ©,
eventually transcend any finite set of valid axioms. The lengthy proof of this
result relies heavily on the use of the Unique Factorisation Theorem in syntactically
analysing terms, as well as the special nature of the class of terms §,,.

Proposition 4.19 Let T be a finite saturated set of sound (with respect to strong
congruence) axioms, and let n be bigger than twice the number of operators in any
aziom in 7. Then no aziomt = u in T can be instantiated to a statement p = q

where p=Y U and ¢ =YV such that 0,(U,V).

Proof:

Let n be as above, and suppose t = u is an axiom in T such that under
substitution o, t = u instantiates top = q wherep =Y U andq=3V
such that ©,(U,V).

Without loss of generality, assume that @ﬁ(U, V).
Clearly, fo(t) = fo(u), as t = u is assumed to be a valid aziom.
Now, t =t +ty+---+1t;, and u = uy+ug+---+uy for some k, k' >0,

where each t;,u; v +v'.

If@ﬁ(U, V), then for some i, eithert,o = P, | P, ort,c =P, | P, + Q,
where Py = py and P, = ¢,

Consider the structure of t;:

t; =0 = t;0 = 0 (contradiction);
t; =2 => 0, =10 and x € fo(u;) for some j
= u; #0,au/,u' +u",u’ | u”
= u;=zand P, | P, eV
(contradicting ©%(U,V))
t; = at' => t,0 = a(t'o) (contradiction);
t; =t +¢" = (contradiction);

14



Thust; =t |t" and t,o =t'o |t"c = P, | P,.
Hence t; = t' | t" witht'c = P, = ¢, and t'o = P, = ¢,,.
Now t" = vy +vy+ -+ v, where [ < Z and each vy, #v+v.

t"05v10+v20+""¢710’=90n=A1+~A2+"'+An,
' so some vyo = A, + A, +---+ A, for somem >2 and
O<r<ryg< - <ry,.

Thus clearly v, # 0,av,v +v',v | V', s0 v, = z for some variable =
where

o, =A, +A,+ -+ A,
Clearly = & fo(t'), as |[t'o| =2 < r,, = |o|.
Let o' = O_{ac,on + a,acpn/w}-

Then t'c’ = t'o, and to’' - t'o’ | 0, = 03 | Pn.

Therefore for some j, u;o’' - @, | @,.
Now |u;o’| > n +2 = |uo|, so clearly z € fo(u;).

Consider the structure of u;:

u; =0 => z ¢ fo(u,) (contradiction);

u; =z => u;0’ = ap, + aap, £ ¢, | Pn
(contradiction);

au' => ;o' = a(u'o’)
— u'c’ =, | p, and z € fo(u)
(contradicting Proposition 4.18)
u; = v +u = (contradiction);
Hence u; =u' | u" with u"c’ - pst u'e’ | p=¢, | @,
Ifz € fo(u'), then n+2 = u'o’| +|p| 2 |oy| + |p| = n + 2+ |pl;
sop=0and u'c’' =@, | p,.
(contradicting Proposition 4.18)
Hence z & fo(u'), and so z € fo(u").
Now u'o | p =, | ¢n, and u'c # 0,

! ! !
50 UG =y 0T U T =, OTUGT =P, | @,.

But [u'o| = |ujo| — |u"c| < |uo| —|oz| < (R +2) —2=n.
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Therefore u'c = .
Thus also |u"o| < n.

Now, 7 € fo(u") = u"o <> 0,4+ Q for some Q, j > 0.

aJtt

Hence uoc — o, + Q.

Thus by Proposition 4.14, 3P € S, st o, + Q = P.

Buto,=A, + A, +---+ A, for somem > 2
iuz'th0<r1<r2<---<rm.

Hence by Proposition 4.15, o, + Q) = ¢,,.

Thus u"o <, Pp-

Nown > |u"a| > j+n, soj =0.

Therefore u'oc = ¢,,.

But then u'o |u"oc = Py | P, € V for some P, = ¢, and P, = ¢,
(contradicting @ﬁ(U V)

Therefore no aziomt = u inT can be instantiated to a statement p = q

where p = YU and ¢ =3V such that ©,(U,V). O

Given that the property ©,, cannot be introduced into a proof tree through the

application of an axiom, the next step in our proof is to show that it also cannot

be introduced through the application of the rules for transitivity or substitutivity

of the + operator. The cases involving the final few inference rules are trivial.

Proposition 4.20 Suppose in a sound proof, we have an inference:

= r r =
L =g 4 (trans)

where p=3YU,q=YV,r=3W,
and Re W = R=R, and R#0,R' + R";

Then

0,(U,V) = 0,(U,W)V0,(W,V).

Similarly for the (sub,) rule; corresponding to the inference:

- 4 — 7
Z;pg =p g+ g’ (suby)
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where p= U, q= NV, p' =SU, and ¢ =V,
we have the result that

0, 0ul,VuVv) = 0,U,V)ve,. U, V.
Proof:
Consider the (trans) rule case:

Assume @i(U, V). We know immediately that

PeUUVUW
= P=P and P£0,P' | P,

and (from G)ﬁ(U, V), and the soundness of the proof in which
the inference appears) that for some S C S,,,
XU =YV =YW=315S.

" Now if ARe€ W st R=a | ¢,, then clearly @g(U, w).
Also, if IR € W st R = a | ¢,,, then clearly GQ(I/V, V).

Similarly, ©X(V,U) = OLX(W,U)v ©X(V,W).
Hence ©,(U,V) = 0,(U,W)V0O,L,(W,V).

The (sub,) rule case is similarly straightforward:

Assume @ﬁ(U UU,VUV'). Again we know immediately
that

PeyUuU'uvuv’
=—> P=P and P#0,P + P,

and that for some S C S,

T(UUU) = Z(VuV) = =5,
and

AP e UUU’ such that P =a | ¢,.

Suppose this P € U. Then from @i(UU U, VUV'), and the
soundness of the proof in which the inference appears, and
from Proposition 4.13, we have for some ' C S,,,

YU =YV =3x8,
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so clearly @i(U, V).

Likewise, if this P € U’, then ©Z(U',V").

Similarly, @X(VUV,UUU") = OX(V,U)Vv 0LV, U").
Hence ©,(UUU',VUV') = 0,(U,V)Ve, U, V). 0O

4.3 Main Theorem

We are now ready to state and prove as a corollary of the above lemmata our main

theorem, the non-finite-axiomatisability of any reasonable semantic congruence.

Theorem 4.21 Let T be a finite saturated set of sound (with respect to any fived
reasonable congruence which is at least as strong as strong congruence) equational
azioms. Let n be large enough (as allowed by Proposition 4.19) so that no aziom
in T can be instantiated to express any truth YU = 3V where ©,(U,V). Then

our natural deduction style proof system cannot prove the valid statement Red,,.

Therefore no finite complete aziom system can exist for any reasonable congruence

which is at least as strong as strong congruence.

Proof:

Suppose we have a (shortest) proof of the statement Red,
o2l on + D (alA) + D (aa | A)
i=1 i=1

=ale, + aale, + D o, | A

i=1
which involves no terms containing 0 as a summand or a factor. The

proof takes the following form:

=g (rule),

where p =3 Uy and ¢ = XV, for
 Uo = {enea U {4 |1<i<2,1<) <n}
and

Vo = {al¢naale.} U {ps] 4 l 1<j<n}
so clearly ©,(U,, Vp) holds.
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Since this must be a finite proof, somewhere in the proof tree is an

inference

W—%—W(rule) where 0,(U,V),

such that the list D of premises of the inference contains no equality
YU = V' where 0,U,V').

By Proposition 4.20, (rule) can be neither of (trans) nor (suby).
Furthermore, by Proposition 4.19, we know that (rule) cannot be
(t = u) for any aziom t = u € F. Also clearly (rule) cannot be
(symm), as 0,(U,V) < 0,(V,U). Finally, (rule) cannot be any
of (refl), (sub,), or (sub)), as this would contradict ©,(U,V). Hence
we have shown that the original statement cannot be proven. (]

5 Conclusion

We have shown that any reasonable semantic congruence over our simple process
language which is at least as strong as strong congruence can only be completely
axiomatised using an infinite number of equational axioms. This partially ex-
plains the problems faced by [Hen87] for example in his attempt to axiomatise his
noninterleaving semantic congruence.’

There are two remedies to this situation. The first requires the introduction
of some axiom schema which will finitely represent the required infinite dimension
of axioms. Such is the case for example with Milner’s Expansion Theorem for his
observational congruence, and also with the noninterleaving semantic congruence
of [Bou86] where such a new axiom schema derived from the Expansion Theorem
is introduced.

An alternative solution to the problem is to introduce new syntactic constructs
into the language which will increase the expressibility of the language to the point
of allowing a finite sound and complete set of laws to be provided. This latter
approach is the one taken in [Ber84], [Ber85], [Cas87], [Hen87] and [Mol89] in the
introduction of the so-called left-merge operator. '
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