LECS

sued usppIy YIM Suoneoiioads 1im SSauj09.4i09 Buinold

Laboratory for Foundations of Computer Science

Department of Computer Science - University of Edinburgh

Proving correctness w.r.t specifications
with hidden parts

by

Jordi Farrés-Casals

LFCS Report Series ECS-LFCS-90-117
LFCS July 1990
Department of Computer Science
University of Edinburgh
The King's Buildings

Edinburgh EH9 3JZ

Copyright © 1990, LFCS

Proving correctness w.r.t. specifications with hidden
parts

Jordi Farrés-Casals”

July 11, 1990

Abstract

The task of proving the correctness of an implementation w.r.t. a formal
specification is sometimes complicated by the use of auxiliary (hidden) func-
tions and sorts within the specification which are needed for the specification
but-are not meant to be implemented.

Auxiliary sorts and functions are the normal way to express requirements
in abstract model specifications. Algebraic specifications became popular as
a way to define the elements of a system without representing them in terms
of more primitive concepts, avoiding the definition of any extra structure.
However, it has been shown that hidden functions are in general necessary
for specifying computable functions [Maj 77, TWW 79].

In this paper we analyze general proving techniques for specifications
with hidden parts and, in particular, an strategy which is complete when
some side conditions are met.

1 Introduction

Many algebraic specifications of a system, especially if they are large, provide a
lot of information describing functions and data types which are not interesting
either to the user of the system or to the person implementing that system.

From a technical point of view, some of this auxiliary information is known as
the hidden part of a specification and it has been shown necessary to overcome
the lack of expressiveness of ordinary equational specifications.

From a methodological point of view, the hidden part of a specification biases
the implementation: those implementations of the system based on an implemen-
tation of the hidden part are easier to verify. In such cases a change of bias can
cause great disruption in the proof. For example, consider a compiler function

*Laboratory for Foundations of Computer Science, University of Edinburgh, King’s Buildings,
Edinburgh EH9 3JZ, Scotland. Supported by a grant from the Ministerio de Educacién y Ciencia.

which is specified by a simple interpreter and then implemented in a more efficient
way without respecting any of the structures by means of which compiler was
defined. The proof of correctness would be a great deal more difficult that the
proof of correctness of a direct implementation of the interpreter.

In this paper we are interested in implementations which do not follow the
bias of the specification, and their correctness proofs. This is a very common
case in practice since following the specification bias may lead to inefficient im-
plementations, as in the case of the compiler or more precisely in the example
below.

1.1 Example

Suppose we want to add a function mre: listnat -> nat which computes the
most repeated element in a list, to a specification ListNat of lists of natural
numbers. Soon we realize that the available functions in ListNat, i.e. car, cdr,
emptylist, cons and some operations on naturals, are not enough to directly
define the new function. We proceed by defining an auxiliary function which
counts the number of repetitions of a natural number in a list of natural numbers.

SP1= Enrich ListNat by
Hidden
count: 1listnat, nat -> nat.
YV x:nat. count(emptylist, x)= 0;
Y x1,x2:nat; l:listnat.
count(cons(x1,1),x2)= if x1=x2 then 1+count(l,x2)
else count(l,x2)
in
mre: listnat -> nat.
(1) V x:nat; l:listnat. count(l, mre(1)) >= count(l,x)
end

Any eflicient implementation of mre will not implement count directly but
a function which computes simultaneously the frequencies of all elements in the
list. In a stepwise refinement methodology, the following step leads in the direc-
tion of the desired implementation by defining mre in terms of a new function
frequencies: listnat -> set(mat x nat) and some extra structure defining
sets of pairs of natural numbers SetPairsNat (with sort name set(nat x nat))
and lists of pairs of natural numbers ListPairsNat (with sort name list(nat x
nat)).

SP2= Enrich ListNat by
Hidden
Enrich SetPairsNat + ListPairsNat by

sort: set(nat x nat) -> list(nat x nat)
frequencies: 1listnat -> set(nat x nat).
frequencies(emptylist)= emptyset;
V 1:listnat; i,x:nat.
if ((i,x)€efrequencies(l)
and V j:nat. (j,x)€frequencies(l) = i>j)
then frequencies(cons(x,l))=frequencies(1)U{(i+1,x)}

V 1:listnat; x:nat.
if A i:nat. (i,x)€&frequencies(l)
then frequencies(cons(x,1))=frequencies(1)U{(1,x)}

{ Axioms for sorting a set of pairs by the first
element of the pair, in decreasing order }

in
V 1l:listnat.
mre(l)= if l=emptylist then O
else proj2(car(sort(frequencies(1))))
end

The function frequencies yields a set of pairs, where each pair contains a
counter and an element of the argument list; for example

frequencies([1,3,2,11)={(1,1),(1,3),(1,2),(2,1)}

Here, 1 occurs twice in the argument list so the result contains both (1,1) (first
1) and (2,1) (second 1). We have car(sort(frequencies([1,3,2,1]1)))=(2,1)
and so the mre of the list is 1.

In the next refinement step frequencies can be made visible, i.e. forced to
be implemented, or its definition may be changed so that redundant information
is not included. Moreover picking the largest element need not be implemented
using a sorting operation as in car(sort(...)). Eventually, after a few steps we
obtain a correct and efficient implementation.

The above refinement step is proven correct by showing that the axiom (1) which
defines mre in the specification SP1 can be deduced from the implementation,
SP2, together with the definition of count (the hidden part of SP1): Informally
the proof proceeds by proving that:

1. The frequencies of the elements of a list are in the set created by frequencies.

Y 1l:listnat; x:nat.
if count(1l,x)>0 then (count(l,x),x)€ frequencies(l)

2. The counters in the set created by frequencies denote at most the real
frequencies.

Y i,x:nat; l:listnat.
if (i,x)€ frequencies(l) then i<count(l,x)

3. By definition of sort and car the term car(sort(s)) yields the pair in s
with the highest counter.

V s:set(nat x nat). if s#emptyset then
V i,y:nat. if (i,y)€s then proji(car(sort(s)))>i

4. From the above theorems we conclude that for non-empty lists count (x,1)
can be expressed in terms of frequencies(1).

(3 x:nat. (count(l,x), x)=car(sorting(frequencies(1))))
or (l=emptylist)

5. Hence, mre(l) is the most repeated element in 1 provided 1 is not an empty
list, and zero when 1 is empty. Therefore, it is always the case that:

V x:nat; 1l:listnat. count(l, mre(l)) > count(l,x)

Apart from the technicalities of the proof, the interest of this example arises
from the difficulties in generalizing this style of proof to a specification language
with arbitrary use of hiding and justifying that it is sound.

The rest of the paper is divided in five sections. Section 2 gives a formal pre-
sentation of the problem and shows how little can be done in general. Section 3
enphasizes the particular structure of specifications such as SP1 and defines two
general properties of this kind of specifications: persistency and independence. In
section 4 the strategy is presented and proved sound for persistent hidden parts.
In section 5 the strategy is proven complete specifications with an independent
hidden part. Section 6 summarizes the results and draws some conclusions.

2 A specification language with hiding

We shall consider a specification to be a first order presentation with a part of the
signature considered hidden. In fact, the restriction presentations to FOLEQ' is
not needed but it helps to keeps things simple.

Our specification language is defined as follows:

1First order logic with equality.

Syntax
SP == ®y| D,SP | T,SP | ®SP

Where ¥ is a multi-sorted first order signature, ® is a finite set of multi-sorted
first order sentences, and ¢ is a signature inclusion between multi-sorted first order
signatures.

A specification is well-formed if in @y, ® consists of sentences over ; in D,SP
with ¢ : ¥1 — X2, SP is a specification over ¥2; and in T,SP with ¢ : £1 — X2,
SP is a specification over X1.

The semantics of a well-formed specification SP is defined by a first order
signature Sig[SP] and a class of structures satisfying the specification Mod[SP].
Well-formed specifications and their semantics are defined recursively as follows:

Semantics
Stgl] | Mod|] Conditions
O | X {Ae Mod¥]| Al 0} ® defined over ¥
DSP| X1 |{A]|,| A€ ModSP]} S1g[SP] =¥2, 1: X1 — X2
TSP | X2 | {A€ Mod[x2]| A], € Mod|[SP]} | Sig[SP] = X1, ¢: X1 — X2
OSP | ¥ {A € Mod[SP] | A = 0} ® defined over X, Sig[SP] =X

Where A|, stands for the reduct model along the signature inclusion ¢ and =
for the standard satisfaction relation between models and first order sentences.
Intuitively, an operator T, over a specification SP extends the signature of a
SP with new symbols which can be arbitrarily interpreted whereas the old symbols
must preserve their interpretation as in SP. An operator D, over a specification
SP reduces its signature but it keeps the same meaning for the symbols which are
left, in other words, it hides some symbols.
Two specification are equivalent is they have the same signature and class of
models. Given this notion of equivalence, and since this specification language is

a sublanguage of ASL [SW 83], a normalization result follows immediately from
[Bre 89].

Fact 2.1 Every specification SP is equivalent to a specification of the form D,®.
Moreover, D,® can be computed from SP.

This fact shows that we can think of specifications as just presentations with
a hidden part. This simple language is adequate to illustrate the main problems
behind hiding and also their solution.

Second order logic is related to this specification language since D, can be seen
as a generalization of a second order existential quantifier. The difference is that
second order logic is single sorted and therefore 3° cannot hide sorts whereas D,
can.

Moreover, as in ASL, the underlying logic for the sentences and the nature
of the models can be changed to another institution [GB 84, ST 88a] without
affecting forthcoming results (see Conclusions).

Entailment & Proofs

Implementations of a specification SP1 are assumed to be specifications SP2 re-
stricting the class of models, i.e. Mod[SP2] C Mod[SP1]. Therefore, we shall
refer to them simply as antecedent and consequent, written SP2 = SP1. Since all
specifications can be reduced to their normal form, our task can be described as
follows:

Task: D92} D, %1

YH1 YH2
Given two finite presentations ®1 and ®2 over signa-
tures 2 H1 and X H2 which are two extensions of X,) 5
prove that all models over ¥ obtained by restricting mod- ¢ ¥ L

els of ®2 can be obtained by restricting models of ®1.

Given such a task and considering that we only know how prove entailment
between sentences over the same signature, there are only two reasonable things we
may try naively to do: prove that ®1 follows from ®2 in an appropriate extension
of both signatures, or prove that all visible consequences of ®1 follow from ®2.
Unfortunately, the first approach only works for some trivial cases and the second
one is unsound.

First naive approach.

If we try the first one, we want to mix in our reason- YH
ing sentences over £H1 and over L H2 without con- 9 Bl
fusing their auxiliary symbols; therefore, we consider

the pushout signature ¥ H. Now, if we prove that

11'(82) |= 12'(®1) (also written ®2 =5z ®1) then since LH1 YH2
®2 is finite (equivalent to a sentence), by the Craig in-

terpolation lemma there exists a finite set of sentences 1 12

® over ¥ such that b

(2) P2Fsp, @ and @ gy 91

Turning around the argument, a refinement D,,®2 |= D,;®1, can only be proven
correct in this fashion if there exists an intermediate flat specification ® satisfying
(2).

However, if this is case, the symbols in hidden part of ®1 are rather trivial since
their properties can be inferred from sentences in ® which do not mention them.
In specifications such as mre in section 1.1, a hidden part is not only needed

6

in the specification but also in the implementation. In general, we expect the
implementation to carry more auxiliary and hidden symbols that the specification,
contrary to the cases which are provable using this strategy.

This approach offers surprisingly little. We might think that at least those im-
. plementations which proceed by implementing the hidden part used in the spec-
ification should be provably correct. For example, given the specification SP1 in
section 1.1 we propose the following refinement:

SP2= Enrich ListNat by
Hidden
count: listnat, nat -> nat

{ Axioms of count as in SP1}

in

mre: listnat -> nat.

V x:nat; 1l:listnat.

mre([])= 0;

mre(cons(x,1))= if count(l,x)+1<count(1l,mre(l))
then mre(l)
else x

end

In this case the proof is easier because the implemen-

tation follows the bias of the specification, and we can X H1 YH?2
directly prove that ®2 gy, ®1. The difference with ‘3

the approach just proposed is the existence of an inclu- /1 2
sion ¢3 (identity in this example) which is missing in the ¥

general case.

On the the other hand, the existence of ¢3 does not guarantee that a refinement
can be proved correct since the same symbols may have a different meaning in the
two specifications.

Second naive approach

More realistic is the second approach where we prove that:
P2 = 17|,

where .** means closure of a set of sentences under semantic entailment and _|,;
forgets the sentences which mention symbols not in ¥. Unfortunately, due to the
difference in expressive power between flat theories (even if they are infinite) w.r.t.

7

presentations with hidden parts studied in [Maj 77, TWW 79, BBTW 81], this
proof strategy is, in general, unsound [BHK 86, Far 89]. For example (from [BHK
86]), suppose we are asked to prove

Nat | NonStandNat

- where Nat is a specification of natural numbers including the standard interpreta-
tion of the natural numbers as a model, whereas NonStandNat specifies the class
of the non-standard models for the natural numbers. It is well-known that all
the first-order properties of the non-standard models are satisfied by the standard
models of the natural numbers; however the refinement is incorrect.

In many cases this strategy is sound but then it happens that ®1**|,; is infinite
and may not be finitely presentable, making the proof very hard. Even worse, in
a case where the strategy is sound and ®1*|,; happens to be equivalent to a finite
presentation ®, we can prove that ®2 = ® but it will hard to prove the equivalence
between ® and ®1™*|,;, in particular, it will be as difficult as the original task.

We conclude that given the general task of proving refinements between specifi-
cations with hidden parts we fail to prove cases such as the one in section 1.1, and
indeed there are very few cases where refinement can be proven. In the follow-
ing section we present some restrictions to the general case needed to successfully
prove examples like the one in section 1.1.

3 Persistent and independent enrichments

The main difference between the general case, as presented in the last section, and
the example, is the existence of a structure in the axioms of the example which
allows us to distinguish some of them as defining the hidden part and some others
as using the hidden part in order to define a visible enrichment. Therefore, we
shall assume from now on that our task carries such a structure. This structure
is formally defined below.

In general, we shall distinguish within the visible part,

¥, those visible symbols in terms of which the hidden YH1
enrichment is defined, 20, the inclusion along the hidden

enrichment, ¢1,, and finally the inclusion along the visi- A 1
ble enrichment defined on top of the hidden enrichment, v

1, _

In the example SP1 in section 1.1, X0 is the signature of X041
ListNat, 11, adds count, and ¢1, adds mre producing

the whole signature ¥ H1, which is then constrained by i1y,
hiding count along ¢1. 0

Such a structure of the signatures must be imposed upon the sentences so that,
instead of having a single set of sentences ®1 over X H1 and consequent D, ®1 as
in the last section, we have three sets of sentences:

®1,: set of sentences over 0.

®1,: set of sentences over L0H1 specifying the hidden part.

®1,: set of sentences over L H1 specifying a visible enrichment
using the hidden part.

Therefore the consequent is:
Dbl(q) 1’UTL].1,) (q)lth,lh)@lO

Now, we must establish the conditions under which such a decomposition captures
the informal ideas of specifying the hidden part and using the hidden part for
specifying a visible enrichment. In order to do that, we define the concepts of
persistency and independence.

Definition 3.1 An enrichment by X, -sentences ®, w.r.t. a signature inclusion
te : X = X, is the term ®,T,, which produces specifications over X, when it is
composed with specifications over X.

Given a signature inclusion ¢, : ¥ — %, and X -sentences ®,, an enrichment
®_.T, is persistent w.r.t. a X-specification SP iff for all A € Mod[SP] there is a

etie

model B € Mod[®,T, SP] which extends A, i.e. B|,, = A.

Given signature morphisms tg, (,, t and ¢, forming a
pushout diagram as in the figure above, and sets of sen-
tences @, over LOH1 and ®, over SH1, an enrichment -|., .

®,T,, isindependent w.r.t. a £0-specification SP and B
an enrichment ®,T, , iff for all A € Mod[(®,T,,)SP] A

and B € Mod]D,(®,T,)(®,T,)SP] such that B, = |z
Al,,, there exists C € Mod[(®,T,,)(®,T,,)SP] such that

Cl.. = A and C|, = B. L

Remarks

1. An enrichment to a presentation is a theory extension and a persistent en-
richment is a particular kind of conservative extension.

2. If ¢, and ¢, are inclusions, we can restrict the definition of independence to
the existence of inclusions ¢ and ¢ without loss of generality. Moreover, if
the pushout of inclusions exists then inclusions ¢ and ¢g are unique given ¢,
and ¢,.

It worth noting, that inclusions are only used for the sake of simplicity. The
results below hold on arbitrary signature morphisms, although persistency
of an enrichment ®.T,_ is generaly lost is ¢, is not injective.

3. Often, we omit the translations, 7,, where this can be inferred from the
context. Thus we write ®, for .7, , also we write [®;] to denote the hid-
den enrichment and omit D,. Thus, D,(®,T,,)(®,T,,)SP can be written as
o, [®,]SP.

We shall use this short notation in our explanations, though the full notation
is kept in the results and their proofs.

4. The functor Models() mapping each signature ¥ to its category of models,
first order structures over ¥, is co-complete. Therefore, the pushout diagram
of signatures induces a pullback diagram of models. Hence, C happens
to be the pullback model of A and B w.r.t. _|,, and |,,. We shall call
this model “amalgamed union” (generalizing the notation introduced in the
amalgamation lemma [ST 88b] for algebras), denoted A & B.

Now, we can rephrase the definition of independent, by saying that: ®, is
independent w.r.t. SP and ®, iff the specification ®,9,SP is closed under
amalgamed unions between models of ®,SP and models of ,[®,]SP.

From an intuitive point of view, persistency of a hidden enrichment @, w.r.t. a
specification SP ensures that SP is not indirectly modified by some requirements
of the hidden part, i.e. [®,]SP is equivalent to SP. Independence of a hidden
enrichment w.r.t. specification and a later visible enrichment means that the choice
of a particular model for the hidden part does not rule out any of the possible
solutions (visible models).

In next section we shall see how these conditions relate to correctness proofs,
but we show first how independence is related to two other properties.

Independence versus persistency

We might think that a more natural condition upon a visible enrichment on top of
a hidden enrichment is persistency, at least persistency w.r.t. the hidden symbols.
This notion can be formalized as relative persistency.

Definition 3.2 Given signature morphisms g, ¢,, ¢

and ¢, forming a pushout diagram as in the figure, an \
enrichment ®,T, isrelatively persistent w.r.t. a pre- Ly ¢
vious enrichment ®,T, and a specification SP, iff for

all A € Mod[(®,T,,)SP] for which there exists B €

'E
Mod[D,(®,T,)(®,T,,)SP] such that B|,, = A|,,, there
ezists C € Mod[(®,T,,)(®,T,)SP] such that C|,, = A. ‘h

10

This property states persistency of the second enrichment w.r.t. that part of the
signature added during the first (hidden) enrichment. Technically, C' extends A
as in the definition of persistent enrichment, but now A is not an arbitrary model;
hence, relative persistency is weaker that persistency. Intuitively, the axioms of
®, cannot further constraint the symbols to be hidden but they can add new
constraints to the old visible symbols defined in SP.

It is not difficult to see that independence entails relative persistency.

Proposition 3.3 If an enrichment ®,T,, is independent w.r.t. a specification SP
and later enrichment ®,T, , then ®,T, is relatively persistent w.r.t. ®,T, and

SP.

Proof Trivial, by taking A @ B as the extension C of A. O

But, independence is more than persistency of the hidden enrichment plus rela-
tive persistency of the visible enrichment. Consider the specification D (®,T,,)(®,71,,)®
with:

b =1{s;a,b} = {s;a,b,h} ® = {a # b}
l’v={3;a7b7h}‘—_){3;a7b7hav} thw
L={3;a,b,v}b—>{s;a,b,h,v} (I)v:{v:h}

Or more explicitly, it can be expressed by:

Enrich
sorts s
operations a,b: s.
axioms a#b
Hidden
operations h: s.
by
operations v: s.
axioms v=h
end

Here, both enrichments are persistent but ®,T,, fails to be independent because
{a=1,b=2,v =1,h =2} is not a model of (®,7,,)(®,7,,)® but it can be
obtained as the amalgamated union of a model of D (®,T,,)(®,T,,)®,
{a=1,b=2,v =1}, and a model of (®,T,,)®, {a =1,b=2,h =2}.

11

Since neither relative persistency nor persistency (as above) are enough to guar-
antee independence, we might think that persistency is weaker than independence
as relative persistency has been shown to be. However, independence does not
guarantee persistency. Consider for example:

Lh={8;a,b}‘-—>{8;a,b,h} (I)-:w
ty, = {s;a,b,h} — {s;a,b,h,v} o, =0
v={s;a,b,v} = {s;a,b,h,v} ¢, ={v=a,v=1>}

In this case the hidden enrichment is independent; i.e. given two models for
{s;a,b,v} and {s;a,b,h}, if v =a = b in the first and both agree in {s;a, b} then
they can be combined into one (®,7,,)(®,T,,)®. But the visible enrichment it is
not persistent since it requires a = b.

Summing up, independence and persistency are unrelated. However, relative per-
sistency is a weak notion of persistency which is necessary for independence.

Independence versus persistent functors

It is very common to find cases like count where the hidden part is totally defined;
i.e. ®,T, is a persistent functor over the models of ®. Then independence follows
automatically:

Proposition 3.4 Given a specification (9, T,)SP such that for all A € Mod[SP]
there exists exactly one (up to isomorphism) B € Mod[(®,T,,)SP| such that
B|,, = A, then for any visible enrichment ®,T, and morphisms ¢ and vg forming
a pushout diagram as in the figure, ®,T,, is independent w.r.t. SP and ®,T,,.

Proof For a given model B of D,(®,T,)(®,T,,)SP,

there is (up to isomorphism) a unique A € -, s
Mod[(®,T,,)SP] such that A|, = B|,. On the B
other hand, by definition of D, there exists a C € A

Mod[(®,T,)(®,T,,)SP] such that C|, = B. Since im
Cl.po = Al,,, by the uniqueness of A we conclude that

C is also an extension of A, C|,, = A. L

m) Al, = B|

th LB
The relation between persistent functors and amalgamated unions is not new. If
we consider a specification language where specifications only denote isomorphic
classes of models and hidden enrichments are required to be persistent functors
(such as flat and parameterized specifications in the initial approach [EM 85]) the

extension lemma establishes a similar connection.

12

4 Proving refinements with hiding - soundness

As we notice in section 1.1, some proofs of refinement can be carried out by import-
ing the hidden part of the specification into the implementation and then proving
that the visible part of the specification follow from the enriched implementation.
The machinery introduced in the last section provides the means to formalize such
a proof strategy.

In the following, our task is assumed to be proving

D2 | 81,[61,)®1,

instead of D,®2 |= D,;®1 as it was proposed in section 2. Hiding is only required
to be explicit in the consequent since explicit hiding in the antecedent restricts
the task without getting any better results.

At our disposal, we have an inference system for first order logic with equal-
ity, =, and the satisfaction lemma relating reducts to satisfaction, i.e. for all
morphisms ¢ : ¥1 — 32, models A over ¥2 and sentences ¢ over X1,

Ay it AEdy)

As said before, when morphisms are understood from the context A = «(p)
can be denoted by A 5, .

Lemma 4.1 Given presentations ®1 over X0, , zH ,
®1, over YOH1, ®1, over LH1 and ®2 over TH2, ‘2/ Yh

92,81, gy @1, 92 sy Pl SHI1 SH2

Da2®2 ': DLl(q)lthlu)(q)lthlh)q)lﬂ
l’l'u/ Ll\ A
by

is a sound inference rule provided the signa-

ture morphisms are arranged according to the two Y0H1
. . . lEg
pushout diagram to the right and ®1,T,,, is a per-
sistent enrichment w.r.t. ®1,. L1y
X0

Proof For an inconsistent theory ®2 the lemma

' G
holds trivially. e Jar
Otherwise, let A be a model of D,,®2; then there ‘ / \ "
exists B, = ®2 such that B,|, = A, and C €

Mod[(91,T,,,)®1,] such that C|,, = Al,,. C is B, B,

guaranteed to exist because, by the rule’s premise _ |\‘ ,/I

92 =p g ®1, s0 Al = @1, and, by persistency of fof la i e
o

®1,T,,, Al., can be extended to an algebra C as

required. lip
Now, we consider amalgamated unions B; = A@C k\ l
and G = B, @ B, according to the diagram at the .
right.

13

By the satisfaction lemma it can be shown that G gy ®2 U ®1,. Then from
the rule’s premise G |=zg ®1,, therefore G|, € Mod[(®1,T,,)(®1,T,,)®1,] and
finally A = G|01;L2;, € MOd[Dn(‘I’luTnu)((I)lhTu,.)‘mo]- L]

Persistency is a sufficient condition for the soundness of the rule, but it is not
necessary; i.e. a correct refinement

D@2 = D,(®1,T,,)(®1,T,,)®1,

may satisfy the premises of the rule and ®1,T,;, not to be persistent w.r.t. ®1,.
The crucial point for considering persistency as an adequate condition has to
do with its quantification, i.e. which sets of axioms (free variables of the rule)
out of ®1,,®1,,®1, and $2 are bound and which are free in the condition. For
example, let
V&1, @1,, 1, 92.
Condition(®1,, ®1,,91,,82) < Rule(dl,, 1,21, P2)
mean that Condition is a condition for soundness and completeness of the rule.
In our case we have (by lemma 4.1 and lemma 4.2 below)
Vq)].o,'q)lh.
Persistency((91,T,,)®l,) <> V®1,,92. Rule(®1,, ®1,, 21, 92)
which means that persistency is adequate when we look for a condition on @1,
and ®1, independently of what ®1, and 2 might be. From a methodological point
of view, this is satisfactory since we would expect that specifications are written
before their implementations and that inner enrichments are written before outer
ones; thus, at the time of writing the specification of the hidden part, ®1,, only
®1, is bound.

Some alternative sufficient conditions for soundness can be found by changing
the bound variables; e.g.

V®1,,82. Persistency((91,T,,)92) = Y®1,,®1,. Rule(...)

where 1, = 42;1(1,11,((1))). This condition is weaker than persistency of ®1,7, w.r.t.
®1, since it only requires persistency of those models of the consequent which are
fewer than the models of the antecedent. Looking at the proof of the lemma we
realize that only persistency of A|, for A € Mod[D, ,,®2] is required. Therefore,
persistency of <I>1;LTL1§1 w.r.t. D P2 guarantees soundness.

Unfortunately, this soundness conditions asks for requirements on the an-
tecedent (implementation side), and that is not methodologically desired.

Considering only bound variables in the antecedent, we can produce a rule
such as

V®1,, @1, ®1,. ThPersistency((®1,T,1,)(P1,1,,)P1,) => V®2. Rule(...)

14

where Th Persistency means that only persistency for those models of ®1; which
satisfy (®1, U ®1, U ®15)™|5, is needed. This also easy to prove because other
models cannot be correct implementations and only persistency over correct im-
plementations (models of D ,$2) is needed.

However, ThPersistency is not a necessary condition even under a proper
quantification and in practice differs little of the clean model-theoretical definition
of persistency.

Summing up, these sufficient conditions for soundness can be used for proving
a refinement correct but are not adequate conditions to consider when designing
specifications.

To conclude we can prove, as promised above, that persistency is indeed neces-
sary w.r.t. the proper quantification.

Lemma 4.2 Gliven finite presentations ®1, over X0 and ®1;, over X0H1,

92,01, Fxy ®1, 92 |zy Ol
DL2@2 ’:: DLI(QIUTLIU)(thZIh)q)]-O

(\7’@1,,,@2.) = Persistency((®1,T,,)®1o)

provided signatures and morphisms are arranged as in lemma 4.1.

Proof Given a non-persistent ®1,7,, w.r.t. ®1,, there exists a model of @1,
which cannot be extended to a model of (#1,T;,,)®1,, hence

Bl I Dy, (P1,T,,) 01,

L1y
then if we choose ®2 and ®1, such that ®2 = (¢;:2)(®1,) and ®1, = @ we get
DLZq)Q bé Dbl(@lvalu)(@lhTtlh)q)lO

while the premises of the rule hold trivially. O

So far, we have given an inference rule for proving refinements w.r.t. specifica-
tions with a persistent hidden enrichment. Now, we shall show that the rule is
good enough for proving refinements w.r.t. independent specifications.

5 Proving refinements with hiding - completeness

In this section we show how the rule given in the last section is in general sufficient
for proving refinements of independent specifications. Later the converse will be
proven as well, confirming from a proof-theoretic standpoint that independence is
not just intuitively reasonable but also very convenient.

15

Lemma 5.1 Given a correct entailment

XH
D,®2 | (91,7,,)(914T,)®10 c%’/ Yz

where ®1,T,, is independent w.r.t. ®l, and

®1,7T,,,, then it is always the case that TH1 TH2
i1, :1\ A
02 gy @1, and ®2,®1, =xy 01, .
provided signatures and morphisms are arranged 2041 lE
as in lemma 4.1. N
20

Proof The first entailment (1) ®2 xy ®1, follows from the composition of the
two following refinements with the proper extensions of signature:

D¢2q)2 |= DLl(Ql’UTblo)(Q]‘hTLlh)QIO

Dal((DlvTLlu)((Dlthlh)(plO }: TLE(plO

In order to prove 2,1, 5y ®1,, we assume the contrary (2) 2,81, sy 01,
and prove that the specification cannot be independent.
By (1) and (2) there exists a ¥ H-algebra G such that

G sy ®1,UP2U @1, G sy @1, G
Taking the appropriate reducts it is clear that 'l‘% &;‘
GlZOHl € MOd[(q)lhTzlh)Qlo] G|E € MOd[Dﬂ@Z] GIEHI

Clym & Mod[(®1,T,,)(81,T,)81,] !/ .mGIA
Y

and since the refinement is correct we can also con-

clude that Glsom I-LE

Gl € Mod[Dy(B1,7,,,)(81,T.,,)01 NG
Now, taking the amalgamated union G|sop; ® G|y = Glggy We come to a contra-
diction with the property of independence, since according to it G|sp; should be

a model of (®1,T,;)(®1,T,;,)®1, but it is not. O

With lemmas 4.1 and 5.1 we have the basis for a sound and complete inference
system for independent specifications with persistent hidden enrichments. More-
over, we give another lemma justifying the choice of independence as an adequate

16

property w.r.t. the completeness of the rule, just as we gave lemma 4.2 to justify
the choice of persistency w.r.t. soundness. We start with a new definition:

Definition 5.2 A model A of a specification D,®1, is abstract implementable
iff there exists a presentation ®2 such that ®2 = D, ®1, and A = 82.

Abstract implementability heavily depends on the expressiveness of the logical
system used in specifications. In FOLEQ we cannot expect it to hold in gen-
eral, but if we allow code as axioms, then all computable models are abstract
implementable.

The following lemma about the adequacy of independence as a condition for
completeness depends critically on the abstract implementability of one model.

Lemma 5.3 Given finite presentations ®1, over £0, ®1, over X0H1 and @1,
over LH1,

VH2 DL2(I>2 l:: DLI(@lvﬂlu)(@lthlh)Q:lO
© 02,01, =py 01, 92 =y @l

) = Independence((®1,T,,)(®1,T,,)®1,)

provided signatures and morphisms are arranged as in lemma 4.1,
and all models of D,(®1,T,;)(®1,T,,)®1, are abstract implementable.

Proof Given a specification (91,7,)(®1,7,;,)®1, which is not independent,
there exist A and C such that

C € Mod[®1,T,,®l,] A€ Mod[D,(21,T,,)(®1,T,,)P1,]

A|20 = C|zo
A @ C ¢ MOd[((Dl'UTle)(@lhfralh)q)]‘O]

But, if A is abstract implementable there exists a presentation ® over ¥ such that

A I:=E o P ': Dal(élvalu)(thTblh)@lo

YH
! !
and by the amalgamation lemma L2/ Yﬁ

A®C € Mod[(®1,T,,)®] TH1 LH?2
hence, ‘1u/ A A
ASC sy ®1,U® AQC sy 91, YOH1 ELE
Now, choosing ®2 = & it happens that 1,
02,81, fexy ©1,. O 20

17

The fact that A might be not abstract implementable does not matter for our
purpose. We are only concerned with showing that no weaker condition than
independence can be required in order to obtain completeness for the rule. Then
the above lemma must be understood as saying: Independence is the weakest
condition for completeness, for an arbitrary logical system.

6 Summary & Conclusions

The previous lemmas can be combined into a single theorem as follows:

Theorem 6.1 Given a set of signatures and signature morphisms arranged in two

pushouts as in the diagram below
YH
! !
1,2/ Yh

YH1 YH2
le/[k/l,;
by

01 1,

L].h
>0

and variables ®1, and ®2 ranging over finite presentations over £.0 and L H2, and
®1, and ®1, ranging over enrichments along ¢1; and ¢1, respectively, then:

V®1,,81,.

92,01 o1 62 o1
Persistency(®1,91,) < (V<I>1v,q>2. , @1, FEry @1, Fru 0)

D2 | ©1,[01,]01,
V®1,,81,, &1,

D,92E® ®
Independence(®1,01,91,) << (\7’@2. 292 | @1,[®1,]91,)

92,91, sy @1, @2 f=xy 91,
provided all models of ®1,[®1,]®1, are abstract implementable.

These results prompt a more restricted definition of specification where hid-
den parts must be explicitly defined in independent specifications by a persistent
enrichment. Under these requirements, the above theorem provides a sound and
complete inference system for refinements in the specification language.

18

Conclusions

1. All the results of the paper are valid for various logical systems. In fact,
all proofs are at institution level [GB 84, Tar 86] requiring only of the exis-
tence of amalgamed union for the models [ST 88a] and of pushouts for the
signatures; therefore, the results are valid for an arbitrary institution with a
co-complete category of signatures and a co-continuous functor of models.

2. A sound and complete system for specifications with persistent and inde-
pendent hidden enrichments can be obtained from a sound and complete
inference system + for the underlying institution by adding the following

rule:
®2,®1, F @1, ®2F @1,

D,®2F 81,301,281,

In the context of a specification language such as ASL [SW 83, ST 88a),
this kind of rule allows to overcome problems posed by the lack of an M-
complete inference rule for Derive [Far 89] and to produce a reasonable
inference system for entailment in ASL [Far 90].

3. In the case of first order logic, using hidden functions can be seen as us-
ing a second order existential quantifier. In fact, if the hidden part are
only functions, the rule presented in this paper amounts to a weakening of
the consequent - by importing the hidden part of the antecedent - and the
application of the introduction rule for second order existential quantifiers.

From there we can conclude that a allowing an arbitrary weakening we get
a more general rule such as:

97,1, 92 = T,y 91
D,®2 E D, @1

where <I>TL1;‘ is a persistent enrichment w.r.t. ®2.

The main difference with our proposal is that such a rule makes use of a new
enrichment (I)Td;‘ which can be anything, therefore it cannot be automatized.
In our case ® is chosen to be an enrichment with the axioms of ®1,, that is,
this paper considers the cases where ® can be obtained from the specification
by automatic means.

4. In cases such as the example given in section 1.1, our intuition matches
the inference rule given. Nevertheless, the sentences for specifying struc-
tures such as natural numbers or lists are not just first order sentences but
also some data constraints, that means that the logic used has no complete
inference system.

In these cases it is important to note that incompleteness arises in the un-
derlying institution and not in the hiding.

19

Acknowledgements

I would like to thank those persons who read early drafts of the paper in the
University of Edinburgh, those who listened to me at the first COMPASS workshop
at Bremen, A.Tarlecki for very helpful comments and, particularly, Don Sannella
for helping and correcting me for so long.

References

[Bre 89

[BBTW 81]

[BHK 86]

[EM 85]

[Far 89]

[Far 90]

[GB 84]

[Maj 77]

[ST 88a]

[ST 88b)

[SW 83]

R.Breu. A normal form for structured algebraic specifications. Inter-
nal report MIP-8917, Universitat Passau, 1989.

J.A.Bergstra, et al. On the power of algebraic specifications. Proc.
10th Symp. on Mathematical Foundations of Computer Science.
LNCS 118, Springer 1981, p. 193-204.

J.A Bergstra, J.Heering, P.Klint. Module algebra. Centrum voor
Wiskunde en Informatica, Report CS-R8617, 1986.

H.Ehrig, B.Mahr. Fundamentals of algebraic specification 1: Equa-
tions and initial semantics. Springer, 1985.

J.Farrés-Casals. Proving correctness of constructor implementations.
Proc. 14th Symp. on Mathematical Foundations of Computer Science,
Porabka-Kozubnik. LNCS 379, p. 225-235, 1989. Extended version in
LFCS Report Series 89-72, University of Edinburgh, 1989.

J.Farrés-Casals. Verification in ASL and related specification lan-
guages. Draft of forthcoming Ph.D. thesis, University of Edinburgh.

J.Goguen, R.Burstall. Introducing Institutions. Proc. Workshop on
Logic of Programs. LNCS 140. Springer 1984. p. 221-256.

M.E.Majster. Limits of the algebraic specifications of abstract data
types. ACM-Sigplan Notices 12 (1977), p.37-42.

D.Sannella, A.Tarlecki. Specifications in an arbitrary institution. In-
formation and Computation 76 (1988), p. 165-210.

D.Sannella, A.Tarlecki. Towards formal development of programs
from algebraic specifications: Implementations revisited. Acta Infor-
matica 25 (1988), p. 233-281.

D.Sannella, M.Wirsing. A kernel language for algebraic specification
and implementation. Proc. Intl. Conf. on Foundations of Computation
Theory, Borgholm, Sweden. Springer LNCS 158, p. 413-427, 1983.

20

[Tar 86]

[TWW 79]

A.Tarlecki. Bits and pieces of the theory of institutions. Proc. Intl
Workshop on Category Theory and Computer Programming, Guild-
ford 1985, eds. D.Pitt, S. Abramsky, A.Poigné and D.Rydeheard,
Springer LNCS 240, p.334-363, 1986.

J.W.Thatcher, E.G.Wagner, J.B.Wright. Data type specification: Pa-
rameterization and the power of specification techniques. In SIGACT
10th Annual Symp. on the Theory of Computation, 1979. Also in,
ACM TOPLAS 4, p. 711-732, 1982.

21

Copyright © 1990, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

