LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

On the Description and Development of
One-Dimensional Systolic Arrays

by

Jingling Xue and Christian Lengauer

sAeily 21j01SAS [euoisuawig-suQ Jo Juswdojonaq pue uonduosaqg syl uQ

LFCS Report Series ECS-LFCS-90-116
LFCS July 1990
Department of Computer Science
University of Edinburgh
The King's Buildings

Edinburgh EHO 3JZ Copyright © 1990, LFCS

On the Description and Development of

One-Dimensional Systolic Arrays

0
JINGLING XUE AND CHRISTIAN LENGAUER

LABORATORY FOR FOUNDATIONS OF COMPUTER SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF EDINBURGH
EDINBURGH, SCOTLAND

ECS-LFCS-90-116
16 JurLy 1990

Abstract

Previous work on the mapping of uniform recurrence equations to one-
dimensional systolic arrays is extended. A number of properties of such map-
pings are stated and proved. Previously known mapping constraints are sim-
plified and reduced. A previously known mapping algorithm is improved.

Copyright ©1990 by Jingling Xue and Christian Lengauer. All rights reserved.

%Supported by an Overseas Research Students Award and a University of Edinburgh
Postgraduate Fellowship.

Contents

1 Introduction

2 Uniform Recurrence Equations

3 Models of Systolic Arrays

4 Space-Time Mappings

5 Mappings to One-Dimensional Time and Space
6 Space-Time Mappings and Hyperplanes

7 Evaluation

8 References

15

23

24

1 Introduction

A systolic array is a collection of processors (or “cells”) that are locally and regularly
connected. This special-purpose computer architecture happens to support the parallel
implementations of highly iterative algorithms in a variety of areas such as numerical
analysis, signal or image processing and graph theory. These algorithms are often spec-
ified by uniform recurrence equations (UREs) [5] but can also be specified dlfferently,
such as by nested loops [8].

A number of synthesis methods have been proposed for mapping UREs [1, 11, 13,
16, 19] or loops [2, 3, 9, 10] to systolic arrays. They map the computations prescribed
by n-dimensional UREs (or loops) to (n—r)-dimensional space and r-dimensional time,
where r is chosen freely (0<r<n).

When mapping n-dimensional UREs into a space of less than n—1 dimensions (r > 1),
one must consider a multi-dimensional time domain. Wong [19] points out the possibility
of implementing multi-dimensional time using a multi-dimensional clock. However, multi-
dimensional clocks are costly and may operate inefficiently. Therefore one transforms
multi-dimensional time into one-dimensional time. We distinguish two methods: one
approaches a single-dimensional time domain directly [9, 14], the other does so via a
multi-dimensional time domain [4, 16, 19].

In the synthesis method proposed by Lee and Kedem [9], one-dimensional time is
derived directly. A two-dimensional space-time mapping, with one-dimensional time
and one-dimensional space, is created by formulating a set of necessary and sufficient
conditions. Various user-specified constraints and cost criteria can be taken into account
during the search. However, the proof of this is not constructive and properties of the
resulting space-time mappings are not extensively studied.

The second approach is represented by the synthesis method due to Rao, Jagadish
and Wong [4, 16, 19]. In this method, one derives first an r-dimensional time and, if
r > 1, reduces the number of time dimensions successively. Rao presents an algorithm
based on integer programming for mapping n-dimensional UREs into arrays of lower
dimensionality. Similar ideas are also described in [4, 19]. In the derivation, resource
limits like bounds on the number of cells, restrictions on cell connections and so on are
not being considered.

In practice, one-dimensional arrays appear particularly attractive for several reasons.
It has been argued that one-dimensional arrays have advantages such as 100% utilization
of non-faulty cells on a wafer and a clock rate that is independent of the size of the
array [6, 7, 14]. Also, one-dimensional arrays can be given a constant I/O bandwidth by
requiring that I/O only be performed at the two border cells [7].

This paper is concerned with mapping UREs to one-dimensional arrays. We extend
the work presented in [9]. Our example is matrix multiplication. In Sect. 2, we define
the class of UREs that we are interested in. Sect. 3 presents two models of systolic
arrays: one general model and one model of one-dimensional arrays. Sect. 4 contains a
brief discussion of the main tool for mapping UREs to systolic arrays — the space-time
mapping — and its properties. In Sect. 5, we derive one-dimensional time directly. We
start with four conditions, due to Lee and Kedem [9], that are necessary and sufficient
for the existence of a valid space-time mapping: the precedence constraint, the delay

constraint, the computation constraint and the communication constraint. We simplify
the communication constraint and show that it implies the computation constraint. In
Sect. 6, we first derive (n—1)-dimensional time and then reduce it to one-dimensional
time. A range of properties are proved that characterize the space-time mapping. It
is shown that a proper extension and scaling of the index space guarantees that the
computation constraint implies the communication constraint. This leads to a more
constructive derivation of a valid space-time mapping if the precedence constraint can be
satisfied. Sect. 7 evaluates the synthesis methods presented in Sects. 5 and 6.

2 Uniform Recurrence Equations

In what follows, the symbols Z and Q denote the set of integers and rationals. 7% and
Q" denote the set of positive integers and rationals, Z; and Q;’ the non-negative integers
and rationals. Z" and Q" denote the n-fold Cartesian product of Z and Q. Following
Quinton [12], we write a URE in the format: domain predicate — recurrence equation.

Definition 1 A system of uniform recurrence equations consists of a number of equations
each of which is of the following form:

Ied—-vol) = f(w(l=0,,),...)
where:
N N-X Nal Al

o ® isreferred to as the domain of computation and is a set of integral points belonging
to a bounded convex polyhedron of Z" within which the system of UREs is defined.

¢ v and w are variable names belonging to a finite set V, v(I) is called the result and
w(I-40,,) is called its argument. Each variable is defined at every integral point of
® and takes on a unique value.

e The “...” indicates that there can be additional arguments of the same form.

e 0,, is a constant integer vector of length n, called a dependence vector. It is defined

as the difference between the index vectors of the result v(I) and the argument
w(I-0,,).

fo 18 a k-ary function that is strictly dependent on each of its arguments [5, Sect. 2].
(End of Definition)

The data dependences in a URE can be represented by a dependence graph. A
dependence graph has one node for each point of the domain and a directed arc from
node J to node I if and only if a variable indexed by J is an argument in the equation
for a variable indexed by I.

Data dependences can also be represented by a dependence matriz D € 7"**; the
columns of D are the dependence vectors; 6; is the i-th column (we write 6; € D).

2

Dependence vectors are associated with a variable name. For simplicity, we assume that,
for each variable name v € V, there is only one associated dependence vector, which is
denoted 8,, in D. Alternatively, for a dependence vector 8;, we denote the corresponding
variable name by v;. We distinguish the variables that hold the input values and the
variables that hold the output values.

Definition 2 The sets IN, of input variables and OUT, of output variables of a stream1
v are defined as follows: A
IN, = {v(I)|I¢®,J€®,J=1+0,}
our, = {v(I)|1€®,J¢0,J=1+6,}

(End of Definition)

We refer to v as the stream associated with dependence vector 8, to v(I) (I € ®UIN,)
as the variables constituting the stream and to the set of index vectors of input variables

as the domain of input variables: Q={I |Vv:veV :v(I)elIN,}.
Example: Matrix Multiplication

Let us now use the multiplication of n X n matrices as an example to illustrate some
concepts presented in Def. 1. This example will be used for illustration throughout the

paper.

Specification:
(V Z,] : 0<z,]§m . C‘i,j = Zai’kbk,j)
=1
UREs:
0<i<m, 0<j<m, k=m — ¢;;=C(4,7,k)

0<i<m, 0<j<m, 0<k<m — C(i,j,k) = C(i,j, k=1)+AG,j—1, k) B(i=1,5, k)
0<i<m, 0<jy<m, 0=k - C(1,7,k)=0
0<i<m, 0<j<m, 0<k<m — A(%,5,k) = A(%,7—1,k)

0<i<m, 0=y , 0<k<m — A(4,5,k) = a;y
0<i<m, 0<j<m, 0<k<m — B(i,j,k) = B(i—1,j,k)
0=i , 0<j<m, 0<k<m — B(i,j,k) =b;

Domain of computation:
& = {(3,4, k) | 0<i, j, k<m}

Domain of input variables:
0 ={(:0,k) | 0<i, k<m}U{(0,4, k) | 0<j, k<m}U{(7,5,0) | 0<i,j <m}

Variable set:
= (A, B,C)

3

Streams:

A,B,C

Dependence matriz:

SO

——O O
—_

0
D = (04,0p,0c) = [1
0

Dependence vectors:
0A7GB’00

Input variables:

IN, = {A(,0,k) |0<i<m, 0<k<m}
INg = {B(0,7,k) | 0<j<m,0<k<m}
IN = {C(i,},0) |0<i<m, 0<j<m}
Qutput variables:
OoUT, = {A(i,m,k) |0<i<m, 0<k<m}
OUTg = {B(m,j,k) | 0<j<m,0<k<m}
OUTe = {C(i,5,m) | 0<i<m, 0<j<m)}

Dependence Graph (n=4):

(m,m,m) (m,m, m)
4 AAZAL]
& w ; =Y |
zal i
b 3 k j
(1,1,1) Z TR
(0,0,0)
domain ® domain ®US)

(End of Ezample)

The domain of computation ® and dependence matrix D provide sufficient information
from which systolic arrays can be synthesized. In what follows, we represent a system of
UREs by (®, D) and presume that D is of size nxk (also denoted D™*¥), i.e., the UREs
are n-dimensional and D consists of & dependence vectors of length n.

3 Models of Systolic Arrays

We should talk about space-time mappings in terms of a model of systolic arrays. Ac-
tually, we shall refer to two different models (one of which will be an extension of the
other). Without loss of generality, we assume that a computation takes one unit of time
— this assures that a global clock ticks in unit time.

A simple and general model that has been the basis of many methods (3, 4, 10, 11,,
16, 19] is defined in [16]: '

Definition 3 (Qualitative Model) A systolic array is a network of cells that are placed
at the grid points of a finite multi-dimensional lattice £, satisfying the following two
properties:

1. Postulate the existence of a directed connection from the cell at location [to the
cell at location [+d, for some constant vector d. This postulate is either true for
all le L or false for all [€ L. A directed connection is also called a channel; it is an
input channel to the cell at its destination and an output channel to the cell at its
source.

2. If a cell receives a value on an input channel at time ¢, then it will receive a value
on the same channel and send a value on the corresponding output channel at time
t+1.

(End of Definition)

This model only characterizes the qualitative aspects, i.e., the topology and behaviour
of the systolic array. Quantitative aspects are induced from the space-time mapping.
Resource limits like bounds on the number of cells, restrictions on cell connections and
so on are not specified.

When building systolic arrays, one will often want to comply with predefined design
constraints. For example, Fortes and Moldovan consider implementations of algorithms
on systolic arrays with predefined cell connections [2]. This requires an extension of the
qualitative model.

The following quantitative model originates from initial attempts to map homoge-
neous graphs to one-dimensional arrays [14] and was later adopted by Lee and Kedem
[9]. The first two conditions correspond with those of the qualitative model.

Definition 4 (Quantitative Model) A one-dimensional systolic array consists of a set of
identical cells { PF; | 0<:<p}. PF| is the host computer (Fig. 1).

1. Each cell is connected with its two neighboring cells by a set of channels numbered 1
to k. To each channel j (0<j<k), a sequence of r; registers (r; € Z;’) is connected.
The registers function as delay latches in communication; a register retains a datum
up to the next clock tick. The set of channels with the same number is referred to
as a link.

Figure 1: The one-dimensional systolic array model. The larger solid boxes represent
the cells. The lines represent connecting channels. A small box inside a cell represent a
sequence of delay registers at the respective channel.

2. If a cell PE; receives a value via link j on its input channel at time ¢, then it will
receive a value on the same channel and send a value on the corresponding output

channel at time t+r;+1.

3. 1/0 is performed only by the two border cells PE,; and PE,,.

4. Fach stream is allocated a distinct link.

4 Space-Time Mappings

(End of Definition)

This section presents the principle of mapping UREs to the qualitative model of systolic
arrays. The mapping assigns temporal and spatial coordinates to each computation in

the UREs [10].

Definition 5 Consider the system of UREs (®,D). A space-time mapping Il € Z"*"
that maps a point in ® to a point in (n—r)-dimensional space and r-dimensional time

(0<r<n) is given by:

Ay

A A,

H:[Elz ¥
.

Al,l A1,2
A'r,l AT,2
Y1 Y
| En—r,l En—r,Z tte

- Al,'n

A

N

"El,n

X

n—rn |

1. A is the time matriz. Given a point I € ®, Al specifies the time ¢; at which the

computation at I is to occur:

2. ¥ is the space matriz. Given a point I € ®, X specifies the location ¢; at which
the computation at I is to be performed:
G

AI=CI=

n—r

3

(End of Definition)
The image of dependence matrix D under mapping II is given by:
D = (61761, ot aék)

The image of dependence vector §; is given by:

5,-:110,-=[t&]

Cs.

L3

ts, represents the delay in communication of elements of stream v; between neighbouring
cells; c;, represents the channel used for the communication.

A space-time mapping is considered wvalid with respect to some model if data are
mapped to the places where they are needed and the times when they are needed there
[10], and the mapping satisfies the constraints of the model.

Theorem 1 Satisfaction of the following two constraints is sufficient for the existence
of a valid space-time mapping.

Precedence Constraint: (V¥ 1 : 0; € D : AG; > 0), where “>” denotes the lexicographical
ordering and O denotes zero vector of length r.

Computation Constraint: rank(Il)=n, i.e., Il is non-singular.

(Proof omitted [10].)

The precedence constraint preserves the semantics of the recurrence equations; the
computation constraint ensures that no more than one computation is mapped to a cell
per time step.

The following procedure converts an r X n time matrix A to a vector A of length n

[16, 19]:

Procedure 1 (Transformation of r-dimensional to one-dimensional time)

INPUT: A domain of computation ¢ and a time matrix A.
OUTPUT: A vector A.

1. (Vi:0<i<r:(VI,J:I,J€®: b; = max |A;(I-J)]| +1)).
2. a,=1, (Vi:0<i<r: a;=a;;,b,,).

3. (VE:0<k<n: A =37 a;A;p). (End of Procedure)

The transformation of A to X\ preserves all interesting properties.
Theorem 2

1. VI,J: I,Je®: Al=AJ <> A[=)AJ).

2. (VI,J:1,Jed: AI<AJ = A< AJ).

3. (VI,J:1,Jed: Al = AJ+A0; = A =)J+)0,).

(Proof omitted [19].)

5 Mappings to One-Dimensional Time and Space

This section discusses the properties of space-time mappings with respect to the quan-
titative model. In our investigations in the rest of the paper, we shall relate space-time
mappings exclusively to this model. Let us first introduce our assumptions and notations:

Assumptions
1. step:®— Z, step(I)=Al, Ael".

2. place: ® — Z, place(I) =0l, oel".
A .
3. wz[a],(Vz:HieD:UGHEO).

4. ged(oy,09,,0,) = 1. (End of Assumptions)

To simplify matters, we allow that step and place map to the negative integers. Note
also that step does not possess the additive constant that is required in the affine timing
functions that are usually used [12, 16]. If there is an affine timing function but none
of the form required of step, the constant can always be eliminated by application of an
index transformation [16]. Note also that 7 is restricted to disallow stationary streams.
Our results extend to stationary streams, but the inclusion of this special case complicates
the presentation unduly. Ass. 4 normalizes the place function by assuring a consecutive
numbering of the range.

We shall continue to denote a time (space) matrix by A (¥) and a time (space) vector
by X (¢). We shall use II for a space-time mapping in which either time or space is
multi-dimensional; otherwise we shall write =.

A space-time mapping determines the communication between two cells:

Definition 6 ﬂow(v) specifies the distance and direction that variables on the stream v
travel at each step (compare [3]):

flow:V — 7
flow(v) = 06,/),

(End of Definition)

Let I = J+0,. Then A\, indicates the temporal distance (in time steps) of the
computations v(I) and v(J) at cells PE,; and PE,;, whose spatial distance is given by
c0,. Recall our assumptions that a computation takes one unit of time and a register
delays for one unit of time (Sect. 3). To implement the flow of a stream, say v, we need
(1/ | flow(v)]) —1 registers at the respective channel. If 66, >1, cells PE,; and PE,;
are not neighbours and the cells in between function as delay registers. Note that stream
v moves to the right if ¢6,>0 (flow(v)>0) and to the left if 06, <0 (flow(v)<0). ;

Restricting) to satisfy ged(Aoy /00y, A\oy/00,, -+, Aoy /a8,) = 1 normalizes the step
~ function in a similar way as we have normalized the place function with Ass. 4 plevmusly
If the ged is «, the throughput is reduced by a factor of « [7].

Definition 7 pattern(v(I)) specifies the location of v(I) (I €) at the first execution
step, where fs denotes the first execution step (compare [3]):

pattern : VxQ — Z
_ UI—(AI—fS)(O'eu//\av)’ if 00v>0’
pattern(v(I)) = { ol —(AI—fs)(00,/)8,), if ¢0,<0

(End of Definition)

Let us define p.;, = min{ol | I € ®} and p,,,, = max{cl | I€®}. PE, and PE,
are the leftmost and rightmost cells in the array. The following lemma, partly taken from
[9], specifies the step at which an input variable is injected into the array and the step
at which an output variable is ejected from the array.

Lemma 1 Let a stream be v and its associated dependence vector be §,,.

1. The step at which an input variable v(I) € IN, is injected into the array is given
by:
_ M — (a1 —ppin)(A0,/08,), if 66,>0,
Tule(D)) = { A = (0T —pun)(AB, [0b,), if 08, <0 L)
2. The step at which an output variable v(I) € OUT, is ejected from the array is given
by:
. M —(0I=pn.)(A0,/08,), if 08,>0,
Tou(v(I)) = { M —(oI—pos) (A0, [08.), if o0, <0 2)

(Proof omitted.)

The following two lemmata will play a technical role later on.

Two variables v(I) and v(J) satisfying I = J+m#b,, for a fixed m € Z;, represent
the same stream element at different points in the execution. The next lemma partially
reflects this fact.

Lemma 2 Let a stream be v and its associated dependence vector be 0.

1. v(J)€IN,, I =J+mb,, mel} = Ty(v(I))= Tn(v(J)).

9

2. v(I)eOUT,, I = J+mb,, meZ} => T,\(v(I)) = Tou(v(J))-
Proof.

1. 06,<0V 08,>0; without loss of generality, assume o6, >0.

o(J)€IN,, I = J+mb,, meZ}

{v(J)€IN,, by Lemma 1, Equ. 1}

Tm(v('])) =)‘J—(UJ—pmin)(’\av/aav)

{J := I—m#, on the right side}

T;n(v(‘])) = /\(I—mav) - (U(I_mav) —pm.in)(Aav/o-o'u)
{algebraic simplification, linearity of A and o}
Tin(v()) = A= (0] —prin) (A0, /00,)

{Lemma 1, Equ. 1}

Tin(v(J)) = Tin(v(1))

2. Similar. (End of Proof)

r el

Consider a stream v. If its input variables are injected into the array at distinct time
steps, its output variables will be ejected at distinct time steps. Intuitively, this follows
from the fact that the elements of the stream move at a fixed speed.

Lemma 3 Let v(li,),v(Jin) €IN, and v(1y),v(Jow) € OUT,,.
Tin(v(-[in)) # Tm(v(*]m)) = Tout(v(Iout)) # Tout(v(']out))

Proof. Because we are dealing with convex sets, there is a bijection between IN, and
OUT,. For element v(I) € IN,,, there is a unique m,) € Z; such that v(I+m,0,) €
OUT,. Then I, = L,+mb,, Jou = Jin+nb, (m,ne Z;).

Tin(v(Iin)) # Tin(v(Jin))

{by Lemma’ 27 Pa‘rt (1)7 T'm(v(Im)) = Tin(v(Iout)) a’nd T;n(v(‘]m)) :zfrin(v(‘]out))}
fZ—;n('v(-[out)) 7£ Tin(v(Jout))

{by Lemma 1, Equ. 1, substitute Tj,(v(I,y)) and Ti,(v(Jou))}

AIout_(o-Iout _pnﬁn)(/\ov/aav) 3& AJout - (JJout ""pmin)(Aav/o-gu)

{Pmin := Pmax, Maintaining the inequality}

)‘Iout—(anut —pmax)()‘a'u/aa'u) ‘/4‘ AJout - (UJout —pmax)(Aav/Uev)

{Lemma 1, Equ. 2}

Tout(v(Lout)) # Toue(v(Jous))

[

(End of Proof)

We shall use this lemma to reduce our analysis to either input or output variables as is
convenient, and infer the same for the other.

The conditions due to Lee and Kedem [9] that are necessary and sufficient for the
validity of a space-time mapping with respect to the quatitative model are stated next.
The numbering scheme of Lee and Kedem is given in parentheses. We omit one condition,

Cond. 4, because it has already been imposed as Cond. 4 of the quantitative model
(Sect. 3).

10

Theorem 3 Consider the system of UREs (®,D). Let I,J€® (I #J). A space-time
mapping 7 ts valid if and only if it satisfies the following four mapping constraints.

1. Precedence Constraint: A6;>0. (Condition 1)
2. Delay Constraint: | \0;/00;| e Y. (Condition 3)
3. Computation Constraint: ol=0J = I #AJ. (Condition 2)

4. Communication Constraint:

I-J#mb;, = (MI-J))ob; # (a(I-J)))6;. (Condition 5)

(Proof omitted [9].)

Our systolic array model imposes the restriction that I/O computations be performed
only at the two border cells. The communication constraint guarantees that only one
input variable per time step is injected. The following lemma restates the communication
constraint to emphasize this.

Lemma 4 Let 7 be a space-time mapping. Let v(Iy,),v(Jn) €EIN, (In# Jyn). Let I,J€®
(I#£J).

Tin(v(Iin)) 7é Tm(v(‘]m)) A (I_J # mev = ((/\(I—J))Ua'u 7+‘ (U(I_J))Aav)
Proof. aév <0V o0,>0; without loss of generality, assume o8, >0.

T (0(5) # Ton((J))
<= {by assumption, [, # Ji, A I #J; by Lemma 2, Part (1),
(v(I) €IN,, I = LIy+pb,, pe Iy = T, (v(I)) = Tiu(v(Ln))) A
(v(']in) EINm J = Jm+q0v7 qe Z; = Tm(v(J)) = T;n(v(']ln)))}
T-J % mb, = Ta(o(I)) # Tn(v(J))
<= {by Lemma 1, Equ. 1, substitute Tj,(v(I)) and T;,(v(J))}
I-J#ml, = A —(0]1—pu,)(A\0,/00,) # A —(0]—pyin)(A0,/00,)
<= {algebraic simplification, linearity of A and o}
I-J#mb, = (AI-J))ob,# (c(I-J))A0,

(End of Proof)
Example: Matrix Multiplication
For purpose of illustration, we choose the following space-time mapping;:
G
o) m- m 1

Let us evaluate the four mapping constraints:
1. M,=m, Mp=m?, M;=1. Hence the precedence constraint is satisfied.

2. My/06,=Ng/005=A0;/00,=1. Hence the delay constraint is satisfied.

11

3. o is injective. Hence the computation constraint is satisfied.

4. T(A(,0,k)=Tyn(B(0, 5, k) =Tyn(C(3,4,0) =m’+m+1 (0<i, j, k<m).
Hence, the communication constraint is violated.

(End of Example)

If we eliminate Cond. 4 of the quantitative model, the communication constraint. in’
Thm. 3 can be disregarded.

Theorem 4 Consider the system of UREs (®,D). Let I,J€® (I #J). A space-time
mapping 7 is valid with respect to the quantitative model without Cond. 4 if and only if
it satisfies the following three mapping constraints.

1. Precedence Constraint: A0,>0.

2. Delay Constraint: |)\;/c0;| € T.

3. Computation Constraint: ol=0J == I #AJ.
Proof. Thm. 3 and Lemma 1. (End of Proof)
Example: Matrix Multiplication

For the previous space-time mapping, each of the three streams A, B and C requires
m? links, one for each input variable of A and B and output variable of C. The 2m?
inputs must be injected into the respective links at step m®+m+1, the m outputs must
be extracted from the respective links at step m>+m?+m.

(End of Ezample)

Let us return to the original qualitative model (with Cond. 4). The next lemma states
that the communication constraint implies the computation constraint.

Lemma 5 If = satisfies the precedence constraint and the communication constraint, it
also satisfies the computation constraint.

Proof. Let I,Je® (I#£J).

Case 1. Assume I[—J = mb; (meZ™).

true
=> {assumption}
I—J =mb;
{multiply both sides with o, linearity of o}
o(I-J) = mob;
{06;#0 by Ass. 3, I#J, m>0, linearity of o}
ol#oJ
{propositional calculus}

ol=0J = Al#MJ

A

12

Case 2. Assume I—J # m#f;, (meZ™).
7 satisfies the precedence and communication constraints
= {Thm. 3, Part (1) and (4)}
M, >0 A (I-J #mb;, = (AI—=J))ob; # (oc(I-J))Ab;)
=> {00;#0 by Ass. 3, I#J}
ol=0J = A#MJ

While the precedence constraint asserts Af;> 0, this proof requires only A§;#0.
(End of Proof)

At this point, we have simplified Thm. 3 to the following:
Theorem 5 Consider the system of UREs (®,D). Let v(I),v;(J)e€IN,, (I#J). A

space-time mapping 7 is valid if and only if it satisfies the following three mapping con-
straints.

1. Precedence Constraint: A6;>0.
2. Delay Constraint: |X0;/c6;| € Z%.
3. Communication Constraint: Tin(v;(D) # Tin(v:(J)).-
Proof. Thm. 3, Lemmata 4 and 5. (End of Proo)

Example: Matrix Multiplication

1. The precedence constraint requires: (V7:0<:<3: ;>0).
2. The delay constraint requires: (Vi:0<i<3: (3 oy : ;€ Zt : \;=0;0;)).

3. Consider the communication constraint. Let us first consider the input variables
of stream A. For variable A(I) € IN,4, I can be expressed as I = plg+qlc
(0 < p,g <m). T,,(A(I)) is the step at which variable A(I) is injected into the
array.

Tin(A(1))
= {Lemma 1, Equ. 1}
M = (0] =Peyin)(A04 /50 4)
= {algebra}
M —0I(M04/004) + proin(A04/004)
= {I:=plp+qlc}
ApIs+40c) — oplp+90c)(A04/00 4) + Prmin(A04/004)
= {inner product calculation and algebraic simplification}
PAL+gA3 — (P01 +903)(A2/03) + Prmin(A2/02))

13

Similarly, we obtain for the input variables of streams B and C"

Tu(B(I)) = pra+grs—(po+903)(A/01) + Pmin(X1/01)
Tm(C(D)) = ph+are—(po14902)(A3/03) + Prmin(Xs/03))

The communication constraint requires: Ti,(A(I)), Tin(B(I)) and T;,(C (1)) each

must be injective mappings to Z.
(End of Ezample)

Lee and Kedem [9] provide a procedure for satisfying the necessary and sufficient
conditions given by Thm. 3. In Thm. 5, we state equivalent but simpler necessary and
sufficient conditions, which lead to a more efficient procedure. Both procedures do not
provide a constructive means for finding space-time mappings. As Thm. 5 states it, the
communication constraint is difficult to satisfy constructively.

Alternatively, one may specify bounds on the range of the coefficients in A and o and,
based on Thm. 5, enumerate all space-time mappings within the specified bounds. A
simple-minded enumeration procedure might be:

Procedure 2 (Construction of a space-time mapping by direct derivation of one-
dimensional time)

INPUT: A system of UREs (®, D), bounds on the range of the coefficients in A
and o, design constraints (such as the number of registers at some specified channels), a
cost function with upper bound.

OUTPUT: All valid space-time mappings.

1. Find the next space-time mapping satisfying the specified bounds. If there are no
more mappings, stop.

2. Verify the specified design constraints. If some constraint is violated, go to 1.
3. Verify the mapping constraints of Thm. 5. If some constraint is violated, go to 1.

4. Calculate the cost function; if it is within the specified upper bound, output the
mapping. Go to 1.

(End of Procedure)

The time complexity of an enumeration procedure depends on the bounds given to it.
Assume that the total number of space-time mappings within the bounds is b. Assume
® is a hypercube of length s. Step 1 takes O(b) time. Steps 2 and 4 take constant
time. The time taken by Step 3 is dominated by the verification of the communication
constraint. A hypercube has 2n surfaces with s™ points on each surface. Each surface
takes O((n—1)s""logs) time. Since there are 2n surfaces, Step 3 runs in O(n(n—
l)sn—1 log s) time. There are b space-time mappings to be verified. Hence, Proc. 2 runs
in O(bn(n—1)s""log s) time.

The formulation of a cost function will be discussed in Sect. 7.

14

6 Space-Time Mappings and Hyperplanes

In this section, we transform multi-dimensional to one-dimensional time. The properties
of space-time mappings and mapping constraints are studied further, based on the con-
cept of hyperplanes [5, 8, 17]. This leads to a more constructive procedure for mapping
UREs to the quantitative model.

Definition 8 Given f€Z (Q), a non-zero constant row vector ¢ €Z" (Q") and a column’
vector z€ 2" (Q"), the set
H={z|cz=p}

is called a hyperplane in 7" (Q") (H has n—1 dimensions.) (End of Definition)

Space-time mappings may be interpreted geometrically. The timing function Al and
the place function oI slice the domain of a system of n-dimensional UREs into (n—1)-
dimensional hyperplanes. Each hyperplane contains all points that are mapped to the
same value (step number or location).

For both A and o we consider two hyperplanes special. For o, they are the hyperplanes
whose points are mapped to the border cells PE, . and PE, . For A, they are the
hyperplanes whose points are mapped to the first and the last step number.

Before we can identify these special hyperplanes, we must extend domain ® such that
the points that use the input variables or define the output variables become part of its
boundary [4, 16].

Definition 9 The convez hull of a set X is defined as follows [17]:
conv.hull X = {Z$=1 Nz |t21, (Vi:0<i<t:z;€e X AX2>0), E:=1 Ai=1}
(End of Definition)

Definition 10 Consider the system of UREs (®,D). Let o = (0y,0,,--+,0,). The
extended domain of computation @5 of ® is defined as follows:

q)i = {I l J= Iimei’ ']Eq)’ Ig(ba m€Z+, prdnSUISpmax}
@p = U:-;l@i
¢y = {I|Ieconv.hull(®U®p) A I€Z"}

To maintain uniformity, the definition of a system of UREs (Def. 1, Sect. 2) must be
extended. We add to the already present recurrence equations:

Iedg\® - (Vov:veV:v()=v(I-46,))
(End of Definition)

®; contains the points that are added to the domain by extending dependence vec-
tor 6; in both directions. ®p represents the pipelining of input variables from the two
border cells into the array and of output variables from the array to the two border cells
(also called “soaking” and “draining” [3]). When combining the original domain and its
extension, we take the convex hull because the domain of computation must remain a
convex polyhedron (Sect. 2).

15

(m7 m, (5m_2)/3)

/o3 %

™~ B
1,1,1

. s

i b (1,1,-3) = 2—3m

(m,5—4m,1)
(a) (b)

b

(5—4m,m,1)

Figure 2: Extension of the domain of computation of matrix multiplication. In (a), ®p
consists of three polyhedrons, ® 4, ®5 and ®., that represent the extensions of ¢ along
dependence vectors 84, 05 and 6. @:ﬁn (<I)fﬁn, @gﬁn) is the side of ®, (Pp,P;) facing
us. In (b), ® is the cube inside the tetrahedron ®5. The minimum I/O plane @ _;, is the
trangular plane facing us. Input variables in IN, and INg enter and output variables
OUT. leave the tetrahedron through the minimum I/O plane. Three extreme points
of @, are highlighted with fat dots; they will be explained later in this section. The

maximum [/O plane ®,,,, degenerates to a single point; it is highlighted with a circle.

Definition 11 Consider the system of UREs (®, D). Let 7 be a space-time mapping.

. = {I|oI=pyn, J=I+mb; JeRUD, meQ}}
0 = {I|oI=ppuy, J=1-mb, J€QU D, meQ}}
Spin = (Vi:0<i<k:UD:)

Doy = (Vi:0<i<k:UD)

We call the two hyperplanes ®,;, and ®,,., the mazimum and minimum I/O plane. Their

portions attributed to dependence vector 8; are @iﬁn and (D:nax. We call the points of
®,.in and O, .. the I/0 points.

(End of Definition)
Example: Matrix Multiplication

Assume that zeros can be generated inside cells to obtain values for IN; and that OUT,

and OUTjg are not of interest. Choosing o =(1,1,—-3). By geometrical calculation, we
obtain @4, ®p, @, ®p and Py, as follows (Fig. 2):

&, = {(i,j,k)|0<i<m, 2—3m—i+3k<j<0, 0<k<m}

by = {(5,5,k) | 2—3m—j+3k<i<0,0<j<m, 0<k<m}

o, = {(3,7,k)|0<i<m, 0<j<m, m<k<(3m—2+i+j)div 3}

®p = &,UdgUd,

oy = {(3,7,k)|5—4m<i<m, 5-3m—i<j<m, 0<k <(3m—2+i+j) div 3}

16

(m,m,(5m—2)/3)
L 4
va
1]
A8 A2 s o I
, valiravavaramd
. o Vi Wl <z]
7 S Pl i
A Z Z 17 1 ./
Pai [l VAV
| Wl W <z
AZIF VAVAV A
> vl z/ k)

(m,5—4m,1)

Figure 3: The dependence graphs of matrix multiplication in the extended domain g
with respect to the given vector c=(1,1,-3).

where div denotes integer division. The UREs for matrix multiplication in ®g are ob-
tained as follows. The equations defined on ® remain unchanged (Sect. 2). The equations
defined on the extensions ® 4, ®5 and @, are:

1€®, — A(i,j, k) =A(, -1, k)
IE@B - B(Z7.7’ k):B(i_l)ja k)
1€y — C(i,5,k)=C(i,j, k—1)

The dependence graph in the extended domain ®p is displayed in Fig. 3. Choosing
o=(1,1,-3) yields ppin=2—3m and p_,, =2m—3.

A = {(,5,k) | 0<i<m, j=2-3m—i+3k, 0<k<m}

&5 = {(,4,k) | i=2-3m—j+3k, 0<j<m, 0<k<m}

0%, = {(i,5,k) | 0<i<m, 0<j<m, k= (3m—2 +i+j)/3}

Do = 02 UGS URT

Drnax = {(m,m, 1)}
Compare @, (®p, ®y) with (I)::ﬁn (@fﬁn, @Sﬁn).

(End of Ezample)

The following lemma provides a construction of I/O points.

17

I/0 plane I/0 plane

m
A\

Figure 4: An example of one-dimensional I/0 planes (n=2). The two I/O points I;;, and
I, with respect to a point 1€ ® and its dependence vector §; are shown.

Lemma 6 Consider the system of UREs (®,D). Take a vector o and a point I € @
(I=(I,L,---,1,)). The two I/O points I, (I = Itmb;, me QY) and Iy, (I, = IHnb;,
ne Q;) with respect to dependence vector 0, € D (0; = (0;1,0:2," -+ ,0;,)) are completely
determined by (Fig. 4):

_ Pmin—01 Pmin—01 Pmin—01
Iin - (Il+0i1 0'05 7I2+0i2 0'0,- 3 ’In+0'in O'Hi)
‘ _ Pmax —ol pmax_UI Prax— ol
Iout - (Il+0i1 0. ,12+0i2 py ’ 7In+0i pr)

1 (3 2

(Proof by calculation omitted.)
Example: Matrix multiplication

The extreme point (m,m, (5m—2)/3) of the minimum I/O plane is not integral if m # 3k+
(keZ}).

(End of Ezample)

I/O points are rational (@, Ppax C Q") but need not be integral, as the previous
example shows.
Next we restate Lemma. 4 (Sect. 5) using the concept of I/O planes.

Theorem 6 Let « be a space-time mapping. Let I, J;, € @inin (In#Jw) and I,J €@
(I#£J).

Mot My = (I=J#mb, = \I=J))ob, % (o(T-T)A,)
Proof. Lemmata 1, 4 and 6. (End of Proof)

Having completed our extension of the domain, we can now introduce in time similar
concepts t0 ppin and p,.. in space (Sect. 5). We define ¢,;, = min{\ | T€ D, UD ..}
and ¢y, = max{A | I € @, UPpax}- tmin and %,.. represent the first and last step
number.

We can calculate ¢, and ¢, ,, from ®_;, and ®,,,, with techniques of integer pro-
gramming. Integer programming is an NP-complete problem, also when applied to UREs,
but in many cases it turns out to be quite simple [11, 16]. Our search space is reduced
because only those extreme points in ®,,;, and @, ,, qualify that satisfy the dependences
imposed by A.

18

Definition 12 Let 7 be a space-time mapping. We call the following two hyperplanes
Thin = {{| M =tpm, 1€PnUP .}
Thax = {I| M=ty [€P,nUPmaxt}
the minimum and mazimum time plane. (End of Definition)
Example: Matrix Multiplication

The three extreme points of the minimum I/O plane are (m,5—4m,1), (5—4m,m,1)
and (m,m,(5m —2)/3). The only point of the maximum I/O plane is at (m,m,1).
An inspection of the dependence graph (Fig. 3) reveals that either (m,5—4m,1) or
(5—4m,m, 1) must be mapped to t,;,, and (m,m, (5m—2)/3) must be mapped to ..

o mA+(5—4m)A,+A; for YT ;={(m,5—-4m,1)}
i (5—4m)A +mAy+A; for Toip={(5—4m,m,1)}
tma.x = m/\l +m)‘2+((5m—2)/3)/\3 for Tmax = {(m7 m, (5m_2)/3)}
(End of Example)

When restricting I/O to the border cells, we are particularly interested in the number
of steps spent on soaking and draining.

t

Definition 13 Let 7 be a space-time mapping. Let ty, denote the step of the first com-
putation; let ty, denote the step of the last computation.

tyy = min{\l | I€®}

by = max{\l|Ic®}

The soaking time t, ., draining time t4.,;, and computation time t are given by

comp
tsoak = tgst—lmin

taran = tmax —tist

tcomp = hg—tgt1

(End of Definition)

Again, the points that are mapped to ¢, and t,, must be extreme points of ® and must
satisfy the dependences imposed by A.

Example: Matrix Multiplication

There are eight extreme points in ®: {(¢,7,k) | ¢ =1,m, j=1,m, k=1,m}. An
inspection of the dependence graph defined at domain ® (Sect. 2) reveals that point
(1,1,1) must be mapped to tg, and point (m,m,m) must be mapped to #.

lsg = ArtAgtas

hee = MA+mAy+mAg

B { (1=m)\+(dm—4)), for Tom={(m,5—4m,1)}
- (dm—4)A +(1—m)A, for YT ;n={(5—4m,m,1)}
taain = ((2m—2)/3)A; for T, ={(m,m,(5m—2)/3)}
teomp = (M—1)A+(m—1)A+(m—1)A3+1

tsoa.k

19

(End of Ezample)

Let us denote the total number of time steps taken steps,, the total number of cells
needed cells,, the total number of channels needed chans, and the total number of
registers needed regs, (each of these values depends on the choice of space-time mapping
7). The following lemma characterizes this dependence [9].

Theorem 7 Consider the system of UREs (®,D). Let = be a space-time mapping that.
satisfies Thm. 5. step,, cell,, chan, and reg, are given by: '

1. steps, = tax —tmin+1
2. cells, = prax—Pmin+1
3. chans, =k
4. regs, = cells, Zfié;"s”([1/flow(v;) | —1)
Proof.
1. Follows from the definitions of p_;, and py., (Sect. 5).
2. Follows from the definitions of ¢, and ¢,,,, (Sect. 6).
3. Follows from Cond. 4 of the quantitative model (Sect. 3).

4. Follows from (2) and (3) and from the fact that the number of registers needed

for propagation of the stream with respect to dependence 8; is | 1/flow(v;) | —1
(Sect. 5).

(End of Proof)

In the following theorem, we identify a sufficient condition under which the commu-
nication constraint implies the computation constraint.

Theorem 8 Consider the system of UREs (®g, D). Assume O, CZ". If 7 satisfies
the computation constraint, it also satisfies the communication constraint.

Proof.

7 satisfies the computation constraint.
= {Thm. 3, Part (3)}
VI, Jebg:0l=0J = A[#AJ)
= {®pin C Pg, by Def. 10 and assumption}
(V Iin’ JiIIEQInin : olmzaJin = Alm#)‘*]xn)
= {0l =0Jin =P, by Def. 11,}
(V Ly Jin € Pri * M1 # A1)
= {‘D;ﬁnc@min, by Def. 11,}
(¥ Jin, Jin € @y MinEATin)
= {Thm. 6}

The communication constraint is satisfied. (End of Proof)

20

(End of Proof)
Assuming ®,_, C Z", Thm. 3 can be restated without the communication constraint.

Theorem 9 Consider the system of UREs (®g, D). Assume &, € I". Let I,J € @
(I#J). A space-time mapping ® is valid if and only if it satisfies the following three
mapping constraints.

1. Precedence Constraints: A0;>0.

2. Delay Constraints: [X0;/00;|cT".

3. Computation Constraint: ol=0J = M#MJ.
Proof. Thms. 3 and 8. (End of Proof)
Example: Matrix Multiplication

Choosing o = (1,1,—1), we obtain |08, |=|00g |=| 00 |=1. Lemma 6 tells us that

the I/O points are integral, i.e., ®,;,, C Z". Hence, the mapping constraints are given by
Thm. 9.
Let us first pick a space-time mapping II that satisfies the mapping constraints of

Thm. 1:
10 0
II= [A] =101 1
7 11 -1
and then transform A into A by applying Proc. 1 to obtain the space-time mapping =:

A _[o2m-21 1
=le|~T 11 -1
By Thms. 1 and 2, = satisfies the precedence constraint and the computation constraint

of Thm. 9; it also trivially satisfies the delay constraint of Thm. 9. Hence, the space-time
mapping 7 is valid. This mapping is presented in [4].

(End of Ezample)

Theorem 10 Assume ®_;, ¢Z". For some system of UREs (®, D), there exists a space-
time mapping 7 that satisfies the computation constraint but violates the communication
constraint.

Proof. The proof presents an example that validates the theorem. Consider the system
of UREs (®, D***):
¢ = {(iajv k) I 0<s,7, kS4}

0103
D:(HA,HB,GC,H)()Z 1 0 0 2
0 010

Choosing 0=(1,1,—1), we obtain
o = {(i,4,k) | -5<i <4, ~1-i<j<4, 0<k<(24i+7)}
We pick the space-time mapping:

21

o]0 4]

By Lemma 6 and calculation, ®_;, ¢ Z" (because @I)flmgt I™). « satisfies the precedence,
delay and computation constraint, but:

Tm(X(1,374)t)=Tin(X(3’ L z)t)=5'

- Hence the communication constraint is violated.

(End of Proof)

If there are I/O points that are not integral, Thm. 9 requires an appropriate scaling
of the domain to ensure the containment of all I/O points in Z. We present a procedure
that returns a valid space-time mapping if the precedence constraint can be satisfied. In
the following, LCM stands for the least common multiple.

Procedure 3 (Construction of a space-time mapping by derivation of one-dimensional
via multi-dimensional time)

INPUT: A system of UREs (®, D) and a vector o.
OUTPUT: A vector A

1. Extend domain ® to obtain the new domain ®y (with respect to o) by Def. 10.
Name the minimal I/O plane ®_;,.

2. Find the smallest scaling factors a; (o; €Z") such that
(Vj:0<j<n:(Vi:0<i<k:|o;(0,;/06;)| €Z)) (sce Lemma 6).
Set « = LCM(Y j: 0<j<n:q;).

3. Set ¥y = {al | I € g}, i.e., scale the index points of @y by a factor of a. The
scaled version of ® ., is U,. € Z". Set Z={I | [€conv.hull ¥z A [€Z"}. Name
the new system of UREs (=, D). Name its minimal I/O plane = ;.

4. Find a (n—1) xn time matrix A such that II = [g] satisfies the mappings

constraints of Thm. 1.

5. Set r = n—1. Transform A to A using Proc. 1 with =, A and r as inputs.

6. Find the smallest 8 (8 € Z%) such that (Vi:0<i<k:|B(\;/c8;) | €TT), ie,
scale A by a factor of 3.

(End of Procedure)

When designing multi-dimensional systolic arrays, we can choose either the layout
in time or the layout in space before the other. Usually, one chooses the layout in time
first because time is considered more valuable than space. Posing the restriction that
the spatial layout be of one dimension only makes it sensible to choose the spatial layout

22

first. Most importantly, the choice of o determines the direction of projection of the
spatial layout. Therefore the input of o to the procedure. This is also the reason that
we prefer to reason not in terms of pattern but in terms of its dual in time: T,;,.

It can be shown that ®,,;,, CZ" <= Z.;, CZ". After scaling, all I/O points are
integral (¥, CZ"). Non-integral points in =, do not correspond to any computations.

Theorem 11 Proc. 3 returns a space-time mapping that satisfies the constraints of
Thm. 9. ?

Proof. Steps 4 and 5 guarantee that the space-time mapping satisfies the precedence and
computation constraint (Thms. 1 and 2). Scaling X in Step 6 guarantees that the delay
constraint is satisfied. It remains to prove that the communication constraint is satisfied:

7 satisfies the computation constraint.
{Thm. 3, Part (3)}

(VI,JeZ:ol=0J = A[#)J)

{¥,in CZ by Def. 10 and assumption}

(V Iin’ Jine‘lfmin : UImza‘]in ==)‘Imsé/\']m)
{oL;n=0Jin = Pmin by Def. 11}

(V Iin’ ']inE ‘I;min : Alm# AJin)

(¥ C U by Def. 11}

(Y L, i €Ul 2 My # M Jy)

{Thm. 6}

The communication constraint is satisfied.

el

(End of Proof)

7 Evaluation
Example: Matrix Multiplication

Assume that input variables IN; and output variables OUT, and OUTg are not com-
municated.

Tab. 1 lists several space-time mappings. The mappings in (a) have been derived by
Proc. 2, the ones in (b) are taken from the literature and have been derived by Proc. 3
or similar techniques, followed by individual optimizations. (In the row labeled by [15]°,
n is odd; in the row labeled by [15]°, n is even.) We also list the resource requirements
calculated following Def. 13 and Thm. 7.

(End of Ezample)

Let us compare Procs. 2 and 3. When one enumerates all solutions, one has complete
freedom to impose any design constraints one might like on the space of solutions. One
can also synthesize space-time optimal one-dimensional arrays. One reasonable cost
function for space-time mappings would be:

cost, = oysteps, + aycells, + aschans, + a regs,.

23

A o PEs | Registers | Soaking | Draining “Computing

(2,3,2) | (1,1,-1) | 10 40 12 12 22

(2,6,4) | (1,2,—-2) | 16 64 21 18 37

(2,24) | (1,2,—4) | 22 22 30 9 25

(1,2,6) | (1,1,1) | 10 60 3 27 28

(1,64)] (1,1,2) | 13 78 39 3 34 ;

(a) Size: 4x4; method: enumeration.

A o PEs Registers Soaking |Draining| Computing
[4] [(em-2,1,1)| (@1,1,-1) | 3m—2 |6m?’—13m+6|4m*—9m+5| 2m—2 [2m®—2m+1
01| 2,1,m-1)| (1,1,-1) | 3m—2|3m*—5sm+2| 3m-3 |2(m—1)*| m’+m—1
[15]°] (2m,1,22) | (m,1, =24 —3""22‘1 ——3"‘22“1 mi4+m—-2 | m*-1 —————-—5’”2‘22"“1
[15]°](2m—2,1,2)|(m~1,1,=2)|3n’0miz | 3m’-Omiz m’—1 | m’—m | Smmi

(b) Size: m xm; method: integer programming and others.

Table 1: Matrix multiplication; resource requirements.

where steps,, cells,, chans, and regs, are defined in Thm. 7 and the weights «; (0<:<4)
depend on the application. By selecting different weights, one can synthesize A, T', AT
and AT? optimal arrays [18]. The obvious disadvantage of enumeration is the dependence
of its time complexity on the chosen bounds. In our setting, there is good reason to keep
these bounds small: if dependence vectors are constants — and they usually are — large
bounds on A and o lead to potentially large communication distances.

Proc. 3 is based on linear algebra and integer programming. It is more constructive
than enumeration and its solution space is not restricted by (more or less) artificial
bounds, but it is difficult to take design constraints into account. Moreover, the resulting
solutions may be inefficient: while o maps the I/O points in planes ¥, ;, and ¥ ..
to the same location p.;, and py.., Step 5 will map them to distinct steps. But the
communication constraint of Thm. 6 only requires that the I/O points in ¥ . (¥)
for a fixed ¢ be mapped to distinct steps (Def. 11). In other words, even though it is
permitted to input distinct streams at a border cell in parallel, Proc. 3 prevents this.

8 References

[1] J. M. Delosme and I. C. F. Ipsen, “Systolic Array Synthesis: Computability and
Time Cones”, in Parallel Algorithms & Architectures, M. Cosnard, P. Quinton,
Y. Robert and M. Tchuente (eds.), North-Holland, 1986, 295-312.

24

[2] J. A. B. Fortes and D. I. Moldovan, “Parallelism Detection and Algorithm Transfor-
mation Techniques Useful for VLSI Architecture Design”, J. Parallel and Distributed
Computing 2, 3 (Aug. 1985), 277-301.

[3] C.-H. Huang and C. Lengauer, “The Derivation of Systolic Implementations of Pro-
grams”, Acta Informatica 24, 6 (Nov. 1987), 595-632.

[4] H. V. Jagadish, S. K. Rao and T. Kailath, “Array Architecture for Iterative Algo-
rithms”, Proc. IEEE 75,9 (Sept. 1987), 1034-1320.

[5] R. M. Karp, R. E. Miller and S. Winograd, “The Organization of Computations for
Uniform Recurrence Equations”, J. ACM 14, 3 (July 1967), 563-590.

[6] V. K. Prasanna Kumar and Y.-C. Tsai, “Designing Linear Systolic Arrays”, J.
Parallel and Distributed Computing 7, 3 (Nov. 1989), 441-463.

[7] H. T. Kung and M. S. Lam, “ Wafer-Scale Integration and Two-Level Pipelined
Implementations”, J. Parallel and Distributed Computing 1, 1 (Aug. 1984) 33-63.

[8] L. Lamport, “The Parallel Execution of DO Loops”, Comm. ACM 17, 2 (Feb. 1974),
83-93.

[9] P. Lee and Z. Kedem, “Synthesizing Linear-Array Algorithms from Nexted for Loop
Algorithms”, IEEE Trans. on Computers 37, 12 (Dec. 1988), 1578-1598.

[10] D. I. Moldovan, “On the Design of Algorithms for VLSI Systolic Arrays”, Proc.
IEEFE 71,1 (Jan. 1983), 113-120.

[11] P. Quinton, “Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equa-
tions”, Proc. 11th Ann. Int. Symp. on Computer Architecture, IEEE Computer So-
ciety Press, 1984, 208-214.

[12] P. Quinton and V. van Dongen, “The Mapping of Linear Recurrence Equations on
Regular Arrays”, J. VLSI Signal Processing 1, 2 (Oct. 1989), 95-113.

[13] S. V. Rajopadhye and R. M. Fujimoto, “Synthesizing Systolic Arrays from Recur-
rence Equations”, Parallel Computing 14, 2 (June 1990), 163-189.

[14] I. Ramakrishnan, D. Fussell and A. Silberschatz, “Mapping Homogeneous Graphs
on Linear Arrays”, IEEE Trans. on Computers C-35, 3 (Nov. 1986), 189-209.

[15] I. Ramakrishnan and P. Varman , “Modular Matrix Multiplication on a Linear
Array” IEEE Trans. on Computers C-33, 11 (Nov. 1984), 952-958.

[16] S. K. Rao and T. Kailath, “Regular Iterative Algorithms and their Implementations
on Processor Arrays”, Proc. IEEE 76, 2 (Mar. 1988), 259-282.

[17] A. Schrijver, Theory of Linear and Integer Programming, Series in Discrete Mathe-
matics, John Wiley & Sons, 1986.

25

[18] J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, 1984,
Chap. 2.

[19] Y. Wong and J. M. Delosme, “Optimal Systolic Implementations of N-Dimensional
Recurrences”, Proc. IEEE Int. Conf. on Computer Design (ICCD 85), IEEE Press,
1985, 618-621. Also: Tech. Report 8810, Department of Computer Science, Yale
University, New Haven, April 1988.

26

Copyright © 1990, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

