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Abstract

Properties can be extended from categories of total maps to par-
tial maps in a uniform way, e.g. cartesian products are lifted to lax
cartesian products.

The partial maps of a category A (equipped with a dominion M)
are ordered by their extent of definition, thus forming an ordered cat-
egory Ptl(A4, M). The Ptl functor preserves adjunctions, including
those that define products, etc. It has a coreflection Tot that picks
out the total maps of an arbitrary ordered category, and a reflection
Dom which constructs a category of domains for its morphisms. Each
of these adjunctions yields a characterisation of categories of partial
maps, without assuming any further structures on the categories.
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operating grant OGPIN 016.



Contents

1

Introduction

1.1 Acknowledgements . . . . ... ... ... ... ... ..
Partial maps and ordered categories

2.1 Partial morphisms . . ... .. ... ... .. ... ...
2.2 Ordered categories . . . . . e e
2.3 Products in ordered categories . . .. ... ... ... ...

24 p-categories . . . ... ... oo

Total morphisms

3.1 Embedding-projection pairs and deflations . . . . . ... ..
3.2 Total morphisms . ... ... .. .. ... ..........
3.3 First characterisation theorem . . . . . . . .. ... ... ..

Lax adjunctions

4:1 Lax fuctors and transformations . ... .. ... ......
4.2 2-categories and lax adjunctions . . . .. . ... ...,
4.3 A coreflectionfor Ptl . . .. ... ... ... ........
Categories of domains

51 Domains . . . . . . . . . . o e e e e e e e e e e e e
5.2 Extensional categories . . . . ... ... ... ... . ...
5.3 Second characterisation theorem . . ... ... .......
5.4 Extension functors and transformations . .. ... ... ..
55 Areflectionfor Ptl. . . .. ... .. ... . ... .....

N =



1 " Introduction

~ The partial maps of a category A (equipped with a dominion M which spec-
ifies their domains) are naturally ordered by their extension: if thought of
as programs then p < ¢ iff whenever p terminates then ¢ does and takes the
same value. Thus, the order relates programs which meet the same speci-
fication, but where one is better than the other in terms of some property,
i.e. extent of definition. Hence the partial maps form an ordered cate-
gory Ptl(A, M) = A, . This ordering should be considered explicitly since
improving the components of a large program should not change its speci-
fication. This can be guaranteed by demanding that program constructors,
e.g. products, preserve the order.

Previous characterisations of categories of partial morphisms (surveyed
in [18]), whether or not they exploited the ordering, axiomatised the par-
tiality of the morphisms simultaneously with other structures, such as the
product structure in Rosolini’s p-categories [19] or Carboni’s bicategories
of partial maps [3], or the existence of a ‘terminal’ object [5]. These struc-
tures were used to define the domain of a morphism, either as a subobject
or as an endomorphism [6]. These approaches lead to long lists of ad hoc
equations mixing the various structures. Here, no additional structures are
assumed on A. Rather, if they exist and are compatible with the dominion
then they are extended to A, in a uniform way.

The structures on A, are generally lax, that is, some of the usual equa-
tions are replaced by inequalities, with the consequent weakening of univer-
sal properties. For example, A has all cartesian products iff the diagonal
functor A : A—A? has a right adjoint x : A*—A. They occur in many
computing contexts, e.g. to represent pairs of types or their values, or to
model parallelism (e.g. [15,24]). The product extends to a lax functor x,
which is lax right adjoint to the diagonal of A, and hence a lax product
functor. Its universal property is weaker than than that of the usual carte-
sian product, which may not exist or may fail to preserve the order. Lax
natural transformations have appeared, at least implicitly, in abstraction
techniques, both for strictness analysis [2] and data refinement [8,16], in
predicate transformation [9], and in modelling lambda-calculus [21].

In order to extend structures and properties from total morphisms to
partial morphisms uniformly it is necessary to study the properties of Ptl
as a construction. It is a 2-functor (acts on categories, functors and natural
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transformations) and so preserves many structures of A, in particular, those
defined by adjunctions between dominion-preserving functors.

Ptl has a coreflection (right adjoint) Tot which maps an arbitrary or-
dered category O to its subcategory of total morphisms, with a dominion
given by the stable embeddings (of embedding-projection pairs). Thus, we
have:

Tot(Ptl( A, M)) = (A M)
Ptl(Tot(0)) = O

Hence O is a category of partial maps iff € is an isomorphism, which yields
a characterisation of categories of partial maps.

Rosolini showed how every p-category C arises as a full sub-category of
a category of partial maps, by constructing a category of domains for C.
Here, an arbitrary ordered category O is given a category Dom(O) = O,
of domains, again without reference to any product structure, etc. If the
ordering on O is extensional, then there is an embedding p : O—0,, and
Dom is a reflection for Ptl. This restriction on O can probably be removed
by considering partial maps for categories which are already ordered, e.g.
those of domain theory. In any event, the reflection yields a second char-
acterisation of categories of partial maps.

Many of the examples are framed in terms of the category Pos of par-
tially ordered sets for generality, though the same results hold in various
categories of domains, or O-categories [20,23]. Although an elementary fa-
miliarity with 2-categories [8,10,13,21] is useful, it is not essential to appre-
ciate the argument, as the ordered categories are discussed in detail, while
all other 2-categories considered are of categories, functors and transforma-
tions.

1.1 Acknowledgements
I would like to thank E. Moggi for many helpful conversations.



2 Partial maps and ordered categories

2.1 Partial morphisms

A partial function from a set A to a set B is given by a subset A4y of 4
and a (total) function Ap—B. In general, we do not wish to allow Ag to be
arbitrary, but rather belong to some suitable class of subsets of A which are,
say, computable. Thus, to define partial maps or morphisms in a category
we must first describe their admissible subobjects.

Let A be an object in a category A. A monomorphism m : Ag—A can
be thought of as representing a subobject of A (its ‘image’). They can be
preordered by m < m/ : A;—A if there is a morphism p : Ay—A4; such that
m/p = m. It follows that p is unique since m’ is a monomorphism, and is
itself a monomorphism since m is (thus the ‘image’ of m is smaller than the
‘image’ of m;). The equivalence classes for this preorder are the subobjects
of A. The intersection of the subobjects represented by m and m' (if it
exists) is represented by the monomorphism m Nm’' = mm” : A;— A where
m" : Ay— Ay is the pullback of m’ along m.

Definition 2.1 Consider a family of monomorphisms M in a category A
which s closed under composition and isomorphisms. A monomorphism

m: Ap— A in M is stable if, for every f: B—A in A there is a pullback:

with n € M. If every monomorphism in M is stable then it is a dominion.

The set of all isomorphisms of A is always a dominion, as is the set of all
stable monomorphisms. Other examples arise from the open inclusions of
topological spaces, e.g. the Scott opens of domain theory, or the recursively



enumerable subsets of natural numbers. Fix a category A equipped with a
dominion M for the rest of the paper.
A partial morphism A—B of A w.r.t. M is represented by a span (m, f)

0
N\
A B
whose domain is the admissible subobject represented by m € M. An

inequality (m, f) < (m/,f') : A—B is realised by a morphism p which
makes the following diagram commute:

Then the domain of (m/, f') contains that of (m, f), on which they agree.
Given another partial morphism (n,g) : B—C then their composite is
represented by the span A—C obtained by pulling back:

N
/\/\

A; is the largest admissible subobject on which f is defined and takes
values in the domain of g. That composition is associative follows from the
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universal property of pullbacks. The identity on A is represented by the
span (id4,1d4). Thus, the partial morphisms form a category Ptl(.A, M)
which is denoted A, when M is understood.

Lemma 2.2 Composition in A, preserves the ordering of morphisms: if

(m, /)< (m',f): A—>B and (n,g) < (n',¢") : B—C then
(n,9)(m, f) < (v, '), f')

Proof Let p and p’ realise the two inequalities. Then the commutativity

of
induces the desired morphism A;—A; . //

2.2 Ordered categories

An ordered category O is a category whose homsets are ordered, with the
order preserved by composition, i.e. f < f':A-B and g £ ¢ : B—C

implies gf < ¢'f'.

Examples 2.3 (i) Categories of partial maps.

(ii) Every category A may be thought of as a discrete ordered category,
i.e. one whose homsets are discretely ordered (f < g iff f = g).



(iii) The category Pos of partially ordered sets and order-preserving mor-
phisms, and all its subcategories, e.g. Scott domains or O-categories.

(iv) A typed rewrite system [16] yields an ordered category whose objects
and morphisms are the types and terms with s >
Composition is given by substitution.

(v) The category Rel of sets and relations is an ordered category with
R< S:B—Aiff RC S as subsets of AXB. More generally, if £
is a regular category [1] then Rel(£) is an ordered category. When
relations are used to model non-determinism then R < S : B—A iff
every result of R is a result of S.

(vi) Relg has the same underlying category as Rel but with R < S : B—A
iff Rb # ¢ implies Rb = Sb. That is, Rely = A, where A is the
category of universally defined relations (Rb # ¢ for all b) and M is
the dominion of monomorphic functions.

(vii) An ordered monoid is a poset with an associative, binary, monotonic
-operation (multiplication) with a two-sided unit. Thus it is an ordered
category with one object whose morphisms are the elements of the
set, with composition given by multiplication.

Ordered categories may be thought of as 2-categories in which the hom-
categories are pre-orders, or as categories enriched over the category of
pre-orders [12,14]. Much of the terminology defined below derives from
these subjects. Fix an ordered category O for the rest of the paper.

2.3 Products in ordered categories

In ordered categories, the usual notion of the cartesian product is not ap-
propriate, as can be seen in the category Sets, of sets and partial functions.
The cartesian product (in the unordered category) of sets A and B is given
by: v
’ AR B=A+(AxB)+ B

where AX B is their product in Sets. Given partial functions f : C— A and
g : C—B the induced morphism C—AQ® B is given by



{JSE)) (c)) li %cﬁ ani ggcﬁ

_ ¢)g(c)) i j(c)l and g(c

(f19)p(c) = g(c) if f(¢)T and g(c)|
1 if f(c)T and g(c)T

where f(c)| (respectively, f(c)1) denotes that f(c) is defined (undefined).

Now, the definition of A®B is dependent on the presence of sums
(unions) and complements, which latter prevent ® from preserving the
order; from f < f': C—A and g < ¢’ : C—B as above it does not follow
that (f,g), < {(f',¢'),. For example, if f and ¢’ : C—B are total functions
and g is nowhere defined, then the image of (f, g), is in the A-component
of AQ B while that of (f,¢’), is in the Ax B-component, which makes them
incomparable. Thus, the pairing is not stable under an increase in the
domain of definition, i.e. ‘improving’ the components of a program could
change its specification! Consequently, ® is inadequate as a product for the
ordered category.

By contrast, the usual product from Sets does preserve the order with
(f,g9) : C—AxB defined by

(F,g)(e) = { %f(C),g(c)) if f(c)] and g(c)]

otherwise

The price to be paid is that the usual commuting diagram is replaced by

C
!
f <fl,g»
2y <N\
AxB
AA/R }; 5

since (f, g) is defined only when f and g both are:

©(f,9) < f
(f9) < g (1)

Thus, AX B is not a cartesian product in the usual sense, but has a universal
property expressed in terms of the ordering, i.e. (f,g) is maximal among
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the morphisms satisfying (1). In particular, the projections are not natural.
Rather, there is an inequality in the following square

T
AXB ———A

hxk < h

CXD——E,—>C

Definition 2.4 A lax product of objects A and B in an ordered category O
18 an object P equipped with a pair of projections m : P—A and ' : P—B
which satisfy the following universal property: given morphisms f : C—A
and g : C—B there is a morphism h = (f,g) : C—P which is mazimum
among those satisfying

wh
7'h

VAR VAN

f
! @

The maximality condition above ensures that (—, —) preserves the order,
ie if f < f and g < ¢ the (f,g) < {(f,¢).

Lemma 2.5 Products in A are laz products in A, .
Proof Let (m,f): C—A and (n,g) : C—B be partial morphisms and let
AXxB be a product in A. Define

(fyg) =(mnNn,h): C—AxB

where h is the total map into Ax B induced by the restrictions of f and ¢
to m Nn (which is in M by stability). //

Unfortunately, there may be non-isomorphic (even non-equivalent) prod-
ucts of a given pair of objects in an ordered category! For example, any
admissible subobject m : X - AxB (e.g. in Sets,) is also a product of 4
and B with projections given by #m and #'m. The pairing of f and g is
then the pullback of (f,g) along m.



The complexity of the situation is made even clearer in Rel. Asin Sets,
the cartesian product of Sets lifts to a lax cartesian product. However, the
sum of Sets does, too! Its first projection 74 5 : A + B—A is given by

_J oz ifzeA
™2)=11 #¥zeB

Given relations R: C—A4 and § : C—B then (R, S), (c) = Rc+ Sec. This
lax product also satisfies the usual universal property: its projections are
natural in the usual sense. How then, is one to choose between them?
I believe the correct approach is to keep both, since each has additional
properties which specify it uniquely: the sum satisfies the usual universal
property while the product (x) extends the usual product of Sets. This
latter condition will be generalised below. Other lax products may arise
with further special properties.

2.4 p-categories

p-categories [18,19] were motivated by the study of the partial maps of
a category A with cartesian products X, and can be characterised as the
full sub-categories of A, closed under this product. Roughly, all the usual
equations for products hold, except that the projections are only natural
in one variable each instead of two, e.g.

T T
AxB ——»A AxB ——— A
fx1 f 1xg 7 1

The domain of a morphism f : A—B in a p-category C is given by the
following idempotent endomorphism of A.

dom(f) =map(I1xf)As: A—A



dom(f) is to be thought of as defined only when f is, and then acting as
the identity. Domains can be used to order the homsets by

fLg: A-Biff gdom(f)=f

making C an ordered category. Then n(1xg) < = above and x yields lax
products.

However, not every ordered category with lax products is a p-category
since the diagonal and projections may fail to be natural in any variable.
For example, if M is an ordered monoid where the order has meets (A) then
they yield lax products for M as an ordered category (whose sole object is
*) with projections and diagonals given by the unit e of the monoid. The
laxness of the first projection is shown by:

—n
&

XK ———— X

oK e
-

€
(RN
<
[E—
[

so that M is a p-category iff e is its largest element.

More fundamentally, seeking a p-category structure may obscure the
partial map structure. The underlying category of Rel; is not a p-category
with respect to its lax product X since the diagonal fails to be natural;
if R: B—A is a relation then ARb C RbxRb is its diagonal. It is a p-
category with respect to its cartesian product + but then every morphism
has domain the identity! Thus, neither product yields a p-category where
the domain of a relation R : B—A is the set of elements of B on which its
image is non-empty, i.e. the order structure of Rely .

Thus, even when trying to characterise categories of partial maps with
products, it is better to retain the order structure and consider lax products.



3 Total morphisms

Every ordered category has a sub-category of total maps (defined in terms
of its deflations) which is equipped with a dominion of stable embeddings.
For A, this category with dominion is isomorphic to (A, M). The definition
has been modified since [11] was written, so that now it agrees with the
standard usage for p-categories.

3.1 Embedding-projection pairs and deflations

Let f : A—»B and f, : B—A be morphisms of an ordered category O.
Recall [13,20] that f - f. is an adjunction if

< 1p (4)

Then f, is a right adjoint to f which, if it exists, is unique. Similarly,
f is left adjoint to f.. If (3) is an equality then f is an embedding with
projection f,. Since (mn), = n,m. the embeddings form a subcategory OF
of monomorphisms.

Examples 3.1 (i) In a discretely ordered category the adjunctions are
exactly the isomorphisms.

(ii) In an ordered category of domains, the embedding-projection pairs
are defined as usual.

(iii) In Rel and Rely the adjunctions are all of the form (1, f) - (f,1)
and are embedding-projection pairs iff f is a monomorphism. This is
proved similarly to the next result.

Lemma 3.2 Ifn € M then (1,n) - (n,1) is an embedding-projection pair.
Conversely, every adjunction in A, is of this form.
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Proof If n € M then (n,1)(1,n) = (1,1) since n is a monomorphism iff
the following diagram is a pullback:

A———-l—-——>A
A - B
n

Also, (1,n)(n,1) = (n,n) < (1,1) is realised by n.
Conversely, if (m, f) 4 (n,g) : B—A then (1,1) < (n,9)(m, f)

Thus, mnyp = 1 implies mn; is both a split epimorphism and a monomor-
phism, and so an isomorphism. Thus m, n; and p are all isomorphisms
and, without loss of generality, identities. Consequently, the adjunction is
an embedding-projection pair. Further, ¢gf; = 1 shows that ¢ is a split
epimorphism. Now, (1, f)(n,g) = (n, fg) < (1,1) implies fg =n whence g
is also a monomorphism. Thus, ¢ is an isomorphism and, without loss of
generality, the identity. Consequently, f = n € M and the adjunction is

(1,n) 4 (n,1). //
A morphism a: A—A in O is a deflation on A if

a2=a§1A

12



« is to be thought of as implicitly specifying its image as a subobject of
A. Thus, if f: A—B is a morphism then fa is the restriction of f to this
‘image’.

Lemma 3.3 If m is an embedding in O then mm, 1s ¢ deflation. In A,
all deflations are of this form.

Proof That m.m = 1 implies mm.mm, = mm, < 1. If (m,f) <14 1in
A, is realised by p then f=p=m. //

3.2 Total morphisms
A morphism f : B—A in O is total if, for each morphism ¢ : C—B and
each deflation v : C—C we have

foy=fg=gy=g

Taking g = 1 as a special case we see that any restriction of f to a proper
subobject of B is strictly smaller than it.

Proposition 3.4 A morphism f : B—A in a p-category C (regarded as an
ordered category) is total iff dom(f) = 1p (i.e. total in the sense of [19]).
In particular, the totals in A, are the morphisms of the form (1, f).
Proof The domains of morphisms in a p-category are deflations. If f is
total then fdom(f) = flp implies dom(f) = 1. Conversely, if v and g are
as above, and fgy = fg then

dom(gv) = dom(fgv) = dom(fg) = dom(g)

which implies that gy = g. The proof for A, follows by direct calculation,
or by considering it as a p-category. //

Examples 3.5 (i) If O is discrete then the only deflations are the iden-
tities and every morphism is total.

(ii) In Pos an order-preserving map f : P—(Q is total iff

ey AN fr=fy = z=y

13



To see this, let 2 = {1 < T} with deflation a : 2—2 which is con-
stantly L. If f is total and fr = fy with z < y then define ¢ : 2— P
by g(1) =z and g(T) = y. Then fga = fg which implies that

z=ga(T)=9(T) =y

Conversely, assume that fgy = fg for some g : R—P and deflation
v : R—R. Given z € R then gv(z) < g(z) and have the same image
under f. Hence they are equal and so gy = g¢.

(iii) The deflations on a set A in Rel (or Relg) correspond to the subsets
of A. A relation R : B—A is total iff it is universally defined, i.e.
Rb # ¢ for all b € B.

Lemma 3.6 The total morphisms form a category Tot(O) = O, (with
embedding ¢ : O;—0O) which contains all monomorphisms and is closed
under pullbacks, whenever they exist. Further, if gf is total then f is, too.
Proof The hardest step is proved here: the others are left to the reader.
Consider the following diagram in which the square is a pullback and « is
a deflation.

9 i
C —= B —A
Q h'j p.b. lh
Y
B ——A
f

If f'gy = f'g then fh'gy = fh'g. Thus h'gy = h'g since f is total. Now gy
and ¢ are equated by both f' and #/, and so are equal. //

Lemma 3.7 If f and g are total and m and n are embeddings in O such
that fm, = gn. then n.m and m,n are inverse, i.e. each morphism of O
has at most one factorisation (up to isomorphism) as a projection followed

14



by a total morphism.

Proof The assumption implies
gn.mm, = fmymm, = fm, = gn,

Thus n.,mm, = n, since mm, is a deflation and g is total, and gn.m = f
since m, is an epimorphism. Hence the diagram commutes. Similarly,
replacing n.,m by m,n : A;— A, yields another commuting diagram. This
shows that n,m and m,n are inverse since m, and n, are epimorphisms.

//

3.3 First characterisation theorem

Since embeddings are monomorphisms they are all total. Thus, the sta-
ble embeddings in O; form a dominion. The stable projections are those
corresponding to stable embeddings.

Theorem 3.8 All embeddings in A, are stable in A,;. Thus,
Tot(Ptl(A, M)) = (4, M)

Also, an ordered category O is a category of partial maps iff it satisfies the
following three conditions: '

(1) (Unique factorisation) Every morphism has a unique factorisation as
a stable projection followed by a total morphism.

15



(i) (BC) If the left-hand square below is a pullback with n a stable em-
bedding and f total then the right-hand square actually commutes

g g
AO—>BO AO———>BO
ml p.b. jn : m*T < 1n*
A ———— B A ————B

(This is reminiscent of the Beck-Chevalley condition [1]).

(iit) Total morphisms are mazimal in their order.

Proof The first result follows directly. For the second, we begin by show-
ing that A, has these properties.

(1) (m, f) =(m,1)(1, f). Uniqueness follows by Lemma 3.7.

i1) In general gm, = n.ngm, = n.fmm, < n.f. However, in we
g g g )

further have (n,1)(1, f) = (m, g).
(iii) Trivial.

Conversely, assume that O satisfies these conditions. Define a functor ¢ :
O;,—0 to be the identity on objects with

e(m, f) = fm.

Then (BC) makes ¢ a functor, which is fully faithful by unique factorisation.
It remains to show that the ordering of the two categories are the same, i.e.
¢ preserves the order and is locally full. ‘

If (m,f) < (n,g) is realised by p : Ap—A; then fm, = gpp.n. < gn.
which shows that ¢ preserves the order. Conversely, if fm, < gn, then
f < gn.m which is forced to be an equality by maximality of the total
morphisms. Thus n,m is total by Lemma 3.6. Hence nn,m < m is an
equality of total morphisms which shows that (m, f) < (n,g9) in Oy, is
realised by n.,m.

16



Examples 3.9 (i) Rel has the unique factorisations and satisfies (BC)
since Rely is a category of partial maps. Maximality fails since one
totally-defined relation may be strictly smaller than another.

(ii) Pos fails to satisfy any of the three conditions. If f : P—(Q is order-
preserving then it factorises as f = hg where h : R—(Q is total and
g is the quotient of P in which, for each ¢ € @ the connected com-
ponents of f~(gq) are identified. This is a projection iff each con-
nected component has a least element. That (BC) fails can be seen

by examining the pullback of the two distinct strict monomorphisms
23 ={L<1<2}.

4 Lax adjunctions

Many computationally important structures on a category, e.g. products
and exponentials, are expressed in terms of functors, natural transforma-
tions and adjunctions. How can they be extended to categories of partial
maps?

4.1 Lax fuctors and transformations

Let (B,N') be a category with dominion and let F : (A, M)—(B,N) be a
functor which preserves dominions, i.e. maps morphisms in M to those in

N. Define Ptl(F) = F, : A,—B, to agree with F' on objects, and satisfy
Fy(m, f) = (Fm, Ff). Clearly F, preserves the local order, identities, em-
beddings, projections and total morphisms. However, consider F, applied
to a composite:

FA

v N\
FA

FBo

O .
FA FB FC

17



Since the diamond above commutes there is a morphism from F'A; to the
pullback of F'f and F'n which establishes that

Fp((n, 9)(m, £)) < Fp(n, 9)Fp(m, f) (6)

This is always an equality iff F' preserves all pullbacks of admissible sub-
objects, e.g. if F' is a right adjoint. Thus F, is not always a functor in the
usual sense. ,

Let O be an ordered category. A laz functor F : O—(' consists of

(i) an object assignment 0b(Q)—0b(Q') also called F' and
(ii) for each pair X,Y of objects of O an order-preserving function
Fyy : O(X,Y)—O'(FX, FY)
which satisfies
(ili) F(gf) < FgFf for f and g a composable pair of morphisms, and
(iv): F(idx) < tdpx for each object X of O.

If (iv) is an equality then F' is normal. If (iii) is also an equality then F is
a rigid functor. If (iii) and (iv) are reversed then F' is an oplax functor.
For example, a behaviour for a category L representing a typed pro-
gramming language is a lax functor £L—O where O is an ordered category
of properties [22].
A normal, lax functor F' : O— Q' is a total functor if it preserves total
morphisms, and whenever ¢gf is a composable pair of morphisms then

g total == F(gf)= FgFf

Tot(F) = F; : O;—('; is the functor obtained by restricting F to O;.
Such an F' is stable if it preserves stable embeddings, i.e. F; is dominion-
preserving. Clearly, if F': (A4, M)—(B,N) is dominion-preserving then F,
is stable and total. '

Lemma 4.1 Total functors preserve adjunctions in which the left adjoint
1s total, e.g. embeddings are mapped to adjunctions.

Proof Let F : O—(’ be a total functor and let f 4 f, : A—B be an
adjunction in O with f total. Then 1pp = Flg < F(f.f) < F(f.)Ff since
F is normal. Also FfF(f.) = F(ff«) £ F14 < 1py4 since f is total.  //
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Let a : F=G be a natural transformation. Define Ptl(a) = a, by
Ptl(a), = (1,a4) : FA—GA. The commutativity of

Ff
FA <l FA >FB
OLA 'aAO OLB
CA = A (B
Gm Gf

induces a morphism from F'Ag to the pullback of Gm and a4 so that
a.F(m, f) < G(m, f).a

It is always an equality iff for each m € M the left square above is a
pullback. For example, if A has cartesian products then this holds for the
diagonal 64 : A—AXA but not for the projections from the product x
(unless M is trivial).

Let F,G : O—(' be lax functors. A laz natural transformation o :
F=(@ consists of a family of morphisms ax : FX—GX of O which satisfy

Gfax <ayFf:FX—-GY

Dually, an oplaz natural transformation or optransformation 8 : F=G is
given by morphisms S4 : FA—GA called its components which satisfy

Ba
FA ——> GA
Ff < 6f

FB ——> GB

g ()

If these inequalities are equalities then 8 is a rigid natural transformation.
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An optransformation B : F=-G is a total transformation if its compo-
nents are all total, and f total implies (7) commutes. If F' and G are total
functors then Tot(8) = B; is then the (ordinary) natural transformation
obtained by restricting # to O;. Clearly, if @ is a natural transformation
between dominion-preserving functors then «, is a total transformation.
Other examples of optransformations are the simulations of [9] and the’
abstractions of [2].

4.2 2-categories and lax adjunctions

2-categories were introduced to isolate the composition rules for functors
and natural transformations. A 2-category B consists of some objects
(e.g. categories), each pair A, B of which is equipped with a hom-category
B(A, B) whose objects are the I-cells or morphisms of B (e.g. functors
A—B), and whose morphisms are the 2-cells of B (e.g. natural transfor-
mations). Horizontal and vertical compositions of 1- and 2-cells, and the
corresponding equations, are defined as for functors and natural transfor-
mations. For example, the (small) categories, functors and transformations
form a 2-category Cat which has a sub-2-category DomCat of categories
with dominions, dominion-preserving functors and all natural transforma-
tions.

Adjunctions can be defined within any 2-category. A 1-cell f: A—>B is
left adjoint to g : B—A in B with unit and counit given by 2-cells n : 1=¢gf
and ¢ : fg=>1 respectively, if the usual triangle laws hold:

l=¢sfn : f=fgf—f
l=gemn, : g—9f9—9g ®

Asin Cat, a right adjoint to f, if it exists, is unique. Thus, an adjunction in
DomCat is just an adjunction of the usual kind in Cat where the adjoints
are both dominion-preserving.

2-functors and 2-natural transformations are defined so as to preserve
all the structure. Consequently, 2-functors preserve adjunctions, and all
the structures defined in their terms. In this paper, the only 2-categories
explicitly considered consist of categories, functors and transformations, so
that a formal study is not necessary to follow the argument.

Despite all the expectations encouraged by an elementary introduction
to category theory, the ordered categories, lax functors and optransfor-
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mations do not form a 2-category! They fail only in that applying a lax
functor H : B—C to an optransformation 3 as above does not always yield
an optransformation since H(B.Ff) < H(Gf.f) < HGf.Hf but in general

HB.HFf > H(B.Ff) (9)

One of the consequences is that a general definition of an adjunction be-
tween lax functors, a laz adjunction, is not determined by any 2-category
structure. Various suggestions have been made (e.g. [7,9,10,21], but the
primary difficulty is that there can be non-isomorphic right adjoints to a
given lax functor, (see [10]) just as there may be non-isomorphic lax prod-
ucts. One solution is to so restrict the lax functors and optransformations
that they do form a 2-category and then use its notion of adjunction.

Theorem 4.2 The ordered categories, total functors and total transfor-
mations form a 2-category called TotOrdCat. It has a sub-2-category
TotOrdCat, consisting of the ordered categories with stable, total functors
and total transformations. Adjunctions in TotOrdCat are called total ad-
junctions.

Proof If H and f are a total functor and transformation, then (9) is an
equality and Hf is a total transformation. //

Another method of creating a 2-category containing lax functors and
transformations is being developed by Carboni et al. [4]. They consider
ordered categories equipped with a given sub-category of left adjoints, with
‘functors’ and ‘transformations’ that have special properties with respect to
these left adjoints. The general approach is similar to, without including,
that taken here, since total morphisms are not always left adjoints.

4.3 A coreflection for Ptl

Theorem 4.3 Ptl 4 Tot : TotOrdCat,—DomCat is an adjunction be-
tween 2-functors, with Tot a coreflection for Ptl.
Proof We have established that Ptl and Tot preserve the 2-categorical
data. The remaining details required to establish that Ptl and Tot are
2-functors are left to the reader.

The stable, total functors € : Oy,—O which form the counit of the ad-
junction are defined by e(m, f) = fm. as in Theorem 3.8. The inequality in
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(5) makes € a lax functor, which is faithful by the uniqueness of embedding-
total factorisations (if they exist) though not necessarily full. It preserves
the order since (m, f) < (n, g) implies fm, < gn, . That it is a stable, total
functor follows trivially.

Now ¢ is natural since if F': O—(’ is a stable, total functor then, for
(m, f) as above, F(fm.) = FfF(m,) = Ff(Fm), while if a : F=G is a
stable, total transformation then eay, = ac since they both have the same
components as a.

The unit of the adjunction is given by the natural isomorphisms between

(A,M),: and (A, M). Thus Tot is a coreflection. //

Corollary 4.4 Ptl extends adjunctions between dominion-preserving func-
tors to total adjunctions. //

Thus, structures defined in terms of adjunctions between dominion-
preserving functors extend automatically to total adjunctions between the
corresponding categories of partial maps, e.g. products, terminal objects
and initial objects are extended to the corresponding total (lax) structures.
For example, A has cartesian products iff the diagonal A : A—A® has
a right adjoint x. They are both dominion-preserving (A? has M? as
dominion). Thus X, is total right adjoint to A, which is the diagonal.
Thus A, has total (lax) products.

By contrast, sums extend to lax coproducts iff they preserve the domin-
ion, i.e. if m,n € M then m + n € M, which is the case, for example, in
Sets and Pos.

If Ais cartesian closed then each exponential B—(—) preserves monomor-
phisms since it is a right adjoint. If, further, it is dominion-preserving
then A, is total cartesian closed. This is the case with Sets where all
monomorphisms are in the dominion. Note that the exponential object is

the same in both Sets and Sets, and not the ‘object of partial morphisms’
(B—((=) 4 1)) which should be another form of lax adjoint.
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5 Categories of domains

5.1 Domains

To each ordered category O can be assigned a category in which each mor-
phism of O has a domain, i.e. the largest admissible subobject of its source
on which it is total. If O is extensionally ordered (see below) then it can
be embedded into the partial maps of this category.

If f: B—A and g : C—B are morphisms in O then f is total relative
to g or g-total if, for each morphism h : D—C and each deflation 6 : D—D
we have

fghé = fgh => ghé = gh

This is to be interpreted as saying that f is defined on the image of g though
this image may not be represented by any subobject of B. Clearly f is total
iff it is 14-total. More generally, if ¢ = {p; : B—B;} is a set of morphisms
of O then ¢ is g-total if each ¢; is. It will be shown in Proposition 5.6 that
(m, f) is g-total in A, iff ¢ factors through (1,m).

Lemma 5.1 Let f, g and h be as above. Then fg is h-total iff f 1s gh-total
and g 18 h-total.

Proof Let fg be h-total with k¥ : E—D a morphism and ¢ : E—E a
deflation. Then fghke = fghk iff hke = hk iff ghke = ghk whence f is
gh-total and ¢ is h-total. Conversely, if fghke = fghk then ghke = ghk
since f is gh-total, whence hke = hk since ¢ is h-total. //

Let A be an object of O. The finite sets of morphisms ¢ = {p; : A—A4;}
of O with source A can be pre-ordered by ¢’ < ¢ iff

¢’ is g-total = ¢ is g-total

The equivalence class of ¢ in the preorder is a domain in A denoted d(yp).
Here each d(¢;) is to be thought of as a subobject of A with d(¢) as their
intersection. The maximal element is d(14) (abbreviated to d(A4)) and
meets are given by unions of sets of morphisms.

Lemma 5.2 Let f: B—A be a morphism of an ordered category O.
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(i) If d(¢') < d(p) < d(A) are domains then d(¢'f) < d(eof) where
of ={p:if | v € ¢}
(i) If f is g-total then d(fg) = d(g).
Proof Use Lemma 5.1. //

To each ordered category is associated a category Domy(O) whose ob-
jects are its domains. If d(¢) < d(A) and d(yp < d(B) are domains then
f : B—A is a morphism d(¢)—d(p) if

d(4) < d(ef)

This can be interpreted (using Lemma 5.1) as saying that f is defined on the
image of g whenever 1 is g-total (i.e. is defined on d(%)) and the image of
fgisin d(yp). Composition and identities are those of O. If f : d(¢)—d(p)
and g : d(6)—d(y) then d(0) < d(v)g < d(¢fg) which shows that the
composition is well-defined.

Lemma 5.3 The morphisms of Domy(O) represented by identities of O
form a dominion.

Proof It suffices to show their closure under pullback. Let f : d()—d(y)
and 14 : d(¢')—d(y) (that is, d(¢') < d(¢)). Then their pullback is:

f
d(yug') —> d(9)

d(y) — d(9)

since if g : d(8)—d(v) and fg = h : d(0)—d(¢’) then g : d(0)—d(¢'f). //

Lemma 5.4 Domg(O) is an ordered category with f < f': d(v)—d(y) if
P 18 g-total tmplies fg < f'g in O.

Proof Clearly the order is reflexive and transitive. Let f < f' : d(¢)—d(¢)
and g < ¢’ : d(0)—d(v). If 0 is h-total then gh < ¢g’h. Also ¢ is gh-total
and so fgh < f'gh < f'g'h. //
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The (unordered) category Dom(O) = Oy of domains of O is the quo-
tient of Domy(O) obtained by identifying morphisms f, f : d(¢)—d(p)
which are equivalent in the preorder, i.e. ¥ is h-total implies fh = f'h.

5.2 Extensional categories

Not every ordered category O can be embedded into Oy, since the ordering
of partial morphisms is determined by their extent of definition, which is
not generally the case in . An ordered category O is eztensional if

f<f:BoA= f=f:4d(f)—A (10)

i.e. whenever f is g-total then fg = f'g (whence d(f) < d(f’)). Further, O
is strongly extensional if the converse of (10) also holds.
A domain d(p) < d(A) is represented by a subobject m : Ag— A if

d(y) is g-total iff g = mg’

for some morphism ¢'. Then m : d(Ag)—d(p) is a morphism in O which,
if m is an embedding, is an isomorphism with m, as its inverse. Further, if,
for each ¢; € ¢, d(¢p;) is represented by a stable embedding m; then d(y)
is represented by the joint pullback of the m; ’s.

Proposition 5.5 let O be an extensional category.

(i) If m: Ap—A is an embedding in O then d(m.) is represented by m.
(it) O satisfies (BC).
(131) Total morphisms in O are all mazimal in their orders.

Proof

(i) If ¢ = mg’ then m.g = ¢’ which shows that m, is g-total. Conversely,
if m, is g-total then mm,g < g and d(mm.g) = d(g) by Lemma 5.2
since mm, is g-total. Thus, by extensionality, g = mm,g.

(ii) I gn, < m,f asin (5) then it suffices to prove that d(gn.) = d(m.f).
Now m, f is h-total iff m, is fh-total (since f is total) iff fh = mk
for some k- (by (i)) iff » = nhk’ for some A’ (by the universal property
of the pullback) iff gn, is h-total.
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(iii) Let f < f': B—A where f is total. Then d(B) = d(f) < d(f') shows
that d(f) =d(f') and so f = f'. :

Proposition 5.6 Let (m,f): A—B be a morphism in A,. Then the do-
main d(m, f) is represented by (1,m) and hence all domains for A, are
representable by stable embeddings. Consequently, A, is strongly exten-
sional. :

Proof Let (n,g) : C—A be a partial morphism. Then (m, f)(n,g) =

(p, fh) where p =nm':
¢
v N
NN
C A B

Now (p, fh)(p,p) = (p, fh). Hence, if (m, f)is (n, g)-total then (n, g)(p,p) =
(n,g) which forces m’ = 1 and ¢ = mh. Thus (n,g) = (1,m)(n,h). The
converse is proved as in Lemma 5.5(1).

For extensionality, let (m, f) < (m/, f') : A— B be realised by p and let
(m, f) be g-total. Then g = (1,m)g’ = (1, m'p)g’ for some ¢’ and hence

(m', fg = (', f)1,m'p)g = (1, fp)d' = (1, f)g' = (m, f)g
Conversely, if (m, f) = (m/, f') : d(m, f)—B then
(m,a f,)(lam) = (m, f)(1,m) = (1, f)
shows that m = m/p and f = f'p for some p whence (m, f) < (m/, f). //
5.3 Second characterisation theorem
Theorem 5.7

Dom(Ptl(A, M)) ~ (A, M)
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Also, an ordered category O is (equivalent to) a category of partial maps iff
it 18 strongly extensional, and each object of O, is represented by a stable
embedding.

Proof First, the obvious inclusion functor (A, M)—(A, M),q is fully
faithful since all morphisms d(A)—d(B) are total. That it is essentially
surjective on objects and dominion-preserving (and hence an equivalence)
follows from Proposition 5.6, which also states half of the second result.

For its converse define p: O—0y, on f : B—A by:

which is abbreviated to (d(f), f). If g : C—B in O then

p(fp(g) = (d(g) Nd(fg), fg) = (d(f9), fg) = p(fg)

(since d(g) < d(fg)) which shows that p is a rigid functor. The strong
extensionality of O makes p order-preserving and locally full, and hence
faithful. The representability of all domains shows that p is essentially
surjective on objects, and that the dominion on @y is represented by stable
embeddings of O. Thus every partial map A—B in Oy, is of the form
(m, f) where m : Ag—A is an embedding in O and f is total. This, in
turn, can be represented by (d(fm.), fm.) since d( fm.) = d(m.) = d(4o)
follows from the totality of f and Lemma 5.5. Hence p is full, and so an
equivalence. //

5.4 Extension functors and transformations

For Dom to be applied to lax functors and optransformations they must
not only be total, but respect the domain structure.

A normal, lax functor F' : O— (O’ between extension categories is an
eztension functor if d(p) < d(¢) in Oy implies that d(F¢) < d(F) in Oy
(i.e. Fpis g-total implies F'3 is g-total for all g in O'). An optransformation
a : F'=G between extension functors is an eztension transformation if for

all d(¢) < d(A) we have ay : d(Fp)—d(Gy).

27



Proposition 5.8 The collection ExtOrdCat of extension categories, func-
tors and transformations form a sub-2-category of TotOrdCat.
Proof Let F : O—(O' be an extension functor. If f is g-total in O then

d(fg) = d(g) and so

d(Fg) dF(fg) F is an extension functor

d(FfFg) Fislax
dFyg '

INIA

Thus d(F fFg) = d(Fg) which shows that F' preserves relative totality, and
hence totality since F' is normal. Further dF'(fg) = d(F fFg) which forces
F(fg) = FfFg since (' is extensional. Hence F is a total functor.

Let o : F'=>G be an extension transformation. That ay : d(FA)—d(GA)
exists implies that a4 is total. If f is a total morphism of O then the rigid-
ity of a with respect to f follows from the extensionality of O'. Thus « is
total.

If, further, H : O'—Q©" is another extension functor then Ho : HF=HG
1s an extension transformation since H and a are both total, which implies
H(aF) = Ha.HF. Clearly the extension functors and transformations
are closed under all other compositions and so form a sub-2-category of

TotOrdCat. //

5.5 A reflection for Ptl

Theorem 5.9 Ptl : DomCat—ExtOrdCat is a 2-functor with left 2-
adjoint Dom where the counit is an equivalence, i.e. Dom is a reflection
for Ptl.
Proof Only steps of interest are given here. If . : F=G : (A, M)—(B,N)
is a natural transformation between dominion-preserving functors then
clearly F, and G, are extension functors. Now «, is extensional since every
domain in A4, is representable. Thus Ptl is a 2-functor into ExtOrdCat.
If F: O—(0' is an extensional functor then Dom(F) = F,; : 0;—0',
is defined by Fy(p) = d(Fy) (where Fo = {Fp, | p; € ¢}) and Fyf = Ff
for f : d(y)—d(p). It is well-defined since d(Fy) < dF(pf) < d(FoFf).
Also Fy preserves composition and identities since the inequalities which
make functors (and transformations) lax are mapped to equalities in O’y
by extensionality. Finally F'y preserves the dominion since F' is normal.
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If a : F=-G is an extension transformation then Dom(a) = a4 : Fy=G4
is defined by

ag(p) = ag 1 d(Fp)—d(Gyp)
The counit of the adjunction is the equivalence of Theorem 5.7. The

unit p : O=0y, for a extension category O is also defined there and must
now be shown to be an extension functor.

Let d(¢') < d(y) be domains. Then p(¢’) is (d(8), g)-total iff d(8) <

d(¢'g). Now d(¢'g) < d(pg) by Lemma 5.2. Hence d(p(¢’)) < d(p(v)).
The triangle laws for an adjunction hold and so Ptl 4 Dom. //

Corollary 5.10 Let ExtOrdCat, be the sub-2-category of ExtOrdCat of
extensional, ordered categories with stable, extension functors and exten-
ston transformations. Then Ptl: DomCat—ExtOrdCat, s a 2-functor
which has both a reflection Dom and a coreflection Tot. //
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