LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Z

n

=

—i

C

-

o

Z INSTITUTIONS:

> Abstract Model Theory

=3 for Specification and Programming

3

T oY

Q

% Joseph A Goguen

= Rod Burstall

o

<

S

w

g

®

o,

=

2

=:

=

©

|

a

o

o

Q

o

3

3.

o }

Q
LFCS Report Series ECS-LFCS-90-106
LFCS January 1990
Department of Computer Science
University of Edinburgh ]
The King's Buildings Copyright © 1990, LFCS

Edinburgh EH9 3JZ



INSTITUTIONS:
Abstract Model Theory for Specification and Programming®

Joseph A. Goguen! Rod Burstallt

Abstract

There is a population explosion among the logical systems used in computer science. Exam-
ples include first order logic, equational logic, Horn clause logic, higher order logic, infinitary
logic, dynamic logic, intuitionistic logic, order-sorted logic, and temporal logic; moreover,
there is a tendency for each theorem prover to have its own ideosyncratic logical system. We
introduce the concept of tnstitution to formalize the informal notion of “logical system.” The
major requirement is that there is a satisfaction relation between models and sentences which
is consistent under change of notation. Institutions enable us to abstract from syntactic and
semantic detail when working on language structure “in-the-large”; for example, we can define
language features for building large structures from smaller ones, possibly involving parame-
ters, without commitment to any particular logical system. This applies to both specification
languages and programming languages. Institutions also have applications to such areas as
database theory and the semantics of artificial and natural languages. A first main result
of this paper says that any institution such that signatures (which define notation) can be
glued together, also allows gluing together theories (which are just collections of sentences
over a fixed signature). A second main result considers when theory structuring is preserved
by institution morphisms. A third main result gives conditions under which it is sound to use
a theorem prover for one institution on theories from another. A fourth main result shows
how to extend institutions so that their theories may include, in addition to the original sen-
tences, various kinds of constraint that are useful for defining abstract data types, including
both “data” and “hierarchy” constraints. Further results show how to define institutions that
allow sentences and constraints from two or more institutions. All our general results apply
to such “duplex” or *multiplex” institutions.

1 Introduction

Recent work in theoretical computer science uses many different logical systems. Perhaps most
popular are the many variants of first and higher order logic found in current generation theorem
provers. But also popular are equational logic, as used to study abstract data types, and Horn
clause logic, as used in “logic programming,” e.g., Prolog. More exotic logical systems, such
as temporal logic, second order polymorphic lambda calculus, dynamic logic, order-sorted logic,
modal logic, continuous algebra, infinitary logic, intuitionistic higher order type theory, and inten-
sional logic have been proposed to handle problems such as concurrency, overloading, exceptions,
non-termination, program construction, and natural language. However, it seems apparent that
many general results used in the applications are actually completely independent of what under-
lying logic is chosen. In particular, if we are correct that the essential purpose of a specification
language is to say how to put (small and hopefully standard) theories together to make new (and
possibly very large) specifications [13], then much of the syntax and semantics of specification
does not depend upon the logical system in which the theories are expressed; similar considera-
tions apply to implementing a specification, verifying correctness, and programming-in-the-large.

*Research supported in part by Office of Naval Research contracts N00014-80-0296, N00014-82-C-0333, N0OOO14-
85-C-0417, and N00014-86-C-0450, National Science Foundation Grants MCS8201380 and CCR-8707155, the U.K.
Science and Engineering Research Council, and a gift from the System Development Foundation.

tProgramming Research Group, University of Oxford, and SRI International, Menlo Park, California.

¥Computer Science department, University of Edinburgh.

1



Also, because of the proliferation of logics of programming and of logic-based programming lan-
guages, plus the great expense of implementing tools like theorem provers and compilers, it is
useful to know when sentences in one logic can be translated into sentences in another logic in
such a way that soundness is preserved. This will allow, for example, using a theorem prover
for one logic on (translations of) sentences from another logic, or using a compiler for one logic-
based language on (translations of) programs from another. Institutions provide a foundation
for approaching these and many other problems in computer science.

One of the most essential elements of a logical system is its relationship of satisfaction between
its syntaz (i.e., its sentences) and its semantics (i.e., its models); this relationship is sometimes,
called a “model théory” and classically appear in the form of a Galois connection (as in Section 2.2
below). Whereas traditional model theory assumes a fixed vocabulary, institutions allow us to
consider many different vocubularies at once. Informally, an institution consists of ‘

e a collection of signatures (which are vocabularies for use in constructing sentences in a
logical system) and signature morphisms, together with for each signature 3,

e a collection of X-sentences,
e a collection of X-models, and
e a Y-satisfaction relation, of Z-sentences by X-models,

such that when you change signatures (by a signature morphism), satisfaction of sentences by
models changes consistently. '

The first main result in this paper (Theorem 11) states that any institution whose declarations
of notation (as given by signatures) can be glued together will also allow gluing together theories
(which are collections of sentences) to form larger specifications, using colimits. A second main
result (Proposition 23) states that any institution extends to another whose sentences may be
either the old sentences, or else new “data constraints” which capture structural induction and
are useful in defining abstract data types. Theorem 26 extends this to more general kinds of
constraint, including so-called “hierarchy constraints,” and Theorem 24 says that colimits extend
from signatures of the original institution to theories over the extended institution. Another
result (Proposition 34) shows that a suitable tnstitution morphzsm permits a theorem prover for
one institution to be used on theories from another. Another main result (Theorem 36) shows
that many institution morphisms preserve structuring operations on theories. This implies that
constructions for programming-in-the-large are preserved by certain language translations. Again
using the notion of institution morphism, “duplex” institutions permit combining sentences from
one institution with constraints from another (Theorem 41); moreover, the duplex institution
again inherits colimits from the signature category of the base institution (Theorem 42). Finally,

“multiplex” institutions permit whatever combination of sentences and constraints one might
desire, provided they are related by morphisms to the same base institution (Section 4.3). Alto-
gether, this gives a very rich and flexible framework that can be used in program specification
and logical programming, as well as many other other areas of computer science.

Institutions arose in our research on the specification language Clear [13] under the rather
general name of “language” [15]. The present paper adds many new concepts, results, and
examples, as well as an improved notation. Barwise’s approach to “abstract model theory” {6l
(see also [5]) resembles our work in its intention to generalize basic results in model theory and
in its use of elementary category theory; but it differs in being more concrete (for example,
its syntactic structures are limited to the usual function, relation and logical symbols) and in
focussing on classical results of logic.

Section 2 below gives the basic definitions and results for institutions and theories. Section 3
discusses constraints, while Section 4 considers the use of two or more institutions. Appendix A.1

2



briefly reviews universal algebra, emphasizing the results needed to show that equational logic
is indeed an institution, while Appendix A.2 considers the (many-sorted) first order, first order
with equality, Horn clause, and conditional equational institutions.

1.1 Methodology and Logical Systems

. Systematic program design requires a careful specification of the problem to be solved. But ex-
perience in software engineering shows that there are major difficulties in producing consistent,
rigorous specifications that adequately reflect users’ requirements for complex systems. We sug-
gest that these difficulties can be ameliorated by making specifications as modular as possible, so
that they are built from small, understandable pieces, many of which may be used repeatedly (for
example, those defining concepts like “ordering,” “list,” or “file”). Modern work in programming’
methodology supports the view that abstraction, and in particular data abstraction, is a useful
way to obtain such modularity, and that parameterized (also called “generic”) specifications can
lead to further improvements.

One way to apply these ideas is through a specification language that supports putting to-
gether parameterized abstractions. Whereas a specification written directly in a logical system
is an unstructured, and possibly unmanageably large, collection of sentences, a suitable spec-
ification language can make it much easier to write and to read specifications, especially for
large systems. Specification languages that support modularity include Clear [13, 15, 16], OBJ
[27, 47], Z [1, 52, 84], Act One [22], Act Two [24], ASL [77], and Extended ML [75]. We also
suggest that modularity may be useful in proving theorems about specifications, for example,
in proving that a given program actually satisfies its specification. Finally, exactly the same
structuring mechanisms can be used to achieve the exactly same advantages in programming lan-
guages that are rigorously based upon some formal system of logic; we shall call such languages
logical programming languages.

In order for a specification written in a given language to have a precise meaning, it is
necessary for that language to have a precise semantics. (This may seem obvious, but the fact
is that many specification languages lack such a semantics.) Part of that semantics will be an
underlying logical system, which must have certain properties to be useful for this task. These
include suitable notions of model and sentence, and a satisfaction relationship between sentences
and models that is invariant under change of notation.

Signature morphisms play an important role in structuring specifications. Let us assume for
concreteness of exposition that the signatures have sorts and operators, and then consider some
specific structuring mechanisms. First, we may build a more complex specification by adding
new sorts and operators to an existing signature; then the inclusion of the original signature into
the extended signature is an “enrichment” signature morphism. Second, we may wish to use such
an enrichment not just on one specification, but on a whole class of specifications. This leads to
parameterized specifications. For instantiation, the parameter sorts and operators are bound to
particular sorts and operators by a “binding” signature morphism. Third, a large specification
may have name clashes: two subspecifications may happen to use the same sort or operator
names. These can be eliminated by signature morphisms that define renamings. Enrichment,
binding and renaming do not raise deep logical problems, but they are nonetheless important for
modular structure. Using institutions, we can define such features without making a commitment
to any particular logical system. Moreover, the task of giving a semantics for the language is also
simplified. We feel that these considerations justify an attempt to deal with logical systems in a
general way, free of the entanglements of any particular syntax and semantics.

A specification language is not a programming language. Thus, the denotation of an Algol text
is a function, but the denotation of a specification text is a theory, that is, a collection of sentences
about programs. Of course, a theory also has a denotation, which is the collection of all models
that satisfy the sentences in the theory, and this should be taken as the ultimate denotation of

3



a specification text. Programmers construct such models using programming languages. For a
(pure) logical programming language, the specification is also a program, so there is no need to
verify that these two agree.

Despite this distinction, it may be useful to view a specification language like Clear [13, 15, 16]
as a functional language with types. Its values are specifications, its functions are specification
constructing operations, and its types denote classes of specifications. Since theories are used for
specifications and theory morphisms for bindings, we have the following correspendence:

value theory

function theory morphism

application of a function to a value | pushout of theory morphisms
type theory

values of type T theories with a morphism from T

Clear was designed to work with any institution. To provide initiality for abstract data types,
we can further elaborate values to be “theories with duplex constraints,” as discussed in Sec-
tion 4.2. This elaboration makes sense for any institution, and the elaborated theories also form
an institution.

1.2 Related Work and Applications

Although this paper is a direct descendent of the first paper on institutions [36], delays in pub-
lication have led to the situation that the literature on insitutions and their applications is now
large enough that it would be awkward to undertake more than the following brief survey of some
representative results and papers.

We begin with some of our own work. The institution concept was introduced in [15] to
help define the semantics of Clear [13]. Thus, Clear can be used to build large specifications
from small, reusable theories over any logical system. Clear’s approach to modularity is called
parameterized programming [31]. Parameterized programming is implemented in OBJ3 [47],
which can actually be considered an implementation of Clear, and it has also been used in
designing the logical programming languages Eqlog [42] and FOOPS [43], the latter of which is
object-oriented. Parameterized programming can even be applied to a conventional imperative
programming language like Ada, where it provides module interconnection capabilities far beyond
those in the language itself; see LIL [32]. Each of these language designs relies on the machinery
in this paper, especially Theorems 11 and 24, but instantiated with different institutions.

In [39] we developed so-called “charters” and “parchments” as easier ways to generate in-
stitutions, exploiting the fact that the syntax of a logical system forms an initial algebra. In
particular, the difficulty of checking the Satisfaction Condition (in Definition 1 below) is avoided,
since it is automatically satisfied. A quite different formalization of the intuitive notion of logical
system, axiomatizing the category of theories as well as that of signatures, is given in [37].

Other researchers have produced much interesting work. Mayoh [66] proposed generalizing
institutions so that satisfaction is no longer just Boolean-valued, and pointed out that this gen-
eralization would have applications to database systems, where the answer to a given query
(considered as a sentence) for a given model might be some complex proposition, or set of values,
rather than just true or false. This generalization is somewhat further developed in [39]. Mayoh
[66] also suggested some applications to the semantics of programming and natural languages.

Two other specification languages based on institutions are ASL [77] and Extended ML [75],
both due to Sannella and Tarlecki. Extended ML is integrated with the widely used functional
programming language ML [50]. A number of topics in theoretical computer science have been
abstracted to the level of institutions, including observational equivalence by Tarlecki and Sanella



[76] and data representations (usually called “implementations” in the abstract data type liter-
ature) by Beierle and Voss [7, 75]. Tarlecki has also studied free constructions in institutions
[86, 87|, and moreover has shown that certain model theoretic results generalise to institutions,
including equivalence of the Craig Interpolation and the Robinson Consistency Theorem under
certain conditions [85]. Probably much more could be done along these lines. Lowry has applied
institutions to problem reformulation [63], and Mosses has used institutions in his elegant devel-
opment of unified algebra [70] for the denotational semantics of programming languages. The
machinery of the present paper has also influenced work that does not use institutions directly.
In particular, our abstract notion of constraint (Section 3) has been studied by several authors
in the context of algebraic specification, that is, for the equational institution, e.g., [23].

Several authors have felt the need for an abstraction of logical system that is based on de-
duction rather than satisfaction. Fiadeiro and Sernadas [25] introduce “r_institutions,” based
on a consequence relation like that of Tarski’s deductive systems [89], and show that the main
results of the present paper also hold in that setting. [25] also discusses some applications to
conceptual modelling and knowledge representation, as do [26, 81}, the latter also mentioning -
some interesting applications to database theory.

Logical frameworks [49, 4] are another formalism for defining logics at the same level of
generality as institutions. Harper, Sannella and Tarlecki [51] define a “logical system” as a
family of consequence relations indexed by signatures, obtaining a notion equivalent to that of
Fiadeiro and Sernadas, but applied to logical frameworks. Poigné [72] studies “foundations,”
where the set of sentences associated with a signature becomes a category indexed by sets of
variables; this gives a double indexing, over the constants in the signature and over variables.
The extra complexity may or may not be worthwhile. Meseguer [68] synthesizes consequence and
satisfaction, and uses it in a careful explication of the notion of logical programming language.
This builds on Dana Scott’s axiomatization of deduction [79], rather than on the more category
theoretic approach (in which proofs are morphisms) advocated by Lambek and (Peter) Scott [67]
which we suggest as a generalization of institutions for this purpose in Section 2.5.1.

1.3 Prerequisites

Although relatively little category theory is needed for most of this paper, we have not resisted the
temptation to add some more arcane remarks for those who may be interested. We must assume
the reader is already acquainted with the notions of category, functor and natural transformation.
Occasional non-essential remarks use adjoint functors. There are several introductions to these
ideas, including (17, 2, 48], and for the mathematically more sophisticated [58]. Familiarity
with the initial algebra approach to abstract data types is helpful, but probably not necessary.
Colimits are briefly explained in Section 2.4. A general motivation for the use of category theory
in Computer Science is given in [33].

By way of notation, categories are boldface, |C| denotes the class of objects of C, f;g denotes
the composition of morphisms f and g in diagramatic order, 14 denotes the identity at an object
A, = denotes isomorphism, and C° denotes the opposite category of C (see [58], I1.2). The
notation that we use for general algebra is developed in Section A.1, while Section A.2 develops
first order logic.

‘1.4 Acknowledgements

We wish to thank the following institutions for their support at various times while this research
was being conducted: the National Science Foundation; the Science and Engineering Research
Council of Great Britain; the Office of Naval Research; the Center for the Study of Language
and Information at Stanford University; and a British Petroleum Venture Research Fellowship.
We also wish to thank Eleanor Kerse for typing some early drafts, and José Meseguer for his



extensive comments. We are grateful to many people for helpful conversations and suggestions,
notably our collaborators in ADJ, Jim Thatcher, Eric Wagner and Jesse Wright, and also Peter
Dybjer, Gordon Plotkin, David Rydeheard, John Reynolds, Don Sannella, Steve Zilles, and
especially Andrzej Tarlecki, who made very detailed and valuable comments on two drafts of the
paper during a visit to CSLI in early 1985. Special thanks to Kathleen Goguen and Seija-Leena
Burstall for extreme patience, and to the Venerable Chogyam Trungpa Rinpoche for general
inspiration.

2 Institutions

An institution consists of a category of signatures such that associated with each signature are
sentences, models, and a relationship of satisfaction that, in a certain sense, is invariant under
change of signature. Two familiar examples of this setup are equational logic and first order
logic {or model theory). In equational logic, a signature ¥ declares the function symbols that are
available, X-sentences are equations using these function symbols, and $_models are T-algebras.
In first order logic, signatures in addition give relation symbols, sentences are the usual first
order sentences, and models are the usual first order structures. In both cases, satisfaction is
the familiar relation. The appendix discusses the many-sorted variants of these two examples in
some detail.

2.1 Definition and Examples

The essence of the institution notion is that a change of signature (by a signature morphism) in-
duces “consistent” changes in sentences and models, in a sense made precise by the “Satisfaction
Condition” in Definition 1 below. This goes a step beyond Tarski’s classic “semantic definition
of truth” [90], and also generalizes Barwise’s «Translation Axiom” [6]. The wide range of con-
sequences, and the fact that even for equational logic, the Satisfaction Condition is not entirely
trivial, suggest that this step has some substance. Moreover, it is a basic and familiar fact that

the truth of a sentence (in logic) is independent of the symbols chosen to represent 1ts functions
and relations. This can be summed up in the slogan

['Truth is invariant under change of notatioﬂ

It is also fundamental that sentences translate in the same direction as the change of notation,
whereas models translate in the opposite direction. Since reversing the direction of morphisms
gives a contravariant functor, the definition below uses Cat®?, the opposite of the category of
categories. ' o

Definition 1 An institution J consists of

1. a category Sign, whose objects are called signatures,

2. a functor Sen: Sign — Set, giving for each signature a set whose elements are called
sentences over that signature,

3. a functor! Mod: Sign — Cat®? giving for each signature X a category whose objecﬁs are
called &-models, and whose arrows are called 3-(model) morphisms, and

!f{ere, and at other places in this paper, some readers may have questions about set-theoretic foundations, since
Cat clearly needs to include “large” categories. In fact, we stay well away from anything genuinely problematical,
and nearly any foundation that has been proposed for category theory will do, in particular, the “hierarchy of
universes” discussed e.g., by MacLane [58], in Section L6.

6




4. a relation =5 C |[Mod(X)| x Sen(X) for each X € |Sign|, called X-satisfaction,
such that for each morphism ¢: ¥ — X' in Sign, the Satisfaction Condition
m! fos Sen(9)(e) if Mod(#)(m') k= ¢

holds for each m' € [Mod(Z')] and each e € Sen(X). We will write ¢(e) or even ge for Sen(d)(e),
and ¢(m') or ¢m' for Mod(¢)(m'); also we will drop the signature subscripts on the satisfaction
relation when it is not too confusing. O

. These conventions are used in the following condensed form of the Satisfaction Condition,
m' |= ¢ge iff ¢m’ [=e.

The following picture may help in visualizing these relationships:

Sen Set
Sign =
Mod Cato?

Mod(2) [z Sen(Z)
o Mod(o) Sen(o)

—

) Mod(Z) [z Sen(¥')

The appendix shows that a number of logical systems satisfy Definition 1, including equational
logic, first order logic, Horn clause logic, Horn clause logic with equality, and first order logic
with equality. We note that it can be non-trivial to establish the Satisfaction Condition. For
some purposes, Definition 1 can be simplified by replacing the functor Mod: Sign — Cat° by
Mod: Sign — Set?, where Mod(X) is the collection of all -models; the two versions of the
definition are thus related by the equation Mod(X) = [Mod(Z)|. Indeed, this was our original
version [15]. Some reasons for changing it are: first, it is more consistent with the categorical
point of view to consider morphisms of models along with models; and second, we want every
liberal institution to be an institution, rather than just determine one (liberal institutions are
discussed later in this paper). Section 2.5 gives a more categorical definition of institutions which
replaces the rather ad hoc looking family of satisfaction relations by a functor into a category of
“twisted relations” and also includes many variations of the institution concept, including one
with Sen: Sign — Cat which includes deduction. :

2.2 Theories and Theory Morphisms

If, as suggested in the introduction, a specification provides a mathematical theory of the intended
behavior of a program, and if a theory consists of all the sentences that are true of that behavior,
then it will be important to define and develop the basic properties of theories over an arbitrary
institution. A theory consists of a signature X and a “closed” collection of Y-sentences, as in first

7



order logic. Thus, this notion differs from the Lawvere notion of “algebraic theory” [60], which is
independent of any choice of signature, and also simplifies our “signed theories” in [13]. Usually,
these theories contain an infinite number of sentences, but it is often convenient to define them
by a finite subset.

Definition 2 Let I be a fixed but arbitrary institution. Then

1. A Z-presentation is a pair (¥, E), where X is a signature and F is a collection of %-
sentences.

- 2. A T-model A satisfies a presentation (I, E) if it satisfies each sentence in E; write A = E
in this case.

3. Given a collection E of Z-sentences, let E* be the collection of all ¥-models that satisfy
each sentence in E.

4. Given a collection M of X-models, let M* be the collection of all I-sentences that are
satisfied by each model in M; we also let M* denote (X, M*), called the theory of M.

5. The closure of a collection E of Z-sentences is E**, denoted E°.
A collection E of X-sentences is closed iff E = E°.
A Y-theory is a presentation (X, E) such that E is closed.

The Z-theory presented by a presentation (I, E) is (I, E*).

© » NS

A Y-sentence e is semantically entailed by a collection E of -sentences, written E |= e,
iffec E°.

Our definition of closure is based on satisfaction rather than deduction. Of course, some in-
stitutions have a natural complete set of inference rules, for example, the many-sorted equational
institution; but others do not, and we prefer the added generality.

We can also consider closed collections of models; following the terminology of the equational
institution, these might be called varieties. It is often convenient to regard E* as the full
subcategory of Mod(X) with objects the models that satisfy E. The closure of a collection M
of models is M**, denoted M*, and a full subcategory of models is called closed iff its objects
are exactly all the models of some collection of sentences.

Notice that there is a forgetful functor Sign: Th — Sign sending (£, E) to X, and sending
¢ as a theory morphism to ¢ as a signature morphism.

Proposition 3 The two functions denoted “*” in Definition 2 form what is known as a Galois
connection (see, e.g., [19]), in that they satisfy the following properties, for any collections E, E'
of ¥-sentences and collections M, M' of X-models:

1. E C E' implies E' C E*,

2. M C M' implies M'* C M*.
3. E C E**,

4. M C M**,

These imply the following properties:



5. E* = E***.
6. M* = M***.

7. There is a dual (i.e., inclusion reversing) isomorphism between the closed collections of
sentences and the closed collections of models; this isomorphism takes unions to intersections
and intersections to unions.

8. Nn En* = (Un Bn)";
9. (N Bw9)** = (Un B)
10. (Un En**)* = N Bn';
11 (Un Ba*¥)* = (Un En);
12. (N En*)* = (Un Ba¥)*
Although these identities are stated for collections of sentences, there are also dual identities to

8 -12. for collections of models.

Proof: The first two assertions are straightforward. We now prove the third, assuming that
E C Sen(X). Then
E*={m|(Ve€c E)ym|=¢},

and so
E** {¢'|(Vme E¥)m =€}
{¢|(Ym)me E¥=>m €'}
= {¢'|(Vm)[(Ve€ E)m ke =>ml=€]}.
Butif ¢’ isin E,andif m=eforalle€ E, then certainly m k= ¢'; thus the above set contains
{¢'| ¢ € E} = E. The proof of the fourth assertion is similar, and the next eight assertions are

familiar from lattice theory, e.g. [9]; in fact, 8.-12. follow easily from 7. O

I

The following identity is useful, for example in Theorem 36 below:

Proposition 4 Given a signature morphism ¢: & — 3!, a Y-presentation E, and a functor
é: Mod(Z') — Mod(E) that is surjective on objects®, then $(¢E)* = E*.

Proof: Let m € [Mod(Z)|. Then m € E*ifmpEE. Andme $(PE)* iff [3m' € ($EY)m =
¢m'] iff [(Fm') m' EgE&m= o] iff [(Am)mEE&m= ¢m!] iff [m | E& (3m') = om'| iff
m |= E (since ¢ is surjective). O

Definition 5 If T and T' are theories, say (2, E) and (Z', E'), then a theory morphism from
T to T' is a signature morphism ¢: & — 3 such that ¢(e) € E' for each e € E; we will
write ¢: T — T'. The category of theories has theories as objects, and theory morphisms
as morphisms, with composition and identities defined as for signature morphisms; we denote it
Th. (It is easy to see that this is a category.) The following will frequently use captial letters to
denote theory morphisms, e.g., F: T — T. O

For equational logic, there is another category with theories as objects, but with derivors,
which map operators in X to derived operators in X', i.e., to ¥'-terms, as morphisms [38]; in fact,
this kind of morphism agrees with the usual morphism notion for Lawvere theories [60].

For a theory T with signature 5, let Mod(T) and also T* denote the full subcategory of
Mod(E) of all S-models that satisfy all the sentences in T

214 does not matter what happens to the morphisms; in effect, we are only concerned here with the simpler
notion of institution in which Mod takes values in Set.

9



Definition 6 Given a theory morphism ¢: T — T', the forgetful functor ¢*: T'* — T*
sends a T'-model m' to the T-model ¢(m'), and sends a T'-model morphism f: m' — n to
¢*(f) = Mod(¢)(f): ¢(m') — ¢(n'). This functor is also denoted Mod(¢). O

To ensure that this definition makes sense, we should check that if a given $'-model m’ satisfies
T', then ¢*(m') satisfies T. Let e be any sentence in T. Because ¢ is a theory morphism, ¢(e)
is a sentence of 7" and therefore m' |= ¢(e). The Satisfaction Condition now gives $(m') e, as
desired. We also need that the morphism ¢*(f) lies in T*, but this follows because T* is a full
subcategory of Mod(X), and the source and target objects of #*(f) lie in T*.

2.3 The Closure and Presentation Lemmas

Given a signature morphism ¢: ¥ — 3 a collection E of X-sentences, and a collection M’ of
S-models, let us write $(E) for {¢(e) | ¢ € E} and ¢(M') for {¢(m') | m' € M'}. Given a
collection M of S-models, let us also write $~1(M) for {m' | $(m') € M}. Using this notation,
we can write the Satisfaction Condition more compactly as

¢~ (E*) = ¢(E)*
and we also have

Lemma 7 Closure. ¢(E°) C ¢(E)°.

Proof: ¢(E**)* = ¢~L(E***) = ¢ (E*) = ¢(E)*, using the Satisfaction Condition and
5. of Proposition 3. Therefore ¢(E*) = ¢(E**) C ¢(E¥¥)** = §(E)** = #(E)®, using 3. of
Proposition 3 and the just proved equation. O

It is worth pointing out that the inclusion ¢(E®) C (¢E)* can be proper. This means that
while E |= ¢ implies ¢E |= ¢e, the converse, that ¢& |= ¢e implies E = e, does not hold. The
following gives an easier to check necessary and sufficient condition for a signature morphism to
be a theory morphism.

Lemma 8 Presentation. Let ¢: & — %' and suppose that (2, E) and (X', E') are presentations.
Then ¢: (T, E*) — (&', E'*) is a theory morphism iff ¢(E) C E".

Proof: The “only if” part is trivial. For the “if” part, we have by the Closure Lemma that
#(E*) C ¢(E)°. By hypothesis, ¢(E) C E'. Therefore, $(E*) C $(E)* C E", s0 ¢ is a theory
morphism. Conversely, if ¢ is a theory morphism, then $(E*) C E'". Thus ¢(E) C E" since
ECE*. O

The Presentation Lemma tells us that to check whether ¢ is a theory morphism, we can apply
¢ to each sentence e of the source presentation and see whether $(e) is in the closure of E;
there is no need to check every sentence in E°.

2.4 Putting Theories Together

The introduction of this paper suggests that a basic purpose of a specification language is to
reduce the difficulty of describing large theories by providing mechanisms for constructing them
from already available smaller theories. The specification language Clear [13, 14, 15] provided a
number of such mechanisms that can be explicated using colimits in the category of theories over
an arbitrary institution. These include: the sum of theories (in such a way as to not duplicate
subtheories that may be shared; for example, NAT and BOOL might be subtheories of several
theories); and the application of a parameterized theory (such as LIST) to an actual theory
(such as NAT) to yield a result theory (such as LIST[NAT]). Clear’s parameterized theories

10



also involve a formal or requirement theory R which makes explicit the syntactic and semantic
requirements on an actual theory in order for the result of the application to be meaningful;
R will be a subtheory of the body theory B. Moreover, a binding f of what the actual theory
provides to what the formal theory requires is needed to carry out the application, called a “fitting
morphism” in Clear. The semantics of Clear [13, 14] says that the result P of the application is
given by the following pushout diagram, in which P is the resulting theory: )

B

P

R

F A

Similarly, the sum T of two theories T1 and T2 which share NAT and BOOL as subtheories,
is given by the following colimit diagram, in which all lines indicate subtheory inclusions:

T

T1 T2

AN /

NAT BOOL

The construction of large theories as colimits of small theories connected by theory morphisms
which was implicit in the first paper on Clear [13] was made explicit in [14] and [20]. For this
approach to make sense, the category of theories should have finite colimits. For the equational
institution, the intuitively correct syntactic pasting together of presentations exactly corresponds
to colimits of theories [37]. Colimits have become a standard technique in defining the semantics
of specification languages, for example in ASL [77], Extended ML [75], Act One [22], and Act
Two [24], as well as Clear and OBJ. Quite similar things can be done for logical programming
languages, and even for conventional imperative languages like Ada [32]. Thus, there is much
motivation for studying colimits in the category of theories over an institution.

The use of colimits to explicate various ways to combine theories is not ad hoc. It is a general
principle that a large widget can be described as the interconnection of a system of small widgets
using widget-morphisms to identify the interfaces over which the interconnection is to be done;
then the result of the interconnection is given by the colimit of the diagram; some motivation for
this principle is given in [33] from the point of view of general systems theory. Colimits have also
been used for many other things in computer science [33], such as graph grammars [21]. We now
review the necessary categorical concepts.

Definition 9 A diagram D in a category C consists of a graph G together with a labelling of
each node n of G by an object D, of C, and a labelling of each edge ¢, say from node n to node
n' in G, by a morphism D(e) in C from D, to Dy; let us write D: G — C. Then a cone ain C
over the diagram D consists of an object A of C and a family of morphisms a,: D, — A, one
for each node n in G, such that for each edge e: n — n' in G, the diagram

11



A
(xn/ \n'
D,———— Dp
n D(e) n

commutes in C. We call D the base of the cone a, A its apex, G its shape, and we write
a: D = A. If a and B are cones with base D and apexes A, B (respect;ively), then a morphism
of cones o — f is a morphism f: A— B in C such that for each node n in G the diagram

A — B
D,
commutes in C. Now let Cone(D,C) denote the category of all cones over D in C, with the

obvious composition. Then a colimit of D :n C is an initial object in Cone(D,C). O

The uniqueness of initial objects up to isomorphism implies the uniqueness of colimits up to
cone isomorphism. The apex of a colimit cone a is called its colimit object, and the morphisms
ap to the apex are called the injections into the colimit. The colimit object is also unique up
to isomorphism.

Definition 10 A category C is finitely cocomplete iff it has colimits of all finite diagrams,
and is cocomplete iff it has colimits of all diagrams (whose base graphs are sets). A functor
F: C — C' reflects colimits iff whenever D is a diagram in C such that the diagram D; F in
C' has a colimit cone o: D = A’ in C', then there is also a colimit cone a: D => A in C such
that of = oy F, i.e., such that o, = F (a,) for all nodes n in the base of D. OO

Since colimits in the category of theories over an institution are to be used for putting together
smaller specifications to form larger ones, it would be very nice to have a powerful, general
criterion for when such colimits of specifications actually exist. Perhaps surprisingly, it suffices
for the category of signatures to have colimits; the following more general result is the first really
non-trivial result in this paper.

Theorem 11 The forgetful functor Sign: Th — Sign reflects colimits.

Proof: Suppose that D: G — Th is a diagram in Th, say with Dp = (Zn, Es) for n € |G|
Let D' = D;Sign: G — Sign be the corresponding diagram in Sign, in which D!, = Zp,. Now
let o/: D' = X be a colimit cone for D'. We have to find a colimit cone a for D such that
Sign(a) = o/. We define D = (Z, E) where

E=( on(Ba))

ne|G|

12



and we define a, = o, for all n € |G|. Then each ay, is a theory morphism and we claim that
a = {ap: (Zn,Ep) — (E,E) | n € |G|) is a colimit cone over D in Th. For suppose that

= {Bn: {Zn, En) — (II, F) | n € |G|) is another cone over D in Th. Then applying Sign to
everything, we get a unique ¢: ¥ — II such that a,;¢ = B, for each n € |G|. Thus, there is
at most one ¢: (%, E) — (I, F) such that a,;¢ = B, for all n € |G|, namely ¢. Therefore all
we need to show is that ¢ is a theory morphism. Because 8,: (X, E,) — (II, F) is a theory
morphism, we have fn(Ey) C F. Therefore U,¢|g| #n(Er) € F, and so

$(B) = ¢((U an(En))") € (J i 6(En))* = (U Bn(En)) C F
n n n
where the first inclusion follows from the Closure Lemma. (See the diagram below.) O

é
(%, E) ~ (IL, F) )y - 1I

Sign
- o, Br
!

n = <Em En) Dn =3n

It now follows, for example, that the category Th of theories in an institution is [finitely]
cocomplete if its category Sign of signatures is [finitely] cocomplete. (It is easy to see that the
converse is also true.) Since the category of equational signatures is finitely cocomplete ([35, 38]
give a simple proof using comma categories), we conclude that the category of signed equational
theories is cocomplete. Using similar techniques, we can show that the category of first order
signatures (as in the Appendix) is cocomplete, and thus without effort conclude that the category
of first order theories is cocomplete (this might even be a new result, especially since our notion
of morphism is not quite the usual one in logic).

2.5 A Mocre Categorical Formulation

It is somewhat aesthetically displeasing to define institutions using two functors and a family
of relations; we would prefer something more categorical than a family of relations. This can
be done, and moreover it will yield a notion of institution morphism as a byproduct, but some
preparation is required. (The reader not already familiar with vertical and horizontal composition
of natural transformations who wants to read this subsection might first consult [58], Section IL.5.)

Let Rel denote the category with sets A, B,C,... as objects; with relations B: A — B as
morphisms, i.e., triples {4, R, B) where R C A x B; with the “diagonal” relation {(a,a) | a € A}
as the identity ona set A; and with composition as usual for relations, but keeping track of
their sources and targets. Given a relation R: A — B, let R™: B — A denote its converse. We
now define the category Trel of “twisted relations”: its objects are relations R: A — B, and its
morphisms from (R: A — B) to (R': A' — B') are pairs of functions (f: A' — A,9: B— B')
such that the diagram

A—£E8 .p
f g~
AI R' Bl



commutes in Rel, i.e., such that for all a' in A' and b in B, we have® f(a')Rb iff a'R'g(d). The
identity morphism on a relation R: A — B is the pair (14,1p), and the composition (f',¢'); (f,9)
is {f'; f,9;¢") provided the target sets of (f',¢'"~) equal the source sets of {f,g~).

The notation for a proper categorical definition of the institution concept will be simpler if
we first define two functors on Trel. First Left: Trel — Set? is defined by Lefi(R: A — B)
= A and Left({f,g9)) = f. Second, Right: Trel — Set is defined by Right(R: A — B) =
B and Right({f,g)) = g. Notice that Left(f;f') = Left(f'); Left(f), whereas Right(g;g') =
Right(g); Right(g').

Definition 12 An institution is a functor I: Sign — Trel to twisted relations; its source Sign
is its category of signatures; the functor composition I; Left: Sign — Set? is the “model
functor” of I, denoted Mod; the composition I; Right: Sign — Set is the “sentence functor” of
I, denoted Sen; and the satisfaction relation =5 is J(Z) for X € |Sign|. O

This definition gives the version of institution in which each Mod(Z) is a set, rather than the
more advanced version with a category Mod(X) of models. To get the category version, we use
instead of Trel a category whose objects are triples (A, R, B), where A is a category, B is a set,
and R C |A| x B is a relation; morphisms are then pairs (F,g) where F: A' — A is a functor
and g: B — B’ is a function, such that the above diagram commutes with f = |F|. Definition 12
with this category gives the desired concept. The following is now very natural:

Definition 13 An institution morphism I — I’ consists of a functor ®: Sign — Sign’ and
a natural transformation n: ®;I' = I. Given (®,9): I — I' and (®',5'): I' — I", their com-
position is defined to be (®; ¥, (D on);n'): I" — I, where o denotes the (vertical) composition
of a natural transformation with a functor. Let IINS denote the category of institutions. O

There are reasons for believing that it might have been better to consider the above as defining
a morphism from I' to I, rather than from I to I', even though in a certain sense the choice is
arbitrary; however, we have chosen to maintain the above definition in this paper for essentially
historical reasons. Section 4.1 gives a more concrete version of this definition. That IINS really is
a category, and morover has whatever limits and colimits Trel has, follows from some “abstract
nonsense” and “general systems theory”* as described in the following subsection.

2.5.1 An Even More Categorical Formulation

In order to consider variations of the notion of institution, and also to study properties of the
category of institutions, it is helpful to take a very general approach. Readers who are not
especially fond of categorical “abstract nonsense” may wish to skip this subsection; also, it is
somewhat sketchy. Given a category C with pullbacks, we first define the category Rel(C) of
relations in C as follows: its objects are those of C; its morphisms from A to B are pairs
{pl: R— A,p2: R — B) of morphisms in C with a common source; its identities have both
pl and p2 identity morphisms; and its composition is obtained by pullback, as shown in the

diagram below:
AN
AN
A B C

3The reader may recognize the ghost of the Satisfaction Condition here.
“An earlier draft of this definition had the natural transformation going the other way; comparison with the
general systems theory in {29] enabled us to formulate institution morphisms correctly.

14



Lemma 14 If C has pullbacks, then Rel(C) is a category. O

We next recall Lawvere’s general comma category construction. If we are given functors
F: A — C and G: B — C, then the category (F/G) is defined as follows: its objects are triples
(A,c: F(A) — G(B), B), where A is an object of A, B is an object of B, and ¢ is a morphism
of C; its morphisms from (A,c: F(A) — G(B), B) to (4',¢': F(A') — G(B'), B') are pairs (a,b)
with a: A — A' in A and b: B — B’ in B; and the composition (a, b); (a',¥') in (F/G) is just
(a;a’,b; ). It is known® that this gives a category, and that whatever limits or colimits are
possessed by A and B and preserved by F and G, are also possessed by (F/G).
~ Next we give some ways of constructing functors into relation categories. Given F: A — C
define F{: A — Rel(C) as follows: an object A in A goes to the object F(A) in Rel(C); and a
morphism a: A — A' in A goes to a morphism (1p(4), F(a)) from F(A) to F(A') in Rel(A). (It
is easy to see that this is a functor.) Similarly, given F: A — C, define F|: A°? — Rel(C) by:
an object A in A goes to the object F{A) in Rel(C); and a morphism a: A — A’ in A’ goes
to a morphism (1p(41), f(a)) from F(A') to F(A) in Rel(A). (It is also easy to see that this is a
functor.) This last construction will let us “twist” relations.

Now let’s exercise this machinery. Combining the relation, comma category, and the 1 and |
constructions will give us the categories of twisted relations that we need; and taking functors into
these will give us the corresponding categories of institutions. Let’s get the relation categories
first. The (original) definition of institution with Mod set-valued corresponds to the twisted
relation category (1got! / 1Get1) Where 1, denotes the identity functor on the category A.
Similarly, Definition 1 corresponds to the category (1getl / UT), where U: Cat — Set is the
forgetful functor that takes each category to its underlying set, and each functor to its underlying
function on objects. Both enjoy the “twist” given by |, but the first gives only sets of models,
while the second gives categories of models; in each case, the source category of the first functor
gives the structure for models.

Another interesting variant is given by the category (U |/ U 1), which allows morphisms
between sentences as well as between models; one might want to think of a morphism from one
sentence to another as a “proof” that the second follows from the first; see [39] and Section 5 for
further discussion of this point.

An institution is a functor into a relation category; in particular, an institution in the sense
of Definition 1 is a functor J: Sign — (1gq¢! / UT). This leads to categories whose objects are
functors; but since their source categories (which are their categories of signatures) may vary, their
morphisms will not be just natural transformations. In fact, these morphisms are pairs of the form
(®: Sign — Sign',n: ®;I' = I), and area special case of a general construction for the category
of diagrams (with varying shape) over a category: Given a category T, the objects of Dgm(T)
are functors I: S8 — T, its morphisms J — I' are pairs (®: S — S',n: &;I' = I), and its com-
position (®: S — S',n: &;I' = I);(®": §' > S",5": &;I" = I') is (¥;¥',P 0 (n';n)), where in
the last expression o denotes the “horizontal” and ; denotes the “vertical” composition of natural
transformations. That Dgm(T) is a category is shown, for example, in [29] in the context of
general systems.

This abstract view is also useful for getting other variants of the institution notion; for
example, to get partial satisfaction we might let C be the category Pfn of partial functions; it
seems worth exploring this further. This view of institutions also allows us to get completeness
results for the category of institutions using general results about relation, diagram, and comma
categories; see also [88]. [39] discusses an even more abstract formulation based on “wedges.”

S Actually, somewhat stronger results are known; see {38, 88].

15



3 Constraints

To avoid over-specifying problems, we sometimes want to use loose specifications, that is, spec-
ifications for which non-isomorphic models are acceptable. On the other hand, most problems
require some fixed data types, such as the natural numbers or truth values. In such cases, the
subtheories that correspond to these data types must be given standard interpretations. Fi-
nally, sometimes we want to consider parameterized standard data types, such as SET[X] and
LIST[X], for which sets and lists are to be given standard interpretations, once an interpretation
is given for X, which is loose with respect to some requirement theory. :

We have already considered the category T* = Mod(T) of all interpretations of a theory T
in a fixed institution; now we consider how to impose constraints on these interpretations. One
kind of constraint requires that some parts of T have a “standard” interpretation relative to other
parts; these are the “data constraints” of [15], which generalize and relativize the “initial algebra™
approach to abstract data types of ADJ [45]. Data constraints make sense for any institution,
and are much more expressive even for the equational institution. ,

To require that some subtheories T1,...,T, of a theory T are initially interpreted, we could
try to use the subtheories themselves as constraints. In this case, a model M would satisfy T
with constraint (T, .. ., Ts) iff M satisfies T and M restricted to each T is initial. More precisely
now, given F;: T; —» T fori=1,...,n, we can define a satisfaction relation |= between models
and theories with constraints by

M= (T,(Ty, .., T)) iff M = T and Mod(F,)M is initial in Mod(T;) for i = 1,...,n. .

Unfortunately, things are not quite so simple. To deal with parameterized theories, we need
not just initial models (e.g., for the natural numbers), but also free extensions of models (e.g., to
form sets from elements). Also, it would be very convenient if given an institution I, we could
construct a new institution C(I) such that its sentences are either I-sentences or else constraints,
and its models are J-models, with an appropriate satisfaction. To make this work, we will need
to provide translations of constraints under signature morphisms. Then, if J-signatures have
colimits, it will follow by Theorem 11 that C(I)-theories also have colimits, and thus can be
glued together.

Actually, our general results will apply to many different notions of constraint. In particular,
Section 3.3 will show that so-called “generating constraints” are a special case, and Section 4.2
will generalize to “duplex constraints” that allow constraints in an instititution different from the
one in which models are taken; more generally still, Section 4.3 considers multiplex institutions.

3.1 Free Interpretations

Suppose that we want to define the natural numbers in the equational institution. To this end,
consider a theory N with one sort Nat, and with a signature % containing one constant 0 and
one unary operator inc; there are no equations in the presentation of this theory. Now this
theory has many algebras, including some where inc(0) = 0. But the natural numbers, no matter
how represented, give an initial algebra in the category Algy of all algebras for this theory,
in the sense that there is exactly one Z-homomorphism from it to any other Z-algebra. It is
easy to prove that any two initial X-algebras are Y-isomorphic; this means that the property
“being initial” determines the natural numbers uniquely up to isomorphism, that is, different
representations for the natural numbers give different (but isomorphic) initial algebras. This
characterization of the natural numbers is due to Lawvere [61], and a proof that it is equivalent
to Peano’s axioms can be found in [59], pages 67-70.

The initial algebra approach to abstract data types [45] takes this “Lawvere-Peano” char-
acterization of the natural numbers as paradigmatic for defining other abstract data types; the
method has been used to specify sets, lists, stacks, and many many other data types, as well as

16



database systems and programming languages, among many other things. The essential ideas
here are that concrete data types are algebras, and that “abstract” in “abstract data type”
means ezactly the same thing as “abstract” in “abstract algebra,” namely, uniquely defined up
to isomorphism. A number of less abstract equivalents to initiality for the equational institution,
including generalized Peano axioms, are given in [69].

Let us now consider the case of the parameterized abstract data type of sets of elements of a

sort S. We add a new sort Set, and operators®

f: — Set

{.}: S — Set

-U_: Set,Set — Set
subject to the following equations, where S, S' and S" are variables of sort Set,

pus=8

Su(S'us")y=(Sus)us’

Sus'=S'us

SuS=S8
Although we want these operators to be interpreted “initially” in some sense, we do not want
the initial algebra of the theory having sorts S and Set and the operators above. Indeed, the
initial algebra of this theory has the empty carrier for the sort S (since there are no operators
to generate elements of S) and has only the element @ of sort Set. Rather, we want to permit
any interpretation for the parameter sort S, and then require that the new sort Set and its new
operators are interpreted freely relative to the given interpretation of S.

Let us make this precise. Suppose that F: T' — T' is a theory morphism. Then there is a
forgetful functor from the category of T'-models to the category of T-models, F*: T'* — T* as in
Definition 6.  In the equational case T* = Alg(T'), and a very general result of Lawvere [60] says
that for every T-model A there is a T'-model A% and a T-homomorphism n4: A — F *(As), called
the universal morphism and characterized by the following “universal property”: given any T"-
model B and any T-morphism f: A — F*(B), there is a unique T'-morphism f#: F¥*(A%) - B
such that the following diagram commutes in Mod(T):

FX(B)
f F*(f#)

A

*( A3
e Y
Such an object A¥ in Mod(T) will be called a free extension of A along F; the universal
property determines A* uniquely up to isomorphism in Mod(T"). If each A in Mod(T') has a
free extension along F, then there is unique way to define a functor F¥: Mod(T) — Mod(T")
such that F¥(A) = A% [58]. F¥: T* — T'* is called the free functor determined by F. (In a
more technical language, F*% is a left adjoint to F'*, and 7 is a natural transformation, the unit
of this adjunction.) This discussion of the equational institution motivates the following:

Definition 15 An institution is liberal iff for every theory morphism F: T — T' and every
T-model A, there is a T'-model A%, called the free extension of A along F, such that there is
a universal morphism n4: A — F*(As) with the property that for each T-model B and each
T-morphism f: A — F*(B), there is a unique T'-morphism f#: A* — B such that the above
diagram commutes (in the category Mod(T)). O

SWe use “mixfix” (also called “distfix”) declarations in this signature, in the style of OBJ: each underbar is a
placeholder for an element of the corresponding sort from the list that follows the colon.

17



As in the equational case, giving a free extension A% of A along F for each T-model A
determines a unique functor F'¥ having the value A% on the object A; this functor F$ is called a
free (extension) functor, just as F* is called a forgetful functor. (F* is left adjoint to F'*, and
is unique up to natural isomorphism if it exists. Thus an institution is liberal iff the forgetful
functors induced by its theory morphisms always have left adjoints.) The equational institution
is liberal, as are the institutions of Horn clause logic with equality, and of conditional equations;
however the first order logic institution is not liberal (the latter three institutions are defined
in the Appendix). Notice that even in a non-liberal institution, there may be many models
which have a free extension along a given theory morphism, and there may even be many theory
morphisms that have a free extension functor. Hence, in the following we may use the notation
A® for a free extension of A along F, or even the notation Fé (A), in cases where there is no
functor F* for the given theory morphism F.

Returning to our set example, consider the theory morphism Set that is the inclusion of the
trivial theory, TRIV having just the sort S, into the theory of sets of S, let’s call it SET,
obtained by adding the sort Set and the operators and equations given above. Then Set* takes
a SET-algebra and forgets the new sort Set and the three new operators, giving an algebra that
has just the carrier of S-sorted elements, and Set? (A) is the algebra of all finite subsets of A. The
free functor Set¥ takes a TRIV-algebra A (i.e., a set) and extends it freely to a SET-algebra,
the new operators giving distinct results except where the equations of SET force equality.

Given a SET-algebra B, there is a natural way to check whether or not its Set sort and
operators are free over its parameter sort S: in the above diagram, let A = Set*(B) and let
f=1g et*(B)’ then f#: (Set*(B))® — B should be an isomorphism. In general, the morphism
(1 F¥( B))#: (F*(B))® — B is called the counit (of the adjunction, if there is one) and is denoted
€p. In a liberal institution, it has the following couniversal property, dual to that of the unit:
given any B in Mod(T") and f: F*(B') — B in Mod(T'), there is a unique u: B' — F*(B) such
that F$(u);ep = f, i.e., such that the diagram

F$(B")

F3(u) f

F}(F¥(B))

€B B

commutes in Mod(T). This motivates the following.

Definition 16 Let F: T — T' be a theory morphism. Then a T'-model B is F-free iff F(B)
has a free extension along F such that ep = (1 F¥( B))# is an isomorphism. Let us call a functor

G: Mod(T) — Mod(T") extensive iff G(A) is F-free for every T-model A. O

Of course, we will mostly be interested in whether or not a free extension functor is extensive.
The notion of F-free for the equational case is due to Thatcher, Wagner and Wright [91]; here,
we generalize to arbitrary institutions, and do not assume that there is necessarily a functor FS.
Originally, we defined B to be F-free if B and F*(F*(B)) were isomorphic [15]. However, there
are examples’ where these two objects are isomorphic, but not naturally so by the morphism e.
There is also a concept that is dual to F-free in a certain sense:

7Our thanks to Eric Wagner for this comment.

18



Definition 17 Let F: T — T' be a theory morphism. Then a T-model A is F-protected
iff it has a free extension along F such that the universal morphism n4: A — F*(A%) is an
isomorphism. Moreover, the functor F$ is persistent iff every T-model A is F-protected. O

This definition generalizes the concept of persistence in [91] to any liberal institution. Let
us define a theory morphism F: T — T' to be conservative iff e ¢ T implies Fe) ¢ T'. A
syntactic characterization of persistence for the equational institution is given by Goguen and
Meseguer in {40]®: when F is injective on sorts, F#$ is persistent iff it is conservative and whenever
#' is a X'-term with its variables and its sort in F(T'), then there is an equation (VX)¢' = F(t) in
T'! with t a 3-term (where X is the signature of T and %' is the signature of 7".) Unfortunately,
this result uses some rather subtle constructions in the equational institution which it is not
obvious how to generalize to other institutions. The following simple result relates the concepts
of Definitions 16 and 17. '

Proposition 18 Let F: T — T' be a theory morphism in a liberal institution.
1. If a T-model A is F-protected then F¥(A) is F-free.
2. If a T'-model A' is F-free then F*(A') is F-protected.

3. If F¥ is persistent then F$ is extensive.

Proof: For the first assertion, we use the unit isomorphism n4: A — F*(F%(A)) and the
fundamental equation for the adjunction (see [58], Theorem IV.2, p.81), F¥(n A);er( 4) = 1ps(a)
to see that

eps(a): FH(FH(F3(4))) — F*(4)

is also an isomorphism. The second assertion is proved in the same way. The third assertion,
that F$ persistent implies F3(A) is F-free for every A, follows directly from the first. O

The following remarks may be of some interest to those familiar with adjoint functors: Let
F: T — T' be a theory morphism in a liberal institution. Then F% is persistent iff the unit
7: lMod(T) = F¥; F* of the adjunction between F*$ and F* is an isomorphism. Moreover, in

this case F? can be chosen so that this isomorphism is actually an equality, i.e., such that F*¥ is
what [91] call strongly persistent.

Results of Mahr and Makowsky [65] show that there is a sense in which the most general
sublanguage of infinitary first order logic admitting initial models is Horn clause logic with
infinitary conditions; further, the most general finitary sublanguage uses finitary Horn clauses;
the most general equational sublanguage uses (infinitary) conditional equations; and the most
general finitary equational sublanguage consists of finitary conditional equations. These results
are in the style of abstract model theory, a framework much closer to first order logic than to
institutions; also, the results concern the existence of initial models rather than left adjoints to
forgetful functors. Tarlecki has extended this work of Mahr and Makowsky to characterize liberal
sublanguages [87], and has also generalized to what he calls “abstract algebraic institutions” [86].

3.2 Constraining Theories

It is very convenient in program specification to distinguish between sets of sentences which are
to be interpreted “loosely” (i.e., any model satisfying the theory will do) and those which require
a standard interpretation, say an initial model, or more generally, a free extension. For example,
in a parameterized specification, we want to permit any interpretation of the parameter (say, any

8This result is actually slightly more general, since it allows theory morphisms that map operators to terms.

19



partially ordered set) but we also want to constrain the interpretation of the specification which
enriches this parameter to be free over it (say, strings of elements of the set, instead of just some
arbitrary monoid over them).

In a specification language, we may want to let theories include not just the sentences provided
by some institution, but also sentences that constrain certain subtheories to be interpreted freely
relative to others, in the sense of Section 3.1. We call such sentences constraints and we call
theories that can include them constraining theories. For example, in a first order theory we
might introduce a sentence which constrains interpretations of a theory of the natural numbers to
be standard, i.e., to actually be the natural numbers. Our approach will provide a general logic-
indepenedent way of moving to a more powerful language that can impose such constraints. We
will show that theories with such constraints in them can be treated just like ordinary theories.
Moreover, we will show that an institution whose signatures can be glued together (with colimits)
yields another institution whose theories may have constraints, such that these theories can also
be glued together (with colimits).

Returning to the example of the previous subsection, let us further enrich SET with some
new sorts and operators to get a theory SETCH which adds an operator

choose: Set — S
that chooses an arbitrary element of any non-empty set, as described by the conditional equation
choose(S) € Sif S#0

where S is.a variable of sort Set. This is a good example of a loose specification. Now let
Etc: SET — SETCH be the theory inclusion, with Etc: Sign(SET) — Sign(SETCH) the
corresponding signature morphism. Then a SETCH-algebra A interprets sets as intended iff
Etc*(A) satisfies SET and is Etc-free. This motivates

Definition 19 Let ¥ be a signature. Then a I-constraint is a pair
(F: T" —T',86: Sign(T') — Z)

consisting of a theory morphism and a signature morphism. (We may call a B-constraint a X-
data constraint if it is used to define a data type.) A X-model A gatisfies the T-constraint
¢ = (F: T" — T',6: Sign(T') — %) iff 0A satisfies T' and is F-free, which means that F*(6A)
has a free extension along F such that (1 F*o A))# = egua: F3(F*(0A)) — 0(A)isan isomorphism;
in this case we write A[=s ¢c. O

Notice that T" may be the empty theory. The following picture of the situation in this
definition may help:

" 7  Sign(T") =
' F* 9*
qust——— Ti* Mod(X) ~— Mod(X)
F$

In our set example, F: T" — T' is the inclusion Set: TRIV — SET and §: Sign(T') = &
is the signature morphism that underlies the theory inclusion Etc: SET — SETCH. For any
$-algebra A, it makes sense to ask whether 0A satisfies T' and is F-free, as in Definition 19. It
is not necessary that the institution involved is liberal.

20



Our work on constraints dates from the Spring of 1979, and was influenced by a lecture of
Reichel in Poland in 1978 and by the use of functors to handle parametric data types by Thatcher,
Wagner and Wright in [91]. Historically the first work in this area seems to be the little known
1971 paper [56] of Kaphengst and Riechel, which apparently considered the case of a single chain
of theory inclusions. This was later generalized to “initially restricting algebraic theories” by
Reichel [73]. There are three main differences between our “data constraints” and the “initial
restrictions” of [73]: first, an initial restriction on an algebraic theory is a pair of subtheories,
whereas we use a pair of theories with an arbitrary theory morphism between them, plus a
signature morphism from the target theory. It seems very natural to use subtheories, but this
does not give rise to an institution?; also, the added generality (of arbitrary theory morphisms)
seems to permit some interesting additional examples. The second difference is simply that we
are doing our work over an arbitrary institution. The third difference lies in the manner of adding
constraints: whereas [73] defines a “canon” to be an algebraic theory together with some initial
restrictions on it, we will define a new institution whose sentences on a signature ¥ include both
the old S-sentences and also X-constraints. This route has the technical advantage that both
kinds of new sentence refer to the same signature. A slightly more complex kind of constraint
is used by Ehrig, Wagner and Thatcher in [23]; in addition to 0: Sign(T') — I, they also have
fo: So — X, in order to deal with “derive.” To make this work, the model functor Mod must
preserve pushouts.

We now show that constraints behave like sentences even though they have a very different
structure. Like sentences, they impose restrictions on the allowable models. Moreover, a signature
morphism from T to &' translates ' constraints to X'-constraints, just as it translates from Z-
sentences to X'-sentences.

Definition 20 Let ¢: & — X' be a signature morphism and let ¢ = (F, 0) be a T-constraint.
Then the translation of ¢ by # is the Y'-constraint (F,;¢); we write this as é(c). O

It is the need for the translation of a constraint to be a constraint that leads to constraints
in which @ is not an inclusion. We now prove the Satisfaction Condition for constraints.

Lemma 21 Constraint Satisfaction. If ¢: % — 3 is a signature morphism, if ¢ is a ©-constraint,
and if B is a ¥'-model then

B = 4(c) iff #(B) [ -

Proof: Suppose that ¢ = (F,0) with F: T" — T and 0: Sign(T') — =. Then B |= #(c) means
that B |= (F,0;¢), which means that (8;¢)(B) satisfies T* and is F-free. On the other hand,
#(B) |= ¢ means that $(0(B)) satisfies T' and is F-free. To show that these are the same, we
may show that (0; ¢)(B) = ¢(6(B)), which is just the functorality of Mod. O

Given an institution I, we can construct another institution having as its sentences both
the sentences of I and also constraints. This construction is of particular interest for liberal

institutions, where we know that there is always a counit morphism with the couniversal property.

Definition 22 Given an arbitrary institution I, construct the institution C(I) whose theories
contain both constraints and J-sentences as follows: the category of signatures of C(I) is the
category Sign of signatures of I;if I is an I-signature, then Senc(y)(2) is the (disjoint) union
of the collection Senj(z) of all X-sentences from J with the collection of all ¥-constraints'?; also
Mod(X) is the same for C(I) as for I; we use the constraint translation of Definition 20 to define
Sen(4) on constraints; finally, satisfaction for C(I) is as in I for S-sentences from I, and is a8
in Definition 19 for E-constraints. O

9 Andrzej Tarlecki has shown us a counterexample.
10 here are some foundational questions about the size of the closure of a constraint theory that we will ignore
here; they can be solved for example by limiting the size of the category of signatures used in the original institution.

21



Proposition 23 If I is an institution, then C(I) is an institution.

Proof: Clearly the first condition of Definition 1 is satisfied, since the signature category of C(I)
is that of J. For the second condition we must show the functorality of Senc(r). Let ¢: T — X'
in Sign; then Senc(r)(¢): Senc(r)(X) — Senc(1) (3) is the disjoint union of the map Seny(f)
defined on Sen;(X) and the map sending $-constraints to their translations by ¢. Since Seny is
already functorial, it suffices to prove functorality of constraint translation. But this is obvious.

There is nothing to check for the third condition. This leaves the Satisfaction Condition: we
already know that it is satisfied for C(I)-sentences that are I-sentences; and Lemma 21 shows
that it is satisfied for constraints. O

This means that all the concepts and results of Section 2 can be applied to theories that include
constraints as well as sentences, that is, to C(J )-theoriesu. We call such theories constraining
theories. Thus, we get notions of presentation and closure, as well as theory. In particular, the
Presentation and Closure Lemmas hold, and we also get the following important result, which
enables us to glue together constraining theories:

Theorem 24 Given an institution with a [finitely] cocomplete category of signatures, then its
category of constraining theories is also [finitely] cocomplete.

Proof: Immediate from Theorems 11 and 23. O

Let us consider what this means for the equational institution. While rules of deduction for
inferring that an equation is in the closure of a set of equations are familiar, we have no such
general rules for constraints. However, it should be possible to obtain such rules (although they
will not be first order, and in general may not be complete) because a constraint corresponds
to an induction principle plus some inequalities (16, 69]; in particular, the constraint that sets
are to be interpreted freely gives us all the consequences of the induction principle for sets. In
more detail, this constraint for sets demands that all elements of sort Set are generated by the
operators §,{_} and _U_, which can be expressed as a principle of structural induction over these
generators (notice that structural induction is not first order). The constraint also demands that
two elements of sort Set are unequal unless they can be proved equal using the given equations.
One way to express this distinctness is to add a new boolean-valued binary operator on the new
sort, say =, with some new equations such that ¢ = t! = false iff t # t', and also such that
true = false does not hold [69]. Or we might consider an institution with disequations.

Let now us consider an easier example, involving equational theories with the following three
(unconstrained) presentations:

1. E - the empty theory: no sorts, no operators, no equations.
2. N - the theory with one sort Nat, one constant 0, one unary operator inc, and no equations.

3. NP - the theory with one sort Nat, two constants O and 1, one unary operator inc, one
binary infix operator +, and equations 0+ n =n, inc(m) + n=1inc(m+n), 1= inc(0).

Let &V and ZNP be the signatures of N and NP respectively, and let F¥: E — N and
FNP. N — NP denote the inclusion morphisms. Now NP as it stands has many different
interpretations, for example the integers modulo 10, or the truth values with 0 = false, 1 = true,
inc(false) = false, inc(true) = true, false+n = false, true+n = true. In the latter model, + is not
commutative. In order to get the standard model suggested by the notation, we need to impose
the constraint (FN, Sign(FNT)) on the theory NP. Then the only model (up to isomorphism) is
the natural numbers with the usual addition. Note that the equation m+n=n+m is satisfied

1 Note that there is no reason to suppose that C(I) is liberal if I is.

22



by this model and therefore appears in the equational closure of the presentation; it is a property
of + provable by induction. There are also extra constraints in the closure, for example (F' ,9),
where F' is the inclusion of the empty theory E in the theory with O, 1 and + with identity,
associativity and commutativity equations, and ¢ is its inclusion into NP. This constraint is
satisfied in all models that satisfy the constraint (FV, Sign(FN FP)). In this sense, the constraint
on 0,1 and + gives a derived induction principle. Further examples can be found in [16].

In general, the closure of a constraining presentation to a constraining theory adds some
new equations derivable by induction principles corresponding to the constraints; and it also
adds some new constraints corresponding to derived induction principles. The new equations are
important in giving a precise semantics for programming methodology. For example, we may
want to supply NP as an actual parameter theory toa para.meterized theory whose requirernent
demands a commutative binary operator. The new constraints seem less essential. For the Horn
clause institution, constraints enable us to define predicates by induction. :

What may be a promising approach to the proof-theoretic aspect of constraining theories is
discussed by Clark [18], Reiter [74), McCarthy [67], and others who have been concerned with
ways to get new sentences that are satisfied under a «closed world” assumption (the common sense
assumption that the information actually given about a predicate is all the relevant information
about that predicate; McCarthy identifies this with Occam’s famous razor). We, of course,
identify that “closed world” with the initial model of the given theory. Clark’s scheme, called
“predicate completion,” is simply to infer the converse of any Horn clause. This is sound for
ground queries in the institutions of conditional equations and first order Horn clauses (in the
sense that all the answers thus obtained are true of the initial model); but it is not complete [82].
McCarthy calls his scheme “circumscription” and is interested in its application in the context
of full first order logic [67); he has shown that it is sound when minimal models exist, but it can
be unsound when such models do not exist.

It is worth considering what happens if we add extra silly equations to NP constrained by
(FN ,FN Py. For example, 1 +n=n contradicts the constraint. In fact, if we add it, we simply
get a constraining theory which is inconsistent, in the sense that it has no models.

There is a rather elegant construction that gives a somewhat different notion of constraining
theory than that given by C(I). Let I bean institution. Then the signature category of C'(I) is
the category of theories of J. If T is a theory of I, then a T.model for C'(I) is just a Sign(T)-
model in I that satisfies T [thus Modcyn)(T) = Mod;(T)], and a T-sentence for C'(I) is a pair
(F: T" - T',06: T' — T of morphisms of theories in J. Finally, if Aisa T-model and (F,0)
is a T-sentence, then A |= (F,0) iff 0Ais F _free. This use of pairs of theory morphisms for
constraints is perhaps more elegant than Definition 19; but theories in C'(I) do not contain the
consequences in J of these constraints — they contain only other (given and derived) constraints.
As noted above, some important applications require the new J-sentences that follow from the
added constraints.

3.3 Other Kinds of Constraint

Several variations of the data constraint notion have been proposed for the equational insti-
tution, and it seems worthwhile to generalize these variations to the level of institutions. In
fact, very little of Section 3.2 depends on «F_freeness” in the definition of constraint satisfac-
tion. This suggests weakening that notion. Recall that a Z-model A satisfies a data constraint
c=(F: T—T,6: Sign(T') — ) iff 6A satisfies T' and is F-free, which means that F*(0A) has
a free extension along F, and (Fpx( A))# — ega: F3(F*(0A)) — 0A s an isomorphism. For the
equational institution, the most obvious ways of weakening the F-free concept are to require that
€94 is only injective or only surjective, rather than bijective as for F-free. For €ga to be injective
generalizes the “no confusion” condition of [17); it means that no elements of 0.A are identified by
the natural mapping from (F*(OA))’. Some work of Poigné uses of this notion under a name like

23




“protecting.” For €54 to be surjective corresponds to what is called a “generating constraint”
in [23]; it means that all elements of 0A are generated by elements of F*(fA); this condition
generalizes the “no junk” condition of [17]; it is also related to various concepts of “hierarchy
constraint” found in the literature, e.g. [92] and [78]. Of course, injectivity and surjectivity of
€94 together imply F-freeness. Now the general notion:

Definition 25 Let I be an institution, let A denote a class of model morphisms for each signature
Sof I,letc=(F: T — T',Sign(T') — Z) bea constraint from I, and let A be a £-model from I.
Then A A-satisfies c iff 0 A satisfies T' and has a free extension along F such that (1% ® A))# =€ 1

lies in A. (This could be further generalized to allow a different A for each X-theory T) O

Proposition 26 Modifying the construction of C(I) to use A-satisfaction gives an institution,
and theories in this institution will be as cocomplete as I is. O

The proofs are similar to those Proposition 23 and Theorem 24. In particular, this result.
implies that we can glue together theories with generating constraints using the usual colimit
constructions, and we can do the specification language constructions of Clear [15]. To study
generating constraints a little more closely, we assume that the morphisms in the categories of
models of an institution have factorizations, in the following sense:

Definition 27 An image factorization situation for a category C consists of
(1) a class M of monics and a class € of epicsin C such that
(2) both & and M are closed under composition,
(3) all isomorphisms are in both M and ¢, and

(4) every morphism f can be factored as e;m with e € £ and m € M “uniquely up to isomor-
phism” in the sense that if ¢'; m' is another factorization of f with ¢ € £ and m' € M, then
there is a unique isomorphism from the center object C of ¢;m (i.e., the target of e and
the source of m) to the center object C' of ¢/; m' such that the following diagram commutes:

C
€ m
A B
\ ml
¢ !
* o

O

This concept, which seems originally due to Isbell, is actually a bit stronger than our appli-
cation demands, but it has been well-studied, and has many pleasant properties; for example, it
was used in [37] for a general study of some institution-like concepts. Herrlich and Strecker [53]
give more detail on image factorization situations, including proofs of the following:

Proposition 28 Let £, M be an image factorization for a category C. Then

1. (Diagonal Fill-in Property.) If ¢;b = a;m with e€ £ and m € M and if C and C' are the
center objects of the two factorizations, then there is a unique morphism ¢: C — C' such
that e;c = a and c;m = b.

24



N
S

Cl

A

2. If f € € and f € M then f is an isomorphism.
3. fabe £ thenbe &, and if a;b € M then a € M.
0

Definition 29 An institution I has image factorization iff it has an image factorization sit-
uation for each of its categories of Z-models. Let I be such an institution, let F: T — T' be
a theory morphism and let A be a T'-model. Then A is F-generated iff there is a morphism
e: F3(F*(A)) — A in € with the couniversal property. O

The following is a direct consequence of the definitions.

Fact 30 Let I be an institution with image factorization, let F: T — T be a theory morphism,
and let A satisfy T". Then A is F-generated iff it satisfies the £-constraint (F,1 S,-g,,(T:)). ]

We next show that F-generation in this sense is (essentially) equivalent to a condition called
F-generation by Ehrig, Wagner and Thatcher in [23], but which we call F-prime!? (our F-prime
concept differs from their F-generation concept only in that we replace equality by isomorphism,
and of course in that their concept is restricted to the equational institution). The following
result greatly increases our confidence that the concept in question has been correctly captured
in the institutional framework:

Proposition 31 Let I be an institution with image factorizations, let F: T — T' be a theory
morphism, and let A and B be T'.mmodels. Call A F-prime iff whenever m: B— A is in M and
F*m: F*B — F*A is an isomorphism, then m is an isomorphism. Then A is F-prime iff A is
F-generated.

Proof: Assume that A is F-generated, that F*m: F¥B — F*Ais an isomorphism, and that
m: B — Aisin M; then we must show that m is an isomorphism. We know that e4: Fs(F*A) —
A lies in £. Then the desired conclusion follows from the facts that the m les in both M and £,
using (2) and (3) of Proposition 28, and that the left upward arrow in the diagram below is an
isomorphism.

€A
F3(F*A) A
! [m
F¥(F*B) o8B

1204y terminology is from [86]; intuitively, A is F-prime if it cannot have a proper (i.e., non-isomorphic) M-
subobject m: B — A unless m is already proper when viewed through F*.

25



For the converse, we must show that if €4 is not in M then there is some m: B — A in M not
an isomorphism such that F*m is an isomorphism. The proof is a chase of the following diagram:

F*A
F*m
o F*B
u
c

where e;m is a factorization of €4 with center object B, where u’ is defined by the universal
property of €4 using the morphism f, and then u is defined by the universal property of g using
the morphism Fsu';e. Then m is not an isomorphism since e4 is not in £, and all triangles
commute, using various properties and definitions.

In order to show that F*B = F*A, we show that ¢p;m satisfies the universal property for
€4, ie., given C and f: F*C — A, there is a unique u: B — F*B such that Fsu; eg;m = f.
Existence follows from the above diagram. For the uniqueness, assume v: C — F*B such that
Flv;eg;m = f. Then Fsv; €p = Fsu; es (= F$o, e), so v = u, by the universal property of ep.
This implies that there is a unique isomorphism h: F*B — F*A such that u' = u;h. But F*m
is such a morphism. O

(We thank Andrzej Tarlecki for pointing out an error in an earlier version of this proof; the
reader may also wish to see [86] for a proof of a similar result for the special case of “algebraic”
institutions.)

4 Institution Morphisms — Using More than One Institution

After the work of Section 3.2, we know how to express constraints in any institution; in particular,
we can use constraints in the equational institution to specify parameterized abstract data types.
We can also give loose specifications in any institution. Constraints seem most natural for
liberal institutions, since we are guaranteed that satisfaction is possible. But liberality is a
rather significant restriction, since non-liberal institutions can often be more expressive than
liberal institutions; for example, if one adds negation to the equational institution, it ceases to
be liberal; also, first order logic is not liberal. Thus, the ambitious specifier might want both
the rich expressive power of first order logic and also the data structure definition power of the
equational institution. This section shows he can eat his cake and have it too. The basic idea is to
precisely describe a relationship between two institutions in the form of an institution morphism,
and then permit constraints that use theories from the second institution as an additional kind
of sentence in this “duplex” institution; we can even have more than two institutions. There are
also other uses for institution morphisms; in particular, we will use this concept in considering
when a theorem prover for one institution is sound for theories from another institution.

4.1 Institution Morphisms

Let us consider the relationship between the institution of first order logic with equality, 70& Q,
and the equational institution, £ Q. First of all, any first order signature can be reduced to an
equational signature just by forgetting all its predicate symbols. Secondly, any equation can

26



be regarded as a first order sentence just by regarding the equal sign in the equation as the
distinguished binary predicate symbol that is interpreted as actual identity in models (the equal
sign in the equations of the equational institution is not a predicate symbol, but just a punctuation
symbol that separates the left and right sides). Thirdly, any first order model can be viewed as
an algebra just by forgetting all its predicates. These three functors are the substance of an
institution morphism F0£Q — £Q.

Definition 32 (More concerte version of Definition 13) Let J and I’ be institutions. Then an
institution morphism ®: I — I' consists of

1. a functor ®: Sign — Sign’,
2. a natural transformation a: Sen' = Sen, and
3. a natural transformation fx: Mod(XZ) — Mod’(@(E))
such that the following Satisfaction Condition holds
A s ax(€) iff Ax(A) Fa(x) €
for any -model A from I and any ®(X)-sentence € from I'. O

We leave it as an exercise for the interested reader to prove that this definition agrees with
Definition 13. In fact, « is n; Right and 8 is n; Left. The reader who prefers her definitions as
concrete as possible may wish to see what “naturality” means in conditions 2. and 3. above: the
following two diagrams spell this out, for ¢: ¥ — X' a signature morphism in I:

oz
Ser!(®(X)) Sen(X)
Sen'(®(9)) l ], Sen(g)
Sen'(2(2")) p— Sen!(Z')
Ps
Mod(X) Mod'(2(%))
Mod(4) | | Mod'(2(¢))
Mod(x') Mod'(®(Z'))
E'

The reader may also verify that ®: FO£Q — & O as sketched in the first paragraph of this
subsection really is an institution morphism; this amounts to little more than verifying the two
diagrams above and the Satisfaction Condition.

Just as there is an elegant equational way to state the Satisfaction Condition for institutions
(see the beginning of Section 2.3), there is also one for institution morphisms. From the basic
Satisfaction Condition

m = ap(e') iff fz(m) |= ¢
for m an ¥-model from I and € a $(X)-sentence from I', we get
M = agp(e) iff fn(M) = ¢
for M a collection of X-models, and therefore
(' 18a(M) = ¢} = {¢ | M = as(@))
27



so that
(BeM)* = {' | ax(€') € M*},

which we can rewrite more elegantly as
(BM)* = a7 (M*).

Similarly, we can show that
(aE)* = 71 (B¥).
We now turn to the question of when it is sound to use a theorem prover for one institution

on (translations of) sentences from another. The basic concept is given by the following, which
is a kind of surjectivity condition:

Definition 33 An institution morphism ®: I — I' is sound iff for every signature X' and every
Y'-model A’ from I', there are a signature ¥ and a 3-model A from I such that A’ = Bx(4). O.

In particular, the institution morphism ¥0£ Q — & Q discussed above is sound.

Proposition 34 If : J — I' is a sound institution morphism and if E' is a collection of X'-
sentences from I, then a ¥'-sentence ¢ is in E' iff ax(€') is in ax(E')*, where X is a signature
from I such that 2’ ®(x).

Proof: The two conditions to be shown equivalent are:
1. for all m', if m' |= E' then m |=¢'.
2. for all A, if A= aF' then A |= a¢'.

Let us assume the second condition and prove the first from it. Thus we assume that m' = E'.
Now using soundness of ®, we get a model m from I such that m' = fg(m). Because ® is an
institution morphlsm, we have that m |= ag(F). Then condition 2. gives us that m = ax(¢).
Therefore m' |= €', and we are done.

For the converse, assume that A |= ax(E') and let m' = ﬂg(m). Then m' |= E' because & is
a morphism. Now condition 1. gives us that m' |= ¢, and again using that ® is a morphism, we
conclude that m = a(e'). O

It now follows using the institution morphism from O£ Q to € Q, that a theorem prover for
first order logic with equality can be used for equational theories.
We can rewrite the conclusion of the above proposition more compactly as

B = a5 (on (B
and from this we can derive

Corollary 35 If &: I — I'is asound institution morphism and if E is a collection of L-sentences
in I, then
o~ Y(E**) = (a"1E)**.

Proof: This follows by substituting a1 E for E in Proposition 34 and simplifying. O

Notice that an institution morphism ®: I — I’ induces a functor ®: Thy — Thj: on
the corresponding categories of theories by sending a X-theory T to the ®(X)-theory Bs(T*)*;
assuming that T = E**, we know by the above corollary that ®(T) = ag(E**) = (a3 E)**. We
also have the following useful result about this translation of theories:

28



Theorem 36 Given a sound institution morphism ®: I — I’ such that ®: Sign — Sign' is
[finitely] cocontinuous and such that both Mod: Sign — Cat’ and Mod': Mod' — Cat®?
preserve colimits, then ®: Th; — Thy. is also [finitely] cocontinuous.

Proof: Let D: G — Thy be a diagram with D, = (2, Ey,), and let v: D = T be its colimit in
Thy where T = (X, E). Then by the construction of Theorem 11, ¥ is the colimit of the diagram

D; Stgn in Sign, and
E=(|J m(E.))"
‘ ne|G| i
Now let D': G — Thy: be the diagram D;®. Then by assumption, ¥ = ®(7): D;® = X' is a

colimit cone in Sign', where &' = ®(X). Because the forgetful functor Sign' also reflects colimits,
we know that 4': D' = T" is also a colimit cone, where T = (&', E') with

E'=(J &))"
n€|G|
where
Ep = O(E,) = Bz, (Ea*)*.

What we wish to show is that (X', E') = &((Z, E)), which reduces to showing that E' = &(E).
So, let us calculate:

E = (UymE)* by definition
{Un (B Bn**¥}** by definition
{Un '7'7;[.32,; ('Yn('YnEn)*)]*}** by Proposition 4
{Up 7 la (B (v E))]*H** by naturality of 8

= {Un[Bs(vn En)*]*}** by Proposition 4 again

= {U, a§1(7nEn)**}** by the Satsifaction Condition
= {Un[a§_317nEn]**}** by Corollary 35

= {Un a§17nEn}** by 11. of Proposition 3

In the applications of Proposition 4 above, we need to know that 4 and ' each induce surjective
functions on models. This follows because each 4 and «' are colimit injections, and so therefore
also are Mod(y) and Mod(y'), by hypothesis. This then implies that they are surjective (on
models).

For the right hand side, we note that

O(E) = {Bz[U,VnEn]***}* by definitions

= {Bs [ﬂn(’YnEn)*]**}* by 8. of Proposition 3
o5 N (Yn En) ¥ by the Satisfaction Condition

Il

= aEI[Un ’YnEn]** by 8. of Proposition 3
= {az'U, mmEn}** by Corollary 35
= {Un aEI’InEn}** since inverse image commutes with union

O

Actually, this proof also supports a stronger conclusion: ® preserves on theories whatever
colimits it preserves on signatures. Theorem 36 implies that if a large theory in the source
institution is expressed as a colimit of smaller theories, then the corresponding theory in the
target institution can also be so expressed. This can help with the practicalities of using a
theorem prover for one institution on sentences from another, by modularizing the proofs. Some
experiments using OBJ3 [47] as a theorem prover have exploited this viewpoint [34]. It would
also be interesting to see if the hypotheses on this theorem can be weakened. For example, the
assumption that Mod preserves colimits seems stronger than is needed to get that Mod(y) is
surjective on objects; however, it is worth noting that this assumption holds in most institutions
that have been studied.

29



4.2 Duplex Institutions

This subsection gives a construction for an institution whose theories can contain both sentences
from an institution J and constraints from another institution I'. For example, J might be
first order logic and I' equational logic. What is needed to make the construction work is an
institution morphism ®: I — I' expressing the relationship between the two institutions. This
idea was introduced informally and applied to some examples in [16]. Note that all the results
of this section generalize to the notion of A-satisfaction given in Definition 25, although they are
stated for the case of data constraints, i.e., for the case where A is the class of isomorphisms.

Definition 37 Let ®: I — I' be an institution morphism and let ¥ be a signature from I.
Then a X-duplex constraint is a pair

c=(F: T" > T',0: Sign(T") — ®(%)),

where F is a theory morphism from I’ and @ is signature morphism from J. Furthermore, a
3-model A from I satisfies the duplex constraint c iff §(85(A)) satisfies T' and is F-free; as
usual, we write A g c. O

The following picture of the general situation in this definition may help.

T T Siga(T) 3(%)

) e

T2 ' Mod(Sign(T")) <~ Mod(2(=)) +—— Mod(¥)
F$ b

It is worth remarking that in practice T" and T' could be just presentations, as long as F is a
theory morphism in I'.

Definition 38 Let ®: I — I’ be an institution morphism, let ¥ be a signature from I, let
c = (F,0) be a X-duplex constraint, and let ¢: ¥ — ¥ be a signature morphism from I. Then
the translation of ¢ by ¢ is the X'-duplex constraint ¢c = (F,8; P(¢)). O

Lemma 39 Satisfaction. Let ®: I — I’ be an institution morphism, let 3 be a signature from
I, let ¢ = (F,0) be a B-duplex constraint, let ¢: & — T’ be a signature morphism from I, and
let B be a ¥-model from I. Then '

B g éc iff B 5 c.

Proof: Suppose that ¢ = (F,0) with F: T" — T' and 9: Sign(T') — ®(X). Then B = ¢c
means that B |= (F,0; ®(4)), which means that 6(®(¢)(Bs:(B))) satisfies T' and is F-free. On
the other hand, ¢B }= ¢ means that 0(Bx(¢B)) satisfies T and is F-free. To show these are the
same, we need only know that ®(¢)(Bx:(B)) = Bs(¢B), which is just the naturality of 8 (the
second diagram after Definition 32). O

Definition 40 Let ®: I — I’ be an institution morphism and let ¥ be a signature from I. Then
the duplex institution over ®, denoted D(®) has: its signatures those from I; its X-sentences
the X-sentences from I plus the E-duplex constraints; its X-models the ¥-models from I; and
satisfaction is as defined separately for the sentences from I and the duplex constraints. O

30



For example, if we let ®: FOEQ — £ Q as above, then we can write loose specifications in
full first order logic, and at the same time we can impose constraints for defining data structures
in the liberal institution of equational logic. This actually gives quite a powerful framework for
specification, as shown by some examples written in Clear [16].

Theorem 41 If I is an institution and ®: J — I' is an institution morphism, then D(®) is an
institution. O

The proof is similar to that of Proposition 23 and is omitted here. By Theorem 11, this result
implies )

Theorem 42 If the category of signatures of I is [finitely] cocomplete, then so is the category.
Thyp(g) of theories of the duplex institution D(®). O

Thus, we can do parameterized specification with constraining theories that use both sen-
tences from J and duplex constraints constructed with I', since these are the theories over the
duplex institution D(@®). Of course, we can also use the more general notion of A-satisfaction of
constraints.

There is another much simpler way to use an institution morphism ®: I — I' to construct
a new institution in which one simply permits sentences from either I or I'. For example, it
may be convenient to use already existing equational theories when constructing new first order
theories.

Definition 43 Let ®: I — I' be an institution morphism. Then T (@) is the institution with:
its signatures ¥ those from I; its Z-sentences either X-sentences from I, or else pairs of the form
¢ = (T",0: Sign(T") — ®()), where T' is a theory from I’ and 4 is a signature morphism; the
¥-models of T(®) are those of I; and ¢ is satisfied by a X-model A iff (fz(A)) satisfies T. O

This construction differs from that of Definition 40 primarily in the notion of satisfaction
involved: in D(®), satisfaction of a pair (F: T" — T',8: Sign(T') — ®(X)) is constraint satis-
faction, involving F-freeness, whereas in T (®), satisfaction of (1", 8: Sign(T') — ®(X)) is simple
satisfaction in I'.

Proposition 44 T (®) is an institution. O

4.3 Multiplex Institutions

Actually, we can use many different institutions all at once, some for various kinds of con-
straints, and some for additional expressive power; all that is needed is a morphism to each
from some fixed base institution. Let I be an institution and let ®;: I — I; be institu-
tion morphisms for 1 < ¢ < m+ n. Now define P(®1,...,Pn; Pnt1,-.-,Prtm) to be the
institution with: signatures those from I; sentences either those from I, or else constraints
(F: T" — T',0: Sign(T') — ®;(X)) with 6,7",T' from I; for some 1 < i < n or else pairs
(T,8: Sign(T) — ®;(X)) with 6, T from I; for some n +1 < 1 < n + m; with its models those
of I; and with satisfaction as usual for the I-sentences and for the constraints, and as in Defi-
nition 43 for the others. Notice that the institutions J; for i = 1,...,n can each use a different
collection 4; of morphisms to define constraint satisfaction. One can even use the same institu-
tion with different classes 4;. For example, this means that one can glue together (with colimits)
first order theories that use combinations of generating constraints, hierarchy constraints, and
data constraints in the equational institution, as well as loose first order axioms.

For example, consider the diagram in the category of institutions, with ®;: F0£Q — £Q
and ®,: HCL — £Q, where FO€ O is first order logic with equality and ¥CL is Horn clause

31



logic. Then we can define a data type, such as STRING-OF-NAT, using initiality in € @, and
inductively define a predicate, such as even in ¥CL, e.g., by

even(0)
even(n) = even(n + 2)

These both use data constraints, and the institutions are liberal (for ¥CL, “data” is a misnomer,
since we are inductively defining predicates, not data). We can then define extra functions and
predicates (“loosely” interpreted) in FO& Q, using both universal and existential quantifiers as
convenient. :

5 Summary and Future Research

We have formalized the intuitive notion of “logical system” or “abstract model theory” with
the institution concept, and have shown that institutions whose signatures have finite colimits
are useful in programming methodology. Many properties have been proved that relate classes:
of models and of sentences. We have also shown how to define data types by several kinds of
“constraint,” which are abstract induction principles, including data and generating constraints.
Liberal institutions, where the forgetful functors induced by theory morphisms have correspond-
ing free functors, are particularly suitable for instantiating constraints. We have also introduced
the notion of an institution morphism and shown how to use it in determining (for example)
when a theorem prover for one institution can be soundly used on (translations of) theories
from another institution. Institution morphisms were also used in defining duplex and multiplex
institutions, which formalize the simultaneous use of more than one institution; this permits
combining the expressive capabilities of several institutions. We showed that many institution
morphisms preserve finite colimits of theories, which means that they preserve theory structuring
mechanisms. These mechamisms support generic modules for logical programming languages
such as (pure) Prolog, OBJ and Eqlog, as well as specification languages like Clear, and program
development systems like LIL. .

This paper has dealt with sets of sentences, using satisfaction to define the closure of a set of
sentences, but has said little about proofs. In fact, it is attractive to include proofs in the notion of
institution, by letting an inference step be an arrow from a tuple of sentences to another sentence.
Such arrows can be composed, yielding a category, as in Lawvere theories. Then Sen(X) becomes
a category, and Sen takes a signature morphism covariantly to a functor ([39] gives the definition
and some results). Proof theory has recently taken on new interest in logic programming and
type theory (in the sense of Martin-L5f) because of doctrines like “computation is deduction”
and “constructive proofs yield programs.” In such a setting, complexity of proof translates
into complexity of computation. This provides further motivation for studying institutions with
proofs. .

Some problems mentioned but not discussed in detail in this paper include the following:

1. It can be tedious to show that something really is an institution, particularly to check the
Satisfaction Condition. This has led us to develop a method for constructing institutions
from simpler structures called “charters,” in a way that guarantees the Satisfaction Con-
dition [39]. Charters are are more concrete than institutions, since they specify the syntax
of sentences. Parchments go even further in this direction [39].

2. An open problem mentioned in a preliminary version of this paper [36], to characterize
when institutions are liberal and relate this to work of Mahr and Markowsky [64], has been
solved for “strongly liberal” institutions (where F%A is F-generated) by Tarlecki [88].

3. More thorough explorations of the properties of the category of institutions, including some
completeness results appear in [39] and [85]; see also (88].

32



We conclude this section by mentioning two broad research programs that arise naturally
from this paper. One is to extend the range of constructions treated institutionally; for example,
Sannella and Tarlecki [76] discuss “observational equivalence,” i.e., abstract machines, in an
arbitrary institution. We recommend doing as much computer science as possible in as general
an institution as possible. The second program is to carry out as much abstract model theory as
possible in the more general framework of institutions, as begun by Tarlecki [85].

A Examples of Institutions

This appendix fitst presents the details needed to establish equational logic (i.e., many-sorted
general algebra) as an institution. Then, using this material, the second subsection develops first
order logic and some related institutions.

A.1 General Algebra

This section is quick review of many-sorted general algebra, which provides a first example of
the institution concept, and also aids in working out the details of several other institutions. If
you know all about general algebra, you can skip to Section A.2. We use notation of [30] (see
also [45]) based on “indexed sets,” in contrast to the more complex notations of [54], [8] and
[10]. I I is a set (of “indices”), then an I-indexed set A (also called a family of sets indexed
by I) is just an assignment of a set A; to each index ¢ in I. If A and B are I-indexed sets,
then a mapping, map, or morphism of I-indexed sets, f: A — B, is just an I-indexed family
of functions, f;: A; — B; for ¢ € I. There is an obvious composition of I-indexed mappings,
(f;9): = fi;9; (note that the composition f;g of functions f,g is defined by (f;g)(z) = ¢(f(=)))-
This gives a category Sety of I-indexed sets. We may use the notations A = (A4; | i € I) for
an I-indexed set with components A; and f = (f; | ¢ € I) for an I-indexed mapping A — B of
I-indexed sets where f;: A; — B;. All the basic concepts of set theory extend component-wise
to I-indexed sets. Thus, A C B means that A; C B; foreach{ in ,ANB = (A;NB; |i € I),
etc. This can be very helpful in simplifying notation.

A.1.1 Equational Signatures

Intuitively speaking, an equational signature declares some sort symbols (to serve as names for
the various kinds of data) and some operator symbols (to serve as names for functions on data),
each with a declaration that gives a list of input sorts and one output sort. Then a morphism
between signatures should map sorts to sorts and operators to operators, preserving their input
and output sorts.

Definition 45 An equational signature is a pair (S, X), where S is a set (of sort names) and
¥ is a family of sets (of operator names), indexed by S* x S; we will often write just ¥ instead
of (S,%). o in ¥, is said to have arity u, sort s, and rank u,s; we may write o: u — § to
indicate this. O

Definition 46 An equational signature morphism ¢ from a signature (S, X) to a signature
(S', ') is a pair (f,g) consisting of a map f: S — S’ of sorts and an S x S*-indexed family of
maps gus: Sus — 2'}_* ©).1(6) of operator symbols; where f*: S* — S'* is the extension of f to

strings!3. We will sometimes write ¢(s) for f(s), ¢(u) for f*(u), and ¢(o) or even ¢o for gy (o)
when o € 3y ,. O

13This extension is defined by: f*(A) = ), where X denotes the empty string and f*(ws) = f*(w)f(s), for w in
S*and sin S.

33



In the language of programming methodology, a signature declares the interface for a module,
package, capsule, object, abstract machine, abstract data type, .. (unfortunately, there is much
variation of terminology in this area). Signature morphisms are useful for expressing the binding
of an actual parameter to the formal parameter of a parameterized software modaule.

Definition 47 The category of equational signatures, denoted Sig, has equational signa-
tures as its objects, and has equational signature morphisms as its morphisms. The identity
morphism on (S, 3) is the corresponding pair of identity maps, and the composition of mor-
phisms is the composition of their corresponding components as maps. (This clearly forms a
qa’cegory.) O

For many purposes, such as showing that the usual term algebra construction yields an initial
algebra, it is important to make some additional assumption about signatures, such as that
whenever o: w — s and o: w' — s’ with length(w) = length(w'), then w = w' and s = &'. We
shall assume that all subsequent signatures satisfy this assumption. Order-sorted algebra allows
relaxing this assumption [44]. (For practical purposes, it suffices to assume that expressions are
somehow disambiguated by a parser, possibly with user assistance.)

A.1.2 Algebras

Given a signature X, a Y-algebra interprets each sort symbol as a set and each operator symbol
as a function. Algebras, in the intuition of programming, correspond to concrete data types, i.e.,
to data representations in the sense of [55].

Definition 48 Let (S,T) be a signature. Then a S-algebra A is an S-indexed family of sets
|A] = (4, | s € S) called the carriers of A, together with an S* X S-indexed family a of maps
Qu,s: Du,s [Aw — A,] for u in S* and s in S, where As1..sn = As1 X ... X Gen and [A — Bj
denotes the set of all functions from A to B. (We may sometimes write A for |A| and |A|, for
A,) Foru=sl...sn,foro in By, and for {al,... ,an) in A, we will write o(al,...,an) for
o s(0)(al,. .., an) if there is no ambiguity. O

Definition 49 Given a signature %, a $-homomorphism from a Z-algebra (A, ) to another
(A', o) is an S-indexed map f: A— A'such that for all o in By, and all a = {al,... ,an) in Ay
the homomorphism condition

f(a(o)(al,- ., an)) = &(@)(far(aD); - fon(an))

holds, i.e., such that the following diagram commutes:

fu

Au A
afo) l ' l o'(o)

e
a

Definition 50 The category Algy of T-algebras has T-algebras as objects and X-homo-
morphism as morphisims; composition and identity in Algy are composition and identity as
maps. (This clearly forms a category). O

Alg extends to a functor on the category Sig of signatures, associating with each signature
T the category Alg(Z) of all E-algebras, and also defining the effect of signature morphisms on
algebras:

34



i
i

Definition 51 The functor Alg: Sig — Cat sends each signature I to the category Alg¥ of
all B-algebras, and sends each signature morphism ¢ = (f: S — §',9: & — X') to the functor
Alg(4): Algy — Algy, that

1. sends a S-algebra (A, o) to the Z-algebra (4, a) with A, = A%(s) and @ = g; ¢/, and
2. sends a ¥'-homomorphism h': A' — B' to the ¥-homomorphism
Alg(¢)(h') = h: Alg(¢)(A") — Alg(¢)(B') defined by h, = hly(,).
It is often convenient to write #(A") or ¢A' for Alg(¢)(A') and to write ¢(h') for Alg(4)(R'). O

If S is the sort set of &, then there is a forgetful functor U: Algy — Sets which sends each
algebra to its S-indexed family of carriers, and sends each ¥-homomorphism to its underlying
S-indexed map. (Functorality follows from the fact that U = Alg(¢), where ¢ is the signature
inclusion (S, 0) — X.) ‘

For each S-indexed set X, there is a free algebra (also called a “term” or “word” algebra),
denoted Tx(X), with [Tg(X)|, consisting of all the 3-terms of sort s using “variable” symbols from
X; i.e., (Tg(X))s contains all the s-sorted terms with variables from X that can be constructed
using operator symbols from X; moreover, the S-indexed set Tx(X) forms a X-algebra in a natural
way. In order to make this more precise, we first a consider special case, defining (Tx), to be the
least set of strings of symbols such that

1. 85, €Ty, and
2. 0 € B41..on,s and ti € Ty ,; imply that the string o(t1,...,tn) is in Tx,.

Then the Z-structure of T is given by « defined by:
1. for a € ), let afo) be the string o of length 1 in T},,; and
2. for 0 € B,1..4n,s and ti € Ty, let o0)(11,. . .,tn) be the '"s'tring o(tl,...,tn) in Ty ,.

Next, define £(X) to be the S-sorted signature with (£(X))x,, = B, UX, and (Z(X))u,s = Zu,s
if u # A. Then Tx(X) is just Tx(x) regarded as a Z-algebra rather than as a X(X)-algebra 14,
The freeness of T (X) is expressed by

Theorem 52 Let ix: X — U(Tg(X)) denote the inclusion. Then the following “universal”
property holds: for any Z-algebra B, every (S-indexed) map f: X — B, called an assignment,
extends uniquely to a Z-homomorphism f#: Tg(X) — B such that ix; U(f*) = f. O

A proof may be found, for example, in [17]. We may omit the U’s in such equations, as in the
following traditional diagram of S-indexed sets and mappings for the above equation.

B

f F¥(f#)

X - Tx(X)
ix

In particular, taking X = 0, we see that there is a unique £-homomorphism from T’ to any other
X-algebra; thus, Ty is the initial X-algebra.

1.e., ¢(T5(x)) where ¢: & — L(X) is the signature inclusion.

35



A.1.3 Equations and Satisfaction

We now define equations, and the satisfaction of an equation by an algebra. Let us fix, for the
rest this subsection, an infinite set X of “variable symbols”. Then a sort assignment is a partial
function X: X — S where S is a set of sorts; we also let X denote the S-indexed set defined
by!® X, = {z € X | X(z) = s}. This is used in the following:

Definition 53 A Z-equation e is a triple (X, t1,t2), where X is a sort assignment X — S with
S the set of sorts of X, where t1 and ¢2 in |[Tx(X)|, are terms over (the S-sorted set) X havmg 4
the same sort s € S. We may write such an equation in the form (VX) t1 =t2. ’

The necessity for variable declarations in equations has been shown by Goguen and Meseguer
in [41]: without them, the expected rules of deduction for many-sorted equational logic are
unsound?é,

Definition 54 A S-algebra A satisfies a S-equation (VX) t1 = 2 iff a¥(t1) = a¥(£2) for every
assignment a: X — |A|. In this case we write A |=e. O

We now define another functor, Eqn, on the category of signatures. In order to do so, we
first define for each signature morphism ¢: ¥ — X' a function ¢™~ from X-terms to >'-terms.

Definition 55 Let ¢: ¥ — X' be a signature morphism (f: § — S',g), let X: X — S be a sort
assignment, and let X' be the sort assignment X; f. The following will define an S-indexed map

¢ [Ts(X)| = |¢(Tg+(X")|: First, note that'? X C |$(Tx+(X"))| since if z € X, then z € X%(s)
and Xy € 1Te (X gy = |#(Ts1(X")|s; let 5: X — |¢(Tx+(X"))| denote this inclusion. Then
7 has a unique extension as a X-homomorphism j#: Tx(X) — ¢(Tx:(X"))) by Theorem 52, and
we simply define ¢~ = |5#|. O

Definition 56 The functor Eqn: Sig — Set takes each signature X to the set Eqn(X) of all
T-equations, and takes each ¢ = (f,g): & — X' to the function Eqn(¢): Eqn(Z) — Eqn(Z')
defined by

Ban($)((X,11,12)) = (X; 1,67 (1), 4~ (t2)).

It is often convenient to write ¢(e) or ¢e instead of Eqn(¢)(e). O

Proposition 57 Satisfaction Condition. If ¢: £ — X', if e is an X-equation, and if A'is a
X'-algebra, then
A= ¢(e) if ¢(4") e

a

We omit the proof of this result. An elegant proof using the machinery of charters and parchments
may be found in [39], and a direct, but rather lengthy, proof by calculation may be found in [36].
Summarizing, we have

Example 58 Many-Sorted Equational Logic is an institution, with Sign the category Sig of
equational signatures (see Definition 47), with Mod the functor Alg of Definition 51, with Sen
the functor Eqn of Definition 56, and with equational satisfaction as in Definition 54. The
Satisfaction Condition holds by Proposition 57. We denote this institution £ Q. O

15We thank Andrzej Tarlecki for pointing out a problem with our approach to variables in [36].

163ome special assumptions about the form of signatures, such as that each sort has at least one constant, will
also ensure soundness [41].

'70Of course this means that X, C |¢(Tx/(X"))|, for each s € S.

36



A.2 First Order Logic and Related Institutions

We follow a path like that in Section A.1, but now show that a more complicated logical system
is an institution. The previous work on equational logic will greatly aid with this task.

Definition 59 A first order signature Q is a triple (S, X, IT), where

1. S is a set (of sorts),
2. X is an S* x S-indexed family of sets (of operator or function symbols), and

3. I is an S*.indexed family of sets {of predicate or relation symbols).
A morphism of first order signatures, from (0 to 1/, is a triple (¢1, ¢2,¢,), where

1. ¢1: § — S' is a function,

2. ¢2: ¥ — X' is an S* x S-indexed family of functions (¢2)u,s: Sy — Z' & and
é, (u),¢1(s)

3. ¢3: Il — II' is an S*-indexed family of functions (¢s)y: II, — II;*( .
1 u

Let FoSig denote the category with first order signatures as its objects, with first order signature
morphisms as its morphisms, and with the obvious identities and composition. O

Definition 60 For Q a first order signature, an {l-model (or -structure) A consists of

1. an S-indexed family |A| of non-empty sets (4, | s € S}, where A, is called the carrier of
sort s, and

2. an S* X S-indexed family a of functions oy ,: Iy, — [Ay — A,] assigning a function to
each function symbol, an S*-indexed family 8 of functions 8,: II, — Pow(A,) assigning a
relation to each predicate symbol, where Pow(A) denotes the set of all subsets of A.

For = € I, with u = sl...sn and ai € A,; for { = 1,...,n, we say that “x(al,...,an) holds”
(in A) iff (al,...,an) € B(x); as usual, this may be abbreviated “x(al,...,an).”

Next, we define a first order (-homomorphism f: A — A' of {}-models to be an S-
indexed family of functions f,: A, — A such that the homomorphism condition holds for ¥ (as
in Definition 5) and such that for = € I, with u = s1...sn, and with ai in A,; fori =1,...,n,

B(r)(al,...,an) implies B'(7)(fsi(al),-.., fen(an)).

(Some readers might think that “implies” above should be “iff’; however, such a notion of
homomorphism would be too strong, eliminating many maps that are necessary for the term
model to be initial in the Horn clause insitution; see [42].)

Let FoMod denote the category with first order models as objects and with first order
morphisms under the obvious composition. FoMod extends to a functor FoSig — Cat® as
follows: Given a first order signature morphism ¢: Q2 — ', define the functor

FoMod(¢): FoMod(Q2') — FoMod(Q)
to send: first of all, A' in [FoMod({l')| to A = ¢ A’ defined by
1. A, = A, for s € S with &' = ¢1(s),
2. ays(0) = oy (($2)u,s(0)) for v € S*,s € S and 0 € B, , where v’ = ¢:(u) and s’ = ¢:1(s),

37



3. Bu(7) = BLi((¢3)u(x)) for u € S* and = € II, with u' as above;

and secondly, to send f': A' — B' in FoMod(QY) to f = ¢f': A — B in FoMod(Q), where
A= ¢A' and B = ¢B', defined by f, = f!, where 8' = ¢1(s). This construction extends that of
Definition 7, and it is easy to see that it does indeed give a functor. [

The next step is to define the sentences over a first order signature £2. We do this in the
usual way, by first defining terms and formulas. However, we have to be somewhat careful about
variables. To this end, let X be a fixed infinite set of variable symbols, and let X: X — S |
be a partial function i.e., sort assignment; as before, X also denotes the S-indexed set with
X, ={z € X | X(z) = s}. Now define the S-indexed family TERM x () of (©2,X)-terms to be
the carriers of T(X), the free S-algebra with generators X, and define the (S-indexed) function
Free on TERM x(1) inductively by

1. Free,(z) = {z} for z € X,
2. Free,(o(tl,...,tn)) = Uiz, Frees(ts).

Now define TERM (1) to be the (disjoint) union of all the TERM x(2); this means that we
assume (as in the equational case) that each {I-term comes with an explicit indication of what
its variables are.

Definition 61 A (well-formed) (2, X)-formula is an element of the carrier of the (one-sorted)
free algebra WFF x (1) having the atomic (2, X)-formulae

{=(e1,...,tn) |r €, withu==sl...snand ti € TERMX(Q),;}
as generators, and having the following as its (one-sorted) signature:

1. a constant true,
2. a unary prefix operator —,
3. a binary infix operator &, and

4. a unary prefix operator (Vz) for each z in X.

Let WFF(Q) be the union of all WFF x(12). _
The functions Var and Free, giving the sets of variables and of free variables that are
used in (-formulae, can be defined inductively over the above logical connectives by

1. Var(true) = Free(true) = 9,

2. Var(n(tl, ... tn)) = Free(n(tl,. .. tn)) = Ur, Free(ti),

3. Var(—P) = Var(P), and Free(—P) = Free(P),

4. Var(P&Q) = Var(P) UV ar(Q), and Free(P&Q) = Free(P)U Free(Q), and
5. Var((Vz)P) = Var(P) U {z}, and Free((Vz)P) = Free(P) — {z}.

We now define an {}-sentence to be a closed Q)-formula, that is, an Q-formula P with Free(P) =
@, and let FoSen((l) denote the set of all (}-sentences; it is the union of the sets FoSenx (1) of
closed (€1, X)-formulae. For convenience, we can now define the remaining logical connectives,
false, v, =>, ¢, and (3z) in terms of the basic ones given above in the usual way. O

38



These definitions of TERM x (1) and WFF x(f1) follow the “initial algebra semantics” ad-
vocated by [30] and [46] in that they rely only on the freeness of the algebras involved. We
exploit this to define the effect of FoSen on first order signature morphisms, so that it becomes
a functor FoSigSet. Given ¢: 2 — ', we will define FoSenx(¢): FoSenx(Q2) — FoSenx (')
using initiality. Since (¢1,¢2): & — X' is a signature morphism, there is an induced morphism
¢: Tx(X) — Tx(X'), where X' = X; ¢, which then gives us ¢: TERM x(Q) — TERM x:(9').
Now define WFF x(¢): WFFx(Q1) —» WFFx:(£') by its effect on the generators of WFFx(12),
which are the atomic formulae, by

WEF x(9)(x(t1,...,tn)) = ¢3(x)(¢(t1),. .., ¢¥(tn)).

Finally, define FoSenx(¢) to be the restriction of WFF x(¢) to FoSenx(Q) C WFF x((1). For
this to work, it must be checked that WFF x(¢) carries closed {I-formulae to closed {¥'-formulae;
but this is easy. FoSen(#) is then defined to be the union of the functions FoSenx(¢) on the
union of the sets FoSenx(2). ’

It remains to define satisfaction. This corresponds to the usual “semantic definition of truth”
(originally due to Tarski [90]). If A is a first order model, let Asgnx(A) denote the set of all
assignments of values in A to variables in X, i.e, [X — A], the set of all S-indexed functions
f: X— A

Definition 62 Given a sentence P, define Asgnx(A, P), the set of assignments in A for which
P is true, inductively as follows: '

1. if P = n(tl,...,tn) then f € Asgnx(A4,P) iff (f#(t1),...,f#(tn)) € B(x), where f#(t)
_denotes the evaluation of the 3-term ¢ in the Z-algebra part of A with the values of variables
given by the assignment f using initiality:

2. Asgnx(A,true) = Asgnx(A).

3. Asgnx(A,—~P) = Asgnx(A) — Asgnx(A,P).

4. Asgnx(A,P&Q) = Asgnx(A,P) N Asgnx(4,Q).
5

. Asgnx(A,(Vz)P) = {f | Asgnx (4, f,z) C Asgnx(A, P)}, where Asgnx (A, f,z) is the set
of all assignments f' that agree with f except possibly on the variable z from X.

Then a model A satisfies a sentence P with variables from X, written A |= P, iff Asgnx(A,P) =
Asgnx(A). O )

Finally, we must verify the satisfaction condition. This follows from an argument much like
that used for the equational case, and is omitted here; the result can also be obtained using the
method of “charters” [39]. Thus, summarizing the above, we have

Example 63 (Many-Sorted) First Order Logic is an institution; let us denote it 70 L. O

Example 64 (Many-Sorted) First Order Logic with Equality. This institution is closely related
to that of Example 63. A signature for first order logic with equality is a first order signature
Q0 = (S,%,II) that has a particular predicate symbol =, in I1,, for each s € S. A morphism
of signatures for first order logic with equality is a morphism of signatures for first order logic
that preserves these predicate symbols, i.e., that satisfies ¢3(=,) ==y4,(s)- This gives a category
FoSigEq of signatures for first order logic with equality.

If 1 is a signature for first order logic with equality, then a model for it is just an {2-model A
in the usual first order sense satisfying the additional condition that

a=,a ifa=d

39



for all s € S and for all a,d’ € A,.

A homomorphism of first order {}-models with equality is just a first order {I-homomorphism
(in the sense of Definition 60), and we get a category FoModEq((2) of {1-models for each signature
Q2 in |FoSigEq|, and FoModEq is a functor on FoSigEq. (l-sentences are defined just as in
Example 63, and so is satisfaction. We thus get a functor FoSenEq: FoSigEq — Set. The
Satisfaction Condition follows immediately from that of first order logic without equality. Let us
denote this institution by 70£Q. O

It is interesting to note that many liberal institutions that are familiar from logic have served
as bases for programming languages, including those mentioned below.

Example 65 (Many-Sorted) Horn Clause Logic with Equality. We may specialize the previous
example by limiting the form that sentences can take, but without restricting either the predicate
or operator symbols that can enter into them. In particular, we maintain the equality symbol
with its fixed interpretation from Example 64; but we require that all sentences be of the form

(VX) AL &Ar&... A= A,

where each A; is an atomic formula #(tl,...,t,,). In particular, disjunction, negation and exis-
tential quantifiers are excluded. That this is an institution follows from the facts that first order
logic with equality is an institution, and that the class of Horn clauses is closed under translation
by signature morphisms. Let us denote this institution ¥CLE Q; it is the basis!® for the logical
programming language Eqlog [42]. O

Example 66 (Many-Sorted) Conditional Equational Logic. As a specialization of Example 65,
let equality be the only predicate symbol. This gives the institution often called conditional
equational logic. It is the basis!® of the logical programming language OBJ [27, 47]. O

Example 67 (Many-Sorted) Horn Clause Logic without Equality. We can also restrict Exam-
ple 65 by dropping equality with its fixed interpretation. This too is obviously an institution
because it is just a restriction of ordinary first order logic; it is the basis for the logical program-
ming language (pure) Prolog [62]. ([28] discusses a more general logical system and contains
results that show that it is liberal.) Let us denote this institution ¥CL. O

It seems clear that many-sorted temporal or modal logic can be treated in much the same
way, by adding the appropriate modal operators to the signature and defining their correct
interpretation in all models, which will be “Kripke” or “alternative world” structures. Higher
order equational logic is also presumably an institution; the development should again follow
that of equational logic, using higher order sorts and operator symbols!®. “Inequational logic”
[11], order-sorted equational logic [44], and various kinds of infinitary equational logic, such as
continuous algebras [46, 93], are also institutions [87]. We further conjecture that in general,
mechanical theorem provers, such as the Boyer-Moore prover [12], Aubin’s system [3] and STP
[83], are based on logical systems that are institutions (or if they are not, they should be modified
so that they are!). Clearly, it would be helpful to have some general results to help establish that
various logical systems are institutions. This motivates the study of “charters” and “parchments”
in [39].

A way to generate many other examples [64] is to let the sentences over a signature (2 be
all the specifications using {1 written in some specification language (such as Clear); we could
think of such a specification as a convenient abbreviation for a (possibly very large) conjunction

18 More precisely, the order-sorted variant of this logic is the basis.
1°The sorts involved will be the objects of the free Cartesian closed category on the basic sort set [71, 80].

40



of simpler sentences. However, this seems inappropriate under the view that the purpose of a
specification language is to assist with programming-in-the-large, by providing facilities for build-
ing new specifications by reusing old specifications as a whole, e.g., by applying a parameterized
specification, as opposed to local operations on sentences, such as conjunction.

References

[1] Jean-Raymond Abrial, S.A. Schuman, and Bertrand Meyer. Specification Language Z. Mas-
sachusetts Computer Associates, 1979. :

[2] Michael A. Arbib and Ernest Manes. Arrows, Structures and Functors. Academic Press,
1975. )

[3] R. Aubin. Mechanizing Structural Induction. PhD thesis, University of Edinburgh, 1976.

[4] Arnon Avron, Furio Honsell, and Ian Mason. Using types lambda calculus to implement
formal systems on a computer. Technical Report ECS-LFCS-87-31, Laboratory for Computer
Science, University of Edinburgh, 1987.

[5] John Barwise and Solomon Feferman. Model-Theoretic Logics. Springer-Verlag, 1985.

[6] Jon Barwise. Axioms for abstract model theory. Annals of Mathematical Logic, 7:221-265,
1974. '

[7] Christoph Beierle and Angelika Voss. Implementation specifications. In Hans-Jorg Kreowski,
editor, Recent Trends in Data Type Specification, volume Informatik-Fachberichte 116, pages
39-52. Springer-Verlag, 1985. Selected papers from the Third Workshop on Theory and
Applications of Abstract Data Types.

[8] Jean Benabou. Structures algébriques dans les catégories. Cahiers de Topologie et Géometrie
Différentiel, 10:1-126, 1968.

[9] Garrett Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge
Phalosophical Society, 31:433-454, 1935.

[10] Garrett Birkhoff and J. Lipson. Heterogeneous algebras. Journal of Combinatorial Theory,
8:115-133, 1970.

[11] Steven Bloom. Varieties of ordered algebras. Journal of Computer and System Sciences,
13:200-212, 1976.

[12] Robert Boyer and J Moore. A Computational Logic. Academic Press, 1980.

[13] Rod Burstall and Joseph Goguen. Putting theories together to make specifications. In Raj
Reddy, editor, Proceedings, Fifth International Joint Conference on Artificial Intelligence,
pages 1045-1058. Department of Computer Science, Carnegie-Mellon University, 1977.

[14] Rod Burstall and Joseph Goguen. Semantics of Clear. Unpublished notes handed out at the
Symposium on Algebra and Applications, Stefan Banach Center, Warszawa, Poland, 1978.

[15] Rod Burstall and Joseph Goguen. The semantics of Clear, a specification language. In
Dines Bjorner, editor, Proceedings, 1979 Copenhagen Winter School on Abstract Software
Specification, pages 292-332. Springer-Verlag, 1980. Lecture Notes in Computer Science,
Volume 86.

41



i

(16]

(17]

18]

[19]
[20]

[21]

(22]

(23]

(26]

[27]

(28]

[29]

Rod Burstall and Joseph Goguen. An informal introduction to specifications using Clear. In
Robert Boyer and J Moore, editors, The Correctness Problem in Computer Science, pages
185-213. Academic Press, 1981. Reprinted in Software Specification Techniques, Narain
Gehani and Andrew McGettrick, editors, Addison-Wesley, 1985, pages 363-390.

Rod Burstall and Joseph Goguen. Algebras, theories and freeness: An introduction for com-
puter scientists. In Manfred Wirsing and Gunther Schmidt, editors, Theoretical Foundations
of Programming Methodology, pages 329-350. Reidel, 1982. Proceedings, 1981 Marktoberdorf
NATO Summer School, NATO Advanced Study Institute Series, Volume C91.

Keith Clark. Negation as failure. In Logic and Data Bases, pages 293-322. Plenum Press, ‘
1978.

Paul M. Cohn. Universal Algebra. Harper and Row, 1965. Revised edition 1980.

Hans-Dieter Ehrich. On the theory of specification, implementation and parameterization
of abstract data types. Journal of the Association for Computing Machinery, 29:206-227,
1982.

Hartmut Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus,
Hartmut Ehrig, and Gregor Rozenberg, editors, Graph Gramars and their Application to
Computer Science and Biology, pages 1-69. Springer-Verlag, 1979. Lecture Notes in Com-
puter Science, Volume 73.

Hartmut Ehrig, Werner Fey, and Horst Hansen. ACT ONE: An algebraic specification
language with two levels of semantics. Technical Report 83-03, Technical University of
Berlin, Fachbereich Informatik, 1983.

Hartmut Ehrig, Eric Wagner, and James Thatcher. Algebraic specifications with generating
constraints. In J. Diaz, editor, Proceedings, 10th Colloguium on Automata, Languages and
Programming, pages 188-202. Springer-Verlag, 1983. Lecture Notes in Computer Science,
Volume 154.

Werner Fey. Pragmatics, concepts, syntax, semantics and correctness notions of ACT TWO:
An algebraic module specification and interconnection language. Technical Report 88-26,
Technical University of Berlin, Fachbereich Informatik, 1988.

José Fiadeiro and Amilcar Sernadas. Structuring theories on consequence. In Donald San-
nella and Andrzej Tarlecki, editors, Recent Trends in Data Type Specification, pages 44-T2.
Springer-Verlag, 1988. Selected papers from the Fifth Workshop on Specification of Abstract
Data Types, Gullane, Scotland.

José Fiadeiro, Amilcar Sernadas, and Christina Sernadas. Knowledgebases as structured
theories. In K.V. Nori, editor, Foundations of Software Technology and Theoretical Computer
Science, pages 469-486. Springer-Verlag, 1987. Lecture Notes in Computer Science, Volume
287.

Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and José Meseguer. Principles
of OBJ2. In Brian Reid, editor, Proceedings, 12th ACM Symposium on Principles of Pro-
gramming Languages, pages 52-66. Association for Computing Machinery, 1985.

P. Gabriel and F. Ulmer. Lokal Prisentierbare Kategorien. Springer-Verlag, 1971. Lecture
Notes in Mathematics, Volume 221.

Joseph Goguen. Categorical foundations for general systems theory. In Advances in Cyber-
netics and Systems Research, pages 121-130. Transcripta Books, 1973.

42



/30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Joseph Goguen. Semantics of computation. In Ernest G. Manes, editor, Proceedings, First
International Symposium on Calegory Theory Applied to Computation and Control, pages
234-249. University of Massachusetts at Amherst, 1974. Also, Lecture Notes in Computer
Science, Volume 25, Springer-Verlag, 1975, pages 151-163.

Joseph Goguen. Parameterized programming. Transactions on Software Engineering, SE-
10(5):528-543, September 1984.

Joseph Goguen. Suggestions for using and organizing libraries in software development.
In Proceedings, First International Conference on Supercomputing Systems, pages 349-360.
IEEE Computer Society Press, 1985. Also published in Supercomputing Systems, Steven and
Svetlana Kartashev, Eds., Elsevier, 1986.

Joseph Goguen. A categorical manifesto.  Technical Report PRG-72, Programming Re-
search Group, University of Oxford, March 1989. Submitted to International Journal of
Foundations of Computer Science.

Joseph Goguen. OBJ as a theorem prover, with application to hardware verification. In V.P.
Subramanyan and Graham Birtwhistle, editors, Current Trends tn Hardware Verification and
Automated Theorem Proving, pages 218-267. Springer-Verlag, 1989. Also, Technical Report
SRI-CSL-88-4R2, SRI International, Computer Science Lab, August 1988.

Joseph Goguen and Rod Burstall. Some fundamental properties of algebraic theories: a
tool for semantics of computation. Technical report, Deptartment of Artificial Intelligence,
University of Edinburgh, 1978. DAI Research Report Number 5; expended version appears
in Theoretical Computer Science, 81, pp. 175-209, 1984.

Joseph Goguen and Rod Burstall. Introducing institutions. In Proceedings, Logics of Pro-
gramming Workshop, pages 221-256. Springer-Verlag, 1984. Lecture Notes in Computer
Science, Volume 164.

Joseph Goguen and Rod Burstall. Some fundamental algebraic tools for the semantics of
computation, part 2: Signed and abstract theories. Theoretical Computer Science, 31(3):263—
295, 1984.

Joseph Goguen and Rod Burstall. Some fundamental algebraic tools for the semantics
of computation, part 1: comma categories, colimits, signatures and theories. Theoretical
Computer Science, 31(2):175-209, 1984.

Joseph Goguen and Rod Burstall. A study in the foundations of programming methodology:
Specifications, institutions, charters and parchments. In Proceedings, Conference on Category
Theory and Computer Programming, pages 313-333. Springer-Verlag, 1986. Lecture Notes
in Computer Science, Volume 240; also, Report Number CSLI-86-54, Center for the Study
of Language and Information, Stanford University, June 1986.

Joseph Goguen and José Meseguer. Universal realization, persistent interconnection and
implementation of abstract modules. In M. Nielsen and E.M. Schmidt, editors, Proceedings,
9th International Conference on Automata, Languages and Programming, pages 265-281.
Springer-Verlag, 1982. Lecture Notes in Computer Science, Volume 140.

Joseph Goguen and José Meseguer. Completeness of many-sorted equational logic. Hous-
ton Journal of Mathematics, 11(3):307-334, 1985. Preliminary versions have appeared in:
SIGPLAN Notices, July 1981, Volume 16, Number 7, pages 24-37; SRI Computer Science
Lab Technical Report CSL-135, May 1982; and Report CSLI-84-15, Center for the Study of
Language and Information, Stanford University, September 1984.

43



[42] Joseph Goguen and José Meseguer. Eqlog: Equality, types, and generic modules for logic
programming. In Douglas DeGroot and Gary Lindstrom, editors, Logic Programming: Func-
tions, Relations and Equations, pages 295-363. Prentice-Hall, 1986. An earlier version ap-
pears in Journal of Logic Programming, Volume 1, Number 2, pages 179-210, September
1984.

[43] Joseph Goguen and José Meseguer. Unifying functional, object-oriented and relational pro-
gramming, with logical semantics. In Bruce Shriver and Peter Wegner, editors, Research
Directions in Object-Oriented Programming, pages 417-477. MIT Press, 1987. Preliminary
version in SIGPLAN Notices, Volume 21, Number 10, pages 153-162, October 1986.

[44] Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction for multiple
inheritance, polymorphism, overloading and partial operations. Technical Report to appear,
SRI International, Computer Science Lab, 1989. Given as lecture at Seminar on Types,
Carnegie-Mellon University, June 1983. ’

[45] Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to the
specification, correctness and implementation of abstract data types. Technical Report RC
6487, IBM T.J. Watson Research Center, October 1976. Appears in Current Trends in
Programming Methodology, IV, Raymond Yeh, editor, Prentice-Hall, 1978, pages 80-149.

[46] Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra semantics
and continuous algebras. Journal of the Association for Computing Machinery, 24(1):68-95,
January 1977.

[47] Joseph Goguen and Timothy Winkler. Introducing OBJ3. Technical Report SRI-CSL-88-9,
SRI International, Computer Science Lab, August 1988.

[48] Robert Goldblatt. Topoi, the Categorial Analysis of Logic. North-Holland, 1979.

[49] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. In Pro-
ceedings, Second Symposium on Logic in Computer Science, pages 194-204. IEEE Computer
Society Press, 1987.

[50] Robert Harper, David MacQueen, and Robin Milner. Standard ML. Technical Report
ECS-LFCS-86-2, Department of Computer Science, University of Edinburgh, 1986.

[51] Robert Harper, Donald Sannella, and Andrzej Tarlecki. Structure and representation in
LF. Technical Report ECS-LFCS-89-75, Laboratory for Computer Science, University of
Edinburgh, 1987.

[52] Ian Hayes. Specification Case Studies. Prentice-Hall, 1987.
[53] Horst Herrlich and George Strecker. Category Theory. Allyn and Bacon, 1973.

[54] P.J. Higgins. Algebras with a scheme of operators. Mathematische Nachrichten, 27:115-132,
1963.

[55] C.A.R. Hoare. Proof of correctness of data representation. Acta Informatica, 1:271-281,
1972.

[56] H. Kaphengst and Horst Reichel. Algebraische algorithemtheorie. Technical Report WIB 1,
VEB Robotron, Zentrum fur Forschung und Technik, Dresden, 1971. In German.

[57] Joachim Lambek and Peter Scott. Introduction to Higher Order Categorical Logic. Cambridge
University Press, 1986. Cambridge Studies in Advanced Mathematics, Volume 7.

44



[58] Saunders Mac Lane. Calegories for the Working Mathematician. Springer-Verlag, 1971.
[59] Saunders Mac Lane and Garrett Birkhoff. Algebra. Macmillan, 1967.

[60] F. William Lawvere. Functorial semantics of algebraic theories. Proceedings, National
Academy of Sciences, U.S.A., 50:869-872, 1963. Summary of Ph.D. Thesis, Columbia Uni-
versity.

[61] F. William Lawvere. An elementary theory of the category of sets. Proceedings, National
Academy of Sciences, U.S.A., 52:1506-1511, 1964.

[62] John Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[63] Michael Lowry. Institutionalizing problem reformulation. In Paul Benjamin, Indur Mand-

hyan, and Ernest Manes, editors, Proceedings, Workshop on Category Theory in Al and

Robotics, pages 159-194. Philips Laboratories, 1989.

[64] Bernd Mahr and Johann Makowsky. An axiomatic approach to semantics of specification
languages. In Proceedings, 6th GI Conference on Theoretical Computer Science. Springer-
Verlag, 1983. Lecture Notes in Computer Science, Volume 145.

[65] Bernd Mahr and Johann Makowsky. Characterizing specification languages which admit
initial semantics. Theoretical Computer Science, 31:49-60, 1984.

[66] Brian Mayoh. Galleries and institutions. Technical Report DAIMI PB-191, Aarhus Univer-
sity, 1985.

[67] John McCarthy. Circumscription - a form of non-monotonic reasoning. Artificial Intelligence,
13(1,2):27-39, 1980.

[68] José Meseguer. General logics. In H.-D. Ebbinghaus et al., editor, Proceedings, Logic Collo-
quium, 1987. North-Holland, 1989.

[69] José Meseguer and Joseph Goguen. Initiality, induction and computability. In Maurice Nivat
and John Reynolds, editors, Algebraic Methods tn Semantics, pages 459-541. Cambridge
University Press, 1985.

[70] Peter Mosses. Unified algebras and institutions. Technical Report DAIMI PB-274, Computer
Science Department, Aarhus University, 1989.

{71} Kamran Parsaye-Ghomi. Higher Order Data Types. PhD thesis, UCLA, Computer Science
Department, January 1982. :

[72] Axel Poigné. Foundations are rich institutions, but institutions are poor foundations, 1988.

[73] Horst Reichel. Initially restricting algebraic theories. In Piotr Dembinski, editor, Mathemat-
tcal Foundations of Computer Science, pages 504-514. Springer-Verlag, 1980. Lecture Notes
in Computer Science, Volume 88.

[74] Raymond Reiter. On closed world data bases. In Logic and Data Bases, pages 55-76. Plenum
Press, 1978.

[75] Donald Sannella and Andrzej Tarlecki. Extended ML: an institution independent framework
for formal program development. In Proceedings, Summer Workshop on Category Theory and
Computer Programming, pages 364-389. Springer-Verlag, 1986. Lecture Notes in Computer
Science, Volume 240.

45

1



[76]

[77]

(78]

[79]

[80]

[87]

[88]

Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic spec-
ification. Journal of Computer and System Science, 34:150-178, 1987. Earlier version in
Proceedings, Colloquium on Trees in Algebra and Programming, Lecture Notes in Computer
Science, Volume 185, Springer-Verlag, 1985.

Donald Sannella and Andrzej Tarlecki. Building specifications in an arbitrary institution.
Information and Control, 76:165-210, 1988. Earlier version in Proceedings, International
Symposium on the Semantics of Data Types, Lecture Notes in Computer Science, Volume
173, Springer-Verlag, 1985.

Donald Sannella and Martin Wirsing. Implementations of parameterized specifications. In
M. Nielsen and E.M. Schmidt, editors, Proceedings, Ninth Colloguium on Automata, Lan-
guages and Programming, pages 473-488. Springer-Verlag, 1982. Lecture Notes in Computer
Science, Volume 140. '

Dana Scott. Completeness and axiomatizability in many-valued logic. In Leon Henkin et
al., editor, Proceedings, Tarski Symposium, pages 411-435. American Mathematical Society,
1974.

Dana Scott. Relating theories of the lambda calculus. In To H.B. Curry: Essays on Com-
binatory Logic, Lambda Calculus and Formalism, pages 404-450. Academic Press, 1980.

Amilcar Sernadas and Christina Sernadas. Conceptual modelling for knowledge-based DSS
development. In C. Holsapple and A. Whinston, editors, Decision Support Systems: Theory
and Application, pages 91~135. Springer-Verlag, 1987.

John C.C. Shepardson. Negation as failure. Journal of Logic Programming, 1(1):51-79, 1984.

Rob Shostak, Richard Schwartz, and P. Michael Melliar-Smith. STP: A mechanized logic for
specification and verification. Technical report, Computer Science Lab, SRI International,
1981.

J. Michael Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1989.

Andrzej Tarlecki. Bits and pieces of the theory of institutions. In Proceedings, Summer
Workshop on Category Theory and Computer Programming, pages 334-360. Springer-Verlag,
1986. Lecture Notes in Computer Science, Volume 240.

Andrzej Tarlecki. On the existence of free models in abstract algebraic institutions. Theoret-
ical Computer Science, pages 269304, 1986. Preliminary version, University of Edinburgh,
Computer Science Department Technical Report CSR-165-84, 1984.. - -

Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutions. Journal of Computer and
System Sciences, 33(3):333-360, 1986. Original version, University of Edinburgh Technical
Report CSR-173-84.

Andrzej Tarlecki, Rod Burstall, and Joseph Goguen. Some fundamental algebraic tools
for the semantics of computation, part 3: Indexed categories. Technical Report PRG-77,
Programming Research Group, University of Oxford, August 1989. Submitted to Theoretical
Computer Science.

Alfred Tarski. Fundamentale begriffe der methodologie der deduktiven wissenschaften, 1930.

Alfred Tarski. The semantic conception of truth. Philos. Phenomenological Research, 4:13—
47, 1944.

46



[91] James Thatcher, Eric Wagner, and Jesse Wright. Data type specification: Paramerization
and the power of specification techniques. In Proceedings, Sizth Symposium on Principles
of Programming Languages. Association for Computing Machinery, 1979. Also published in
TOPLAS 4, pages T11-732, 1982.

[92] Martin Wirsing, Peter Pepper, W. Partsch, N. Dosch, and Manfred Broy. On hierarchies of
abstract data types. Acta Informatics, 20:1-33, 1983.

[93] Jesse Wright, James Thatcher, Eric Wagner, and Joseph Goguen. Rational algebraic the-
ories and fixed-point solutions. In Proceedings, Seventeenth Symposium on Foundations of
Computing, pages 147-158. IEEE Press, 1976.

47



Contents

1

Introduction

1.1 Methodology and Logical Systems . . . ... .. ... ... ...,

1.2 Related Work and Applications . . . . .. .. ... ... ... ... ..

1.3 Prerequisites .. . .. .. . ... e e

14 Acknowledgements . . . . . . .. . .. . ... e e

Institutions

2.1 Definition and Examples . . . . .. ... ... ... ... o oo oL

2.2 Theories and Theory Morphisms . . . . . . . . . . ... . ...

2.3 The Closure and Presentation Lemmas . . . . ... ... .. ... ... .......

2.4 Putting Theories Together . . . . . . . . e e e e e e e e e e e e e e e e e e e e e

2.5 A More Categorical Formulation . . ... ... ... ... ... ... ...,
2.5.1 An Even More Categorical Formulation . . ... ...............

Constraints

3.1 Freelnterpretations . . . . . . . . . . . @ @ i i i i ittt ot e e e

3.2 Constraining Theories . . . . . . . . . . . . . . i e e

33 OtherKindsof Constraint . . . . . . ... ... ... ...,

Institution Morphisms — Using More than One Institution

4.1 Imstitution Morphisms . . . . . .. ... ... .. e e

42 DuplexInstitutions . . . . ... .. ... .. . e e e

4.3 Multiplex Institutions . . . . .. .. ... ... o i e

Summary and Future Research

Examples of Institutions '

Al General Algebra . . . . . .. . .. ... e e e
A.1.1 Equational Signatures . .. .. . .. ... .. .. i
A12 Algebras. . . . . . . . . . e e e e e
A.1.3 Equations and Satisfaction . ... ... ... ... ... ... 0000,

A.2 First Order Logic and Related Institutions . . . . .. ... ... .. .. .......

48

16
16
19
23

26
26
30
31

32



Copyright © 1990, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.



