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Abstract

We present a series of proof systems for All-calculus: a theory of first-order dependent
function types. The systems are complete for the judgement of interest but differ substantially
as bases for algorithmic proof-search. Each calculus in the series induces a search space that
is properly contained within that of its predecessor. The All-calculus is a candidate general
logic in that it provides a metalanguage suitable for the encoding of logical systems and
mathematics. Proof procedures formulated for the metalanguage extend to suitably encoded
object logics, thus removing the need to develop procedures for each logic independently.
This work is also an exploration of a systematic approach to the design of proof procedures.
It is our contention that the task of designing a computationally efficient proof procedure for
a given logic can be approached by formulating a series of calculi that possess specific proof-
theoretic properties. These properties indicate that standard computational techniques such
as unification are applicable, sometimes in novel ways. The study below is an application of
this design method to an intuitionistic type theory. :

Our methods exploit certain forms of subformula property and reduction ordering — a
notion introduced by Bibel for classical logic, and extended by Wallen to various non-classical
logics — to obtain a search calculus for which we are able to define notions of compatibility
and intrinsic well-typing between a derivation ¢ and a substitution o calculated by unification
which closes 9 (a derivation is closed when all of its leaves are axioms). Compatibility is an
acyclicity test, a generalization of the occurs-check which, subject to intrinsic well-typing,
determines whether the derivation 9 and substitution o together constitute a proof.

Our work yields the (operational) foundations for a study of logic programming in this
general setting. This potential is not explored here.

1 Introduction

We present a series of proof systems for All-calculus: a theory of first-order dependent function
types [vDa80,MR86,HHP87]. The systems are complete for the judgement of interest but differ
substantially as bases for algorithmic proof-search. Each calculus in the series induces a search
space that is properly contained within that of its predecessor.

Our interest in proof-search in All-calculus stems from two sources. Firstly, the theory is a
candidate general logic in that it provides a metalanguage suitable for the encoding of logical
systems [AHM87] and mathematics [vDa80]. Proof procedures formulated for the metalanguage
extend to suitably encoded object logics, thus removing the need to develop procedures for each
logic independently.! The second reason for our interest arises out from a desire (expressed
in [Wal89]) for a systematic approach to the design of proof procedures. It is our contention
that the task of designing a computationally efficient proof procedure for a given logic can be
approached by formulating a series of calculi that possess specific proof-theoretic properties.
These properties are the indicators that standard computational techniques such as unification
are applicable, sometimes in novel ways. The study below is an application of this design method
to an intuitionistic type theory.

1This should be compared with the use of proof procedures for classical logic to effect proof-search within a
modal logic, say, by means of an encoding of the latter in the former; see [Ohl88] for example.



The first system of the series, called N, is a natural deduction formulation of MI-calculus.?
The main judgement of N is the typing assertion: I' - M:A, meaning that the term M has type
A, given the type assignments for free variables and constants recorded in I'. This relation is
decidable [HHP87]. A typical rule of N is the elimination rule for the dependent function type
constructor (II):3

'+ M:(llz:A.B) I'FN:A
' MN:B[N/z]
where B[N/z] denotes capture-avoiding substitution of N for free occurrences of z in B.

The second system, called L, is sound and complete (relative to IN) for the semi-decidable
relation of inhabitation: I' = A, with the meaning (3M)(T + M:A). The judgements of L assert
the existence of proofs of the judgements of N, as in the case of first-order logic [Pra65]. L is
the starting point for our investigation into proof-search. A typical rule of L is the II-left rule,
the counterpart of the II-elimination rule of IN:

I'z:B[N/z] = C
I'sC

ne

Il (a) w: (Ilz:A.B) €T
(b) z & Dom(T")

(c)T'F N:A.

L is almost a logicistic system, in the sense of Gentzen, meaning that there is only one localized
appeal to an external notion, that notion being an appeal to the system N in side condition (c)
of the rule above. Indeed, with respect to the Il-type structure of terms in the language, L has
a subformula property [Gen34]. As a consequence, if the inference rules are used as reduction
operators from conclusion to premisses then L induces a search space of derivations of a given
sequent.* Notice that if the II/ rule is used as a reduction, the choice of term N to use in the
premiss is unconstrained by the conclusion of the rule. The subformula property of the II-types
does not extend to a full subterm property (cf. the quantifier rules of the predicate calculus).
The aziom sequent (or closure condition for the reduction system) is:

I,zA "= A

i.e., the conclusion occurs as the type of a declaration in the context.
The third and fourth systems are also systems of sequents. The system U is formed from L
by removing the appeal to N in the Il rule. The IIl rule of U is thus:

I',z:Bla/z] = C
I'sC

Il (a) w: (Oz:A.B) e T

(b) z & Dom(T).
This rule introduces a free, or universal variable into the proof, denoted here by «. Universal
variables are distinct from the usual eigenvariables that are bound by the derivation (and ex-

plicitly declared in contexts). The axiom sequent of U is used to compensate for the omission
of term information in the II/ rule as follows:

I,z:B,I'= A (a) (30) Bo = Ao

where o is an instantiation of the universal variables of the sequent, and Bo denotes the term
resulting from the application of ¢ (as a substitution) to B. The calculation of instantiations

2This system is also known as the type system of the (Edinburgh) Logical Framework or LF [HHPS87].

3Readers that are unfamiliar with dependent types should read the construction IIz:A.B as a (typed) universal
quantifier such as Vz:A.B;  is the bound variable, ranging over the type A, which may occur free in the term B.

*Kleene [Kle68] explains this in the case of the predicate calculus. Sequent systems used in this way are
systems of block tableaus [Smu68].



can be performed by a unification algorithm for the language. A suitable algorithm has been
developed by the first author [Pym90] based on a standard algorithm for simple type theory
[Hu75].

A U-proof is a pair {3, o) consisting of a U-derivation ¢ and an instantiation o such that o
(the application of o as a substitution to ) is an L-proof. Not every instantiation that closes the
leaves of a given U-derivation will yield an L-proof when applied. It is sufficient to check that
the instantiation can be well-typed in the derivation to ensure that the result is an L-proof. If T
is the context and A the type of the universal variable o when introduced into the U—derlvatlon,
the well-typing condition for & amounts to:

Tol ac:Ac

ensuring that side condition (c) of the Il rule of I — the condition omitted from the Il rule
of U — is nevertheless satisfied in 1o. The unconstrained choice of term in the IIl rule of L
is replaced by a highly constrained choice in U.% This wholesale reduction in the search space
is analogous, of course, to that obtained by Robinson in the context of the predicate calculus
[Rob65].

The well-typing of an instantiation depends on the structure of the derivation from which it
is calculated. However, even if it fails to be well-typed in that derivation it may be well-typed
in some permutation of the derivation, since rule applications (or reductions) can sometimes be
permuted whilst leaving the endsequent (i.e., root) of the derivation and its leaves unchanged.
The degree to which this can be done is summarized in the form of a Permutation Theorem, in
the sense of Kleene [Kle52] and Curry [Cur52], and underlies the fourth and final system of the
paper called R.

The rules of R are just the rules of U (so the derivations are the same) but the condition for
instantiations to yield a proof is weakened. An R-proof is again a pair consisting of a derivation
1 and an instantiation ¢ under which v is closed, but now we require only that there exist
perhaps another (closed) derivation 9 in which the instantiation is well-typed; i.e., ¥*c is an
L-proof. Of course the crucial computational question is whether the existence of at least one
suitable ¥*, given 1 and o, can be determined as the search progresses. We show that this
is indeed the case using a reduction ordering: a notion which was introduced by Bibel [Bib81]
for classical connectives and extended by the second author in [Wal89] to various non-classical
connectives.® An R-proof therefore corresponds to an equivalence class of U-proofs of the same
endsequent consisting of all permutation variants of the original derivation in which the calculated
instantiation is well-typed.

The reader may find it helpful to refer back to the overview given above to identify the
motivation for various technicalities below.

®The inference system that corresponds to the calculation of instantiations by unification does indeed have a
subterm property. The soundness and completeness result for U is a form of Herbrand Theorem for the theory.
The unification algorithm searches amongst the terms of a “Herbrand universe” defined by each leaf sequent.
This aspect is not explored in detail in this paper, see [Pym90].

8The condition is equivalent to an enhanced “occurs-check” in the unification algorithm if a suitable notion
of Skolem function were introduced. The suitable notion is not the obvious one that the reader might suppose
from experience of classical quantifiers, not least because the logic under investigation here is intuitionistic. In
general, the theoretical diversion via Skolemization is unnecessary and can be difficult to justify semantically,
even in simple type theory (cf. [Mil83]). Our approach follows Herbrand’s Theorem (which is finitary) rather
than the Skolem-Herbrand-Godel Theorem (which is not).



2 JAll-calculus: a theory of dependent function types

The syntax of All-calculus is given by the following grammar:

Signatures L ou= ()| 5,c:K | E,c:A
Contexts I == ()| I'z:A

Kinds K u= Type | lz:AK
TypeFamilies A u= c¢|lz:AA | z:AA| AM
Objects M = c|z|z:AM | MM

where c ranges over type and object constants. The proof system defined in [HHP87] for deriving
assertions of the following forms:

F X sig 2 is a valid signature
Fs ' context I' is a valid context
'y Kkind K is a valid kind
I'ky A:K A has kind K

I'Fs M:A M has type A

may be found in Appendix 1. We shall refer to this system as IN to emphasize that it is a system
of natural deduction. We stress that N is a system of first-order types in the following sense:
the II-type formation rule has the form:

‘ 'ty A:Type T',z:Abs B:Type

'ty Iz:A.B: Type ’

both A and B must be of kind Type (see also Rule 11 of Appendix 1). There are no variables of
kind Type and consequently there are no higher-order types (of kind Type). A summary of the
major metatheorems pertaining to IN and its reduction properties may be found in the Appendix.
We note here only that all five relations are decidable.

3 A metacalculus for N.

DEFINITION 3.1 (Sequent) A sequent is a triple (X,I', A), written I' =5 A, where ¥ is a sig-
nature, I' a context and A a type (family). The intended interpretation of the sequent is the
(meta-)assertion:

(3M) N proves I' by M:A.
O

We define a semi-logicistic calculus, L, for deriving sequents. The system is comprised of two
axiom schemata and two operational rules (one left and one right) for the II-types.

DEFINITION 3.2 (L)
Azl T,z:A V=5 A

Az2 Tr = 5,04,5 A

I'N'z:A=ys B
Ir e (a) = & Dom(T’)
g DzBlM/a]=3C (a) @ Tz:A.B € TUT

[=sC (b) z & Dom(T)

(c) N proves I' by M:A



Here B[M/z] denotes capture avoiding substitution of M for z, and the conditions z, z ¢ Dom(T')
mean that z and z do not label any declaration in the context I'. For simplicity and efficiency,
we work exclusively with n-normal forms, and for such terms syntactic identity (=) is taken up
to a-congruence (change of bound variable). As usual we refer to the variable z of the IIr rule
as the eigenvariable of the inference. We can ensure that in any derivation eigenvariables occur
only in sequents above the inference at which they are introduced. Ilz:A.B is said to be the
principal formula of the operational rules. A and B are the side formulae of the IIr rule, and 4
and B[M/z] are the side formulae of the Il rule. L-derivations are trees of sequents regulated
by the operational rules, and L-proofs are derivations whose leaves are axioms. []

When z is not a free variable of B in IIz:A.B we have B[M/z] = B and we write A — B for
Ilz:A.B: the third side condition on the Il rule may be weakened to the inhabitation condition:

() (AM) N proves I'ty M:A.

This in turn may be expressed within the system by the sequent I' =5 A yielding a modified IIl
rule which we call — [:
'z A I'z2B=xC

=1 '=yC

(a) @A—BeXUTl
(b) z ¢ Dom(T).

Consequently, we extend the syntax conservatively to include non-dependent function types,
A — B, corresponding to Ilz:A.B whenever z is not free in B, and include the — [ rule above
and the — r rule below as derived rules.

I'Ne:A=s B
7T m (a) T ¢ Dom(F)
DEFINITION 3.3 (Well-formed sequent) A sequent I' =y A is said to be well-formed just in case

'y A: Type. 10O
PRroOPOSITION 3.4 (HHP87) The well-formedness problem for sequents is decidable. O

In practice, derivations are constructed from the root, or endseqdent, toward the leaveé, in
the spirit of Kleene [Kle68] and systems of tableaux [Smu68]. In support of this usage we have
the following result:

ProPOSITION 3.5 (PYM90) For well-formed sequents I' =5 A,
L proves '=>x A iff (3M) N proves I' by M:A.

0

We revert to the appropriate fragment of N to decide if the endsequent is well-formed. If so, L
may be utilized to prove inhabitation of A with respect to the context I'. Moreover an inhabiting
term can be extracted from the L-proof. Details may be found in [Pym90]. L is not fully logicistic
since an appeal is still made to N for each application of the III rule (third side condition).

With the introduction of L we have made two conceptual steps. Firstly, we have shifted
our attention from a decidable judgement (type assignment) to a semi-decidable judgement
(inhabitation) since the former is uninteresting from the point of view of general theorem proving.
(Terms code the proofs of their types, hence the decidability of the judgements of N.)

The second step concerns proof-search. We moved directly to a sequent system with a limited
subformula property. An alternative choice would have been to formulate a natural deduction
system for inhabitation assertions which would have given us a II-elimination rule of the form:

I'=s>xlz:A.B

0 = B

(a) N proves I' -y M:A




similar to the usual natural deduction rule for quantifiers. The fact that the type A in the
premiss is not a subformula of the conclusion means that a proof procedure based on such a
calculus would have to invent the type. The limited subformula property of L restricts the
non-determinism to the choice of term M in the II rule.

4 A metacalculus for L

We introduce a new syntactic class of universal variables denoted by lowercase Greek letters
a, 3, etc., and extend the syntactic category of objects to include them thus:

Objects M u= c|a |z | z:AM | MM.

Notice that universal variables cannot appear A-bound. By virtue of this extension, entities of all
syntactic classes may now contain universal variables as subterms. When we wish to emphasize
that a syntactic entity does not contain universal variables we shall refer to it as being ground.

We define a calculus for sequents by dropping the axiom schemata of L and modifying the
II7 rule as follows:

DErFINITION 4.1 (U-derivation) The rules of U consist of the — r, — [ and IIr rules of L,
together with
I',z:Bla/z] =5 C

I I‘=>2 C

(a) @: lz:A.Be ZUT
(b) z € Dom(I").
U-derivations are trees regulated by the above rules such that the sequent at the root of the tree

is well-formed. In applications of the II/ rule we call ' the typing context of o and A the type of
a. (Note that we have not yet defined U-proofs; there are no axiom schemata.) [J

U thus consists of four operational rules. Notice that the II/ rule no longer contains an external
appeal to N or a choice of term, but is otherwise identical to the Il rule of L.

DEFINITION 4.2 (Instantiation) An instantiation is a mapping from universal variables to ob-
jects. The capture-avoiding application of instantiations to all of the constructs of the language
is defined in the obvious way. O

The following notion compensates for the absence of axiom schemata in U.

DEFINITION 4.3 (Closure) A sequent I' =5 A is said to be closed under an instantiation o just
in case Bo = Ao for some declaration @:B € X UT'. A U-derivation is said to be closed under o
just in case all of its leaf sequents are closed under o. (Again, we work exclusively with S7-normal
forms.) O

We are interested in instantiations that are well-typed in the following sense.

DEFINITION 4.4 (Well-typing) An instantiation o is said to be well-typed in a given U-derivation
just in case for every universal variable o of the derivation, with typing context I' and type A,

we have:
N proves I'oc s ac:4c 0O

We are now in a position to define a notion of proof for U.

DEFINITION 4.5 (U-proof) A U-proof is a pair (¢,0), where 1 is a U-derivation and ¢ an
instantiation, such that (1) ¢ is closed under o, and (2) o is well-typed in 9. [ ’

THEOREM 4.6 If (,0) is a U-proof, o is an L-proof.



PROOF. By induction on the structure of U-derivations. The closure condition (1) ensures that
the leaves of o are L-axioms. The well-typing condition (2) ensures that the image under o
of each instance of a IIl rule (of U) in 1 satisfies the side conditions on the IIl rule of L. The
remaining operational rules are common to the two systems. [

We remark that it is immediate that any L-proof arises as a U-proof: this is the converse of
Theorem 4.6. :
We shall postpone discussion of proof-search in U until we have introduced our fourth and
final refinement. One could stop here, however, using the unification algorithm developed in
[Pym90] (based on that of [Hu75]) to calculate instantiations when a putative leaf has been
reached, then checking the well-typing condition using N (recall that N is a decidable system
for well-typing). The search space induced by U is a proper subspace of that induced by L
since the choice of term at IIl reductions in the former is constrained by the syntactic content of
the leaf sequents (¢f. [Rob65]). The main reason for considering a further refinement is that U
distinguishes between derivations that are intrinsically identical in a sense made precise below.
Consequently, the search space induced by U still contains a major source of redundancy.

5 A metacalculus for U

The content of the typing contexts of universal variables in a U-derivation depends on the
structure of the derivation. For example, the two U-derivations below differ in the order in
which the IIl and IIr rule have been applied (the figures should be read from endsequent to
premisses and we assume that there is some @ : (IIy:A.B(y)) € ZUT):

I',z:B(a), z:A =5 B(z) I',z:A, 2:B(a) =5 B(z)
I',z:B(a) =5 lz:A.B(x) I, z:A =y B(z)
I' =5 Nz:A.B(z) I' =y z:A.B(z)

The principal formula of the IIl reduction in each derivation is the declaration @ : (Ily:A4.B(y))
— assumed to be in X UT. We also assume that z ¢ Dom(I'). The instantiation ¢ that maps
a to z closes both derivations. The typing context of o in the first derivation is I', while in the
second it is I', z:A. Since @o = z, in order to check the well-typing condition for & we must show
I' by, z:A for the first derivation and T',z:A by, z: A for the second. Consequently o is well-typed
in the second derivation but not in the first (since z ¢ Dom(T")).

Our final refinement is to introduce a calculus, R, in which the existence of the U-derivation
on the left, together with the closing instantiation, is sufficient to infer the existence of the
U-proof on the right. That is, we investigate conditions under which rule instances may be
permuted whilst leaving the endsequent and leaves of the derivation essentially unchanged.

DEFINITION 5.1 (R-derivation) The rules of R are exactly the rules of U; consequently the
derivations of R are exactly those of U. (The notion of R-proof however differs from that of

U-proof; see below.) -

Let % be an R-derivation of a given endsequent and let 7, denote the collection of inferences
that comprise 1. We use Fy(E) C Fy to denote the inferences of a given type Z, for = one of
the following: — I, — r, Il or IIr. Let ¢ be an instantiation for .

DEeFINITION 5.2 The following binary relations are defined on Fy:
(i) R <y R’ iff a side formula of R is the principal formula of R’

"More accurately: iff a side formula of R is a “descendent” of the principal formula of R; we distinguish the
“occurrences” of a formula in a derivation [Kle68].



(ii) R <y R iff R occurs below R’ in 1;

(ili) R, R’ iff the universal variable or eigenvariable introduced by R is a free variable of ao,
where « is the universal variable introduced by R'.

O

Notice that <, decomposes into sixteen subrelations: <<i’Q C Fy(E) x Fy(Q) for =, amongst
— 1, —» r, IIl and IIr. <y and its subrelations are called the skeletal orderings of the derivation
1. Notice also that <y is a subrelation of <y.

DEFINITION 5.3 (Reduction ordering) The reduction ordering <1 , induced by an R-derivation
1 and a instantiation ¢ is defined by:

o =def (<¢ U=<yU E0)+

where -+ indicates transitive closure and the relation <, is defined by:

<y Tdef Ky \ U(<<1IpIZ’EU<<1Ep’m);

= ranges over the operational rules of R. [

The presence of a relation in <1, , indicates that relationship between specific inferences may
not be altered by permutation. Consequently, the definition of < fixes the relative positions of
all rule applications in ¢ ezcept Il rule applications (since they are removed from < to form
-<¢).

DErFINITION 5.4 (i) (Compatibility) A derivation is said to be compatible with an instantiation
just in case the reduction ordering induced is irreflexive.

(ii) (Degree) The degree of a compatible derivation is the number of pairs of inferences in the
derivation whose skeletal order is inconsistent with the reduction ordering. That is, (R, R') for
which both R <, R' (R is below R’ in ) and R' 4, R. If a derivation is compatible with an
instantiation with degree n, we say it is n-compatible. 0

THEOREM 5.5 (PERMUTATION THEOREM) Ifv is compatible with o, then there is a 0-compatible
R-derivation ¢* of the same endsequent. Moreover, if ¢ is closed under o, so is ¥*. We say
that ¥* 1s a permutation of 1.

Proor. By induction on the degree of 1. We interchange IIl inferences with other inferences
to reduce the degree. One such case was given as an example at the start of this section (Il
over IIr). The others are left to the reader. One must check that the leaves of the permuted
derivation contain the same declarations (though in a different order). O

We have as a corollary to the construction performed in the proof of the Permutation Theorem:
COROLLARY 5.6 dyx, =y,
PRrOOF. The only relationships changed in the permutation are those excluded from <14,. O

The following lemma shows that the 0-compatibility of a derivation and instantiation is a neces-
sary condition for the well-typing of the latter in the former.



LEMMA 5.7 If o is well-typed in 2, 1 is 0-compatible with o.

PROOF. An inconsistency between the skeletal ordering of 9 and the reduction ordering arises
from an inconsistency between C, and the skeletal ordering. Since C,C Fy(E) x Fy (II1), it must
arise from a IIl inference, introducing o say, being nearer the root of the derivation than a IIl
or IIr inference that gives rise to a variable, v say, free in @o. But then v cannot be declared
in the typing context of o since it is introduced above «, and therefore ¢ is not well-typed,
contradicting our hypothesis. Therefore there can be no inconsistencies and 1 is 0-compatible
witho. O

We give a simple example of an R-derivation and a closure instantiation which fails to be
well-typed in the given derivation, but which is well-typed in a reordering of that derivation.

Let ¥ =ges A : Type, B: A — Type,C : Type,p: A — Type,a: A, f : B(a) — B(a), and let
I =get 71 : Hzg: A llz3: B(xs) . pz3.

We search for a proof of the (well-formed) endsequent I' =5 Ilz4 : B(a).C — p(fzy).
Consider the following R-derivation, 1) :

L,y : llay: B(&) .paa, 1 508,24 B(a),25:C Snp(fze)
T zg Ty B(0) pog, o7 pB,24:Ba) 25 C —~ p(fz) (7,
',z : llzg: B(e) . pz3, 27 : pf =5 lzy4: B(a) . C — p(fz4) (1)
I zg : lzg: B(a).pz3 =5 zy:B(a).C — p(fz,) (7).
I' =5 lzy:B(a).C — p(fzy)

The leaf sequent is closed by the instantiation ¢ = ((a, &), (fz4,5)), but fzs is not well-typed
in ',z : zg: B(a) . Pz3. However, if we reorder the rules in the derivation so that the Ills are
used after the — r and IIr we obtain the derivation:

I'z4:B(a),z5:C,z¢ : Nzg: B(a) . px3,z7 : pB =5 p(fzq) (1)

I',z4:B(a),z5:C, zg : Hz3: B(a) . pr3 =5 p(fz4) (L)
I',z4:B(a),25:C =5 p(f74) (= 7)
I, z4:B(a) =5 C — p(fz4) (Ll7).

I'=s HZE4:B(CI,) .C— p(f$4)

This sequent also is closed by the instantiation o and fz4 is well-typed in the context I',z4 :
B(a),z5:C,zg : llz3: B(a) . pz3 .

From a computational point of view testing for compatibility is a simple matter given a
derivation and an instantiation: it is an acyclicity check in a directed graph. Compatibility is
not, however, a sufficient test for well-typing. The Permutation Theorem gives us the existence of
0-compatible derivations in which we might test for well-typing of the instantiation incrementally
(i.e., as it is found) but this involves repeatedly constructing permutations using the constructive
proof of the theorem. This is inelegant and computationally expensive.

Another alternative would be to ignore well-typing until a closed, compatible derivation and
instantiation have been found, and then utilize the Permutation Theorem once and check well-
typing. We reject this option on the grounds that typing constraints reduce the search space of
the unification algorithm drastically.

We develop instead a computationally tractable test on a derivation and instantiation that,
if passed, guarantees the well-typing of the instantiation in all 0-compatible permutations of
the derivation. Qur ability to define such a notion is a corollary of the normalization (cut-
elimination) result for All-calculus [HHP87] with its attendant subformula property, just as the
results obtained in [Bib81] and [Wal89] for other logics rely on metatheorems of this sort.



Henceforth we treat contexts as ordered structures or DAGs rather than sequences since the
dependencies between declarations form such an order. Consequently the implicit union, denoted
above by a comma, such as in “I", z:A”, should be understood as an order preserving union of the
order (DAG) T and the singleton order z:A. The latter will be higher in the resulting order than
the declarations of the free variables in A, and incomparable with the other maximal elements
of I'. This assumption simplifies our discussion.

The following notions are introduced for an R-derivation 9 of a well-formed endsequent. We
use u, v, w possibly subscripted to denote universal and eigenvariables of 1. Let T'(v) denote the
typing expression for the variable v in .

DEFINITION 5.8 (Intrinsic typing context) The intrinsic typing context I(v) for each (eigen- or
universal) variable v of v is defined inductively on the structure of the endsequent as follows:

I(v) =det W W), w:T(w)).
weFV(T(v))

lJ denotes order-preserving union of orders; FV (M) denotes the set of free variables of the term
M. 0

I(v) is well-defined since the endsequent is well-formed. Indeed, we have:
LEMMA 5.9 I(v) by T(v): Type.

PRrOOF. By construction and the well-formedness of the endsequent (see Appendix 1 for the
notion of a well-formed context). O

Let 9 be compatible with the instantiation . We give an inductive definition of the intrinsic
typing context and type of a variable of ¢/ under a compatible instantiation ¢. The induction is
on the (well-founded) reduction ordering (<, ,) over the domain of .

DerFINITION 5.10 (I,(v) and T,(v)) Base. For all v € FV(¢), define I.(v) = I(v) and T.(v) =
T'(v). (e is the empty instantiation.)

Step. Given v € Dom(o), we assume that we have defined I,(w) and T,(w) for all w €
Dom(c) such that w <y, v (Inductive Hypothesis). Let wy,ws,...,w, be an enumeration
of those variables declared in I(v). By definition of <y, and I(v), we have w; <y, v for
0 <7< n+1. Define

DO('U) = Ie('”) Fs Te(v):Type
Dpy1(v) = CUT( I (wg) bgwpoTy(wg) , Di(v) ), 0<k<n.
If D, (v) is the assertion: A by C:Type, then define
Ia(v) =gof A
To(v) =4 C. O

The “CUT” operation in the above definition is the admissible rule of transitivity (see Appendix
1). That is, Dg41(v) is defined in terms of Dg(v) by the following inference figure:
I (wi) bg wpoTe(wy)  Di(v)
Di41(v)

The cut rule is being used to effect substitution of the values (under o) of universal variables
throughout the judgement starting from the “uninstantiated” intrinsic typing context and type.

CUT.




The definition is well-formed since the context of the left premiss of each cut is a subcontext of
the right premiss. (This follows from the construction of I(v).) The cut above then serves to
eliminate the declaration wy:T,(wy) from the context of Dy (v), replacing wy, by wyo throughout
the rest of the assertion.

The enumeration taken is irrelevant since independent cuts commute. Consider

I (uy) by wyo:T,(uy)  Di(v)

Iy (ug) by ugo: T (ug) 0

Dy12(v)

and !
I (ug) g ug0:Ty (usg) Dy (v)

I (uy) by uio:T,(u
( 1) PHCY ] or( 1) D;c+1('u)

D;c+2('”)
In the first derivation wy = w3 and wgy1 = ug. In the second, wy = ug and wi41 = u;. If u; and
ug are assumed independent (i.e., unrelated via <1y ), we have u; & Dom([,(u;)), ¢ # j. Hence
substitution of the value ujo for u; does not interfere with substitution of the value ugo for us,
and Dyyo = Dy p.
We can now state the desired well-typing condition for ¢ in 2.

DEFINITION 5.11 (Intrinsic well-typing) o is said to be intrinsically well-typed in 9 just in case
for all universal variables o of ¥, we have: I, (a) by aoTy(a). O

The importance of the definition is summarized by:

PROPOSITION 5.12 If o is intrinsically well-typed in 1, then it is intrinsically well-typed in all
compatible permutations of . In particular it is well-typed in 0-compatible permutations.

PRrROOF. Reference to the definition will show that the intrinsic well-typing of ¢ in ¢ does not
depend on the Il structure of 3. (In fact we deliberately forbade such dependence by our
definition of <1, ,.) Hence the conditions are unaffected by permutations allowed by the reduction
ordering <y ,, which is itself unaltered by permutation (Corollary 5.6). For a 0-compatible
permutation %™ of 1, the intrinsic typing context for a variable is a subcontext of the typing
context in 9*o. Since “Thinning” is admissible (Appendix 1), o is well-typed in ¢*. O

In a similar vein, we state without proof the following:

PROPOSITION 5.13 If o 15 well-typed in a 0-compatible derivation 1, it is intrinsically well-typed
. O

We can now define a computationally acceptable notion of R-proof.

DEFINITION 5.14 (R-proof) An R-proof is a pair (1,0) such that (1) ¢ is closed under o; (2)
1 is compatible with o, and (3) o is intrinsically well-typed in 4. O

THEOREM 5.15 For well-formed sequents I' =5 A,
R proves I'=>5 A iff U proves I' =5 A.

ProOF. (Only if.) Suppose (1, 0) is an R-proof of I' =5 A. The Permutability Theorem gives
us a permutation %* of 1, closed under (hypothesis 1), and compatible with (hypothesis 2), the
instantiation o. Hypothesis (3), via Proposition 5.12, ensures that ¢ is well-typed in ¢*. Hence
(¢*, o) is an U-proof.

(If.) Let (1,0) be an U-proof of I' =5 A. By definition % is closed under o and o is well-
typed in 1. Compatibility follows from Lemma 5.7, and intrinsic well-typing from Proposition
5.13. 0O



6 Some remarks

Instantiations are generated by a unification algorithm acting on putative axiom sequents. They
are first checked for compatibility (occurs-check) and then for intrinsic well-typing. The in-
cremental nature of intrinsic typing means that the unification algorithm can use the typing
information to constrain its search. New values for previously uninstantiated variables may be
used to eliminate those variables from the typing contexts of the remaining ones. No permuta-
tions need be calculated.

We have been somewhat cautious in this development and allowed only III rules to migrate.
As a consequence the basic structure of a derivation is largely fixed. The next step is to remove the
ordering constraints induced by the propositional structure of the logic, perhaps using unification
here as was done in [Wal89] for first-order intuitionistic logic. The final result would be a matriz
method in the style of Bibel [Bib81] or Andrews [And81].

Closure instantiations are calculated by unification. In general, the substitutions calculated
by the unification algorithm introduce new variables (i.e., variables that are not present in the
. original context)s. However, we require only those substitutions which are well-typed instantia-
tions (under some reordering), and so for a a given R-derivation 1) we accept (for further analysis)
just those substitutions o which do not introduce new variables. The unification algorithm of
[Pym90] is both sound and complete for the calculation of such instantiations.

7 Non-ground endsequents and logic programming

We have considered ground endsequents and ground instantiations explicitly. The extension of
R to non-ground endsequents is straightforward. A non-ground sequent together with a typing
constraint T for its universal variables is considered to stand for the set of its well-formed ground
instances. (The typing constraint consists of intrinsic typing contexts and types for each universal
variable occuring in the endsequent, ensuring that the mutual dependencies do not render any
extension of the initial reduction ordering cyclic.) This determines a set S(7") of ground answer
instantiations. Any non-ground instantiation calculated from an R-proof (¢, 0) of the sequent
determines a set of ground well-typed extensions Sy (7).

We consider non-ground endsequents because they have an interesting logic programming
interpretation. A sequent I' =5 A may be interpreted as a logic program in the following sense:
Y} determines a language, I a list of program clauses and A a query written in the language 2.
universal variables correspond to program wvariables or logic variables; these correspond to the
logical variables of the programming language PROLOG [CM84]. The whole sequent represents
a request to compute a instantiation o for the universal variables of the sequent such that any
ground extension ¢’ of o renders the sequent 'c’ =5 A¢’ L-provable. We are exploiting the
fact that the underlying lambda calculus of the All-calculus encodes a computation of type A;
i.e., a term M for which I' by, M:A. A full discussion of this notion of logic programming,
including both operational (as presented here) and model-theoretic semantics, may be found in
[Pym90] and in a forthcoining paper by the authors, where we also discuss the application of
our techniques to a form of resolution rule which generalizes Paulson’s higher-order resolution
[Pau86] to the All-calculus.

Acknowledgements. The authors are grateful to Anne Salvesen, James Harland, Robert
Harper, Furio Honsell, Gordon Plotkin, Randy Pollack and two anonymous referees for helpful
suggestions and comments.

8Tndeed, this is true of the basic algorithm for the simply-typed A-calculus of [Hu75]



References

[And81] Andrews, P.B. Theorem-proving via general matings. J. Assoc. Comp. Mach. 28(2):193~
214, 1981.

[AHMS87] Avron, A., Honsell, F., Mason, I. Using Typed Lambda Calculus to Implement Formal
Systems on a Machine. University of Edinburgh, 1987, ECS-LFCS-87-31.

[Bib81] Bibel, W. Computationally Improved Versions of Herbrand’s Theorem. In J. Stern,
editor, Proc. of the Herbrand Symposium, Logic Colloquium ’81, pp. 11-28, North-Holland,
1982. .
[CM84] Clocksin, W.F., Mellish, C.S. Programming in Prolog, Springer-Verlag, 1984.

[Cur52] Curry, H.B. The permutability of rules in the classical inferential calculus. J. Symbolic
Logic 17, pp. 245-248, 1952.

[vDa80] van Daalen, D.T., The language theory of AUTOMATH. PhD thesis, Technical University
of Eindhoven, The Netherlands, 1980.

[Gen34] Gentzen, G. Untersuchungen tiber das logische Schliessen, Mathematische Zeitschrift 39
(1934) 176-210, 405-431.

[HHP87] Harper, R., Honsell, F., Plotkin, G. A Framework for Defining Logics. Proc. LICS ’87.
[HHP89] Harper, R., Honsell, F., Plotkin, G. A Framework for Defining Logics. Submitted to
the J. Assoc. Comp. Mach., 1989.

[Hu75] Huet, G. A Unlﬁcatlon Algorithm for Typed A-calculus. Theor. Comp. Sci., 1975.
[Kle52] Kleene, S.C. Permutability of inferences in Gentzen’s calculi LK and LJ. Memotrs of the
American Mathematical Society 10, pp. 1-26, 1952.

[K1e68] Kleene, S.C. Mathematical logic. Wiley and Sons, 1968.

[MR86] Meyer, A. and Reinhold, M. ‘Type’ is not a type: preliminary report. in Proc. 13th
ACM Symp. on the Principles of Programming Languages, 1986.

[Mil83] Miller, D. Proofs in higher-order logic. PhD thesis, Carnegie-Mellon University, Pitts-
burgh, USA, 1983.

[Oh188] Ohlbach, H-J. A resolution calculus for modal logics. Proc. 9th Conf. on Automated
Deduction, LNCS 310, 1988.

[Pau86] Paulson, L. Natural Deduction Proof as Higher-order Resolution. J. Logic Programming
3, pp. 237-258, 1986.

[Pra65] Prawitz, D. Natural Deduction: A Proof-theoretical Study. Almqvist & Wiksell, Stock-
holm, 1965.

[Pym90] Pym, D.J. Proofs, Search and Computation in General Logic. PhD thesis. University
of Edinburgh, forthcoming.

[Rob65] Robinson, J. A machine-oriented logic based on the resolution principle. J. Assoc.
Comp. Mach. 12, pp. 23—41, 1965.

[Sa89] Salvesen, A. In preparation. University of Edinburgh, 1989.

[Smu68] Smullyan, R.M. First-order logic, Ergebnisse der Mathematik, Volume 43, Springer
Verlag, 1968.

[Wal89] Wallen, L.A. Automated deduction in non-classical logics, MIT Press, 1989.

Appendix 1

The Ml-calculus is closely related to the II-fragment of AUT-PI, a language belonging to the
so-called AUTOMATH family. The AMI-calculus is a language with entities of three levels: objects,
types and families of types, and kinds. Objects are classified by types, types and families of types
by kinds. The kind Type classifies the types; the other kinds classify functions f which yield
a type f(z1)...(z,) when applied to objects z1, ...,z, of certain types determined by the kind
of f. Any function definable in the system has a type as domain, while its range can either



be a type, if it is an object, or a kind, if it is a family of types. The All-calculus is therefore

predicative.
The theory we shall deal with is a formal system for deriving assertions of one of the following

shapes:

FY sig 2} is a signature
Fs I' context T' is a context
'y K kind K is a kind
Fks A: K A has kind K
'k M A M has type A
where the syntax is specified by the following grammar:

Y o= (| X,c:K|Xc:A

' == ()| z:4A

K = Type|lz:AK

A 2= c|lz:AB|X:AB| AM

M = c¢c|lz|Xx:AM| MN

We let M and N range over expressions for objects, A and B for types and families of types,
K for kinds, z and y over variables, and ¢ over constants. We write A — B for Ilz : A.B when
x does not occur free in B. We refer to the collection of variables declared in a context I' as
Dom(T'). We assume a-conversion throughout. The inference rules of the All-calculus appear in
Table 1.

A term is said to be well-typed in o signature and context if it can be shown to either be
a kind, have a kind, or have a type in that signature and context. A term is well-typed if it
is well-typed in some signature and context. The notion of Bn-reduction, written —p,, can be
defined both at the level of objects and at the level of types and families of types in the obvious
way, for details [HHP89]. M =g, N iff M —5, P and N —, P for some term P, where *
denotes transitive closure. For simplicity we shall write — g, for —-—>Z§n.

Since fn-conversion over K U AU M is not Church-Rosser, so the order of technical priority
in which the basic metatheoretical results are proved is crucial. The theorem below summarizes
these results in a convenient order (here o ranges over the basic assertions of the type theory).
The reader is referred to [HHP87], [HHP89] and [Sa89] for details of its proof.

THEOREM (THE BASIC METATHEORY OF THE AIl-CALCULUS)

1. Thinning is an admissible rule: if I' by a and by sy I, I' context, then I', TV Fssy a.

2. Transitivity is an admissible rule: if T'Fs M: A and T'yz : A, A bs a, then T',A[M/z] b5
a[M/z].

8. Uniqueness of types and kinds: if I'x M: A and T 5 M: A, then A =g, A', and similarly
for kinds.

Subject reduction: if I'bss M: A and M ——>*ﬂ.,, M, thenT 5, M': A, and similarly for types.
All well-typed terms are strongly normalizing.

All well-typed terms are Church-Rosser.

S S N

Each of the five relations defined by the inference system of table 1 is decidable, as is the
property of being well-typed.



8. Predicativity: if I' -5, M : A then the type-free A-term obtained by erasing all type informa-
tion from M can be typed in the Curry type assignment system.

9. Strengthening is an admissible rule: if T,z : AT by o and if z € FV(IY) U FV(a) then

F,FI '—E o. O
Valid Signature (1)
F{) sig
3 sig by K kind ¢ g Dom(X) @)
kX, c: K sig
FX sig kg A: Type c¢¢ Dom(X) 3
FX,c: Asig )
Valid Context FX sig
Fs () context “)
Fx T' context Ty A: Type z & Dom(I) 5
Fs T,z : A context (5)
Valid Kinds Fx I' context
'ty Type kind ©)
kg A: Type T,z:Abyg K kind -
'ty llz : ALK kind (7)
Valid Elements of a Kind FeT' context c: K€X
ke K ()
I'ts A: Type T,z:Aby B: Type 9
'ty Iz : A.B: Type )
I'ks A: Type T,z:Aby B:K 10
T'bg dz: AB:llz: AK (10)
I'by B:llz: AK Thy N:A 11
'ty BN: K[N/z] (1)
P'ky AiK T'hy K' kind K =g, K’
'y A K/ (12)
Valid Elements of a Type Fs T context c:A€X
Tk A (13)
Fs T context z:A€T
Thbyz:A (14)
I'tg A: Type T,z:Aby M:B 15
Tk Az: AM:1lz: A.B (15)
'ty M:TlIz:AB Ty N:A 16
'ty MN:B|N/z] (16)
T'ky M:A Ty A Type A =g, A

Ty M: A’ an

Table 1.
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