LECS

"+ SJoN 184 luspuadapul-}8S

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Self-independent Petri Nets
(or a dead-lock-free paradigm)

by
SUN, Yong

) ECS-LFCS-89-98
LFCS Report Series (also published as CSR-316-89)
LFCS November 1989
Department of Computer Science
University of Edinburgh i
The King's Buildings Copyright © 1989, LFCS

Edinburgh EH9 3JZ

Copyright © 1989, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Self-independent Petri Nets
(or a dead-lock-free paradigm)

SUN, Yong*

briefly revised November 1989t

Brief Overview

As we know, hand-shaking is an abstract and ideal synchronous mechanism for communica-
tion. However, it has implementation problems in distributed systems, so-called synchronization
problem (see [Lamport 82, Sun 87] for references), i.e. asynchronous mechanisms for commu-
nication are inevitable in implementation. So, we are considering to bring such asynchrony
into semantic models for concurrency directly, instead of the common practice of simulating the
asynchrony through the hand-shaking mechanism

The second consideration of ours is dead-lock problem in concurrency, which is closedly
associated to synchrony (or hand-shaking). For instance, a?z.8%y.B(z,y)||B'e;.ale;.C in CSP
and (az.By.B(z,y)|Be;.@e,.C)\af in CCS are examples of dead-locked processes and of dead-
locked agents respectively. Such instances should be avoided, if possible, in implementation of
distributed (or communicating) systems. Obviously, if there exists a (complete) inference system
which can be used to decide whether there is a dead-lock in a communicating system, then we
can use such an inference system to decide and to exclude the dead-lock instances. But, this kind
of decision problem for dead-locks is generally undecidable. Therefore, we have to try another
way around, i.e. a dead-lock-free paradigm. This paper pursuits such a dead-lock-free paradigm
to certain extent.

The third consideration in our mind is to present a denotational model for CCS in a non-
interleaving fashion (or so-called true concurrency), although the actual interpreting CCS terms
into the model is omitted. It is just a matter of fact that the interested readers can follow a
quite standard procedure and provide the corresponding interpretations. In case of any doubt,
you can consult Goltz and Mycroft’s paper [Goltz 84] or Winskel’s [Winskel 83].

The model to be presented can be viewed essentially as is constructed from labelled Petri-
nets. All constructible nets are self-independent (or dead-lock-free). Technically, the result can
be regarded as an improvement of (a) Winskel’s event structures [Winskel 83] which semantics is
non-symmetricity to non-determinism (i.e. the semantics of By + B, is not equal to semantics of
By + By); of (b) Goltz and Mycroft’s labelled Petri-nets [Goltz 84] which can not systematically
deal with recursive processes (i.e. they have a trouble in giving a semantics to By in {B; <

*LFCS, Department of Computer Science, University of Edinburgh, King’s Buildings, Mayfield Road, Edin-
burgh ER9 3JZ (U.K.).

'This paper is a briefly revised working note on congruences of labelled Petri Nets in May 1987; which was
once presented in Edinburgh Concurrency Club’s seminars in 1987.

a.Nilly.By, B, < B;|B.B2}), although isomorphic nets are treated as identical; and of (c)
the work of Boudol and Castellani in [Boudol 87] which follows Winskel’s approach and solve
the problem of non-symmetricity of non-determinism, but can only discuss finite structures.
Therefore, this paper provides an appropriate and sufficiently abstract domain of Petri Nets for
solving fixpoints of semantic equations when isomorphic nets are regarded as identical.

Contents

1 Introduction to Self-independent Petri Nets (SPNs)

A labelled Petri Net (LPN or simply PN) N can be denoted as < S,E,T,L >, where § is
a set of states (or places), E is a set of events, T is a set of transitions which is a subset of
(§ x E)U(E x §), L is a labelling from events E to labels Lab. Later, if no confusion, we let
N be SUE.

For z € N, the pre-set of z and the post-set of z are defined respectively as (i) *z =4
{y € N| < y,z >€ T} and as (ii) z* =4 {y € N| < 2,y >€ T}. A root-set of net N is
°N =4 {z € N|°z = §}. |X] stands for the cardinal number of a set X. Roots of N (i.e.
elements in °N) can be considered of always initially marked, although we do not mention
markings at all in this paper. This treatment can be viewed as presupposing both that all roots
(states) are always marked initially and that multi-tokens are linearized into multi-nets, i.e.
every initial state represents one token (see an example in figure 1.1).

RO

@ > € linearizing
=

figure 1.1

For Petri Nets, there are three phenomena need to be classified. (a) events e; and ez in figure
1.2 are to be exclusively triggered, i.e. either can be triggered but not both. In other words,
these two events are not independent of each other. This phenomenon is commonly referred to
as non-determinism.

2!

€1

€2

figure 1.2

(b) states s; and s, in figure 1.3 are independent of each other, i.e. both states s; and sy are
triggered by event e at a same time. This phenomenon is commonly referred to as concurrency
or parallelism.

figure 1.3

(c) event e in figure 1.4 can only be triggered by both states s; and s, not only one of them.
This phenomenon is commonly referred to as synchronization.

NG
o

figure 1.4

To exploit these phenomena further, we introduce an parallel operator | over nets. Informally,
let Ny be the net (see figure 1.5) :

/
Ny @ e1 ,@ o o o
figure 1.5
and N, be (see figure 1.6) :
B 7
N, @.,62 ,@ ~| €3 ,@ e o o
figure 1.6

Their composition Ny|N; is (see figure 1.7) :

@ € ,@ e o ¢

T _ T
€4 es o o o
Ny|N,
[[
figure 1.7

In these pictures (see figure 1.5, figure 1.6 and figure 1.7), each horizontal arrow can roughly
be viewed as an execution (or evolution) of a process, and the arrows between horizontal arrows
are interactions between processes. The events labelled by 7’s (say e4 and es) are successful
communicating actions, and events labelled by non-7’s (say e; and e;) means unsuccessful com-
municating actions. More specifically, N; of N;| N, does not know whether the action performed
on port £ is a.result of event e; or a result of event e4 (or es), if it does not check the receiving
message. That is, the result of an action has to be examined before N; understand whether it
is a successful action. In other words, an empty message implies that the action was unsuccess-
ful. Among successful actions, N; need to be informed from N, to know which event resulted
in the received message, event e4 or event es. Therefore, every communicating action is only
subject to the performer’s wish (or will) regardless (i) who he is (a message sender or a message
receiver) and (ii) his communicating partner. Synchronization is a result of coincidence or was
established by protocols, therefore, synchrony is a special case of asynchrony. Nevertheless, we
obtain some remarkable power from such asynchrony. We name two of them : (a) every pro-
cess is self-independent; and (b) message loss in communication is a natural consequence of the
asynchronous communication, therefore tolerance of message loss is naturally inherited of the
model, which is an important issue (fault-tolerance) in distributed computing systems.

Actually, we say that a relation ||! on nets is the independent relation on nets?, i.e. | :
(Sx SYU(E x EYU(S x E)U(E x S) is the least relation on net N which satisfies the following
six conditions.

(1) Vs1,82 € °N. s ?—é S9 = 31“82

(2) Ve € E,Vs1,82 € €*. 81 # 33 = s1lsg

(3) Vei,eq € E. (.61 N%y = 0) & ((VSl € %eq1,Vs9 € %ey. 81”82) = 61”62)

(4) Vey, ey € E. eq]le = (V51 € ®ey. 51]leg) & (Vsg € ey €4ls2)

(5) Vs € §,Ve € E. (Vs € ®e. s||s') = s|le & e]ls

(6) Vs € S,Ve € E. (s|le = Vs’ € €. s||s') & (e]|s = Vs’ € e®. §'||s).

Intuitively, the first condition (1) says that distinct initial states are independent of each
other; that the distinct states triggered by a same event are independent of each other is said by
the second (2); the third (3) expresses that distinct events triggered by totally independent states
are independent of each other; the fourth (4) indicates that an event and a state are independent

Do not confuse this symbol with parallel operator || in CSP, although they are closely related as well.
20r more precisely, on well-rooted Nets. The concept of well-rooted will be defined later.

4

of each other if the state is triggered by another event independent of the event; The fifth (5)
suggests that an event and a state are independent of each other if all states triggering the event
are independent of the state; and the last one (6) shows that a state is independent of another
state if the other state is triggered by an event which is independent of the state.

With the understanding of independence relations on nets, we are interested in the nets
which have the following six properties

()Vz,ye EUS.z=y&2*=y"=>z=1y

(ii) Ve € E,3s1,82 € 5. 51Te & eT'sy

(iii) || is irreflexive.

(iv) Ve € E,Vsy, 82 € %e. 81 # 52 = 81|32,

(V) Vs € 5,Vey, €5 € *s. ~(ex]le2).

(vi)Vs € S —°N. N{%ele € ®s} #0

Intuitively, the first property (i) says that the nets we are interested in have no redundancy;
the second (ii) expresses that every event has a cause and a result in the nets we are inetersted;
the third (iii) assures of that one is impossible to be independent of itself; The fourth (iv)
suggests that distinct states triggering a same event must be independent of each other; The
distinct events triggering a same state can not be independent of each other is expressed by the
fifth (v); and the last (vi) asserts that if a non-initial state triggered by a collection of events
then the events must share a common triggering state.

For any net N, if the independence relation || on the net have the above six properties, then
we say that N is a Self-independent (Labelled) Petri Net, a SPN for short. Actually, property
(iv) of SPNs excludes the instance of nets in figure 1.8, and property (v) excludes the instance
in figure 1.9°.

—®
o BTN
@

figure 1.8

)=

)

()—|=

figure 1.9

>e

3The nets in figure 1.8 and figure 1.9 are co-nets of each other, i.e. one is obtained from the other by reversing
all transitions.

Intuitively, these exclusions are very reasonable, i.e. (a) non-determinism should not lead
synchronization and (b) concurrency (or parallelism) should not reduce to non-determinism.

From now on, we concentrate on SPNs. Also, it is worth to mention that || is a kind of
reversed version of # (conflict relation) in [Neilsen 79], but the nets involved in this paper are
richer than theirs, since our nets are not necessarily cycle-free. However, the existence of a
circle in a net is closely related to dead-lock in the net. An example with a circle is shown in.
figure 1.10. Fortunately, this does not happen in the constructible nets of this paper?. Thus, it
explains the reason for the alternative title of this paper.

©) ©)
AN AN =
oINS SER

figure 1.10

Apparently, we are not interested in a trivial SPN, i.e. < 0,0,0,0 > is not inside the SPNs
under our consideration. Also, since we intend to regard isomorphic nets as identical, we identify
all singleton nets as one and write it as < {#},0,0,0 >. For simplicity, we further assume that
roots of each net are states, i.e. °N C §. Actually, this assumption is implicitly implied by the
property (ii) of self-independent nets. Then, we introduce a partial order C on SPNs as that
Ny C N, iff the following three conditions hold :

(a) Ny C Nz (or 81 € 82, By C Ey, Ty C T3, and Ly C Ly),

(b) oNl C °N27 and

(c) Vz,y € Ny.xTn,y D 2T,y

For the third condition (c), it implies No[n, = N;. Intuitively it means that the prefix closure
implies the partial order. Hence, the least upper bound UN}, of an w-chain { Ny} is UN = U Ny,
and the least element L is < {e},0,0,0 >. Therefore, SPNs form a cpo.

2 Constructible SPNs

Let £ range over Lab, £ and £ represent input and output respectively, - be the complementary
function on Lab. We are giving constructions for SPNs below.

(i) (bottom) L =< {},0,0,0 >;

(ii) (sequence) £.N =g4< {s}US, {e}UE,{< s,e >}U{< e,s' > |s € °N}UT,Lu{< e, >} >

where N # 0, and s, e are not in N;

(iii) (non-deterministic composition) Ny + Ny =4< S, Ey U Ey,T, Ly U Ly >,

where N; # 0 (¢ # 1,2) and disjoint with each other, § =45 (51\°N1)U(S2\°N2)U(° Ny x°N3)
and T =4 {< s,e > |s =< 81,8, > A(< 81,6 >€ T1V < sg,e >€ Th) As; € °Ny(i =
1,2)} U T1 [(5,\e Ny) x B UE: x (81 \° N) UT2 [(85\° N) x B2 U B X (S2\° N2) |

(iv) (parallel composition) N;|Ny =4 < §,US,, EyUEUprod, Ty UT,Uconc, LU LyUcomm >,

*There are some subtle points about synchronizers, see next section for the definition of synchronizers.

where Ny and N, disjoint with each other, and prod =4 {e € Ey x E;|L(e[g,) = L(e[E,) #
T}, comm =g {< e,T > |e € prod}, conc =4 {< s1,€ >,< $3,€ >,< e,s! >, < e,s* > le €
prod A sy € *(elg,) A5y € "(e[5,) A 5! € (e[m,)* As? € (e[5,)"):

(v) (synchronizer) N\£ will be defined later;

(vi) (recursive operator) p or fiz (fixpoint operator).

Now, to motivate the definition of synchronizer(say N\f), we provide an example for it. Let.
us look at the example of N;|N, of figure 1.7 in previous section. The intuitive meaning of
(N1|N3)\L is to force that all communications on port £ must be synchronized. The effect of
such enforcement is demonstrated in figure 2.1. »

Q @) - .
GALAN: \ o /
@/ \

figure 2.1

Apparently, by referring to figure 1.7, we know that events e; and e; are cut off after
synchronization in figure 2.1. Also, there is no event which follows state s4, i.e. events e3
and ey, and state sy are cut off as well. In a contrast, there may be events which follows state
sy. In order to formally capture such synchronization, we have to introduce another concept,
so-called well-rooted SPNs.

Let NI =4 °N(C §), N+ = {e € E|*e C Uioo NIH}, NE+I =4 {s € §|°sn
NBH £ 0}, and N* =g< UNPLUNEHL T waay g westmu e vy,
L[UN[2;+1]>. We say that a SPN N is well-rooted iff N = N*.

Informally, the idea of well-rooted nets is similar to the idea of well-known property of set
theory, i.e. well-foundness. The well-rooted N means that if z € N, then 2 can be reached by an
(arbitrary) finite number of steps (or executions, evolutions) from the roots °N. In other word,
a well-rooted N says that every state in IV is reachable. Nevertheless, we are only interested in
the well-rooted SPNs in this paper.

Lemma 2.1 : The property of well-rooted is an invariant of the constructions of prefixs, non-
deterministic composition, and parallel compositions.

For a well-rooted N, we define N\¢ =4< 5, B, T[s'xpruE'x s, L[gr>, where NO =q4r °N,
N@HD) — fe € El*e C UsNCH A L(e) # 6,8}, N®HD) = {s € §|*sn NE+D 2 ¢},
5" =g UN®), and E' =4 |J N*+1). Thus, the result of Lemma 2.1 can be extended to include
synchronizers.

Lemma 2.2 : The well-rooted property is an invariant of the constructions mentioned in Lemma
2.1 with extra constructions of synchronizers.

Also, we have that the well-rooted property is closed under the least upper bounds. Formally

Lemma 2.3 : Let {N;} be an w-chain of SPN, if N; is well-rooted for all 7, then LIN; is
well-rooted, too.

Therefore, the result of Lemma 2.2 can be extended to include all constructions of nets.

Theorem 2.4 : The well-rooted property is an invariant of all constructions of nets.

The key point of the proof for Theorem 2.4 is that all constructions are monotonic and
continuous. So, fixpoints always exist when we apply p (or fiz) to all possible combinations of
constructions, and others would naturally follows from previous lemmas.

It is not hard to verify that all constructible nets are Self-independent. Further, if we regard
every root of a net as a process and if we syntactically exclude the instance of constructions like
Ny + (N3] N3), then every process is self-independent in constructible nets. That is, every token.
can move along constructible nets without getting stucked if we view that each root is always
initially marked. This is where the name of Self-independent Petri Nets comes from.

However, there are some subtle points about synchronizers with regard to self-independency.)
Nevertheless, we deliberately omit them in the present paper.

3 Isomorphic Classes of SPNs ([SPN])

To regard non-deterministic compositions of Ny + N and of N + Ny to be identical, we have to
consider isomorphic classes of SPNs. First of all, let us give the definition for net isomorphism.
N, is isomorphic to Ny (N; & Ny) iff there is a bijection ¢ : Ny — Ny such that s € 57 &
#(s) € 81, e € Ey & ¢e) € Ey, < z,y >€ Tp &< ¢(z),4(y) >€ Ty and Ly = Ly o ¢. It can
easily be checked that the isomorphic relation among SPNs is an equivalence relation among
them. Then, we define the corresponding equivalent class as : [N] =4 {N' € SPN|N'= N}.

Later we refer to the set of all equivalent classes as [SPN].

Lemma 3.1 : The following three definitions are equivalent : for all N; (i = 1,2),

1. [N1] 94 [No] iff 3N € [N2]. N1 C N,
2. [Ny] 2 [No] iff V! € [N.V. C Iy,
3. [N1] Q5 [No] iff AN] € [V1],3N; € [N,].N] C N;.

Next, we naturally want to extend the partial order C from SPN to [SPN], and denote it as
d. Because of Lemma 3.1, we can refer the order < to any one of <; (¢ = 1,2,3) as we wish.
However, < is not necessarily a partial order in general but a pre-order. The problem not to be
a partial order comes from symmetricity, i.e. [N1] 4 [Ny] < [Ny] does not imply [Nq] = [No].

In order to present the non-partial-order problem more clearly, let <X be a partial order in
an arbitrary X and ~ be an isomorphism on X. Then we say that a partial order < in X has
a well-extended property (on X over ~) if

V21,29 € X2y Sy Ay X 29 D 21 = 2o,

It is obvious that < is a partial order if C has the well-extended property. Unfortunately, C does
not have the well-extended property in general. Therefore, from this it is not hard to conclude
that < can not be a partial order in SNPs in general. An example to show that C does not have
the well-extended property is given as follows, see figure 3.15.

Let N; =< S, E;,T;, L; > (¢ = 1,2) and

(a) §: = (U6 (i = DA > DAL < b < 20)V((i = 2)A(r > DAQL <k < 2041}

(b) B = {e}U{e 4 (G = DA(> DAQL < k < 20-1)V((i = 2)A(n 2 DA < £ < 20))};

5An example of such was pointed out to me by G. Plotkin during one of my presentations to Concurrency
Club’s seminar in 1987, which is obtained by taking the prefix away from figure 3.1.

(C) I = {< si,ei >}U{< ei’siz,l > |n 2 1}U{< si,kvefz,k >, < e:.z,kvsiz,k+1 > |(("’ = 1)/\("7' 2
DAQ<k<m—-1)V((Ei=2)A(n>1)A(1<E< 2n)}

(d) Li={<é,a >}U{<e;’k,ﬂ> (G=DAR2DAA<EL2n-1)V((i=2)A(n 2>
DA(Q<Ek<L)}

It is obvious that Ny is not isomorphic to N,. But we still have to check whether there exist
N} and N} as required in <3 of Lemma 3.1. This is done by considering an embedding Ny into,
N,, and conversely N, into Nj.

Therefore, in order to have < be a partial order, we need to restrict the SPNs to certain
sub-collection of them. This sub-collection must be reasonably rich enough to accommodate
CCS, say. The restriction we derive is the finitely-branched condition for SPNs. The following
is to introduce the finitely-branched condition on SPNs.

Let N be a SPN. N is finitely-branched (or to be a fSPN) if N has the following two
properties:

(i) for roots |°N| < oo;

(ii) Ve € E.|e*| < oo; and

(ii) for events Vi.| NP+ — N[%-1]| < o0, where N =g,

These three conditions of the finitely-branched conditions restrict SPNs to fSPNs such that
the increase of the numbers of branches for each execution (or evolution) is limited to arbitrary
finite numbers. Since a finite set is identical to another finite one if it is a subset of the latter
and if there exists a 1-1 mapping between the elements of the two sets, fSPNs naturally have
the well-extended property. We state the result as a lemma. Formally,

Lemma 3.2 : C is well-extended in fSPNs.

Therefore,

Theorem 3.3 : is a partial order in [fSPN].

Now, we know that the finitely-branched condition is sufficient to guarantee that J being a
partial order. But whether this condition is too restrictive or not (i.e. whether it is necessary or
not) is to be demonstrated. However, we can show that it is not too restrictive in the sense that
there are examples of which the symmetricity does not hold. Such an example has been given
before in demonstrating whether the well-extended property holds in general. Nevertheless, we
will give another one in the proof of Lemma 3.4. In this sense, we claim that the finitely-branched
condition is a necessary condition for < being a partial order.

Ny

1
33’

52

@ @)

figure 3.1

10

Lemma 3.4 : There are [N;] and [N] such that 3N] € [Nq] and 3N € [Ny], they satisfy
1. Ny C Ny, ie. [N1] 44 [No],

2. N, C Ny, ie. [Ny] 45 [Mq), and

3. Ny and N, are not isomorphic to each other, i.e. [N1] # [Ny].

Proof

As we point out previously, the example about the well-extended property can be used here. -
However, this only shows that Ve € E.|e*| < oo is necessary. Taken the prefix away from the
example, it would turn out to be that |°N| < oo is necessary. For the other case, we provide
another example below, e.g. assume that 3j.|N2i+1 — N[2-1]| £ 00 and |NB+2 — NP)| £ 00
(the conjunction is because of the nets’ characteristics of no redundancy), say j = 0. The readers
are recommended to draw a graphical representation of the following example, since a graph can
help us to comprehend it at an intuitive level.

Let N; =< S;, E;,T;, L; > (i = 1,2), where

(a) 5 = {s'} U {si |k € Nat — {0}};

() Fi = {eb (=)A< n<2k- D)) V(i =2 A0 <n < 28));

() Ti={<s,ef,><e k> (({=DA1<n<2%-1)V(E=2)A1<n<2k)k
and

(d) L ={< e, >|((=1)A(1<n<2%k-1))V((i=2)A(1<n < 2k)}

It is obvious that Nj is not isomorphic to N, (see figure 3.2). But we still need to check
whether there exist N{ and N} as required. This is done by considering an embedding N; into
N,, and conversely N, into Nj.

a

For an w-chain {{N;]} in [fSPN], the least upper bound of it is : U[Ny] = [N;] where Vk.
N;, € [N]JA N, E Ni_ . So, [fSPN] forms a cpo.

Naturally, We can extend the constructions in last section (section 2) to [fSPN], say o.[N] =4
[@.N], [N1] + [N2] =a5 [N1 + N3, [N1]][N2] =45 [N1|N2] and [N\ =4 [N\e]. Since the above
constructions on [fSPN] are defined by their counterparts in fSPNs, their monotonicities and
continuities follow easily. However, there is no trivial way to extend recursive definitions to
isomorphic classes. For example, r := z|a.L where z is an identifier for nets; i.e. y is not closed
in fSPNs. So, we have to further restrict constructions to certain constructions. The answer we
come up is the well-constructed restriction on net constructions.

11

Ny

/N\
X"' \/

1/ \1//

An unary construction F (or functor) of fSPNs is said to be well-constructed if
KNk 2 KIPF¥([< {0},0,0,0 >])| = "F*+([< {0},0,0,0 >])| < co.

Intuitively the well-constructed condition for nets is to exclude the possibility of increasing the
number of roots of a constructible net to an infinite number, i.e. a well-constructed F' will not
be able to increase the number of roots of a net to an arbitrary large number by recursively
applying F. So, we have that

Theorem 3.5 : For any well-constructed F, pz.(Az.F) is closed in [fSPN].

The proof is omitted. But, the key point of the proof of the above theorem is to show that
a series of numbers of root states by recursively applying F (to the least element) is converged,
and so, the fixed point of F belongs to fSPN.

A similar theorem of Theorem 3.5 for mutual recursive functors F is left out.

Since other constructions can easily be checked that they are closed in [fSPN], the net
constructions in Section 2 under the well-constructed restriction are closed in [fSPN]. Therefore,
it is safe to interpreting CCS terms into well-constructed [fSPN], i.e. the well-constructed [fSPN]
is an adequet denotational semantics model for CCS provided the CCS terms are well-guarded
as well.

12

4 Discussions

Looking from the categorical point, the constructions + and | agree with their sum and their
product in the Petri nets category [Winskel 87] except that | is a restricted product which only
affects the events with complementary labels. This shows that the intuition of the asynchrony
from implementation has a categorical background. Also, it is worth mentioning that the asyn-
chrony is dead-lock-free by nature. We should point out that the synchrony and the asynchrony
in this paper are different from Milner’s ones [Milner 84], where his synchrony means the exis-
tence of an universal clock in his framework and his asynchrony means the non-existence of such -
clock.

However, there is one construction does not fit our intuition of that every root of nets
represents a process. This happens in the definition of +, i.e. it can produce more roots than
the component’s ones, even the sum of them. On the other hand, the idea behind + is non-
determinism. So, it should not be able to produce more processes. Nevertheless, there is one
possible way to overcome this by guarding | when + involves |. Intuitively, this solution is very
reasonable. It means that “non-determinism should not happen between a sequential process
and concurrent processes”, i.e. Ny + (N2|N3) should not be allowed in net constructions. If we
accept this solution, then the constructible Petri Nets (or SPNs) in this paper would have a very
good character, and they should be able to be axiomatized.

Another profit from the asynchrony not having been exploited in this paper is to incorporate
broadcasting communication into our model. This is a subject of future investigation.

Comparing constructible nets (or cSPNs for short) with fSPNs, we understand that the
collection of cSPNs is more restrictive than the one of fSPNs. In light of this observation, the
condition for net constructions to be both of finitely-branched and of well-constructed may be
over-restricted. This issue is certainly deserved our future attention. Nevertheless, it is always
a good idea to bring semantical properties up to syntactical level. Recent Brown’s work [Brown
89] has demonstrated that this is possible for Petri Nets through Linear Logic [Girard 86]. It also
seems that a similar result can be achieved through operational semantics of nets (or transitional
systems) and modal logic with certain extension of multiplicity.

5 Acknowledgement

Firstly, the author would like to thank the people who participated in Edinburgh Concurrency
Club’s seminar, and who provided many stimulations. It is hard to single out every benefit
obtained. However, he sincerely thank G. Plotkin, who pointed out an example (see a footnote
in section 3) to me during one of my presentations in the Club’s seminars of 1987, which shows
that C does not have the well-extended property in general. Also, he would like to thank
W. Brauer for his detailed comment on an earlier version and his encouragement, to thank
G. Winskel and A. Mycroft for their comment on an early draft of this paper. Thanks go to
A. Knobel and P. Paczkowski for their proof-reading and comment on an earlier draft, which
provide many stimulations on refining presentation of this paper.

6 References

Boudol 87 : G. Boudol and I. Castellani, “On the Semantics of Concurrency : Partial Order
and Transition Systems”, TAPSOFT ’87, Lecture notes in computer science vol. 249, 1987.

13

Brown 89 : C. Brown, “Relating Petri Nets to Formulae of Linear Logic”, LFCS report series
No.87, 1989.

Girard 86 : J-Y. Girard, “Linear Logic”, TCS vol.46, 1986.

Goltz : U. Goltz and A. Mycroft, “On the Relationship of CCS and Petri Nets”, Lecture notes
in Computer Science vol. 172, 1984. :

f;amport 82 : L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem”,
ACM Trans. on Prog. Lang. and Syst. vol.4, No.3, July 1982. ’

Milner 84 : R. Milner, “Calculi of Synchrony and Asynchrony”, TCS, 1984.

Neilsen 79 : M. Neilsen, G. Plotkin and G. Winskel, “Petri Nets, Event Structures and Do-
mains, Part 1”7, Internal Report CSR-47-79, November 1979.

Petri 76: C. A. Petri, “General net theory”, communication disciplines, in B. Show Ed., Proc.
Joint IBM University of Newcastle Seminar 1976.

Sun 87 : SUN, Yong, “Formal Specification of protocols and its independence of communication
mechanisms”, communication in distributed systems, Informatik Fachberichte, vol. 130,
Springer-Verlag, 1987.

Winskel 83 : G. Winskel, “Event Structure Semantics for CCS and Related Languages”, Lec-
ture notes in Computer Science vol.140, 1983.

Winskel 87 : G. Winskel, “Petri Nets, Algebras, Morphisms, and Compositionality”, Informa-
tion and Computation (the old name was information and control) vol.72, 1987.

14

