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Abstract

We study A-models in a constructive setting.

We present two novel ways of deriving A-models. These two definitions make
sense classically, but yield nothing of interest. The first extends the structure
of a A-model to its space of singletons. These two models and all the models in
between have the same equational theory. The second takes a full function space
hierarchy and defines a A-submodel whose universe consists of those points in
the hierarchy that satisfy a logical relation. Call a model obtained in this way
extension model. We prove that, given a ‘classical’ A-model, it is consistent with
IZF that it be isomorphic to an extension model. Also, this extension model
has the same equational theory as the full function space hierarchy from which
it was obtained. We prove these claims by building a fairly simple model of I1ZF
in which these statements hold. This set theoretic model only depends on the
cardinality of the original A-model. We deduce that there is a model of IZF in
which there exists a full function space hierarchy for every classical model such
that the two have the same theory.

We go on to explore the logic of the world where these A-models exist.
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Chapter 0O

Introduction

0.1 Extensional A\-models

The extensional A-calculus was created as a theory of functions, and it should
therefore be expected that the natural models of a A-theory are function spaces.
Yet a description of such function spaces has in some cases turned out to be
singularly elusive. Plotkin found a first example of this kind. He describes in
[Plo77] a simple programming language PCF that is based on the typed A-
calculus and defines an equivalence relation on the set of terms of the language:
two terms are identified if they show the same behaviour in all program contexts,
i.e. if the outcome of all programs remains the same if one of the terms is replaced
by the other. Plotkin goes on to show that the continuous function hierarchy
with the natural interpretation is not a model of PCF. This failure is due to the
existence of ‘parallel functions’ in the hierarchy that are not represented in the
language. If a constant por and equations that describe its parallel behaviour
are added to PCF, the continuous function hierarchy becomes a fully abstract
model, i.e. two terms are equivalent iff they are mapped to the same value in the
model.

Milner [Mil77] then proved that there was a unique (modulo isomorphism)
fully abstract model of PCF with certain natural cpos at ground type. However
his definition of the model is syntactic (the term model) and gives no information
on the nature of the functions involved.

Ever since, attempts have been made to eliminate the unwanted functions
from the continuous function hierarchy. The most successful approach to date
was taken by Berry [Ber79]. He places a further simple condition ‘stability’ on

the continuous functions and proves that all functions in the fully abstract model
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of PCF are stable. But the function por is not. Unfortunately this is still not
enough: there are even functions taking arguments of ground type which are
stable but not sequential.

It seems that the definition of sequential function must not only take into
account their extensional, i.e. input-output behaviour, but also intensional as-
pects, the way they are computed. This insight led to a number of definitions
that attempt to explain sequentiality ‘at machine level’. Examples are the con-
crete data structures by Kahn and Plotkin [KP78], the more general notion of
event structure by Winskel [Win80], and the concept of sequential algorithm by
Berry and Curien [BC82]. In all these cases a function is defined to be sequen-
tial if it is the i-o function of a sequential process. This definition at last works
at ground level, but fails higher up. The history of PCF and the search for a
fully abstract functional model is recorded in [BCL85]. Stoughton [Sto88] inves-
tigates the conditions for the existence of fully abstract models not only when
there is an equivalence relation on the set of terms (equational and contextual
full abstraction), but also when the terms are partially ordered (inequational full
abstraction). He treats PCF in great detail in his book.

0.2 Constructive help

It is well known among constructivists and viewed with suspicion by their classi-
cal colleagues that there are models of constructive set theory where all numeric
functions are recursive (see McCarty [McC88]) or all endofunctions on the re-
als are continuous (see volume I of Troelstra and van Dalen’s book [TvD88]),
i.e. where there are fewer functions in some function space than can be proved
to exist classically. With this in mind, it is natural to ask whether there is a
model of constructive set theory in which there exists a fully abstract model of
PCF based on sets and function spaces without additional structure, i.e. a model
where all functions are sequential.

In his paper [Sco80], Dana Scott gives a hint of how such a model could be
constructed. His method is very general. He builds a model of intuitionistic
set theory from the fully abstract syntactic model of a A-theory, and embeds
the syntactic model in the set theoretic universe. Types are now interpreted as
simple sets and functions. Full abstraction is preserved, so in the case of PCF
all functions are sequential.

This thesis proposes an alternative solution. As a motivation, we shall have
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a closer look at the intuitionistic reals. Since constructive set theory is strictly
weaker than its classical counterpart, many classical equivalences are not prov-
able constructively. We conclude that also classically equivalent definitions no
longer describe the same constructive objects. Reals are normally either defined
as equivalence classes of Cauchy sequences of rationals, i.e. as the w-completion |
of the space of rationals, or in terms of Dedekind cuts. Each alternative admits a
host of different constructive definitions (see again [TvD88]). Now let us assume
that we can embed a model of classical set theory in a model of constructive set
theory. The constructive model will contain a copy R” of the classical reals. Let
R be the set of reals in the constructive universe according to one of the construc-
tive definitions. Then R”* will be a subset of R. In general not every function
in R* = R" will have an extension in R = R. By changing the constructive
definition of reals, we can in fact to some extent determine which functions in
R”* = R" should be represented in R = R. Of course, if we now aim for the
continuous functions and succeed in finding a definition of real that will ensure
that only they have an extension, we can still not be sure that now all functions
in R = R are continuous.

Fortunately for us, it turns out that this idea can be made to work in the
case of sequential functions. We shall prove a general theorem which states
that there is a fairly simple model of constructive set theory inside which for
any given countable extensional A-model a full function space model with the
same equational theory can be constructed. This function space model is built
following the ideas in the previous paragraph. In the case of PCF, the term model
is copied into the set theoretic universe. Then supersets of the sets at ground
type are found, such that exactly the sequential functions have extensions. At
higher types this process is repeated.

This method has some advantages over the one using the Yoneda embedding.
First and foremost, Scott’s approach yields a different set theoretic universe for
every A-theory, whereas our construction caters for all of them. Furthermore our
universe is a simple Kripke style model, whose characteristics are well known.
This would ultimately permit us to ask questions about the relative consistency
of statements. Finally, work on these models has led to a number of new and—
hopefully—useful concepts. They indicate the direction an axiomatic approach
might take.

We now give a brief overview over the contents of this thesis.
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0.3 Overview

Chapter 1 contains all the material from category theory that will later be needed.
The most important definition here is that of a topos. Toposes will be used
to build models of constructive set theory, in which most of the action in the
subsequent chapters takes place. 1

Chapter 2 is a concise introduction to constructive set theory. We present the
axiomatic system IZF, which is the constructive equivalent to Zermelo-Fraenkel.
We introduce a number of constructive definitions. As will be apparent from the
introductory remarks, functions and extensions of functions will occupy a special
place here. We construct a class of models of IZF to highlight the differences
between the two systems, and show how to embed the classical von Neumann
hierarchy in each of these models. We introduce the concept of ‘classical set’ in
an attempt to describe the sets in the image of this embedding.

Chapter 3 focuses on typed and untyped combinatory algebras. We are inter-
ested in a particular variety of ca’s, the extensional A-models, which are essen-
tially just function spaces. We then consider two non classical ways of deriving
new ca’s from given ones. First we look at the ca of stable ——-singletons of a
combinatory algebra. It turns out that under certain conditions the same equa-
tions hold in bbth, i.e. that they have the same equational theory. Some first
order properties are also preserved. Next, we introduce extension models. For
the untyped case an extension model is obtained by selecting two sets X, C X;.
The universe of the model is defined to be the set functions f : X; — X that
are the extension of some function in X, = X, or equivalently those functions
f for which fX, C X,.

Chapter 4 establishes the main result of this thesis for the typed calculus. We
start by looking at two A-theories, a simple theory MON of monotonic functions
and at the above mentioned PCF. Then we prove the main theorem which states
that for every extensional A-model there is a model of IZF that contains a full
function space model which has the same equational theory as the A-model we
started from. The set theoretic model only depends on the cardinality of the
A-model. One of the consequences of this theorem is that there exists a model of
constructive set theory which contains a fully abstract full function space model
for every A-theory that has a fully abstract classical model. We end this chapter
by discussing the main result and mentioning possible improvements.

Chapter 5 proves an equivalent theorem for the untyped calculus. Again we
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start by looking at a classical example. This will be Scott’s inverse limit construc-
tion. Thereafter we state and prove the main result, which is a straightforward
adaption of the typed case. Again we point to some consequences.

Chapter 6 finally explores the strange constructive world where models as in
Chapters 4 and 5 exist. We talk about the various degrees of ‘fuzziness’ which ,
a set can exhibit. We end this thesis by giving some hints as to how the whole

subject could be treated axiomatically.



Chapter 1

Some concepts from category
theory

In this chapter we shall review some notions from category theory. Mac Lane
[ML71] provides a thorough introduction. For information about toposes we
refer to the exhaustive book by Johnstone [Joh77]. A gentler introduction is
Goldblatt’s book [Gol79]. We also recommend a recent work by Barr and Wells
[BW85].

A note on foundations.  Categories tend to be large, i.e. classes, although
most of the categories we shall be concerned with are sets. Recall that a category

C is small if the class of all morphisms in C is a set. a

Notation. We shall write C € C for C € Obj(C) and f € C(C,,C;) or
f : Cy— C, for f € Homg(Cy,Cy). Given functors Fy, Fy : Cy— Cy, let
[Fy, Fy] denote the set of natural transformations between them. For C a cate-
gory, let C® denote its ‘dual’, i.e. the category with the same objects as C and

all arrows reversed. O

1.1 Cartesian closed categories

Fix categories C,J. A J-diagram in C is a functor F' € CJ. Define the diagonal
functor A : C — CJ by

AC(J) = C forallJed
AC(f) = idg forall f:Jy—Jy
Af(J) = f forallJed

11
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Let C € Cand F € CJ. A cone from the vertex C to the base F' is a natural
transformation v : AC — F. Conversely, a cone from the base F' to the vertex

C or cocone is a natural transformation v : F — AC.

Definition 1.1 The limit of a J-diagram F in C is an object imF € C and a
coney : AlimF — F such that for every object Cy € C and cone vy : ACy — F 2
there is a unique f : Cy — LmF such that v o Af = ,.

In this definition v is the limiting cone.

Definition 1.2 The colimit of a J-diagram F in C is an object coimF € C
and a cone v : F — AcolimF' (the colimiting cone) such that for every object
Co € C and cone vg : F — AC, there is a unique f : AcolimF' — Cy such that

Af oy =1.

Limits and colimits—if they exist—are unique up to isomorphism in C.
Definition 1.3 The terminal object 1 is the limit of the empty diagram.
This means that for every C € C there is a unique arrow ! : C — 1.

Definition 1.4 The product Cy x Cy of two objects Cy,Cy € C is the limit of
the diagram {C,,C4}.

This is the same as saying that there are morphisms 7y : Cy x C; — Cy and
7y : Cp X Cy — C; (the components of the limiting cone) such that for any ob-
ject C € C and morphisms f, : C — C, and f; : C — (| there exists a unique

morphism (fy, f;) that makes the following diagram commute.

C

fo fi

<f07 fl)
Co"—ﬂl)_"“CO X C]_

Ty

G

mo and 7, are the projections on Cy and Cj.
In this connection we should mention the construction of a pullback or gener-

alized product. This is simply the limit of the diagram
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C,

fi

fo

Co C

Note that we get the definition of product if we substitute 1 for C.

Definition 1.5 The coproduct Cy + C; of two objects Cy, C; € C is the colimit
of the diagram {Cy,Cy}.

The components of the colimiting cone are the inclusions
Lo CO—>CQ+O]_ and L C]_ d CO+CI

Definition 1.6 Let C have finite products. The exponential of two objects C,
C; in C is an object C’lc" € C together with a morphism eval : Cf° x Cy — C4
such that for all objects C € C and morphisms f : C x Cy — C there exists a

unique morphism Af : C — CIC ° such that the following diagram commutes.

C x C,
Af X idOo
0% x g,— ¢,

Again CIC ® is unique up to isomorphism—if it exists at all.

We now come to the most important definition of this section.

Definition 1.7 A cartesian closed category (ccc) has a terminal object, finite

products and éxponentials.

Example. The category of all sets Set is a ccc. It has a terminal object {0}, the
usual set theoretic products and function spaces as exponentials. eval is function

application. ]
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Example. A binary relation <y on a set X is a preorder if it is reflexive and

transitive. <y is a pariial order if also
wOSXw1A$1 Sx$0—+$0=$1

Now let X = (X,<x) be a partially ordered set. Then the relation <% on X
defined by

op A
Zo <y L1 < Ty Sx Lo

is also a partial order (<y ‘reversed’). Let X stand for (X, <%).
An (ascending or descending) chain in X is a totally ordered subset of X.

Let a be an ordinal. A (<x-)a-chain in X is an a-sequence {z,, },,eq Such that
Vag, a1 € a (g C oy = T4y <x T,)

An antichain in X is a set of pairwise incomparable elements of X. X = (X, <y)
is a complete partial order (cpo for short) if every ascending w-chain has a supre-
mum in X. A function between two cpos is continuous if it preserves the suprema
of all w-chains. A cpo X = (X, <x) with a least point Ly (‘bottom’) is called
pointed.

Definition 1.8 Let CPO denote the category of all cpos and continuous func-
tions, and CPPO the category of all complete pointed partial orders and contin-

uous functions.

CPO and CPPO are cartesian closed: the product of two cpos is their set-
theoretic product with the product ordering. The exponential of two cpos is the
set of all continuous functions between them, ordered pointwise. eval is function
application. CPPO is a full subcategory of CPO. - O

1.2 Toposes

Set has another important property. Subsets of a set X stand in a 1-1 correspon-

o 9X

dence with the characteristic functions on X, i.e. P(X) . These notions can

be generalized.

Definition 1.9 Let C € C. A subobject of C is a monomorphism f : Cy— C.
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Definition 1.10 Let C be a ccc. A subobject classifier is an object 2 € C
and a subobject true : 1 < §Q such that for all subobjects f : Cy — C there ex-

ists exactly one morphism x; : C — §) that makes the following diagram into a
pullback.

Cok______.t_____, C
! Xf
1 true Q

Q is likewise unique up to isomorphism.

Example continued. 2 is a subobject classifier in Set. As true we can take

the constant function Al. Given sets X, C X the characteristic function of X,
is defined on X as
xx,(z) =1 1if z € X,

We now come to the main definition in this chapter.
Definition 1.11 A ccc is an (elementary) topos if it has a subobject classifier.

In Set we had P(X) = 2%. Similarly, in a general topos we can define the
powerobject of C € C to be an object P(C) together with a map

eval : P(C)xC —Q

such that for every Cy € C and every map f : Cy x C — ) there is a unique
map Af : Cy — P(C) such that the following diagram commutes.

Cox C
Af XidG

poyxc—2l g
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Note that this diagram is just a special case of the diagram for exponentials.
We see that P(1) 2 Q' 2 Q.

Example. We have already seen that Set is a topos. More generally, any model
V of set theory can be turned into a topos. We give an indication of how this is

done without going into details.

e Objects are equivalence classes of sets in V. For vg,v; € V

vowleV;:v(,:vl

e Morphisms in Homv/([vg], [v1]) are equivalence classes of functions in V.
That is, for f €'V

f € Homvy([vg], [v4]) if V [= f is a function from v, to v,

o The terminal object is the (equivalence class of the) set {#}, products and
exponentials are (the equivalence classes of) set theoretic products and

function spaces as in Set.
e The subobject classifier is defined as £ [P(1)].

If ¢ is a set theoretic formula we have

VE¢(=-0e{0]¢}

There is a 1-1 correspondence between ‘truth values’ and subsets of 1, i.e. 2. 2

is therefore also referred to as the truth value object. O

1.3 Presheaves

We are now going to concentrate on a particular class of toposes. A functor F'
from a category C into Set can be viewed as a variable set, F'(C) giving its
value at a stage C € C and F(f) the transformation of F(Cy) into F(C;) for
f : Cy — Cy. For reasons we do not wish to explain here, we shall consider

contravariant functors, or functors F' : C° — Set.

Definition 1.12 Given a category C, the category Set®” of presheaves over C
has functors F : C°® — Set as objects and natural transformationsy : Fy — Fy

as morphisms.

]
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We shall now give some examples of presheaves and show how a terminal
object, products, exponentials and a subobject classifier can be defined in Set®”
making it into a topos. We omit the proofs that these objects have the right

universal properties.

The constant functors. For every set X the constant functor AX maps !
objects C € C to X and morphisms f : Cy — C; to the identity on X. O

The Terminal object. This is defined to be the constant functor Al. o

Subobjects. Subobjects are natural transformations v : F, < F; that are
monomorphisms in the category Set C* The simplest subobjects are those where

the natural transformation involved is the inclusion. We then write Fy C F;. O
Products. Let Fy, F; € Set®”. Their product Fj x F; is defined pointwise.

Fox Fy 1 Cy — Fy(Cp) x Fy(Cy)

L o= 1 F(f)x F(f)
C1 = Fy(Cy) x Fy(Cy)

|

Coproducts. Let F, F; € Set©”. Their coproduct is simply the co-construc-

tion of their product, namely

Fo+ F, : Cy = Fo(Co) + F1(Cy)

fl = 1 F({f)+F(f)
Cy — Fy(Cy)+ Fi(Ch)

The same construction applies to limits and colimits in general.
Now let o be an ordinal and {F,, },,ca a0 C-a-chain in Set®”. Define
Usoca Fap Y setting for every €' € C
(U Fu)(©) 2 U (Fu(©))
g Eo g€
To describe the behaviour of |J,,eq Fo, on morphisms pick f : Cy — C; and
& € (Uspea Fap)(C1). Then for some oy €

S Fal (C]_)
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Set
(U Fao)(F)(@) = Fo  (f)(2)

ap€a ]
It is easy to see that this definition works.

We have the following

Lemma 1.13 Let {F, }, co be as described above. Then

colim,, o Floy = U F,,

op €

Proof. UyeoFy, is the vertex of a co-cone with the inclusions as compo-
nents. We have to verify that it has the universal property. So pick F € Set€”
and transformations {n,, : F,, — F},ex such that the corresponding diagram
commutes. Pick C' € C. We define the function

1a(C) ¢ Useea Foo (C) = F(C)
Take = € Ugpea Fuo (C). There is some o € a such that z € F, (C). Put
N1(C)(z) = 14, (C)(x)
7N, thus defined is a natural transformation and unique. O

Representable functors. Let C be a small category. Then for every C € C
the functor
Homg(—,C) : C® — Set

for which

Homc(—,o) : 00 Lo d HomC(CO, C)

fle= T-0of
Cl = HomC(ClaC)

is a presheaf over C. We call a presheaf over C representable if it is isomorphic
to Homg(—,C) for some C € C. O

Exponentials. Let F,, Fy € Set®” and C € C. Define

F*(C) & [Home(—, C) x Fy, Fi]
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Thus FIF"(C') are families { f;, : Fo(Co)—F1(Co)} 4:co—c of compatible functions
indexed by morphisms with codomain C.

On morphisms Ff ° acts as follows.

F1F°(f : Co—’Cl)({gfl}flzc—wl) = {gf o fo}fo:C’—>Co

!

The functions in FIF °(C) can be thought of as local sections or approzimations of
a function as seen from C.

eval : Ff" x Fg — F is defined as

eva'l(cx{ffo}fo:co—')C’ .’1:) = fidc (32)

O

The subobject classifier. In order to define this presheaf, we need the

following concept.

Definition 1.14 Let C € C. A C-crible is a family C of maps with codomain C
which is closed under right composition, i.e. if f; : C; — C and f : Cy— C,
then

f1€C—fiofel

Now we let Q2(C) be the set of C-cribles and define

Qf: Co=C)C)={fo:C—=Co| fo foel}

The cribles will turn out—under the right interpretation—to serve as truth val-
ues. Indeed for any object C € C the C-cribles ordered by inclusion form a
complete Heyting algebra (c.f. Section 1.5). Q(f) : Q(Cy) — Q(C) is a struc-
ture preserving map for all f : Cy — C,.
We have yet to take care of true : 1 — 2. At every C, this map simply picks
{ fo| Jo: Co—C } from Q(C), i.e. the largest C-crible.
O

Powerpresheaves. From P(F) = QF and the construction of the exponentials
we get for C € C ‘

P(F)(C) = 0"(C)
= [Homg(—,C) x F, Q]
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In other words, P(F)(C) contains all families of sets

{Xfo C F(CO)}foico—'*C

such that if f : Cy — C; and f; : C; — C then

F(A)(Xp)CXpo5

P(F) acts as follows on morphisms f : Cy — C;.

P(F)(f)({Xf1}f1:C’—+C1) = {Xf o fo}fo=0—+co

1.4 The Yoneda lemma

We know that Homg(—,C) is a presheaf over C for every C' € C. This fact can
be used to embed C in Set€” . The embedding preserves limits and exponentials
that might exist in C.

Definition 1.15 The Yoneda functor Y : C — SetS is defined by

Y : C, — Homg(—,Cy)
fl = | fo-
Cl = HomC('—acl)

Recall that a functor is full if it is surjective on the hom-sets, it is fasthful if it is
injective on the hom-sets. A subcategory of some category is full if the inclusion

is ful. We can now state the following lemma. The proof first appeared in
[Yon54].

Lemma 1.16 The Yoneda embeddingy : C — Set®” is full and faithful.

Proof. Pick n : Homg(—,C,) — Home(—,C4) and f : C — Cy. The follow-

ing diagram commutes by naturality of .

7(Co) : Homg(Cy,Co) — Homg(Co, Ch)

—of | —of
77(0) : HomC(C7CO) - HomC(O’Cl)
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By chasing idg, around the square we obtain

n(C)(f) =n(C)(idg, o f) = (n(Co)(idg,)) © f
So 7 is determined by its value at (1(Cp))(idg,)- O

We have already remarked that Y preserves limits, hence terminal objects

and products. It does not necessarily preserve colimits though.

1.5 Presheaves over partial orders

A preorder P = (P,<p) can be seen as a particularly simple category. P is the
set of objects and <p is the set of morphisms, i.e. Homp(pg,p;,) contains one
morphism if py <p p;, and none otherwise.

Composition of maps is defined by

A
(Po <p P1) 0 (p1 <p P2) = (po <p P2)

and total by transitivity of <p. Reflexivity assures that the identity morphisms
exist.
If P is a partial order, isomorphic objects are equal.

Here are some partial orders that will be used as categories.

Von Neumann ordinals. For a an ordinal, set
a2 (a,c,)
Note that the points of an ordinal are ordered by inclusion, and not by €. a
Lifted sets. Given a set X, its lifting X; = (X, <, ) is defined by
X, 2xu{L

and
To <,z iff zg=2, or 2o =1L

O

Open sets. The open sets O of a topological space (X, O) ordered by inclusion.
0

Finite subsets. Given a set X let [X]<“ denote its finite subsets. Let

X £ (X%, C)
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zo C x, is read ‘z, extends zy’ or ‘zy refines zy’. o

Sequences. For a an ordinal and X a set, let X* denote the set of all a-

sequences. Set

X<a__A: U X

o Eo
Let sq, s, be sequences from X <%. If s, C sy, s, is said to extend sy Let X<%
0:51 q 1 51 0

denote the set of all sequences in X <%, ordered by extension. a
X< is a tree.

Trees. A partial order P = (P, <p) is a tree if for all p, € P the set

{peP|p<ppo}

is well ordered. A tree is rooted if it has a minimum. The supremum on the
cardinalities of its chains is its height, the supremum of the cardinalities of its

antichains is its width. Let py,p; € P. Then p; is a successor of p if

{piy={plp<pi}\{plp<po}

P is a-branching if the set of successors of every point is of cardinality . A
two-branching tree is called binary.

Often we need to know more about a tree than its global width. w, has global
width w, yet for every ny € w the subtrees with underlying set {n |n >, ng } =
{no} is now only 1 wide. We shall therefore say that a tree P = (P,<p) is of
hereditary width o if for all p, € P the subtree { p € P | p >p po } is of width .

In this parlance 2<“ is a binary tree of height w and hereditarily w wide. O
Heyting algebras.

Definition 1.17 Let @ = (,<q) be a partial order. Q is a complete Heyt-
ing algebra (cHa) if every subset of Q has a supremum and an infimum and A
distributes over \/, i.e. if whenever zo € 2, X C )

oAV X)=V{zAz|zeX}

Let 1 (or T) and 0 (or L) denote the largest and least point in {2. Define a new

binary operation — on { by setting

xo——>:clé\/{x69|x/\x0§9w1}
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and a unary operation — by

~z 2z 1
Similarly we can define the unary operation —— on Q by
a2 ~(2)
Double negation is an instance of a topology.
Definition 1.18 A topology is a unary operation j : Q — ) such that
1. 3T =T
2. Vz e Q(jjzr=jz)
8. Vzo,z1 € Q (j(zo A 21) = jTo A jzy)

For any set X, its powerset P(X) with inclusion as order is clearly a cHa. A

topology on P(X) is a monotone, idempotent and N-preserving function. O

 We quickly review some of the constructs in a presheaf topos where now the

underlying category is a partial order P. First two helpful definitions.

Definition 1.19 The lower closure | P, of a set P, C P is defined by

IPy&{peP|3pye Py (p<ppo)}
For p € P let |p denote |{p}.
Definition 1.20 P, C P is lower closed if Py = | P,.

If P is seen as a category, the lower closed subsets of |p stand in a 1-1 relation
with the p-cribles.

Now let Fy, F; € Set®” and p € P. Then Ffb (p) is simply the set of |p-
indexed families of compatible functions. Q € Set™” maps p € P to the set of

all lower closed subsets of |p. On morphisms p, <p p; the functor Q acts as
follows. Pick P, € Q(p,) then

Qpo <p pl)(Pl) = P; N |po

It is time to look at an example.
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Example (Continuous R-valued functions). Let (X, O) be a topological
space with open sets O ordered by inclusion. Define the presheaf R of real-valued

functions over O by setting for X, € O
R(X,) £ {continuous real valued functions on X}
and for Xoc Xyand f : X; =R
R(X, c X4)(f) = f1Xo

Here f|X| is the restriction of f to X (c.f. Definition 2.17). O



Chapter 2

Constructive set theory

In this chapter we will give a brief presentation of that part of constructive set
theory which we will use later on. For a general introduction to constructivism
we refer to the comprehensive book by Troelstra and van Dalen [TvD88], which
in its second volume also has a chapter on sets. The most complete bibliography

of the constructive literature up to date is [Mul87].

2.1 The constructive predicate calculus IQC

Remark. IQC stands for ‘Intuitionistic Quantified Calculus’ (rather than
‘Predicate’) to distinguish it from the ‘Intuitionistic Propositional Calculus’. We
use ‘Intuitionistic’ and not ‘Constructive’ to avoid the classical ‘C’. The names
and much of the notation in this chapter are taken from [TvD88]. O

2.1.1 Syntax and axioms

The language Lg¢ of IQC consists of an infinite supply of individual variables
Vars, the logical symbols L,V,A,—,3,V, brackets (,) and function and relation
symbols {f'}ie, and {R}ie, for every arity n € w.

Let us say a set is defined inductively if it is the smallest set meeting some
condition.

Thus define inductively the set of Ljgc-terms T by
o Vars C T
o if {to,...,t,—1} C 7 then f7(to,...,tnq) €T

Similarly, the set of atomic formulas A is the smallest set such that

25
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e Le A
o if {ty,...,t,_1} C 7 then R}(ty,...,t,1) €A
Finally, the set of formulas F includes all atomic formulas and

o if {$,9} C Fthen {§ A9, ¢ Veh6 o9} CF
¢ if z € Vars and ¢ € F then {Vz¢,Jzd} C F

We abbreviate ¢ — L to = ¢. Let T & = L.
The usual notions of binding, open and closed formulas apply. If we write
¢(w07 st wn—l)

it is implied that the free variables of ¢ are a subset of {zq,...,z,_1}. A sentence
is a closed formula. Constants are function symbols of arity 0. ¢(y/z) means
that every free = in ¢ has been replaced by the new variable y.

Now let S be a set of sentences. The consequence relation
i_IQC C [S]<w xS
will be given by a natural deduction system. For details see [TvD88]. Put

<{¢07 ey ¢n—1}) ¢n) € |—IQC

if ¢,, can be deduced from ¢y, ..., d,_; using the following rules:
r
|
1
<1lE>
T r Ly T4
I | |
A A
ery <AE> enY <AE> ¢ e <AI>
¢ P PAY
I‘Io I [;ﬁ] Plz[¢] 1I“ II‘
¢V ¢ ¢ ¢ P

<VE> <VI>

-
<
<
©-
<
<-
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P
=Y ¢ ps Y s
P —

r T

I l
Vo ¢ <VE> M)<VI>
¢(t/z) Yz

I‘Io Pl[ﬁlb(y/x)] I|‘
EM <dE> M <3dI>

dz¢

. I'[¢] means that ¢ € T' can be discarded. The following restrictions are placed

on these rules:

1. In <VE> and <31 > t must be free for = in ¢, i.e. no free variables in ¢

must get bound in ¢ when it is substitued for z.
2. In <VI> y must be new for I" and ¢.

3. In <3JE> y must be new for I'; \ {¢(y/z)}, ¢ and .

< LE> is the absurdity rule: if the absurd follows from a set of assumptions,
anything follows. In the course of a not quite formal proof we shall use
when we arrive at L, i.e. a contradiction. _

Of sentences ¢y, ...,d, we say that ¢, is a consequence of ¢g,...,¢,_;, or

that ¢,, can be proved from assumptions ¢, ..., ¢,_; if

<{¢0a LR d’n—l}a ¢n> € I_.IQC
or ‘infix’
¢0) RS ¢n——1 I._IQC’ ¢n

Usually we omit the outmost universal quantifiers of a sentence.
For completeness we also add the following (standard) definitions: ¢ is a
theorem of IQC if

Froc ¢
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A theory T is a set of sentences. The closure of T is the smallest set of sentences
T such that

e TCT
b {¢07"',¢n——1} CTand ¢0a""¢n—1 l_IQC ¢'n, entail ¢n€T

A set of sentences is a set of azioms for a theory if they have the same closure.
A theory T may only make use of part of the function and relation symbols
of IQC. They will be referred to as the language L4 of T.
Note that if the rule ‘Reductio Ad Absurdum’

—¢

<RAA>

is added to IQC we get the classical predicate calculus QC.
. Alternatively, we could add the ‘Principle of the Excluded Middle’

<PEM>
pV-¢

2.1.2 Two interpretations of IQC

Behind the first interpretation—the Kripke interpretation—Ilies the idea of the
creative mathematician who never errs, why not call her P.?7 During her creative
hours, P. can construct new objects and add them to her domain of discourse,
or she can verify statements about objects that are already in that domain. A
day in the life of P. might therefore be charted as a tree T = (T, <) where
<r is interpreted as temporal, and every point ¢ € T has associated with it a
domain D, and a list of statements ®, that have been verified (or proved) at this
moment. We say a sentence ¢ is forced at t if ¢ € ®,. The fact that P. never

makes mistakés is reflected in the requirement that
L vto,tl € T (to ST tl - Dto C ‘Dtl)
[ ] Vto, tl c T (to ST tl — ¢t0 C Qtl)

Logical operators are interpreted in the following way.
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¢ L is never forced.
¢ ¢ A is forced at ¢ if both ¢ and 1) are forced at .
o ¢V 1 is forced at ¢ if either ¢ or 3 is forced at ¢.

o ¢ — 1 is forced at t, if for all ¢, > to 9 is forced at ¢, whenever ¢ is forced
at tl'

e Vz ¢ is forced at ¢, if whenever t; >7 t, and d € D, then ¢(d/z) is forced
at ;.

o dz ¢ is forced at ¢ if there is a d € D, such that ¢(d/z) is forced at ¢.

In this interpretation < PEM > can fail. For T take 2. Let ¢ be a formula forced
only at 1. Then ¢ V = ¢ is not forced at 0. If it were, either ¢ or — ¢ would be
forced at 0. ¢ is not forced by assumption. So assume — ¢ is forced at 0. Then
- ¢ is forced at 1, and by <— E> L1 \. For a strict definition we refer to
section 2.2.7.

To illustrate the second interpretation consider for every natural number the
statement ¢(n)

2n + 4 is the sum of two primes.
The Goldbach conjecture is the statement
é(n) holds for all natural numbers n.

For any n € w, we can decide with the help of a computer in finite time whether
#(n) or = ¢(n). Yet it is undecided—on 30 January 1990—whether Vn € w ¢(n)
or = Vn € w ¢(n).

One might wonder whether simpler relations might still behave classically.
This is not the case, and an example to the contrary can easily be constructed:

define for every n € w the natural number G(n) by

G(n)
G(n)

0 if ¢(n)
n if = ¢(n)

> e

The relation G(n) = 0 is decidable on w, yet we do not know whether

Vn € w (G(n) = 0)
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or not.

The idea that a proof should be seen as an algorithm leads to the realizability
interpretation. For details see McCarty’s thesis [McC84].

Note that in the Kripke interpretation we do have

Goldbach V = Goldbach

2.1.3 Some constructive theorems

We shall give some constructively provable sentences. In general none of the

implications below is reversible.

Lemma 2.1 1. ¢— - ¢
2. (4—9) = (- ——9)

(e VoY) = (AY)

o (eVY) = (meAY)

. (Fz =~ ¢) = (= Vz ¢)

. (Yo = ¢) = (- 3z ¢)

S N

[

Proof.

1. Assume ¢ and - ¢. By <— E> we get L, and by <— I> == ¢ with = ¢
discharged.

2. Assume ¢ — 9, ¢ and — 1. From the first two we get ¢ by <— E>, then
by the same rule L from the last assumption. We get = ¢ by <— I>
discharging ¢ and by the same rule the result, discharging — .

3. Assume ~ @V m 1, ¢ A ¢ and = ¢. From the second assumption we get ¢

by <AE >\l\n . Similarly, if we assume — 9. Hence by <VE> L. Therefore,
“(p A9) by <— I>.

4. Assume - (¢ V ) and ¢. Then ¢ V ¢ by <VI>\J\| . Therefore = ¢. In
the same way we get — . The result follows by <AI>.

5. Assume Jz —~ @, — ¢(y/z) and Vz ¢. From the latter we get ¢(y/x) by
<VE>, and L by <— E> and can discharge — ¢(y/z) by <JE>. We get
the result by <— I>.
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6. Assume Vz — ¢ and Iz ¢. Assume ¢(y/z). Then - é(y/z) by <\7’E>\l\| .
We discharge ¢(y/z) by <dE>. The result follows by <— I>.

O

We add another list of sentences, omitting the (straightforward) proofs. We ;

shall want to refer to it later.

Lemma 2.2 1. = (¢ V - ¢)
2. BAPYVES(SVE AP VE)
3. (VAL (AL V(AL
AR CERIRA CE 2N
5. (g =) = (64— 9)
6. ~—Vz ¢ — Vo - ¢

. dz——¢— -3z ¢

2.2 Constructive Zermelo-Fraenkel set theory

In this section we shall present the constructive version of Zermelo-Fraenkel set
theory IZF and define a class of models for it. For a concise introduction to
classical set theory and a list of the axioms of ZF we refer to Kunen’s book
[Kun80]. The material about IZF is widely scattered; the most complete account
can again be found in [TvD88]. Another source is [McC84].

2.2.1 The system IZF

The language of IZF has two binary relation symbols € and = and an unspecified
supply C of constant symbols. We write oy # z; for 2y = z, and z ¢ X
for ~z € X. Also, Vz€ X and dz € X stand for Yz (z € X — ...) and
Jdz (z € X A ...), respectively. A formula is restricted if it is provably equivalent
to a formula in which all quantifiers are of the form Ve € X or 3z € X . For
readability’s sake, we use a ‘typed’ notation, sets appearing to the left of €
(elements) will be denoted by small, those to the right (sets) by capital letters,
and those one level up (families of sets) in caligraphy style. Of course this notation

occasionally breaks down.
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IZF is a first order theory with equality, i.e. the following axioms hold.

1. 3z (z =z) < Existence>

z =z <Reflexivity >

Top=, — Ty =2y <Symmetry>

(zo =2y Ay =24) = 29 =z, < Transitivity >

($0=$1/\$0€.X)—')$1€X

XN o R

(X0=X1/\x€X0)—>w€X1

These five axioms will be referred to as EQ.

Lemma 2.8 For ¢ a formula of IZF and z, free for zqy in ¢
EQ ke 2o =1 — (¢ < ¢(21/%0))

Proof. By structural induction. ]

Here now is the list of axioms that are specific to IZF. We shall make use of
the usual abbreviations. If  is a set let {z} denote the singleton containing z as
its only point. It exists by <Pairing> and <Separation>. If X is a set and ¢
a formula of IZF, there exists a unique subset X, of X by < Separation>, such
that

Ty € Xo > 29 € X A §(2o/2)
This will be denoted by
{zeX|o}

Next, for z4 a set, let { zo | ¢ } denote

{zef{z}|d}

0 is the set { « | L }, which exists by <Existence> and <Separation>. z is

z U {z}, the ‘successor’ of z. X, C X, means

V«'E GXO (.'L' EXI)
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1. Ve (z € Xy« z € X;) = Xog=X; <Extensionality >

dX (zg€ X Azy € X) <Pairing>

dzy V2, (2, € X — 2, C 23) <Union>

X, Vz (z € Xy & (z € X3 A ¢)) <Separation>

AX Vzo (29 C 21 — 29 € X) <Powerset >

IXPeXAVze X (z7 € X)) <Infinity>

(Vzo € Xo dzy ¢) — X Vo € Xy Jz, € Xy ¢ <Collection >
VX (Vz € X ¢(z/X) — #(X)) = Ve ¢(z/X) <Induction>

e S o B

< Separation>, <Collection> and <Induction> are actually lists of axioms,
namely one for every formula ¢.

We use the normal representation of the natural numbers in IZF, i.e. 0 = {
and n + 1 = n'. The set of natural numbers, which exists by < Infinity> and
< Separation >, will be denoted w. Finally, put © £ P(1).

Before turning to a discussion of IZF, we fix some definitions. Since IZF is
strictly weaker than ZF, many classically equivalent notions break down into
different constructive ones, and some care has to be taken to find the most
appropriate. '

A first example of this kind is the notion of being inhabited.
Definition 2.4 A set X is nonempty if X # 0. It is inhabited if
Jdz (z € X)
Note that X # @ « —— Jz (z € X).

2.2.2 Decidability

Properties that behave classically deserve a name. We have

Definition 2.5 Let ¢(Z) be a formula of IZF and X a set. Then ¢ is decidable
on X if '
VEe X (¢V - ¢)

By separation formulas determine subsets of sets. Hence the following
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Definition 2.6 Let X, C X. Then X, is a decidable subset of X if
Ve X (z € XyVa¢X,)

Since we shall be most concerned with equality on sets, we add one more

definition for this special case.
Definition 2.7 A set is discrete if equality is decidable on it.
Decidable formulas have nice ‘closure’ properties. We have

Lemma 2.8 Given decidable properties ¢(Z), (&) on a set X, each of the fol-
lowing is also decidable on X.

1. ¢ N

2.6V

3. ¢6—1
Also

4. L is decidable, and therefore also — ¢.

Proof.
1. Assume ¢ and ¢ are decidable on X. Pick m: € X. Instantiate to
$(z;/;) V — (/)
and
p(ay/z) V - p(e/z;)
By Lemma 2.2.3 we have either of
o d(z;/z:) A (/s
o §(ai/z;) A - plei/z;)
o §(zi/z) N p(ei/z;)
o = d(z;/z;) A= ip(ay/z;)
The latter three imply — (¢(z}/z;) A ¢(x;/%;)), so always
(d(z/2:) A p(e;/2:)) V = (d(zi/2:) A p(z/:)

By <VI> we obtain the result.
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2. Similar to 1. The first three cases in 1. imply ¢(z}/z;) V ¥(;/=;), the last
= (¢(z}/z;) V ¥(z;/x;)), so again
((i/z:) V (i/2)) V — ((}/2;) V (/)
3. Again glancing at 1., we have
= ($(ai/2:) = (/)
if
¢z ) A~ (/)
and
¢z ;) — (/)
in the other cases. Hence always
(b(zi/:) —= $(zi/z:)) V = ($(a;/2:) — Plai/s)
The result follows by <VI>.

4. follows from 3.

2.2.3 Stability and j-properties
A somewhat weaker property than decidability is stability.

Definition 2.9 Let ¢(Z) be a formula of IZF and X a set. Then ¢ is stable on
X if
Vie X (- ¢ — ¢)

Definition 2.10 Let X, C X. Then X, is a stable subset of X if

We want to be more general. Let j : P(1) — P(1) be a topology. Define a
unary operator j (same name and also called ‘topology’!) on the formulas of IZF
by

i(@) &0ej({o]4})

The proof of the following lemma is easy.
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Lemma 2.11 1. jT & T
2. For all formulas of TZF ¢ we have
Jji¢ < Jé
3. For all formulas of 1ZF ¢ and 1 we have
J(@NP) = b AjY
We can introduce some useful concepts.

Definition 2.12 1. f : X — Y is j-dense in Y if
Vy eY (j(y € f(X)))
2. Let f : X — Y. The j-closure of X in Y is the set
X &{yeY|j(ye (X))
3. X is j-closed if X = X7,
So a stable subset is the same as a ~—-closed subset.
Definition 2.13 A set X is j-separated if
Vg, 21 € X (j(zg = 1) — To = )

For a discussion of these definitions we refer to de Vries’ thesis [dV89]. We should
also mention that the concepts here defined in set theory have first been described
‘externally’ in the language of category theory. The same is true of the notion of

sheaf later on. For the categorical definitions see [Joh77].

2.2.4 Functions

Definition 2.14 Let X,Y be sets. A partial function f from X to Y, denoted
by f: X — Y, is a subset of X XY such that

({zo,¥0) € f A{21,91) € f ANzo=121) = Yo=Yy, <Functionality>
(zo,Yo) € [ is written f(zy) =yo or fzg=yo. f is defined at z € X if

JyeY (fz=y)
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This will be denoted by fz| and — fz| by fz1. The domain of f is

domf2{zeX|fzl)
The range ranf of f is Y. The image of f is

mf£{yeY|keX (fr=y)}

f is a (total) function if domf = X. This will be written as f : X — Y.
Hence f C X x Y is a function if

VeeX3lyeY (fz=y)
Here we made use of the abbreviation

AyeY ¢

for
yeY (4 Ay €Y (8(¥0/y) = Yo =¥))

We shall denote the space of functions f : X — Y by Y¥or X =Y.
Definition 2.15 Let f : X - Y
o f isinjective (f : X —=Y) if

Vzo, 2, € X (fzo = f2, — 29 = 7y)

o f issurjective (f : X =Y ) if

VyeYdze X (fz=y)

e f is bijective (f : X ==Y ) if it is both injective and surjective.

The definition of an injection is an example of how alternative formulations
of a classical definition yield different constructive concepts. We can weaken the
definition to

Vao, 2, € X (fzo = fo, = — 2= 2,)

or strengthen it to
Vg, 21 € X (—— fzo = fz; — 7 = 7y)

and talk of weakly and strongly injective functions.

Bijections preserve certain properties of sets. As an example we prove



CHAPTER 2. CONSTRUCTIVE SET THEORY 38

Lemma 2.16 The image of a discrete set under a bijection is discrete.

Proof. Take f : X < Y where X is discrete. Pick y;,y; € f(X). Then
! ’ -1 / -1 !
0o=Y = f (W) =71 (v;)

and since equality is decidable on X, so it is on f(X). O

2.2.5 Restrictions and extensions

Now we arrive at the definition of an innocuous looking (through classical eyes!)

concept which will later exhibit a very unclassical behaviour. First,

Definition 2.17 Let X, C X, and f : X, — Y. The restriction of f to X, is
fIXo2 £ (X Y)
Conversely, we have

Definition 2.18 Assume Xy C X,,Y, C Y, and fy : Xo — Yy. Then the func-
tion f; : X; — Y] extends f; if

foCh

fo has an extension in X; = Y] if there is a f; : Xy — Y; eztending f,.

Note that f; extends fg if
Vz € X, (z € Xy — foxr = fiz)

and that f : X; — Y] is an extension of a function in X3 =Y, (namely f N
(Xo x Yp)) if
f(Xo) C Yo

In classical theory, if X, € X; and Y is not empty, then all functions
f + Xo — Y have extensions in X; = Y and they may have many different ones.
This contrasts with the situation in constructive set theory where functions may

have no or only one extension. Therefore the following definition will prove useful.

Definition 2.19 Let X, C X;. Then f : X; — Y is determined by its values
on X, if it is the unique extension of f|X,. ‘
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Note that in Definition 2.18 we talk of f having an extension ¢n X; = Y, rather
than f having an extension to X;. The distinction is important: while there may
not be enough points in Y, to map the elements in X, to, there might well be

sufficiently many in Y;.
Definition 2.20 Let X, C X,,Y, C Y, be sets. Put
Ext(Xo C X1, Yo C Y1) 2 {f: X1 = ¥i | fXoC Yo }

In order to get used to the notions introduced above and for future reference

we prove the following

Lemma 2.21 Let X, be a subset of X. Then f : X =Y is determined by its
values on X if

1. Vz e X (-~ z € Xy).

2. equality is stable on Y.

Proof. Let f,,f, : X — Y be such that fj|X, = f;|Xo, i.e.

VmEX(mGXO——)f('):czfiw)

!

14 1N ! [ ! 7
Take ' € X. We have =— 2’ € X, hence —— fox = fiz',s0 fox = fiz". O

We shall revise more definitions later. Now let us turn to a brief comparison
of IZF with ZF.

2.2.6 IZF vs. ZF

When trying to set up an axiom system for constructive set theory, one might be
tempted to use ZF and reason in IQC. However, it turns out that some of the
axioms in ZF are too strong, at least in the way they are usually stated.

Foundation

Looking at IZF one quickly notices the absence of the Axiom of Foundation
dJz(ze€X)—3Jze X (zNX =0) <Foundation>

While < Foundation> may not be of relevance to the development of most of

classical set theory, its absence becomes a necessity constructively.
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Lemma 2.22

IZF + <Foundation> ko0 <RAA>

Proof. For ¢ a formula of IZF consider
X={0]¢}u{l}
Assume < Foundation> and —— ¢. X is inhabited, hence we have
dJz(ze X ANznNX=0)
The only candidates for this are 0 and 1. 1 is ruled out since =~ ¢ implies
-—0e(1NX)

Therefore
0leX

and ¢. O

< Foundation > has in fact been replaced by the classically equivalent, but
constructively weaker <Induction>. Grayson explains in [Gra75] what can still
be proved.

Replacement

The Axiom of Replacement in ZF
(Vzq € Xy A2y ¢) — IX, V2o € Xy J2z, € X; ¢ <Replacement >

has in IZF been strengthened to < Collection>. Friedman and Scedrov show in
[FS83] that this strengthening is strict.
Axiom of Choice

Next we consider the Axiom of Choice. As one might by now expect, many of
its versions are no longer provably equivalent in IZF. The following formulation

is too strong.
VX eXIz(zeX))—df : X-UX (VX e X (fX X)) <AC>

We have
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Lemma 2.23 ([Dia85])

Proof. Assume <AC> and —— ¢. Let

Xo={0ju{1l]|¢}
and
Xi={0|¢}u{1}
Put X = {X,, X;}. By <AC> there is a function
f:X-Ux={0,1}
such that
f(X)eX; fori=0,1

—— ¢ implies

X=X,

hence

- f(Xo) = f(X3)
Equality is decidable on {0,1}, so either

f(Xo) = f(X,)=0
or

f(Xo)=f(Xy)=1
If the former is true,

0ef{0]g}ufl}
hence ¢. In the other case

le{oju{l]é}
and again ¢.

< AC> has another formulation, which is equivalent even constructively.

Definition 2.24 Let X,Y be sets. <AC-XY > is the following statement.

For all TZF -formulas ¢ the following sentence holds.

Vee X Iy €Y é(z,y) — 3f : X=Y (Vz € X ¢(z, f(z)))

41
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With this we have
Definition 2.25 <AC> is the following statement.

For all sets X,Y <AC-XY >

1

Note that while in a model the Axiom of Choice might fail, particular instances
will hold.
It is high time to introduce some models of IZF' and produce examples where

classical logic fails.

2.2.7 A class of models of IZF

We shall now associate with every every category C a model VE of IZF. First
we define the domain V by building a set theoretic hierarchy inside Set®”. We
first recall the classical construction by von Neumann.

Define by induction on On the following sequence in Set.

Definition 2.26

V, & 0

Ve 2 P(VL)

V, 2 U Ve Jfora alimit
g€

Write v € V if
JaeOn(veV,)

For an interpretation of ZF in V we refer to Kunen [Kun80]. From the same

source we cite the following result.

Lemma 2.27
V E ZF
Recall that V is in fact a transitive model of ZF, i.e. we have
veEV—-vCV

We now mimic this procedure and define by induction on On a chain of
functors V,, in Set®”. This will be an instance of the general method of defining a
universe and an interpretation of IZF in a topos, which can be found in Fourman’s

paper [Fou80].
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Definition 2.28

Vo =i= 0(-)
Vorr = P(Va)
Vo 2 colimyeaVy, Jora alimit

Lemma 2.29

Vao, (821 S On (ao C oy — VO.IO - Val)

Proof. Let ¢(a) be the formula Ve, € On (g C o — V,,, C V,). We prove
Vo € On ¢ by induction. The cases ¢(0) and ¢(1) are obvious. Now assume that
Voo € a ¢(ay). We prove ¢(a) by case inspection.

1. If a is a limit, ¢(e) holds by Lemma 1.13.

2. Let a > 2 be the successor of a~. Assume ¢(a~). First, let us show that
forallC € C
Vo-(C) € Vo(C)

Take C € C and v € V,-(C). It is of the form
{Xfo - Vao(CO)}fo:C'o—»C
for some a4 € a”. By hypothesis we have for all fy : Cy — C
X1, C Vo (Ch)

SO

v € P(Vo-)(C) = Vu(C)
Next, we prove that for all morphisms f:Co—0C,

Vo (f) = Vo) Ve (Ch)
To see this, pick v € Va_(Clj. v is of the form

{X5, €V (O} is—an

for some ay € o~ . We have by induction hypothesis

Vo (F)(v) =
P(Vao )()(v) =

{X50 plhc—a
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but also

Vo()(v) =
P(Vo-)(f)(v) =

{Xf o fz}fzzcz“‘*co

It emerges that for all limit ordinals «

Vo = colimy oV, = U Voo

o€

Lemma, 2.29 permits the introduction of the following convention.

Convention. We write v € V(C) for
Jda € On (v € V,(C))

The generalization to more complex contexts is straightforward.

We turn to the interpretation of IZF in VE. Set
VEC =8et®”(1,V)
Constants ¢ of Lz are interpreted as global elements
ceVE®

Conversely, we talk about the members of V© in the language of set theory.

Convention. We shall write ¢(C) instead of the cumbersome ¢(C)(0).

The interpretation of formulas ¢ is defined by a forcing relation |-, between

‘stages’ C' € C and ¢ and with respect to an assignment A, i.e. for all = free in ¢
A(z) e V(C)

If A is an assignment of the free variables in ¢ at C, then A|f denotes its restric-

tion along f : Cy — C, i.e. for all z free in ¢

(Alf)(=) = V(F)(A(=))
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Also, if A is an assignment of the free variables in ¢ at C and v € V(C), then
A{v/z} is A with the value of z replaced by v.

Define inductively on the structure of ¢

Clla o€z, i Azo) € (A(21))iao
C ks co€er HE co(C) € (e1(C))iae
similarly for the cases x € cand c€ «
C ks zo=21 iff A(zo)=A(zy)
Clia co=e i (C)=cy(C)
similarly for z = ¢
C |, L never
Clta ¢y ff Oy d2andC |}, o
Cla ove i C by ¢orC |y ¢
Clra o=y ff Vfo:C,—C(Co H‘A|fo ¢ — Cp H‘A|f0 )
Cltadzg i eV(C)(C lrapm 9)

Cla Voo it Vfo:Co—= CVoeV(Co)(Co lFupyiusmy @)

We write
VeE¢
if C ||-, ¢ for every C' € C and assignment A. We have

Theorem 2.30 For all categories C

V€ k& IZF

Proof. See [Fou80]. O

Note on double negation. Let C' € C. There is a natural preorder <, on
the arrows C in C with codomain C defined by

foZc L& 3h (fi=foo fa) (2.1)
Set also
fo*c‘fl“A"fojoﬁ/\fo?’éfl

We have
C H‘A mal
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if the set Cy of morphisms f, : Cy — C with

CO H_Alfo (]S
is ecofinal in C, i.e.
VfeC3fo€lo(f 2c fo)
Therefore we shall say that cofinally ¢ if —— ¢, rather than the clumsy not not
o. o

2.2.8 Heyting algebras and forcing

We shall indicate how ‘forcing’ is related to Heyting algebras.

Let C be a category. For C € C let §(C) be the set of C-cribles. Clearly
Q(C) is a cHa. Take a (constant free) formula ¢(zq,...,2,_;) of IZF. We can
define its truth value at C

[41(C) : V(C) — Q(C)
by setting

[#1(C) (vor - -y Vn1) £ { fo: Co = C | Co tusmrtse ¢}

|l- was defined in such a way that we have

[LIC)@) = 0
[¢ A4I(C)@) = [SI(C)(E) ARNC)D)
[¢ v ol(C)@) = [4I(C)E)V[FNC)D)
[4— 41(C)@) = [¢l(C)(@) — [¥I(C)(®)
V= dlO)@) = A (A [#l(Co)(v/=,51f0))

J0:Co—C veV(Ch)

Bz 4lO)®) = V [#l(O)(v/=,7)

vEV(0)

2.2.9 Embedding V in v©

We are now going to indicate how the classical universe V can be regarded as
isomorphic to a submodel of VC. Theorem 2.32 has been copied from [Bel77]

and its proof amended to suit our needs.
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We define for every v € Vand C € C

v*(C) & {{ vj(Co) |vo€ v}, } oo
We prove

Lemma 2.31 ForallveV
v* e VE°

Proof. By induction on the membership relation on V.

e For the base case pick C € C. Then
@*(C) - {mfo}fo:Co—-)C € P(@)(C) C V(C)
To establish naturality we calculate for f : Cy — C;

V(£)(@"(Cy))
V({04 } po—e =

{00 fo}pc—c, =
0*(Co)

e For the induction step assume that
Yoo € vy (v € VE)
We have at C € C
v1(C) = {{ v5(Co) | vo € v, }fo}fo:Co—->C’
First, for all Cy € C by hypothesis
{ v;(C’O) | vo € vy } € V(Co)
Also, for f : Cy — C, by hypothesis

V(N 03(01) | vo ‘E v, } =
{ v5(Co) | vo € vy }

therefore

v;(C) € V(C)
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Again we have for f : Cy — C)

V() (v(C) =
VN {{ v5(C) | vo € vy }fl}flzc—)01 =
{{vg(C) lvo € vy Yo ptic—a =
v;(Co)

Members of VC of the form v* will be called standard.
We have

Theorem 2.32 1. Forvy,v, € V
Vg € vy iﬁchzv;Ev;
Vo = Vg iﬁVC%vgzv:
"2, The map —* is 1-1 from V into V.

3. For any restricted formula ¢(zo,...,2,_1) and any vy,..., 0,1 €V
$(vi/z;) iff VC = ¢(v]/z;)

Proof.

1. (a) If vy € v; then V€ v, € v].
Assume vy € vy. Then for all C € C

v;(C) e{v(C)|vewv }= (”:(C))idc

therefore

C Iy vy €]
and

Ve = vy € V)

(b) If vy = v then VC = v% = o],
Assume vy = vy. Then for all C' € C

'U;(C) = { v*(Co) | v € vg }f:C’o—>C
= {v"(Co) | v € vy } gm0 = v:(0)

48
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So

C g vg=1;
and again | ,

v© }= v; = v’;

(c) If VE |= v} € v} then v, € vy.
Ve vy = v; then vy = v;.
In fact we prove the following, stronger statement. Let C € C and
vo,v1 € V. Then
C |y vy €vy — vo € vy
and
C by vy=vi 2 vo=1,

The proof is by double induction on the (well-founded) €-relation on
v;. Set
P(v1) =V € V (C |}y vy € v; — vo € ;)

and
P(v)) =Vvg € V (C |}y vy =v] — v =)

We have to prove

Yv € V ¢(v)
and

Yv € V ¢(v)
It is clear that ¢(() and ¥(0). For the induction step pick C € C and
assume

Yo € vy ¢(vo)
Yoo € vy ¥(vo)

and for v, €'V
i.

C H“w v; S 'U;
This last assumption is equivalent to

v(C) € (v(C)iae = { v (C) v €, }
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Therefore for some v € v,
* %
C g vo=v

so by induction hypothesis vy = v and vy € v;.
ii.

C Ity vo=1;
This is equivalent to
%(C) =v}(C)
or unscrambled
{{v"(Co) |v€vo }}rioe—c = {{ v*(Co) | v € v1 }}sioo—0
which implies specifically that
{v7(C) |v € v }ig, ={v7(C) |vEDV }iy,
It follows that
Vv € vo (v°(C) € { v™(C) | v € vy }iq,)

or
Yo € v (C 1y v €vy)

hence by induction hypothesis
Yo € vy (v € vy)
In the same manner we also obtain
Yo € vy (v € vg)
therefore by extensionality vy = v;.
2. follows from 1.
3. We shall prove the following statement.

For any restricted formula ¢(z;), any v; € V and C € C

$vi/z;) it C |y (v]/2) (2-2)

50
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From this claim 3. clearly follows.

We prove (2.2) by structural induction on ¢.

(a) For ¢ atomic the statement holds by 1.
(b) If ¢ is L, a conjunction, disjunction or implication, the step is easy. |
(c) Let
p=Jz €z =3z (z € 29 A )
i. For v; € V assume ¢(v;/z;). Then there is a v € V such that
(z € 2o A P)(v/2,v;/x))
By (2) and (b) and the induction hypothesis we obtain
C Iy (z €20 A)(v"/2,v] /)
hence
C I cyey (& € To A $)(v;/x;)
and
C Iy 3z (z € 20 A P)(v] /)
ii. Now assume for v; € V
C Ity 3z (2 € mo A P)(v;/:)
Then there is a 2’ such that
z' € (9(C))iae = { v"(C) [v € v }
and
C /ey (& €20 A)(v]/2))

Hence there is a v € v, which by transitivity is in V and such
that such that

C lrgor(oyjay (8 €20 A $) (v /z;)
_therefore
C Iy (z €z AP)(v'/2,0][2:)
and again by (a), (b) and the induction hypothesis
(z € zo A ) (v/z,v;/x;)

The result follows.
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(d) Let
d=Vzezgp =V (z€z0— )
i. For v; € V assume ‘
Vz (z € o — ) (vi/z;) (2.3) ,

Pick f : Cy — C and z’ such that
'€ (v;(CO))idco ={v(Co) [veEv}
There is a v € vy such that
2’ = v*(Co) (24)

We have by (2.3)
¢(U/:l§, 'vi/mi)

hence by induction hypothesis

Co Ity P(v* [z, U:/-'”z')

and
Co lriorco)ey ¥(v;/24)
therefore by (2.4)
Co H—{z’/x} ¢(”: /)

and the result follows.

ii. Now assume
C |y Va (2 € 2o — ¥)(v] /)
Pick v € V such that v € v,. We have
Cly (z€ zo)(v*/x, v:/mi)

therefore
C -y (" /z,v] /)
and by induction hypothesis
’()[)(U/.T, 'Uz'/mi)

The result follows.
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0

We make explicit a property of v* which we have repeatedly used in the above

proof.

Lemma 2.33 Let C € C, v € V and y such that

C H_{y/w} T € 'U*

Then there exists a vy € v such that
C ey = =5

Proof. Immediate from the definition of v*. O

2.2.10 Classical sets

Can the standard sets in a universe VC be described axiomatically? I do not

kiow. A step towards a description is the following definition.

Definition 2.34 A set X is pseudo-classical if

VXoc X (Vze X (z€ X,V ¢Xo) —
dzre X (ze€Xy)V-3IzeX (ze X))

A pseudo-classical set also satisfies the following condition.
Lemma 2.35 Let X be pseudo-classical. Then
VXoC X (VzeX(zeXyVe ¢X,) —
Vze X (z € Xy) V-V e X (ze X))
Proof. Assume X to be pseudo-classical. Pick X (') C X. Assume
Vee X (z€ XV é¢Xp) (2.5)

Then also
VeeX (zeX,Vzé¢X,)

Therefore by pseudo-classicality of X

TeX(zeX)V-IzeX(zeX,)
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The first option implies
-~Vze X (z € X,)

the second

Vz € X - (z € X,)

so by (2.5)
Vz € X (z € Xy)

Lemma 2.836 Let X,Y be pseudo-classical. Then X XY is pseudo-classical.

Proof. Pick Z' ¢ X x Y such that Z'is decidable. Define
X2 {zeX|eY ((z,y) €2}

We have by pseudo-classicality of Y and decidability of Z' that for every z € X

the statement

dyeY ((z,y) € Z')

is decidable, therefore Xj is a decidable subset of X. We get by pseudo-classicality
of X
dze X (zeXp)Vdz e X (zeXy)

which implies

IzeXyeY (z,9)eZ)v-TeeXIyeY (z,y) € Z)

The following lemmas will help to explain the term ‘pseudo-classical’.
Lemma 2.37 Let X be pseudo-classical and ¢(z) be decidable on X. Then
1.dzeX¢V-IzecXe

2.Vee X pV-VzeXo

Proof. Immediate from Definition 2.34 and Lemma 2.35. O
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Lemma 2.38 Let X be pseudo-classical, R}* C X™ decidable relations on X and
¢ a formula having R; as relation symbols and quantifiers of the form Jx € X
andVz € X . Then :

VZEe X (¢V — ¢)

1

Proof. By induction on the structure of ¢ and Lemmas 2.8, 2.36 and 2.37. O

In order to get used to pseudo-classical sets, we prove some lemmas that

indicate their usefulness.

Lemma 2.39 If X is pseudo-classical and X, a decidable subset of X then

——dze X (ze Xy — Iz e X (zeXy)

Proof. Assume —— 3z € X (z € X,). X, is a decidable subset of X, therefore
dreX(zeXy)V-IdzeX (z e Xy)

The latter case is ruled out since X, is nonempty. Therefore it is inhabited. O

Since X is a decidable subset of itself, we get as an immediate consequence

Corollary 2.40 If X is pseudo-classical then
—=Jdz (z € X) — Jz (z € X)

Lemma 2.41 For any sets Xy, X, if X, is pseudo-classical and X, is discrete,
then XIX ® ¢s discrete.

Proof. Take f(',,fl' : Xy — X;. We have

Ve € X, (fo(z) = fi(z) V fo(z) £ fi())

By pseudo-classicality of X, we have

Va € X, (f3(z) = £i(e)) V ~ V2 € X (fy(2) = £1())

hence the resilt. - O

Lemma 2.42 Let X, be pseudo-classical, X, discrete. Then for any two func-
tions fo, f1 : Xo— Xy

Jo# fi — 3z € X,y (foz) # fi(z))
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Proof. Pick f(;,fl' € Xy = X;. Assume fé # f{, ie.

- Ve € Xo (fi(2) = fi(2)) (2.6)

We have by discreteness of X,

Vo € X, (fy(z) # fil2) V = fife) = £i(2))

hence by pseudo-classicality of X,

3z € X, (f3(a) # (=) V = I € X (fi(2) # fi())

The second option and discreteness of X, entail

Ve € Xo (folz) = f,(z))
which is ruled out by (2.6). The result follows. o

Remark. The definition of a ‘pseudo-classical set’ appears to be new. The

weaker Markov Principle however is well known in constructive mathematics.

Definition 2.43 For X a set let MP(X) be the statement

VXoc X (Ve X (zeX,Ve¢Xy) —
~—3dze X (ze€Xy) —» Iz eX (zeXy)

O

We have already seen (Lemma 2.39) that MP(X') holds for all pseudo-classical
sets. It may be interesting to note that in the realizability model w satisfies MP
although it is not pseudo-classical (cf. [McC84)).

Note that in spite of the lemmas above, pseudo-classical sets may still be quite
confused. A set X may only have the empty set and itself as decidable subsets.
In this case Definition 2.34 does not say very much about X. We therefore add

a minimal requirement.
Definition 2.44 A set X is classical if it is pseudo-classical and discrete.
We have

Lemma 2.45 Standard sets are classical.
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Proof. Standard sets are discrete by Lemma 2.32.3. To prove pseudo-classica-
lity let C be a category. Pick v € V. We have to prove that in Ve

VX Co*(Veev (zeX Ve ¢X)—
drev* (zeX)V-3Iz €v” (z € X))

So pick C € C, fy : Cy— C and Y such that
Cy H—{Y/X} Xcov
Let f, : C; — C, and assume
C1 Wyxyn Yz €V (zeXVzé¢X)
We have two cases:
1. for all f, : Cy — C, and y € v*(C))
Co |Hvxyin o sytursy © € X

Then
C]_ H_{Y/X}lfl - 3.’1) € 'U* (fl; (= X)

2. thereis a f, : Cy — C, and a y € v*(C,) such that
Ca lv/xhen o mywrsy T €X
By Lemma 2.33 there is a vy € v such that
Co bprxyn o ) % €X
and by decidability of X
Cy yixyn v €X

hence
Cl H—{Y/X}lfl 3.’17 S 'U* (.’I? (= X)

O
Conjecture. The category of classical sets is a full subcategory of the category

of all sets, i.e. when two sets X and Y are classical then so are X x Y and YZ.
. -
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2.3 Some counterexamples

We are now in a position to prove the independence from IZF of some classical
theorems. This will be done by giving models V of IZF in which the sentences

fail. We introduce the following notation.

Notation. Let P be a partial order with a top and P, a downward closed subset
of P. Let f : Py — w be such that

po <p p1 — f(po) = f(p1)

Then { f | Py } denotes the smallest set X in V¥ such that

plF fpeXifpeh

Dfeﬁnition 2.46 Let ¢ be a classical theorem and VC a model of IZF.

e VC is a weak counterexample to ¢ if
Ve 4
e VCisa strong counterexample to ¢ if
VeE-¢
Lemma 2.47

IZF ¥ V¢ (-~ ¢ — ¢) = (— d V ~— ¢))

Proof. Consider the model V2T, Let ‘¢ be a sentence forced at 0. Then
- (mm ¢ — @) is forced at L, but (= ¢ V = @) is not. 0

Lemma 2.48

IZF ¥ V¢ (= ¢V ¢) = (- ¢ — 4))

Proof. Consider the model V7. Let ¢ be a sentence forced at 1. Then
(~ ¢ V == @) is forced at 0, but (—— ¢ — ¢) is not. v O
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Lemma 2.49

IZF ¥ -~ Vn € w ¢(n) — In € w — ¢(n)

Proof. Take the model V¥ and é(n) such that @(n) is forced at |n. Then
= V¥n € w ¢(n) is forced everywhere, but In € w — ¢(n) nowhere. O

!

Lemma 2.50 There is a model VC and a set X € VC such that

Ve E-Vzg,2, € X (29 =2, V 2o # 24)

Proof. Consider the model V¥, For n € w define X, € v by
X, 2{1]In}

We have for all X,
v E X, € P(1)

Also for every n € w
n oy Xo=Xnpa VX, # Xoga
hence for all n € w
n |t Voo, 21 € P(1) (w0 = 21 V o # 24)

and

VY b= = Vag, 2, € P(1) (2o = 2, V 20 # 24)
O

What can be said about the categories C that have the property that there
exists an X € VC such that

VO == Vzg,2, € X (g =2, V - 2 = 4)?
This is answered by the following
Lemma 2.51’ If for a category C there is an X € VEC such that
v© E - Vzg,z, € X (2o = xl‘V To F 1)

then for all C € C and for all fy : Cy— C there exists a fy : Cy; — C such that
fa>c fo
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Proof. Recall the definition of > (2.1). Assume
C by ~ V20,21 € X (zo =21V 3o =11)
This means that for all fy : Cy — C
Co |Hp Vo, 21 € X (zo =2,V ~ 20 = 71)
i.e. thereexist a f; : C; — C, f1 =¢ fo and yo,y, € X(C,) such that

C1 [Higofmom for} To= 1 (2.7

and

C1 Hiwoszosm /e To F 1 (2.8)
From (2.7) and (2.8) we deduce that there is a morphism f, : €, — C such that
fa ¢ f1 =¢ fo and

Cy H_{yo/:vo;y1/w1}|f To =Ty
where f, = f,0 f. a

Similarly we could prove the next

Lemma 2.52 If for a category C there is an X € VC such that
VC = Vag, 21 € X (20 # 2, V o 30 = 24)

then for all C € C and fy : Cy — C thereexist f; : C; —C and fy : Cy —C
such that f; >¢ fo, 2 =c fo and fi and f, are incompatible, i.e. there is no
fz : C3— C such that f3 =¢ f1 and f3 =¢ fs.

So, if C? is a tree, it will have hereditary width at least w.
There is a class of sentences that will impose an even greater lower bound.

We state without proof

Lemma 2.58 Let P be a tree, « € V an infinite cardinal. Then if
VE? E3X (0" C X A= Vzo € X Iz, € X (20 # 21))

then P has hereditary width at least .
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2.4 Further revision of some classical concepts

We use functions to compare the size of sets.

Definition 2.54 Let X,Y be sets.

XY of 3f(f : X=Y)
X=Y off 3f(f: X —Y)
X=<Y if XYAX#Y

Classically we have the Schréder-Bernstein Lemma.

Lemma 2.55

ZF togo X2 YAY XX —-X~rY <SB>

Proof. See for instance [Kun80]. 0

_ Constructively <SB> does not hold. As a counterexample take V. Pick
a sentence ¢ forced at 1 and consider the sets w and wU {w | ¢ }. Evidently

the inclusion is a monomorphism from w to w U { w | ¢ }. In the other direction

define f by
f(n)2n+1 fornew

and
flw)£0

It is clear that there cannot be a bijection between the two sets.

We can prove something stronger.

Lemma 2.56

IZF + <SB> 4 w is classical Fjo0 <PEM>

Proof. Given ¢, take again the sets w and w U { w | # }. There are injections

in both directions. Now assume there is a bijection
frw—wU{w|sé}

We have
¢~ weim(f) « In€w(frn=uw)
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Equality is decidable on w U {w}, hence ¢(n) = fn = w is a decidable relation

on the classical set w, therefore
dnew(fn=w)

is decidable and so is ¢. o’

It may now almost come as a pleasant surprise that another lemma related
to size still holds.

Lemma 2.57 (Cantor) For all sets X

X < P(X)

Proof. It is clear that X can be mapped injectively into P(X). Assume there
exists a bijection f : X < P(X). Consider the subset of X

Xo2{zeX|z¢fz}
X is the image of a point 2y € X. Assume
o€ fro={zeX|z¢fz}

We have a contradiction. Therefore

zo & fzo
but then
soe{zeX|zdfr}=Fx,
Another contradiction. We see that there is no bijection. ]

Now we go over to the question of ordinals. We remark that the usual classical

definition does not work. First two auxiliary notions.
Definition 2.58 A set X is transitive if
Ve e X (z C X)

Definition 2.59 Let R be an anti-reflezive, transitive binary relation on a set

X. R is a well ordering if every nonempty subset of X has an R-least member.

Definition 2.60 (classical) An ordinal is @ €-well ordered, transitive set.
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The reason for avoiding this definition lies in the somewhat surprising fact that

constructively only the empty set can be well ordered.

Lemma 2.61 Let X be a nonempty set. Then

IZF + 3R such that R well orders X ke <RAA>

Proof. Let R be a well ordering on X. There is an R-minimum z € X. Assume
== ¢. Then

X2 X\ {z}U{z|¢}

is a nonempty subset of X and has an R-minimum z,. = ¢ implies == X = X,
80 =z = zo. As z is the minimum and we do not have z Rz, it follows that
z = z43. Therefore z € X, and ¢. O

We propose an alternative—and as always classically equivalent— definition
of our ordinals. At least we manage to salvage one of their most important

characteristics.

Definition 2.62 (constructive) Let X be a set. X is an ordinal if it is transi-
tive and induction can be done on i, i.e. for all set theoretic formulas ¢(x) with
zo free for x

Ve € X (Vzg € z ¢(zof/z) > ¢) = Vz e X ¢

The class of ordinals will be denoted On.

The natural numbers and w are ordinals.

We might now be tempted to define some notion of cardinality of sets in
terms of ordinals. The following definitions and notes show that there are already

considerable problems at a low level.
Definition 2.63 Let X be a set. It is

e strictly finite ¢f Inew If (f : n— X)

finite if In€ew If (f : n— X)

subfinite if In AN (N Cn AIf(f : N — X))

countable of If (f : w—» X)

subcountable if AN (N Cw A If (f : N — X))
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e infinite of If (f : w— X)

Subfinite sets are—as their name suggests—subsets of finite sets. They have
the closure properties classically attributed to finite sets. For more information

we refer to Grayson [Gra78].

]

The distinction between the various degrees of finiteness is relevant. We have
for example

Lemma 2.64
IZF + Vz (zis subfinite — zis finite) Frgc <RAA>

The proof of this lemma appears in [McC84].



Chapter 3

A-calculus and combinatory logic

In this chapter we are going to look at the languages of the A-calculus and
combinatory logic, and we define some theories and models.

The standard text on the (untyped) A-calculus is the book by Barendregt
[Bar84]. Koymans worked on models ([Koy82] and [Koy84]). See also Bethke’s
thesis [Bet88]. The connection between the typed theory and ccc’s is established
in'the work of Lambek and Scott [LS86].

3.1 The syntax of the A-calculus

We start with the typed calculus.

Definition 8.1 Let I' be a nonempty set of (ground) type symbols. The set of
types X over I is defined inductively by

eI'CX
o ifoy,00 €L then (0 — 0;) €L
For the rest of the chapter let X be a fixed set of types.
Definition 3.2 A Y-typed set is a Z-indexed familiy of mutually disjoint sets.

If X is a X-typed set, write z € X for ¢ € U,ex X°. z is of type o (z : o) if
zeX°. ‘

Remark. We shall use the term ‘X-typed’ in various contexts. Thus we shall
for example speak of a X-typed function to mean a X-typed set f = {f’},ex

such that each f” is a function. O

65
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Now let C be a X-typed set of constants, Vars a X-typed infinite set of vari-
ables. The language L 32 0) of the E-typed A-calculus is made up of C; Vars,
brackets (,) and the abstractor \.

The terms AE(C’) of the calculus are Y-typed and defined inductively by

e C°CA°(C) foralloe X
e Vars” CA°(C) foralloe X

o if t,€ A®7(C) and t, € A°(C) then (iot,) € A”(C) for every

0,01 € X

o if z € Vars™ and t € A*(C) then (Az.t) € A7 (C) for every

09,01 € X

We omit the type of a term if it is of no importance or can be inferred from
context.
There is a notion of binding of variables in A-terms. The set of free variables

FV(t) of a term t is defined inductively on the structure of ¢ as
e FV(c)=0 forceC

e FV(z) = {z} for z € Vars
o FV(iot,) =FV(t,) UFV(t,)
e FV(Az.t) =FV()\ {z}

Let (A®)°(C) denote the set of closed terms, i.e. terms ¢ with no free variables.

Terms that only differ by the names of the bound variables will be treated as
identical (a-equivalence).

Terms can be substituted for free variables in other terms. Let ¢4(¢,/z) denote
to with every free occurrence of = replaced by t;. Rename variables in #; to avoid
capture.

Let us agree to write tyt,t, for ({oty)t,, and Az.tot, for Az.(tgt,).

3.1.1 The untyped calculus

We shall regard this as having only one type, hence there is only one set of
constants, variables etc. Terms A(C) are defined as above, without mention of

types, so that one of the term forming rules will now read
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3.1.2  \*(C)-theories

Remark. The definitions and results in the remainder of this chapter, although
stated for the typed calculus, apply also to the untyped version, and we shall use
them in an untyped context. o,

Definition 8.3 A \*(C)-theory is a set of equations between AZ(C)-terms of
the same type.

Purely to enhance readability, we shall sometimes place equations inside the
delimiters ||. Here now is the definition of the basic A\¥(C)-theory.

Definition 3.4 A\3n>(C) is the AE(C)-theory inductively defined by

1. [t =1t| € ABn"(C) <Reflexivity >

- 2. if to =1t € ABn7(C) and |t, = t,| € ABn™(C)
then |ty = t,] € ABn™(C) < Transitivity >

3. if [to = t;] € ABRE(C) then |t;, = to| € ABN*(C) <Symmetry >

4. if [to =t:] € ABn™(C) and |t, = t5] € A\Bn™(C)
then |toty = t1ts| € ABR™(C) < Application >

5. if lto = t1| € ABRE(C) then |Az.ty = Az.ty| € ABR*(C) <&>
6. |(Azto)ty = to(ty/)| € ABN™(C) <B>
7. Aztz =t € ABn=(C) if ¢ ¢ FV(t) <n>

If T is a theory
ABNE(C)+T F to=1y

means that |t; = t4| can be derived from the axioms in ABn=(C) and T using

the rules of equality and &. Call a theory T' inconsistent if for all terms g,
MBE(C)+T F ty=t,

Two terms are incompatible relative to T' if T is consistent and T U {to =1} is

not. Two terms are incompatible if they are incompatible relative to 0.
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Remark. We defined a theory as a ‘set’ of equations without specifiying where
this set ‘lives’. It would be quite reasonable to assume that a A*(C)-theory is a

set in a constructive universe. Hence we cannot in general assume that, e.g.
}\,3772(0) +T F tg=1 or Aﬂnz(C’) +T W to=1

i.e. neither T nor the set of its consequences need be a decidable subset of the
set of all equations. However, since we wish to start out from a classical theory

and define constructive models for it, we shall assume that T is a decidable. O

We shall now give a well known result that can be proved constructively. It

concerns the existence of fixed points in the untyped theory.

Lemma 3.5 Every term tq € A(C) has a fized point, i.e. there is a term t; such
that ‘
ABn(C) F toty =1,

Proof. Let
* t; = (Az.to(zz))( Az .to(zz))
Then
ABH(C) F t; = Da.to(zz))Dz.to(z2)) = to((Az.to(zz))(Az.to(22))) = oty

O

In the next section we shall show how the abstractor A can be eliminated by

translating A-terms into terms of combinatory logic.

3.2 Combinatory logic

Combinatory logic provides an alternative to the A-calculus. It is equational
(although we shall occasionally trespass into first order logic), hence all model
theoretic results from equational logic can be applied to it. Again we start by
describing the language.

Let C be a X-typed set of constants and Vars a X-typed set of variables. The
language EEL(C) of combinatory logic is made up of C, Vars, brackets (,) and

kao 101

¢ a constant of type (o¢ — (03 — 0y)) for every 0y,04 € Z

00,01 ,02

e a constant s of type (o¢ — (07 — 73)) — ((060 — 01) = (09 — 03))

for every ¢q,04,05 € %



CHAPTER 3. A-CALCULUS AND COMBINATORY LOGIC 69

Y-typed terms C’LE(C ) of combinatory logic are defined inductively by

e C°C CL°(C) foreveryc € &

Vars’ ¢ CL°(C) for every o0 € X

kdo 01 c CLUO—*(Ul —*00)(0) fOI' every oo, 0 € E

o 570172 ¢ OLleo—en q"z))"’((""_"’l)_'(""_'”2))(0) for every 0y,0,,0, € X

if t € CL7°*(C) and t; € CL°(C) then (tot,) € CL”*(C) for every

00,01 €Y

Analogous to the definition of )\E(C’ )-theory is that of a theory of combinatory

logic.

Definition 8.6 A CLE(C)-theory is a set of equations between CL¥(C)-terms
of the same type.

Definition 3.7 Let CL*(C) be the CLE(C)-theory having as axioms and rules

1. |t =t| € CL*(C) <Reflexivity >

2. if |to=1,] € CLE(C) and |t; =t,| € CL¥(C) then |to = t,] € CL*(0)
< Transitivity >

8. if [ty = t,] € CLE(C) then |t; = to] € CL*(C) < Symmetry >

4. if [t =1, € CLE(C) and |ty = t5] € CLE(C) then |tot, = t,t5| € CL¥(C)

5. Ikao’o-ltotl = to! € CLE(C) fOT to - 0g — 04, t]_ : O0g

6- |300,al’02t0t1t2 = t0t2(t1t2)| S CLE(C) fO'r'
to: 00— (0p = 03), ty 109 = 01,851 0¢

The CL-equivalent to rule <7 > in the A-calculus is as follows.

7. I |toz = t,¢] € CL®(C) then |t, = t;] € CL®(C) provided that
z ¢ FV(tt,) <ext>

If T is a CL*(C)-theory write

CLE(C)+ <ext>+T F to=t,
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if t, =1, can be deduced from the axioms in T' and the axioms and rules in
CL*(C) and <ext>.
Define ¢ = skk. This is actually a list of definitions. From now on we shall

assume that equations like this one are well typed. We have
CL¥(C) F iz==z

so ¢ acts as a left identity on terms.
We can simulate abstraction in C’LE(C' ) by defining inductively for every

z € Vars a function

<z>: CL¥(C) — CL*(C)

by

o <zx>z=1

o <z>t==kt if t does not contain z

Te <z > tgly = s(<z> t)(<T> ty)

Now we can give a translation of A¥(C)-terms into CL*(C)-terms and vice versa.
Definition 3.8 The function —¢; : AZ(C) — CL¥(C) is given by

® cor=c

¢ Lo =<

¢ (tot1)or = (to)or(tr)or

o (Azt)op =<z> (tor)

Definition 3.9 The function —y, : CL¥(C) — A*(C) is given by

® Cy=C¢C
O:I,'A—:U
o k), = Azy.x

sy = Azyz.xz(yz)

(tot1)x = (to)a(t)r
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We have (see [Mog88])

Lemma 3.10 1. CL*(C) + t= (tA)CL

2. ABn*(C) + t=(tor)s
8. CLE(C) + <ext>+T F to=1, & ABNZ(C) + Ty F (to)r = (t1)x

An analogous result exists for the untyped calculus.

3.3 Combinatory algebras

The A-calculus is supposed to be a theory of functions. Unfortunately the pres-
ence of abstraction makes the definition of models rather awkward. Combina-
tory logic on the other hand lacks this intuitive appeal. However, since it is an
equational theory (possibly upgraded to first order), we already have some in-
formation about its models. The following definitions are taken from [Mey82].
Again, we shall only treat the typed case. The ‘untyped’ definitions are then
stxlaightforward.
For the remainder of this chapter let C be a fixed ¥-typed set of constants.

Definition 3.11 A Y-typed combinatory algebra (ca) over C is a structure
U= U, v, ky,sv,Cv)
where
o U is an inhabited L-typed set, the underlying universe

o p={ 77 : U7 xU” - U |op,00 €L} is application

o ky={kP U™ gy 0, €8}

o sy={s"" ¢ yloo=er=aa))=((ro=a1)~(c0=02)) | 0g,01,00 €2}

o cyelU’ forceC’

and

CLE(C) i‘ t0=t1 —)Z/[ Ptoztl

that is
Yug € U .. uy_y € U (to(u;/2:))u = (t1(wi/z:)u

where z; is of type o; and FV(tety) C {zg,---,Tpn_1}-
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If U is a ca, we sometimes use || to denote the universe of U.

Remark. This definition of a combinatory algebra U does not assume that the
underlying universe is a family of classical sets. In the following chapters U will
be a family of sets in some model V of IZF.

u # to = tl
will then be interpreted as
VEYu e U . oupy €U (to(ui/z:))u = (t1(wi/:))u

a

Definition 8.12 Let U be a T-typed ca over C. The theory Th(U) of U is the
set of equations that hold in U.

We add a related definition.

D;eﬁnition 3.13 Let T be a CLE(C’)-theory, U a T-typed ca over C. Then U is
a fully abstract model of T if T = Th(U).

In model theory the usual expression for this state of affairs is that {¢/} is complete
forT.
A combinatory algebra may have attributes not expressible in pure equations.

We shall give here two important ones.
Definition 3.14 A CL*(C)-model is a structure
U= (U, kv, sv, €, Cv)
where (U, -y, ky, sy, Cy) is a combinatory algebra and
L.UE(e-zg) 2= 24
2 UEe e=c¢
3.

UEVz (zg-z=2,-2) — €25 = €- z; <Weak Extensionality> (3.1)

A stronger property is expressed in the following
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Definition 3.15 A CL¥(C)-modelU is an extensional \*(C)-model if it satisfies

UEVz (2o z=2,-T) = 2o = z; <Extensionality>

U is a A-model because of the following fact.

Lemma 3.16 IfU is an extensional \*(C)-model, then
CLE(C)+ <ext> F to=t, m Uty =1,

and the fact that CL®(C) + <ext> and ABn”(C) are equivalent.

Weak extensionality essentially means that we can pick a canonical represen-
tative among those points with the same applicative behaviour. Extensionality
says that a point is determined by its applicative behaviour. Note that a CLE(C)—
model is extensional if ¢ = .

We now recall some definitions from universal algebra and model theory. Let
U,V be E-typed ca’s over C.

Definition 8.17 U and V are equationally equivalent (U=V) if they have the

same theory.
Definition 3.18 A ca-homomorphism from U to V is a X-typed function
d={¢:U° =V’ |oceX}
such that for oy, 04,09 € %
o 67 (o B ) = 677 () 5 47 ()
o gl (fromny _ povn

° ¢(00—+(01~*02))-+((00—w1)—*(ao—wz))(stgam,az) - 3;9,01,02

e ¢°(cy)=cy forceC’

¢ is an ca-isomorphism if it is bijective. U and V are isomorphic U,V or
simply U2V ) if there is an isomorphism ¢ between them.

¢ is an embedding if it is an injection. U is a sub-combinatory algebra of
y ( UCV)ifU is a subset of V and the inclusion is a homomorphism. Wmte
UCy if U is isomorphic to a sub-ca of V.
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Lemma 3.19 U is a sub-ca of V if
s UCV

00,01 . .0'0 1 oo —+0q o0
o PN =700 x U%)

[ ] kUZkV
® Sy = Sy

e cy=cy forallceC

Proof. Clear. 0

The next lemma is immediate.
Lemma 8.20 Let F be a family of sub-ca’s of V. Then NF is a sub-ca of V.
This lemma justifies the following definition.

Definition 3.21 Let X be a X-typed set, such that X C V. Then the sub-ca of
V generated by X is defined by

X2 {U|XcUAUCV}

Example. The sub-ca of V generated by the empty set is the interior of V,
denoted by V. It consists of all those elements in V that can be expressed by
application of the constants in V. O

3.4 Sheaves and singletons

Everything done so far has been perfectly classical. In this section we look at
a way of deriving new algebras from a given one which is only interesting in a
constructive context.

The family of singletons of a classical ca can easily itself be turned into a
combinatory algebra which will be isomorphic to the original one by {—}. Con-
structively however there is a number of competing definitions of a singleton.
Only in some cases can the space of such singletons be equipped with the right
structure. The definition of a singleton we are about to give—that of a ‘sta-
ble ——-singleton’—will ensure that this can be done. Moreover this new ca will

inherit many other properties the original one might possess.
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De Vries’ thesis [dV89] contains some useful definitions and fact. We refer to
him for credits. Let j be a topology.

Definition 3.22 A set X is a j-sheaf if
VXoC X (JAlz € X (z € X)) — Iz € X j(z € Xy))

Denote with Sh; the category of j-sheaves and set theoretic functions. It is a

full subcategory of Set. We have a first result.

Lemma 8.28 A j-sheaf X is j-separated.

Proof. Pick :1::),:1;'1 € X. Assume

j(zg = =) (3.2)
Consider the set {zj,z;}. By (3.2) we have
iz € X (z € {=},2,})

therefore
. !
| Az € X j(z € {z,,2,})
which implies :v:) = :1:'1 o

We can associate a sheaf with every set.

Definition 3.24 Let X be a set. The j-sheaf associated with X is a sheaf L; X
and function nx : X — L;X such that for every f : X =Y withY a j-sheaf

there exists exactly one function g such that the following diagram commutes.

\ g
Y

L; can be ‘explicitly constructed with the help of singletons. The classical
definition is well known.

Definition 3.25 (classical) A set X; C X is a singleton if
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There is more choice constructively. De Vries lists thirty-odd notions that are
classically equivalent to the one given above, but whose equivalence cannot be
proved constructively. We shall not detain ourselves but give the definition of

singleton used in defining the associated sheaves.

Definition 3.26 (constructive) A set X, C X is a j-singleton if
jlzoe XVz e X (z € Xg < j(xo = 1))

We define L;.
For X a set put

L;X 2 {X,C X |Xo=X} A Xois a j-singleton }

and

nx: X — L;X
z — {z}
The proof that L;X is a j-sheaf with the universal property for every X can be
found in [dV89].
Now let f : X — Y. Define L;f to be the unique function that makes the

following dia.grqm commute.
x —% . L.X
f Lif
Y ) LY

Diagram 1
It is clear that L; is a functor.
Definition 38.27 L; : Set — Sh; is the associated j-sheaf functor.
We have an important lemma.

Lemma 3.28 L; preserves finite limits.

Proof. See [Joh77]. 0

In particular L; preserves finite products.
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3.4.1 The space of -—-singletons

We shall now become more specific and restrict ourselves to double negation as
topology. The definition of a singleton becomes simpler in the case where X is

——-separated.
Lemma 3.29 Let X be ——-separated. Then X, C X ts a ——-singleton iff
Vwo, T4 (S XO (-'170 = (El) (3.3)
Xo#0 (3.4)
Proof.

o —

. . ! [4
Assume X, to be a ——-singleton. Pick z,, 2z, € X,, assume
0 [130ad ] 0

z, # T, (3.5)
and
dzg e X Ve e X (z € Xy & ¢ = ) (3.6)
Further assume
yeEXAVzeX (zeXoz=y) (3.7

From (3.7) we get z, = z, contradicting (3.5). Therefore not (3.6), but
this contradicts the fact that X, is a ——-singleton. Therefore (3.5) must

be false. We get :1::) = :c'l since X is ——-separated.

Further assume

~dz e X (v € X,y) (3.8)
and
dzoe XVre X (xe Xy, z=2) (3.9)
Assume
yeXAVzeX(zeXy—z=y) (3.10)

Then y € X, hence
dz e X (z € Xy)

This contradicts (3.8), therefore not (3.9). But this contradicts the fact

that X, is a ——-singleton, therefore
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@ &
Assume
3z e X Ve e X (z € Xy z=2) (3.11)
and
dre X (:E S XO) (3.12) !

From (3.3) and (3.12) we get
dzpe X Ve e X (z € Xy & =)

which contradicts (3.11). Hence not (3.12). But this contradicts (3.4).
Hence not (3.11).

So a ——-singleton of a ——-separated set X is a nonempty partial element.
From now on we shall write —° for L__..

We recapitulate.

Lemma 3.30 Let X be ——-separated and Xy C X. Then Xy € X° iff Xy is a

stable ——-singleton.

Lemma 38.81 If X is ——-separated, then for all z € X
{z}7 = {z}

Proof. Follows from the definition of {z} ™. O

Convention. Let X be ——-separated. We shall identify X with its image in
X? under nx = {~}.

Lemma 3.32 Let X be ——-separated. Then

VXO € Xs (""'I XO € X) (3.13)

Proof. If X;€ X° then —— 3dz € X (z € X)) which with our convention is the
same as (3.13). ' O

Lemma 3.83 Let X,Y be ——-separated, f : X — Y and Xy € X°. Then

FXo)={flz)|ze X}
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Proof. To prove this we must show:
L{f(z)]zreX,} " €Y".
2. Diagram 1 commutes.

So

1. X, is nonempty, hence the same holds for { f(z) |z € Xy} . Further

assume that
Yoy €{ f(@) |z € Xo} T
We have
- 31z € X, (yy = f(2)) A =~ 3lz € X, (3] = f(=))
hence —— yé = y; and y, = y; since Y is —— -separated.
2. For all 5 € X clearly
{f(zo)} ={f(z) |z €{ze} } "

O

In classical set theory, ——-singletons of a set are of no interest whatsoever;
they are quite simply the normal singletons, i.e. they are inhabited. How far

must we err from the classical path to get something of interest? Quite a bit.
Lemma 3.34 Let X be classical. Assume
Y6 (= gV 9)
Then
VX, € X° (Xyis inhabited)
Proof. Pick X, € X°. Assume

Vo (= ¢V -m4)

Instantiate this to
Vee X (mzeX,V-zeX)

By stability of X (', we get

Vze X (ze€ X,V -z€X,)
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X is classical, Xé is a decidable subset of X, hence
TzeX(zeX,)V-IreX (z€X,)

X (', is nonempty, therefore inhabited. O

We see that if
Vo (—¢V-m9)
then
{-}: X->X°

is a bijection.
This lemma tells us where to look for something more unusual. In any model

where the ——- singletons are not just singletons in the classical sense, we have

Vg (=4 V-4

Before we actually consider such a model, we prove a partial converse of Lemma

3.34.

Lemma 3.35 Let X be discrete and 2 — X. Then
F(f: X X7

implies

Yo (= ¢V - ¢)

Proof. The image of a discrete set under a bijection is discrete (Lemma 2.16).

Pick z .z € X with z/

1 .
0%y o 7 z, and consider

{zgl-=d}u{al|-md}
This is certainly a partial element of X. Moreover it is nonempty since
(- 4Vm9)
and stable because for any z € X
—mze{z,|=¢}te
g = w; A === ¢ « (by discreteness of X)

w:m;/\—quH

ze{z;|-¢}



CHAPTER 3. A-CALCULUS AND COMBINATORY LOGIC 81

Similarly

As X° is discrete, either {z,} or {z,} is equal to
{zg]~d}u{a;|d}

is in
{zgl~d}U{a}| ¢}

and therefore — ¢ or =— ¢. o

. 7 !
therefore either T, Or T,

Lemma 3.36 Let VeV, 2— V. Then
VEIT e S 3f (f 2 Ve (VY))

Proof. Pick vg,v; € V, vg # v, and sq,8, € 2<“, 59 C s,. Assume

s1 b 3F(F : VI (V7))
Then
sy g (V) is discrete

op

But consider some X € V&) , such that
510 g v;€X € (VY)°

and
511 b v;€eX (V)
We have
s e 3} =XV o3} £ X TN
hence

so kg ~3f(f 2 V7 (V7))

Let me add the following thought.

Conjecture. The following statement is provable in IZF: Let X be such that
X % X°*. Then there is an infinite sequence

X=X0CX1C...CX3
of subsets of X° such that
Xo# X1 #...£X°
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3.4.2 Extensions of relations

If X is ——-separated X can be regarded as a subspace of X°. We are going to
investigate in this section which properties of X are inherited by X°.
First recall that if X°,...,X™ ! are —~—-separated then

H(X‘t)s oy (H X‘z)s
ien i€n

We shall make this bijection explicit.

Lemma 3.37 The function

¢ ¢ LX)’ — (LienX')’
(Xoyeors Xng) = {(2gy--rTpa) |2 € X, }

is a bijection.

Proof. Straightforward. a
~ Assume X 0 ...,X" ! are =—-separated. Let R C [Tien X ‘. Then
Rs C (H Xz')s g H(Xz')s
i€n ! ien
is an extension of R. We wish to give an explicit description of R’, in the case

where R is stable. As a preparation we prove the following result.

Lemma 3.38 Let X°,..., X" " be ~—-separated, R a stable relation on ITicn Xt
and X; € (X*)® fori € n. Then

1 3:130 < XO . e amn_l = Xn-—-l Rmo I (3.14)
>
V.'I:o (S XO .o .V$n_1 (S Xn—l Rmo el q (3.15)
Proof.
¢ —

Assume (3.14). For i € n pick z} € X, Assume

- Rz,...z,_, (3.16)
Further assume
/\ Ve, y; € X; (2= y;) (3.17)

1€En
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Finally, assume

3(30 [ Xo [ aivn__l [ Xn—l R$0 v sy (3.18)
and
/\ Z; S Xi A RZO Ry | (3.19)4
i€n

We instantiate (3.17) to

therefore by (3.16)

— RZO. .. Zn__l

This contradicts (3.19). Therefore not (3.18), but this contradicts (3.14),
therefore not(3.17); this in turn contradicts the fact that X,,..., X, _; are
——-singletons; we therefore reject Assumption (3.16) and the result follows
by stability of R.

o —

Assume (3.15) and

= 31}0 = Xg cee H.Tn_l S Xn—l R:z:o ve oy (3.20)
Further assume
/\ 3(13,' ((E.i (= X,’) (321)
t€En i
and
NvieX; (3.22)
tEn

By 3.15 we have Ry,...y,_y. Therefore
dz,e Xy ...32, 1 € X1 Bzg... T4

This contradicts (3.20). Therefore not (3.21), but this contradicts the fact
that X,,...,X,_, are singletons. Hence not (3.20).

O

Lemma 3.39 Let X°,..., X" ! and R be as in Lemma 3.38. For i € n let
X; € (X)°. Then

R°X,.. X, ,Veoe Xy .. Vo,_1€ X, (Rzy...THq)
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Proof. We have

R°Xy...X,q <
(Xoy---1Xn_1) € R« (by Lemma 3.37)
{ (2o, »@Tn-1) | z; € X; } € R® & (by definition)
——dzge Xy ...z, € X, Rrg...2,4

The result follows from Lemma 3.38. O

We move on to more complex formulas. Not every sentence that holds for the
points in X also holds for the points in X°. To see what is preserved we need

the following definition.
Definition 8.40 Let ¢ be a formula of IZF. It is negative if it is built up from

atomic formulas using only A,— and V.

In fact we shall want to be slightly more general. For the next three lemmas let

X°,...,X" ! be ~—-separable and X,,...,X,_, families of singletons such that
X'cXx c (X

for i € n. For ¢ € m let
(B)x c [1X°
be stable. Furthermore let ¢ be a negative formula built from relation symbols
R;.
Interpret R; on [Lien X; as (B:)% N ILien(X")’.
First we shall argue that ¢ is stable.
Lemma 3.41

VXO & Xo. "Xn—l € Xn—l (_‘—' ¢ hand ¢)

Proof. This will be by structural induction on ¢.
1. =R
Pick X, € X;. We have
—— ByX;...X, < (by Lemma 3.39)
== on S Xé . .V(Bn_l & .X,'I,L__l RX:KO ceepq —
Vz, € X(') ...Vz, 4 € X;_l —= Rxzg... 2,1 < (by stability of R)
Vzo€ X, ...V2,_4 € X, , Rxzg...%,_1 < (by Lemma 3.39)
L] 4 !
R X,...X |

1



CHAPTER 3. A\-CALCULUS AND COMBINATORY LOGIC 85

2. o= L
clear.
3. o=y AE
(P AE) - |
(== A== §) « (by induction hypothesis)
PAE
4. p=v —¢
(P =€) —
(== — == ) « (by induction hypothesis)
Y —¢
5. p=Vz
= Ve — |
Vz == 1 « (by induction hypothesis)
Ve

O

Next we prove that ¢ as a relation on [[;c, &; is an extension of its interpre-
tation on J[;e, X ‘
Lemma 3.42

Voo € X°...2ny € X" ($(@0y-- s Tna1) & $({%o},- -, {Zn1}))

Proof. This proof is also by induction on the structure of ¢.
l.¢=R
Pick w; € X*. We have
R {zg}... {z! .} & (by Lemma 3.39)
Vao € {zy} ... Vo,q € {z,_,} Rx%o... Ty

/ 1
Rz,...z |
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2. =L

from 1.

3. o= ANE

clear.

4. p=1p — ¢ ‘
Pick m: € X'. Assume

(% — &{zo}s - - {z, 4} (3.23)

and 9(zy,...,z,_,). By induction hypothesis then TCE N S Y ) )
therefore by (3.23) ¢ ({:vg}, ...,{z] _,}) and again by induction hypothesis

E(zg, ..oyl )

The other direction is analogous.

5. ¢ =V
Pick :17/1 eXx?' ... ’“";—1 e X"t
o -
Assume

Yz, € X° ¢(w'1, ... ,x;_l)
Pick X(') € Xy. Assume

- "/)(X(I)’ {"1’,1}7 RN {3::,,_1})

and
Az, (20 € X) (3.24)
as well as
Yo € X(I,
l.e.
{yo} = X(,)

But we have
")b(ym xlla ey :L';__l)

hence by induction hypothesis

b{woh (e h- - LD IN
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therefore not (3.24). This on the other hand contradicts the fact that

X (') is a singleton, therefore

= (X e}, {2l ))

and the result by Lemma 3.41.

@

Assume |
VX, € A ¥(Xo, {3",1}7 ceey {w:,,_1})
Then in particular for z, € X°

Y({zo}, {1}, {2, })

therefore by induction hypothesis
P(zo, a:'l, e, m;_l)

O

With these two facts established we can finally prove the result we have been

aiming for.
Lemma 3.43
VXo€ X, ..VX, 1 €X,_1 ¢(Xo). .y Xp1) (3.25)
and
Voo e X° ... V2, € X" d(zgye s Tpy) (3.26)
Proof.
¢ —>

Assume (3.25). Pick z; € X*. We have

¢({$:)}7 cery {wn—l})

hence by the previous lemma

qﬁ(m:), ... ,m;_l)



GHAPTER 3. A\-CALCULUS AND COMBINATORY LOGIC 88

0 ¢

Assume (3.26). Pick X; e X ‘. Assume

= (Xpyeor X))

and )
/\ Ekc,- (.'ZI,‘ € X:) (327)
i€n
as well as
Nvie X.{
1€En
that is

{v;} = X] forallien

We have ¢(yg, - . -;Yn_1), therefore by‘the previous lemma
(X X)) N

hence not (3.27), but the X: are nonempty, therefore
= $( Xy s X _,)

and the result follows by Lemma 3.41.

O

We see that a relation R on X that is defined by negative formulas has an

extension R’ on X’ that fits the same definition.

Ekample. The three axioms used in defining partial orders are all negative for-
mulas. Partial orders with a least element can likewise be defined using negative

formulas. 0

Counterexample.  The definition of a cpo uses existential quantification.
Therefore if X is a cpo with respect to a partial order <y, then X* will not
in general be a cpo with respect to <3. We construct a counterexample.

Take the model V). Consider in V@®*)” the unit interval [0,1] c R

with the normal ordering. We have
VE? = 0,1] is a cpo
Define the sequence {X, },.c., C [0,1]° by

X, = { Tica ()2 I,.;{ s|ls|>n}}
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We have
<W\O!
VE =Yz, € X, V2,41 € Xopy (€0 < pp)
therefore
2<‘”' op : 38
Ve X, Sjo,q Xnt1
but
VEIT X }new does not have a supremum in [0,1]°.

To see this, pick sg, s; € 2<“ such that s, C 5;. Assume
s1 Fp 31X, €[0,1]° (X, is the supremum of {X,},c.)
X, is nonempty, therefore there exists a s, € 2<%, 5, C s, such that
sy | 3r €10,1] (r € X))

On the one hand

S5 H"m 7'2 Z (32(?:)2—'5')__*_2“‘(}32!4'1)
i€ls2}+1 ;

since r is an upper bound for { ¢, 8(n)27" | s, C s }, on the other

s lbp r= X (sa(i)27)

ielsz |+1

89

(3.28)

since it has to be the smallest. We have arrived at a contradiction. Therefore

not (3.28), hence

so g —3X, €10,1]° (X, is the supremum of {X,.},¢.)

O

Example. An equivalence relation is reflexive, symmetric and transitive. These

properties are defined by negative formulas. Therefore the maximal extension of

an equivalence relation will also be one. Equality is of course a prime example

of an equivalence relation.

O

We shall now investigate a special kind of relations: functions. We are inter-

ested in the question whether for every function
f:X=Y

its extension f° is a function in X° = Y.
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Lemma 3.44 Let X,Y be ——-separated and
f: X=Y

Then f° C X° xY?® is a function.

!

Proof. We have to check two things: whether f° is functional and whether it

is total.

1. Functionality is expressed by the sent‘?ence

feyo = fay, — Yo =11
This is a negative formula. It follows that f° is functional.

2. The definition of totality uses an existential quantifier, so Lemma 3.43

cannot be applied.

Define for X, € X*
Yo £ f(Xo) " ={yeY |-=3zeX,(y=f(z) }
We have already seen (Lemma 3.33) that Y, € Y.
Now pick xg € Xo, y(') €Y, We have |
-= 3z € Xo (y, = f(2))

therefore by Lemma 3.38

Vz € X (4, = f(2))

hence :
¥ = f(zp)
But this means f°X,Y,.
0O
So f° : X°® — Y’ as the extension of f : X — Y is the same as the image

of f under L__. The ambiguous use of f° is therefore justified.

Corollary 3.45 Let X,Y be ——-separated. Then every function f : X =Y

has a unique extension in X° = Y".
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Proof. Uniqueness follows from Lemmas 2.21, 3.23 and 3.32. ]

Constants are of course just a particularly simple kind of function. What is

the extension of a constant cy from a set X to X°? We calculate
cx =Xo o Vr € Xg (cx =)

which simply means
Cfx = {ex}

As a last point in this section we investigate the behaviour of homomorphisms.

Definition 8.46 Let X,Y be sets, R a relational symbol and Ry, Ry its inter-
pretation in X and Y. Then a function

f: XY
is an R-homomorphism if
Vz € X(Ryxz — Ry f(z))
We can prove the following statement.

Lemma 3.47 Let X,Y be ——-separated, R a relational symbol and Ry, Ry sta-
ble. Interpret R on X° and Y° as Ry and Ry, respectively. Let f : X —Y be

an R-homomorphism. Then f° is an R-homomorphism.

Proof. Pick X; € X°. Assume R°X/. This means
Vz € X(') (Rz)
f is an R-homomorphism, therefore
Vz € X, (Rf(z))
which is equivalent to R*f(X}). 0

Example. Let P,, P, be partial orders. Then the extension of a monotone

function from Py to Py will again be monotone with respect to <7, and <j,. O
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3.5 New ca’s from old

Convention. We shall from now let combinatory algebras inherit the at-
tributes that their universes possess and speak, e.g., of =—-separated ca’s rather
than of algebras whose universe is ——-separated.

y 1

Let U = (U, y, ky, sy,Cy) be a fixed ——-separated combinatory algebra.
With all the work done in the previous section it is now easy to turn U’ into a

ca.

Definition 3.48 Let
Us = (Us, ‘Us, kUa, Sys, CUs)

where -gys,kys,sye are -3,ky,sy, and cy. is cf, for allce C.
Theorem 3.49 U° is a combinatory algebra.
Proof. By Lemma 3.44 application is well defined and total. Also, since

application and the constants have in U® been defined as the extensions of their

interpretations in U, U® satisfies all equations that hold in U. 0O
This last remark can be strengthened. @
Lemma 3.50 Let V by a X-typed ca over C and U CVY CU°. Then
Th(U) = TV)

Proof. Easy. m]
We add the proofs that any ——-separated CL*(C)-algebra U is a CL*(C)-

model, respectively an extensional A¥(C)-model whenever U° is.

Lemma 3.51 Let
U= (U, ‘Us kU) Sy, €U, OU)

be a ~—-separated ca over C and V a ca such that
ucvcu’
Then
1. V is a CL*(C)-model iff U is.
2. V is an estensional \*(C)-model iff U is.

Proof. Weak extensionality and extensionality are both defined by negative

formulas and therefore preserved. ]
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3.6 Functional models

We already mentioned that the A-calculus is a theory of functions. It is therefore

natural to look for models in which types of the form oy — o are interpreted

as subspaces of the space of total functions U’ = U™ and application -7} is

1

simple function application. This leads to the following concept.

Definition 3.52 Let U be a X-typed ca. A function f : U’ — U is repre-
sentable if
Fuo € U7 Vuy € U (f(uq) = g5 )

uy then represents f.

We use [U? — U] to denote the representable functions in U = U®'. Define
a X-indexed function F' by setting for v a ground type

F7" : U U”
Flu)=u
and at higher types for 0y,0;, € X
FO’Q-)U;[ . Ua'o—+a'1 — [Ua'o —_ UO‘1]

(F77 (uo))(ur) = o 7"

If all functions are uniquely representable, jie Fisa bijection, then U is essen-

tially just a family of functionspaces.

Definition 3.58 A X-typed set V is a full function space hierarchy ¢f for all
09,01 € X
VTR = (V= V)

Let Fsp({X"}er) denote the full function space hierarchy induced by {X"},er

It may be wise to add explicitly the definition for the untyped case.
Definition 3.54 A set V is a full function space hierarchy if
Vav’

This paves the way for the following deﬁnif:ion.
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Definition 3.55 An extensional \*(C)-model is a full function space model if it
is isomorphic to a )\E(C)-model whose universe is a full function space hierarchy,

and whose application is function application.

Now assume that I/ is a CL-model. The Axiom of Weak Extensionality states
that for every representable function there is a canonical representative. This

enables us to define a X-typed function G such that
Fold= id[Uao —U°1]

without appealing to the Axiom of Choice. For f € [U™ — U] we simply let
G(f) be the unique element in F(e)(F~({f})) (cf. (3.1)).

If U is extensional, every representable function is represented by a unique
element. In terms of F' and G this means that G = F™'. So in the extensional
case U is isomorphic to a CL-model V that has been obtained by taking some sets
as ground types and at types og — oy for V7" a subset of the total function
space V! = V. Call such models functional.

_ Evidently, when we have an extensional A-model, we are interested in the
nature of the representable functions and wish to describe them without reference
to the A-model. In the following chapter we shall look at an example that shows
that in many cases this is far from easy. Of course everything that has been said
also applies to the untyped models. They will be examined in Chapter 5.

For the moment we shall stay with the typed calculus and drop the assumption
that U be extensional. Can U still be seen to have some functional character?
In order to find an answer, we shall look at yet another way of deriving new
combinatory algebras from old ones.

We need a new concept.

Definition 3.56 Let V be a full function space hierarchy. A relation R C V" is
logical if for all 04,0, € & and for all fo,..., fnqa € V™™
R*7 foo fum1 &
Vg, s Tyey €V (R™20. .. 2y — B fo@0) - . fu-1(n-1))
Hence a logical relation is determined by {R"},¢r.

Now assume V is a full function space model, and R an inhabited unary logical

relation on V. Recall that we have

(ky(vo))(v1) = wo
((sv(vo))(v1))(wa) = (vo(va))(va(v2))
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We see that whenever Rug, then Rky(vo), hence Rky,, and similarly Rsy. Assume
that also Rec for all ¢ € C. We can define a sub-ca of V by taking as its universe
all those points v € V for which Rv. Note that the fact that R is logical ensures
that application is total. |

Let us be more explicit. A unary relation R on V is a subset of V. It is logical

if we have at types oy,0y € X :

RU 001

= {f: VoV ROTOf)
= {f:V*°=V*|f(R°)CR”}

i.e. R is the set of functions in V?° = V' that are the extensions of some

function in R”™ => R”'. These remarks lead to the following definition.

Definition 8.57 Let V be a full function space model and {R"}. cr a family of
inhabited sets such that
R'cV" forallyel

and Rey for all ¢ € C where R is the logical relation on V determined by {R"}.
Let E({ R} er, V) denote the X-typed sub-ca of V over C whose universe is defined
by

E’Y

Eo’o -1

R foryel
Ext(R® c V,R* c V™)

e >

€ 1is called an extension model.

We add the analogous definition for the untyped case.

Definition 3.58 Let V be a full function space model and R an inhabited logical
relation on V such that Rey for all c€ C. Let E({R},V) denote the sub-ca of V

over C whose universe is R.

When is € extensional? We see from the definition that then for all oy, 0y € ¥
Vo, f1 € E*7% (Vz € an(fogx) = fi(z)) = fo=11)
or

Vfo f1: V= V™
(fo(E™) C E™* A fL(E™) C E™ AVz € E* (fo(z) = fi(2)) = fo=f1)
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which simply means that whenever a function in E°* = E°° has an extension in
V7 = V7, this extension is unique!

Now assume we have an extensional A\-model ¢/. Is it an extension model?
Classically certainly not, except in the trivial case where U is a full function space
model. Constructively, however, the situation is different. We shall prove in the
following two chapters, once for the typed, once for the untyped calculus, that '

for every (classical) extensional A\-model M there is a tree P such that
VF” = M*is isomorphic to an extension model.

P only depends on the cardinality of M. Furthermore M has the same theory
as the full function space model used in the construction of the extension model.

If we are only interested in theories we may recall that for every extensional A-
model there is a countable extensional \-model with the same theory. We obtain:
there is a partial order P such that for every classical extensional A-model M
there is a full function space model V in VP such that V has the same theory

as- M. Surely heaven for A-calculators!



Chapter 4

Typed extensional A-models

We shall start this chapter by giving two examples of A-models, the first quite
simple, the second more complicated. After this we prove the typed version of
the main theorem in this thesis. We then go back to the two examples and apply

the results of the theorem to them.

4.1 Monotone functions MON

Let X be the set of types with only one ground type «. Define a X-typed partial
order P by setting

o P"=2

o Pa'o-—wl — (PUO"Wl,S?_ml> where
o P ={ f : P — P” | fis monotone } and
e fo S;:?—WI fie

Vpo,p1 € P7 (po <3 p1 — fo(Po) <p fi(p1))

Note that the ordering of the function spacés is simply the pointwise one and in
fact a logical relation.
We can now describe the theory of monotone functions MON. Let C' contain

two constants' T, L of ground type. Define the structure
P = (P7 ‘P kPa Sps CP)
by setting

o f-2% p=f(p) for every 0g,00 € X
97
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° k;:o’al (po)(p1) = po for every op,04 €X

T 0 40
P S_F?’ 102

(Po)(p1)(p2) = (Po(Pz))(Pl(Pz)) for every 0¢,04,0, € X
e Tp=1, Lp=0

It is clear that P is an extensional A¥(C)-model. Let MON be the set of equa- '
tions between terms in A¥(C) that hold in P.

4.2 Programming computable functions PCF

The theory PCF was defined by Plotkin in [Plo77].
Let X be the set of types with two ground types, B and N. C has the following

constants
o 1°:0 foreveryoc e X
¢ F°: (0 —0)— o0 foreveryo € X
ﬂ o true, false : B
en:N for'every neEw
e if — then — else—: B> — B

Here

B* - B=B—(B—(B— B))
Next, define a ¥-typed cppo C by letting
o CP=2,
o CV = W
o CPTN = (C77N, KT, LET) where
e C7 ={f : C®—C%|f is continuous }

fo<gT" fie

Veg, ¢ € C7° (co <gy €1 — foleo) <G filer))

o L7 (g)= 1
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L

As in the previous example define a structure
C= (C, C» kC, So, OC')
by setting

o f-37 c= f(c) for every g,0, € X

k"CO,o’l (CO)(CI) = Cy for every 0y, 01 € DY

o 5377 (co)(cr)(e3) = (colea))(ei(ey)) for every o4,09,00 € B
[ J_g poond _I_2
[ ] _L]C\,r = __l_w "

o 1277 (o) = L%

o trueg =10
- o falsep =1

o F) = Vaed £/(L)}

o if — then — else—; = the Sga_’B-least function f such that

f(trueg,co,cl) = &

f(falseg,co01) = ¢

Remark. 1 should be thought of as reﬁresenting ‘undefined’. With this in-
terpretation if — then — else — is sequential in the sense that its first argument

has to be evaluated to obtain a result. Note that
(if L then true else true)g = .J_g

It could be argued that the value of this expression should be truey since the
result does not depend on whether the antecedent is true or false. This, however,

would require parallel evaluation of the arguments. a

PCF will now not be the set of equations that hold in C. Rather we want two
terms to be equivalent if they show the same behaviour in all program contexts,
i.e. if one can be substituted for the other in all programs. We make this idea

precise.
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Definition 4.1 A program is a closed AE(C)-term of ground type.

Definition 4.2 For every 0 € X the X- typed set of o-contexts AZ(C)[—]°
inductively defined by

o [-I7 € A(O)-)°
o ifty € A 7°Y(C) and t; € A7(C)[-]"* then tot, € AT [-]7
o iftg € AT(C)[~]"* and t, € A°(C) then oty € AT (C)[-]"
o if x € Vars™ and t € A”*[-]"* then Azt € A~ [-]"
Now let
|to: 0 =1t;:0| € PCF

if in all program o-contexts t[—]
C k= tfto] = tta]

It is clear that
Th(C) c PCF

because if two terms are identical in the model, their behaviour is the same in all
contexts. We now proceed to show that the above inclusion is proper and hence
C is not a fully abstract model of PCF.

For this consider the two terms
portestirye, portestfyise (B—~(B—B))— B

Let v stand for either true or false and set

portest, = Af.(if (f true L)
then(if (f L true)
then(if (f false false)
then L
else v)
else 1)
else 1)
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Define parallel or (por) to be the Sg"(B_*B)- minimal function f such that
f(trueg,c) = trueg
fle, trueg) = trueg

f(falseq, falseg) = falsey

Now,

(portest,,,.)c(por) = trueq
and

(portest ty1,.)o(por) = falseq
hence

(pOT‘t(;‘St true)C’ .';é (porteStfa.Ise)C

Therefore we have

|portest prye = portestfalse| ¢ Th(U)

Oﬁ the other hand we do have

|portest ppye = portestfalsel € PCF

This is so because por, the only value in ¢ B~(B~B)

at which (portestgpye)c and
(portestfalse)g differ is not denoted by any AE(C)-term and the two show the
same behaviour in all B — (B — B)-contexts. Which leaves us with the question
why por is not denotable.

Before giving an answer, we show that leftor,, the function which is minimal
among those f : (B — (B — B) for which

f(trueg,c) = trueg
f(falseq, falseg) = falseq

is denotable. Simply put
leftor 2 Azy.if x then trueelsey

leftor o can be thought of as evaluating its left argument first, and only if this
shows a result does it look at its right argument.

The general situation is described in a theorem proved by Berry in [BerT78].
To state it we, introduce an order C on the CL*(C)-terms. |
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Definition 4.3 C is inductively defined ové AF(C)2.

e 1°C°t foralloeX andt:o

o ifty C%7% ¢, then tot T ¢t for all 04,0, € T

o ifto C°° t, then tty C° tty for all 0y,00 € T

o if x € Vars™ and ty C7 t; then Az.to C7°77 Az.t; for all 6g,00 € X
We have

Theorem 4.4 Let iy : oo be a CL¥(C)-term such that
CL*(C)+PCF F to= 1"

Then either |
CL*(C)+PCF F t, = 1%

for all t, withty ° t4, or there is an occurrence of @ L°* in iy (the sequentiality
index of ty), such that for all t, with ty C°° t; the following statement holds:
whenever

CL¥(C)+PCF W t; = 1™

then there exists a term t,: oy such that t, C°°° t; and t, has been obtained from

to by replacing L°* with another term.
There is then obviously no term ¢ denoting por: it would have to satisfy
CLEC)+PCF + t 1P 1P =1"%

and f
CL¥(C)+PCF F t true 18 = true

as well as

CLE(C) + PCF F t 1% true = true

which is ruled out by the above theorem.

Milner ([Mil77]) proved that there is a unique (up to isomorphism) fully ab-
stract extensional model of PCF, with ground types 2; and w,. The repre-
sentable functions in this fully abstract extensional model are called sequential.
The model in [Mil77] was obtained by syntactic means; a semantic definition of
the sequential functions has yet to be found. Some progress has been made and
is recorded in [BCL85]. (
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4.3 The main theorem (typed version)

In this section we shall prove the most important result of this thesis. Before we
state it as a theorem, we look again at the two ways of deriving new combinatory
algebras from given ones. 3

We first demonstrated that given a ——-separated ca U, we can turn the family -
of stable ——-singletons of U into a ca U°. All sub-ca’s V of U’ for which U cVy
are equationally equivalent. They are either all extensional, or none of them is.

Further we saw that, given a full function space model V and a I'-indexed
family {R"},¢r of inhabited sets, such that R” C V" for all v € ', we can define
a sub-ca of ¥V whose universe consists of those points v € V that satisfy Rv, where
R is the logical relation induced by {R"}.cr. This subalgebra is not necessarily
weakly extensional.

We now start at the other end: Take a ca U. Is it consistent with IZF that
there is a full function space model V such that for all y € T

U'cV?c(U?

and U is isomorphic to E({U "}, V)? 1 do'not know the answer to this question
in full generality. I can however give a result that solves an instance of the
problem.

Before making this claim precise we should take note of the following fact.

Lemma 4.5 Let M € V be a combinatory algebra over C, and C a category.
Then
v© k= M™ is a combinatory algebra over C

Moreover M is equationally equivalent to M*. The same applies to (weak) exten-
sionality. Therefore M is a CL¥(C)-model, respectively an estensional AE(C)-
model, iff M* is.

Proof. All concepts involved are defined by restricted formulas. The result

follows therefore from Theorem 2.32. ‘ O
So let us now state the main theorem.

Theorem 4.6 Let M € V be an extensional \¥(C)-model. Then there exists

a tree P dependent only on the cardinality of M such that vE” satisfies the

following statement.
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There is a full function space model U such that
(M) U C (M)
forally €T and
M = E({(M™)"}ber,t) CU C (M)

Before giving a proof of Theorem 4.6, we shall go back to the two examples
at the beginning of this chapter and put them in perspective.

4.3.1 MON revisited

We get two results from Theorem 4.6.

o There is a tree P such that in V¥ the monotone function model is iso-
morphic to an extension model. Exactly the monotone functions have ex-
tensions in the full function space model. All functions in the full function
space model are monotone with respect to the extension of the partial order

in the monotone function model.

¢ The monotone function model is equationally equivalent to a full function

space model.

4.3.2 PCF revisited

There is a tree P such that in V¥ (the image of) the fully abstract classical
model of PCF is isomorphic to an extension model. Exactly the sequential
functions have extensions in the full function space model. The classical model
is equationally equivalent to the full function space model. Therefore the full
function space model is also fully abstract. Since sequentiality was defined in
terms of full abstraction, all the functions in the full function space model can be
said to be sequential. This of course still does not give us a semantic description

of ‘sequentiality’.

4.3.3 Another thought

We have not made use of the fact that the tree used in building our (constructive)
models only depends on the cardinality of the original (classical) models. Every

theory that has a fully abstract model, has a countable fully abstract model.
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So, if we are only interested in theories, we can find a set theoretic universe in
which all theories with a fully abstract (classical) model have a fully abstract full

function space model.

4.3.4 The proof of the main theorem

Let
M = (M, ‘M kaes Sars CM)

be an extensional A\*(C)-model.
Add M as constants and | M| variables for every type o € & to AZ(C).

Definition 4.7 An environment E is a sequence in U,ex(Vars’ x M7), in which
every variable appears at most once. An environment FE is finite if it is a finite

set. E is total if every variable appears in it.

The obvious interpretation of an environment is that of a list of variables and
the values assigned to them. If Fy and E; are environments let EyE, denote the

environment that has been obtained by
¢ adding (z,v) to Ey if  does not appear in E,
e replacing in Fy the value of = by v if z appears in E,

for all pairs (z,v) in E;. If we want to give a finite environment explicitly, we

shall write

{vo/2o; 3 Vn1/Tn_s}
or
{zo:=v0;---; Tpy 1= Un_1}
for X
{(Z0,v0)s - -+ 5 {Tp1y Un1))

Finally, let E(z) denote the value associated with = in E, and write € dom(FE)
if E assigns a value to z.

Now let &€ designate the set of all environments, and &, and &, the sets of
finite and total environments. £ will be ordered by extension C. Evidently, in

this order the empty environment is the least point in €. Set

gﬁn = (gﬁna Ca(?))
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Remark. Environments are usually defined as sets rather than lists of variable-

value-pairs. We prefer lists because &, ordered by extension is a tree. a
Note that &g, modulo isomorphism only depends on the cardinality of M.

Notation. Terms ¢ of \Z(C) are evaluated with respect to a total environment
E. So let tg stand for [[t]]lg and write

M,E}_—_to:tl

if (to)g = (t1)&- =
We shall prove the claims of the main theorem in three steps.

1. We construct U € Vgﬁnop.

2. We prove that U/ is a full function space model. This we do by defining a
T-typed bijection ¢ : U < Fsp({U"}er)-

3. We prove that ¢|M” is a surjection onto |E({(M™)"}. er,U)| and therefore
a ca-isomorphism between M™ and E({(M™)"}. er, U).

1. We describe U. For every o € X let U° € V‘c”ﬁmop be the set of all subsets
op
U; € ngm of M* where t € A¥(C) such that for all m € M? and all
E, € &
Ey by m"€U; &
VE; € &y (Eo C By — tg, =m)

It is clear from this definition that for all ¢ € A°(C)
" k= U, is a stable =—-singleton.
Further we have
Eo g Uy =Uy <
VE, € Eioy (Eo C By — (to)m, = (t)E,) (4.1)
We define application.

Vgﬁnop l= Uto ‘U Ut1 é

U’to .-]SW* Utl -
{me M |Vmg e Uy, Ym; €Uy, (m=mgppemy)} =

Uto Lz}
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The second equation holds by Lemma 3.39; we justify the third. Pick
Ey, E, € &gy, such that Ey C E,. Take m € M. We have

El H‘m m*E{mEM*]VmOEUtOVmIEUtI (m=m0-M.m1)}
iff for all E € €,,, with By C E
m = ﬂto]]]}g M [[tlﬂ]g = [totl]]g

iff
Ey | m" € Uity

As for constants ¢ € C, we define

°P * 8 %
v ooy A () = {c,} =U.,

We have by Lemma 3.19 that I{ is a subalgebra of (M*)® in v,

2. We prove that U is a full function space model. We construct the X-typed
bijection

¢ : U< Fsp({U"}4er)

At ground types we put
#" = idg
For higher types assume that ¢°° and ¢”* are bijections. Define
g+ g o
by setting for 15 : 09 — 04, 1 : 0
g7 (Uto)(Utl) =U;, v Uy
We must show that ¢°~°* is a bijection.

Hence

(a) ¢77°* is surjective.

We must convince ourselves that

Vgﬁ_nop F.___. Vf . Uao — Ual au c Uo‘o-—->0'1 (¢0‘0——>0‘1 (u) — f)
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So pick E,, E; € &g, such that Ey C Ey, and f' € (U)V" (E,). We

check that
By gy Ju€ U™ (777w = f)
Take
A AT(C) — A™(C)
such that

Fto) =t. - B iy f(Us) =Uy

Pick z € Vars™ \ (Upmen FV(f*m) UdomE,). This can be done since
the right hand side is of cardinality |M]|.

Ey 5 Uspe = Upoa)e

for some t; € A”*(C), so

El H_{f'/f} f(Uz) = UfA’w = U(z\m.tl)m — U)\z.tl _Z?,al U:r:

We wish to prove that then for every t, € A”(C)

El H_{,f'/f} f(Uto) = UfAto = U(Aa:.tl)to — UMM1 'OI}),UI Uto
i.e. that Uys,, represents f ‘. In order to prove equality in the middle

recall (4.1). Pick E, € &, such that E; C E,.
We show that

o)z, = (F(to)m)m

= (fA(to)Ez)Ez{w = (to)B,}
= (/"D)Byte = (o))

= ((Az.11)2)py o = (to)E, }
= (()\:1r,'.1,‘1)t0)E2

To justify
(fto)m, = (F" (to)5) B,
let FV(to) (- g.

E{§ = Ey(¥)} H‘{f//f} U, = U(to)E2
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S0
Ed§:=E(D} W/ U = Uprto)g,
Further since ¢ Vars(f*(t,) B)

(P t)m)m = (F () B) Este = 0)ey) (4.2)
Then

Efz = (L)} 'y Uk)s, = Us
implies

E{z:= (tO)Ez} H_{f’/f} UfA(to)E2 = U,
hence
(£ (t0)5) Bt = o)} = (I B Boto := (0)s,)

Finally

(F*2) 8 o o= (o)n3 = (A231)0) By o 1= (t0)s,3 = (AT-11)t0) 5,

(b) #°°7°" is injective.
op ~ ~
We have in V&in : M*Cu & (M™)? and M™ is extensional, hence
by Lemma 3.51 so is . This implies that ¢ is injective.

3. PIM™ : M — E({(M™)"},er U) is a ca-isomorphism.
Identify M™ with its image in |E({(M™)"},er,U)| under ¢. We must check
that ¢7°~°* is surjective. So pick Ey € &g, and f' € (U "1)0‘ro (Eo) such that

Eo lrgp/5y F(MT)™) c(M7)™

By 2. there is a term ¢ € A” 7" such that U, represents f'. We wish to
prove that
Eq H_{f'/f} Uy e (M)

So assume
E, ||-71{f,/f} U, € (1\/1"‘)”"—”1 (4.3)

o9 —01

We shall derive a contradiction. (4.3) means that for all m € M
EO ”71{f'/f} m* € Ut
hence there are E;, E, € &, with Ey C E; and E, C E,, such that

tg, # g
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i

By extensionality there is an my € M such that
tg M Mo # tg, M Mo
Therefore for all m € M
By Wipn ™ € Up oy Ung

and
Eo Hegssy Vo Ung € (M7

We deduce by <RAA>

Eo Wipypy Ui € (M)
This concludes the proof of the main theorem.

4.3.5 Related results and discussion
Evidently in the proof of the main theorem
P = £o 2 (IM[F)<

If we now remember that for every extensional A”(C)-model there is an
equationally equivalent countable extensional /\E(C )-model we can combine Lem-

ma 3.50 and Theorem 4.6 and draw the following conclusion.

Theorem 4.8 Let M be an extensional /}E(C’)-model and P = wf“"’. Then
vE” satisfies ’

There is a full function space model which is equationally equiva-
lent to M™.

And finally we add

Theorem 4.9 Let T be a /\E(C)-theory that has a fully abstract extensional
model and P = w=“°. Then V¥ satisfies

T has a fully abstract full function space model.
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We add a few comments about the proof of the main theorem.

First we note that the condition that P be |M|"-branching is unnecessarily
strict, albeit convenient. All we have to require of the underlying tree is that it
be hereditarily of width |M|*. |

Secondly, it is not certain whether the underlying tree cannot be trimmed
even further, i.e. whether it could be hereditarily of width |M| or even smaller.
Going over the proof, we see that we had to make sure that there existed a generic
point U, for every function f at (, i.e. a point that determines the behaviour of
f at every U,, for m € M and hence f itself. The point where we needed the
assumption that there was a variable z not free in f*(m) for all m € M is (4.2).
It would suffice that for every f there is an & which is irrelevant in f A(mo) for
all mg € M in the sense that

(fAmO)E = (fAmO)E{a: = my}

for all total environments F and m; € M. (Az.y)z is an example of an expression
in-which z is free but irrelevant. :

It is my guess that an = with the propérty just described indeed exists for
every f. What consequences would a proof of this conjecture have?

In the case of M being countable we obtain the main theorem with the weaker
assumption of P being a tree of hereditary width wy (e.g. the binary tree). On
the other hand we shall see in Chapter 6 that we cannot make P any smaller,
i.e. somewhere of only finite width. So we would know that we have achieved the
best result possible in this area.

It is moreover quite probable that a model VF” with P countable is a very
different world from a P containing an uncountable antichain. This is certainly
the case in the classical models V® (c.f. [Bel77]) where

—* . VVE

preserves ordinals iff there is no uncountable antichain in B.

As a third point we might note that in the proof of the main theorem U is
the subalgebra of (M*)° generated by the S-typed set V € VE ', V c (M")°
that contains all U,, for all m € M and all U, for z € Vars. We have

Lemma 4.10 Foralloe X

V' | = VU, € V73U, € (M*)° (Uy # Uy)
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Proof. Pick Ey, E, € &, Eq C E4, z: 0 ¢ domE,. Then for any m € M’

Efz:=m} ||y U, =U,

hence
Ey |ty 3Uy € (M™)° (U # Uv)
therefore
Eo |He YU, € V° 3U, € (M*)? (Uo # Uy)
and the result follows. | o

We add the obvious corollary

Lemma 4.11 For alloc € &
VE*? = =V, € U° AU, € (M*)° (Uy # Uy) (4.4)

It is worth asking whether Lemma 4.11 can be strengthened by substituting U
for M™ in (4.4). This is not the case.

Lemma 4.12 Consider the theory PCF ™, which consists of all equatlions in
PCF that contain neither L nor F. Let M be a fully abstract model of PCF ™
P and U as in the proof of the main theorem. Then

VP VU, e UB AU, € U (U, £ UY)

Proof. Pick U, € U”. Set
U, 2{me (M*)B | ¥mg € U, (m = if mq then false else true) }
Evidently
VE? U e U”
and yet
VP U, £ U]
O

Lemma 4.10 and the fact that I/ is generated by V raises the question whether
we might not be able to give a first order ‘recipe’ for the construction of /. What

do we have to require of a X-typed set V, such that

McVcM
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and the theorem holds with Z{ replaced by the model generated by V? Condition
(4.4) is evidently not enough; it holds of M?® itself, for instance, and not all
functions from M? into itself are representable in M°. We shall come back to
this point in Chapter 6 and attempt an axiomatic description of the situation.

Now we turn our attention to the untyped models.



Chapter 5

Untyped extensional A-models

As in the previous chapter we shall start with a classical example. Then we

proceed to prove for the untyped case an equivalent result to Theorem 4.6.

5.1 Reflexive sets
In Chapter 3, Section 3.6, we saw that there is an obvious bijection
F :Ue» [U — U]

from an extensional A-model U to its space of representable functions. F' was
defined as

(F'(ug))(uq) = Ug 'y Uy
This suggests the following question: Under which conditions can a subset F
of the space of total endofunctions on a set U be regarded as the space of rep-
resentable functions of an extensional model with U as its universe? In other

words: When can we define a bijection
F:U—F

such that U equipped with - now defined as

oty £ () () 6.)

and
kr £ F' 0. F Y My z)) (5.2)
sp 2 F ' Q2 P Oy F M2z 525 (5 2))) - (5.3)

is a A-model that has F as its space of representable functions?

114
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The easiest case is where F = UV, i.e. when F is the full function space.
Then every bijection gives rise to a A\-model. However, classically we have the

following lemma.

Lemma 5.1 (ZF+ <AC(X,X)>) Let X ~ X*. Then X is a singleton.

Proof. Let
F i XenX*

and assume
V(EO S X 3.’1}'1 & X ($0 # $1)

Define, using < AC(X,X)>,
f: X—-X

by picking for every z| € X as f(z,) a value z] distinct from (F(z,))(zy). Then

f is not in the range of F, therefore
- Vo € X dzy € X (z9 # 1)
which is equivalent to
Jdzg € X Vz, € X (2o = ;)
O

Constructively, we can repeat the the above argument only part of the way.

Lemma 5.2 (IZF+ <AC(X,X)>) Let X = X*. Then

“'VSIIOEXE‘:ElEX(:Eo#wl)

Proof. Assume
F: Xen XX

and
vwo S X 3:1:1 (& X ((I:O -_}é 2}'1)

Define
f: X=X

by picking for every z € X as f(z,) a value ] distinct from (F(z,))(z;). Then
f is not in the range of F, therefore

_'V‘TOEXEQ:IEX(.'EO;&(”I)
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This, of course, is constructively not equivalent to X being a singleton.
We need the following definition for a description of the more general situa-

tion.

H
Definition 5.3 Let C be a cartesian closed subcategory of Set and U € C. U s

a reflexive object if there exist morphisms

F.:U-UY
and

G:U=U
such that

FOG=idUU

If U is a reflexive object, the structure U defined by 5.1-5.3 is a CL-algebra. If
F is bijective, U is an extensional A\-model, c.f. [Koy84].

" As a nontrivial example, we shall give the construction of a reflexive object
in CPPO. It made its appearance in [Sco72]. For complete details and related
models see [Koy84] and [Bet88].

5.2 The inverse limit construction
Let
D=(D,<,1)
be a cppo. Define an w-indexed family {D, },c. of cppo’s by setting
e D, 2D
o D1 = (Dnt1,<ns1,Lnys) where
e D,.,={f:D,—D,| f is continuous }
o <,41 is the pointwise ordering

o L . (z)=1, for z€D,

Furthermore define an w-indexed family {(¢,,%,)},c. of pairs of morphisms

where
¢n : -D n_>-D n+l

T+ Ay.T
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'lwbn : Dn+1_>Dn
e f(L)

(¢,.,¥,) are retractions, i.e.

d)n o ¢n = ian

and .
¢n 0 ¢n Sn+2 ian+1

Now let A be the diagram in CPPO having D,, as vertices and v, as edges.
Define
D, £ limA

Let
T, ¢ Do — D,

be the edges of the limiting cone.

D, is the set of all sequences ¢ = (z,,), ., such that

n€w

z, € D, and z, = ¢ (z,,) forall n cw.

T, maps € D, to z,,.
D, is also the colimit of the diagram with vertices D,, and edges ¢,,. Let ¢,

be the edges of the colimiting cone. ¢, maps z € D, to

<‘ ) ¢n_1($), T, ¢n(w)’ .. ')

Note that the (,,n,) are themselves retractions.

Now define application -, on D by

Tl é v {"n((”rn+1($))(7rn(y)))}

necw

(n((Trg1(2)) (72 (¥)))) ne 18 an w-chain in D, so the supremum exists.
The morphism
F: D, —DD=

is a bijection and with k., s, defined as above the structure D, is an extensional
A-model.

Scott (see [Sco80]) hat the idea to use the Yoneda functor to embed CPPO
in Set®FFO” . The reflexive object D, will be mapped to a presheaf Y(D,,),
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which under the right interpretation—which is very similar to the one given in

Chapter 2—is a reflexive set in the (constructive) universe:
SetCFFO” = Y(F) : Y(D,,) — Y(DE=) is a bijection.

The resulting extensional (full functionspace) A-model has the same theory as
D In fact one might argue that the two models are the same thing, once seen
externally, once internally.

It lies in the nature of presheaf models constructed from categories such as
CPPO that they are fairly awkward to handle. It will be difficult to obtain
relative consistency results, i.e. to find out, for instance, which classical or con-
structive statements are consistent with the existence of a nontrivial set having
the same number of points as its function space.

More importantly, not every CL-theory (nor A-theory for that matter) is the
theory of a model obtained from a reflexive object in CPPO, and certain theories

may not have a full functionspace model in the universe.

5.3 The main theorem (untyped)

We shall now proceed to state and prove the untyped version of our main theorem.

Theorem 5.4 Let M be an extensional A(C)-model. Then there exists a tree P
which only depends on the cardinality of M such that VF? satisfies the following

statement.
There is a full function space model U such that
M*cUc (M)
and
M* = E{MYU) EUC (MF)?
Moreover there is a bijection

F:U<»UY

such that
Uo U U, = (F(UO))(UI)

and therefore



CHAPTER 5. UNTYPED EXTENSIONAL A-MODELS 119
o ky=F'Oz.F'(\y.z))
o sy=F 'Oz F 'Oy F ' Ozz -y 2y (yv2)))

The proof is almost the same as the one of the typed theorem.

Proof. The definition of ‘environment’ in the proof of Theorem 4.6 applies of ,
course also to the untyped language. Add M as constants and |M|* variables to
A(C). Again we work with the tree (&g, C,0). We describe U first.

Let U € v&in™ be the set of all stable singletons U, of M™* where t € A(C),
such that for all m € M and E, € &,

Ey |- m" €U, &
VEl € 5tot (Eo C El — tE1 = m)

Again

Eo |- Uy =Uy &
VEI € gtot (EO - El - (tO)E1 = (tl)E1) (54)

Define the function F' € Vgﬁnop by
Ean”
A4 |= (F(Uto))(Utl) = Utm
We have indeed
op
VéR" U, 5 U,y = Upy = (F(U)(U3)
We prove that F' is bijective.

1. F' is surjective.

We must convince ourselves that
véan” L vfeUY U, e U (F(U,) = f)
So pick Eq, By € &g, Eo C Ey and f' € UY(E,). We must prove that
Ey lrgp75y 3Uo €U (F(Us) = f)

Take
AL AC) = AC)
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such that
fA(to) =t — B H‘{f'/f} f(Us,) = Uy

Pick ¢ ¢ Umenm FV(F*m) U domE;. This can be done since the right hand
side is of cardinality |M]|.

By o5y Uppe = Upoy)e
for some ¢, € A(C), so
E, H‘{fl/f} fU) = Uppp = U().a:.n):z: =Uspity v Us
We wish to prove that then for every t, € A(C)
Ey H’{fl/f} f(Us,) = Uprsy = U(Aa:.tl)to =Uszty v Us

i.e. that U,,, represents f'. In order to prove equality in the middle recall
(5.4). Pick E, € &y, such that E; C F,. To justify

(f*to)m, = (F*(to)m,)m;
let FV(t,) C .

E {7 = Ex(¥)} H“{f'/f} Ui, = U(to)Ez

$0

E\{ij := Ey(%)} H‘{f'/f} Usagg = Uff‘(to)z2
Further

(f ()55 = (F"(t) B Bafo 1= (10),) Since @ ¢ Vars(f*(to)m,)
Then
E{z = ({o)r} F/s Uto)s, = Us

implies

Efz = (to)m} Fy/n Unwe = Usne
hence

(f () B) Bate o= (t0)my) = (f*2) B to = o)y}

Finally

(fAm)Ez{x = (o)} T (Az.14)2) gy (o := (to)my} = ((Az-t1)to)E,



CHAPTER 5. UNTYPED EXTENSIONAL A\-MODELS 121

2. F is injective.
This follows from Lemma 3.51 and the fact that M* C U C (M*)* and M

is extensional.

Next we prove that F|M* : M* — |E({(M™)},U)] is a bijection.
Injectivity is clear. For surjectivity of F' pick Eq € Egn, and f' € UY(E,) such ?
that
Eo gy F(MT) C MT
By 2. f' is represented by U, for some ty € A(C). To prove that
Eo lrgisy Un € M

assume
and derive a contradiction. (5.5) means that for all m € M
EO IH{f'/f} m* & Uto

hence there are F,, E, € &, with E, C E, and E, C E,, such that

(to)g, # (to)m,

By extensionality there is an my € M such that

(to)m, "a Mo # (to)B, "M Mo

Therefore for all m € M

Ey Hisy m° € (Uy v Unmg)

and

Eo Hig51 Ut v Ung € (M*)\l\'

We deduce by <RAA >
Eo lrgisy U € M

This concludes the proof of the main theorem. O

Again we list some corollaries.

Theorem 5.5 Let M be an extensional A(C)-model and P = w1<“’°. Then VPOP'

satisfies
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There is a full function space model which is equationally equiva-
lent to M*.

And finally we add

Theorem 5.6 Let T be a A\(C)-theory that has a fully abstract extensional model
and P = wf“"’. Then VI satisfies o

T has a fully abstract full function space model.

As in the chapter on the typed models we investigate some of the properties
of models and sets concerned.

First we note that Lemma 4.10 has an obvious equivalent.
Lemma 5.7 Let P, M,U be as in Theorem 5.4. Then
V¥ ke VU, e U U, € M* (U, # U,)
Indeed and perhaps surprisingly in view of Lemma 4.12 we have
Lemma 5.8 Let P, M,U be as in Theorem 5.4. Then
VE? B =VU, e U3, €U (U £ Uy)

Proof. Pick Ey, E, € &, Ey C Ey, and an z such that z ¢ dom(FE,;). Pick
to € A(C). We shall show that

Ei |Ho Uy # Uy (5.6)

We do this by case analysis
1. Assume z ¢ FV(t,). Take any E, € &, such that E; C E;. Then
- M, Bz = (to)g,} F 2= (to)s, = 1o
But

Ey C By{z.:= (to)g,}
therefore (5.6).

2. Assume z € FV(ty). (Az.ty) has a fixpoint ¢;. Take E, € &, such that
E, C E,. Then

M, Ex{z = (t)g,} E 2= (t)g =
((Azto)t)m, = (to(ti/2)m = to((t)m/2) =t

Now, E; C Ey{z := (t1)g,}, therefore again (5.6).
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O
We know from Lemmas 4.12 and 5.2 that t'he Axiom of Choice does not hold
at least at type B for U, i.e. that
Een” B ;B
Vv bé <ACU",U")>

For the untyped case, Lemma 5.8 gives us hope. We have the

Conjecture. The existence of a set U with two distinct points, U = U U and
<AC(U,U) > is consistent with IZF. | O

I have neither been able to prove nor disprove that < AC(U,U)> for U in the
proof of Theorem 5.4.



Chapter 6

Related results and open problems

6.1 Extensions galore

Clearly when M is a nontrivial classical A(C’)—model, U a full function space

model and

M= E({M},U)

then not all functions f : M — M have extensions in U Y. This has serious
consequences for the world where M and U live. First we prove that U is rather

“fuzzy’.

Lemma 6.1 Let X,, X, be sets, X, classical and inhabited, and Xy C X;. As-

sume that not all functions f : Xo — X, have an extension in X; = X;. Then

= Vwo,xl S X1 (xo # Zy V = Tg = wl)

Proof. Assume
Vmo, Ty S X]_ (:1:0 # 1«'1:‘\/ T T = $1) (6.1)

Pick fé : Xy — X,. We shall construct an extension f; : X; — X;. Take y' €
X, and w'l € X,. We have

VIEO € XQ (IU; ?é Zg V o= .'17; = $0)

hence ¢(z,) = ~= ] = 24 is a decidable relation on X,. By classicality of X, we
get
dzg € Xy (—— m; = zo) V - 3zg € X (— m'l = z,)

Consider the first option. We prove that in fact

Azy € Xo (- @, = )

124
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Pick xé,mg € X, such that

S
T, =%, Ty =2
It follows that
! ,
ST =T

and by discreteness of X

1 "

Lo =T
This allows us to define fl(x'l) as fl(mg) where wg is the unique point in X, such

4 1
that —=— T, = T,

In the second case define
fi (m;) 2 yl
f1 is well defined and total \l\| . The result follows. 0O

Remark. In the above proof X, really does have to be classical, discreteness

alone is not enough. To see this consider the model V", Define

Xo2 {0 {1} u{1]{1}}

and
X;2{0[{0,1}}u{1]{1}}
Then the function f : Xy — X for which
Ly F0)=1

has no extension in X; = X, but of course

V¥ =V, 21 € Xy (5o # &1 V = g = o)

As a corollary to Lemma 6.1 we note

Lemma 6.2 Let X, be a classical inhabited set and X, such that X, C X, and
not all functions in Xy, = X, have extensions in Xy = X,;. Then

Vg (- ¢V —g)

Finally, Lemma 6.1 taken together with Lemma 2.52 and Lemma 2.45 yieldé



CHAPTER 6. RELATED RESULTS AND OPEN PROBLEMS 126

Lemma 6.3 Let C be a category, 15X, € V and X, € VC. Assume VC

satisfies

X, C X, and not all functions in X = X have extensions in
X, = X,.

Then for all C € C and for all fy : Cy— C there ezist f; : C; — C and
fo 1 Cy — C such that fo <¢ f1, fo Sc f2 and fy and f, are incompatible.

If C happens to be a tree, it has hereditary width at least w.

Now, if not all functions f : Xy — X, have extensions in X; = X;, what can
be said about those that do have one? It is easy to see that the identity and all
constant functions have extensions. Indeed we shall now give two conditions on

X, such that these are the only ones.

Lemma 6.4 Let X, be inhabited and classical and X, a superset of Xy such that
1. = Vz, € X, Jzg € X, (2 # o)
2, Voo, 2z, € Xy ((zg € Xg = 21 € Xg) 2 21 € X V 2o = 24)
Then |

Vo€ XX (3fy € XB (fo € fr) = fo=1idx, V Iy € Xo (Vz € X, (f(2) = 1))

Proof. Pick fé : Xog — Xo. Assume f(', has an extension and is neither constant

nor the identity. We shall prove that then
VIT/'I € X1 3(170 € XO (-TO # fl;l)

There are points :cg, IIIg € X, such that

g # o

! ! /#ll

Folzo) # folzg
Let f; € X; = X, be the extension of fé. We have
Ve, € Xy (7, € Xo — fi(z1) € Xo)

hence by 2.
Vo, € Xy (fi(zy) € Xo V 2y = fi(2y))

Now pick :c'l € X;. We have two cases.
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1. If f;(z]) € Xo, then either

f1($’1) # f(’)(:l:;)
or
filay) # folo)
In the first case z; # =z, in the second z; # z.
2. If fl(w'l) = :1:'1, then z # .
Therefore always
dz, € X, (ar:'1 # o)

Hence our assumption that fé is neither constant nor the identity is false, and
by Lemma 2.41 the result follows. m]

The sets M* C V of Lemma 4.10 fit description 1. and 2. of Lemma 6.4.

The same example shows that condition 2. is essential. M™* C (M™)°® fit 1.,
but as we saw in Lemma 3.45, every function in M™ = M* has an extension in
(M) = (M*)".

We have seen that if X is a nontrivial classical set, and X, is a superset of
X, such that not all functions f : Xy— X, have extensions in X; = X;, then X,
is fairly non classical, indeed we proved that it is strongly non discrete. We shall
postpone a further investigation of functions and try to capture this ‘fuzziness’
of sets.

6.2 Degrees of ‘fuzziness’

We introduce a new concept.

Definition 6.5 A set X is unzerlegbar’ zf for every subset Xy of X
XoUX =X —-Xo=0VXy=X

In other words, the only decidable relations on X are the trivial ones.

Theorem 6.6 Let X, X, be sets, X, classical and 2 — Xy C X; Consider the

following sentences.

1. = \7’:1:1 € -Xl 33:0 € Xl (.’L’O # .'131)

1

‘cannot be split’
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2. = Vz, € X, 3z € X, (zg # 1)
3. Jzg, 2, € Xo (o F Ty A=V EXy (o F TV T # z))
4. 2 Vzo,2, € Xg(zg # 21 = Yz € Xy (TgF 2 V 27 F 2))
5. X, ts unzerlegbar
6. ~Vzg,z, € Xy (zgF 2, V o g = 24)
7. Vg, 2z, € Xy (g =2, V g F# 1)

Ezactly the following implications hold

1.—-2.—-3.—4. —-6.—>1.

1. — 5. —6.
Proof.
o 1. — 2.
This is clear. For an example where 2. does not imply 1. see Lemmas 4.11
and 4.12..
o 2. — 3.

is also clear. An example where the converse fails can be constructed from
M and U in the proof of Theorem 4.6. Pick mg, m'1 € M, such that

! 7
m,, # m;. Define

Ut2U+1
and

MYEM+1
Then

VP EVu e Ut 3m e M™ (u# m)
but also
V' =~ Vu e Ut (u#my V u#m))
e 3. — 4.

Assume 3. and

YoEXo Ay EXoANyoF A Ve €Xy (Yo F 2V y # )
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Assume
Vo, 2, € Xo (2o # 2 — Vz € X; (20 £ 2 V 21 # 7))

Then in particular
Veo € Xy (Yo £ 2V yr # )

This leads to the required contradiction.

(2P

For a counterexample to 4. — 3. consider the model V . Define z,, €

VEP? for every n € w by

2, 2{n|{s|s(n)=0}}U{n+1|{s|s(n)=1}}

and
XE&{z,|necwlU{{n}|ncw}

Pick sq,$; € 2<% such that s C s;. Then

s1 ko {lsal} # {lsal + 1}

but
310 H“@ Tisy| = {ls1]}
511 [y 2pey = {l82] + 1}
hence
81 |Ho zpsy) # {Usl} V sy # {lsa] + 1}
therefore

51 |He Yng,ny €w (ng # ny — Va: € X ({no} #z V {n} #2))
and
so kg = Vng,ny €w (ng #ny — Ve € X ({ng} # 2z V {ny} # z))

so

vE? E = Vngn, €w (ng#ny — Ve € X ({no} # 2z V {n} # x))
To prove that

VEIT 1L Jnny €w (ne # ny A=Yz € X ({ng} # 2V {ny} # 2))
pick ng, n'1 € w, such that ng #* n'1 and s € 2<“ such that

|s] > (no V ny) 42
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We prove that
s [y Vo € X ({no} #2 V {ni} #2)

Pick n € w. If n is neither of ng,ng — 1,n4,n; — 1 then

s H—'@ Ty # {nO} v T, 7é {nl}

If n is one of the above, then

8 H—Q) T, = {le}

where n, is one of ng,ng — 1,n4,n; — 1 and therefore

s H‘@ T, # {no} V ., # {n1}

Also,
s Iy {n} # {no} V {n} # {n4}

We get

0 Hp dng,ny €w (ng # ny A~ Vz € X ({no} # 2z V {ny} # 7))

and the required result.

o 4. — 6.

Assume 4. and
Vg, 2 € Xy (g # 21 V = 2o = 74)

Pick z{, 2] € X, such that = # z;. Then

Ve, € X, (:1::) #xy Voo :c; = x,)
therefore ,

Vo, € Xy (25 # 2, V :c'l # :Z,'l)\{\l
The result follows.

To disprove the reverse implication consider the model VO For all
n € w and ¢ € 2 define :z::z e V&7 by

g, 2 {i|{sls(m)=i}}u{2]{s]s(n)=2}}
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Let
X £ {2} }new U {2} new U {{0}, {11}
Then clearly '
VO Lz e X ({0} £z V {1} # 2)
therefore
VO L < ng,ny €2 (ng #ny — Vo € X ({no} # o V {n} # 2))

On the other hand, take s € 3<“. Then

50 [ ‘TESI = {0}

s1 |k Zis| # {0}
therefore

s IHo 22, # {0} V= 2, = {0}

and

-V-(3<°’)°P }——— - V-'L'(), Ty (& X (3}'0 # Ty V = Ty = .'El)

© o 6. — 7. 1s easy.

A counterexample to 7. — 6. appears in Lemma 2.50.

e 1. —5.
Assume 1. Assume X, C X; and X, U X = X;. Pick :c'l € X,. We may
assume that 2] € X,. Pick ] € X;. Assume z; € X_. Take z’ € X,. Then

either
4 / "
z € Xpand z # z,
or
g’ € X; and z # w'l
Therefore
V-’EO = .X1 3311 S X]_ (CBO # ml)\l\l
Hence
zy ¢ X,
and
"
r, € Xo

Since w'l' was general we have
Ve e X (z € Xy)
or X = Xo.
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e 5. — 6.

Assume 5. and
Vmo, ZTq [ .X1 (.’EO # Ty V == Lo = 371) (6.2)

Pick zj,z; € X, such that zj # 2. Define

X&{zeX, et}
Then both X and X° is inhabited (by :r:'l and z, respectively), yet by (6.2)
X U Xc = Xl

2<w )op

e To see that 6. does not in general imply 5., take the model v . Define

z, € VEI” forall n e w by

2, 2{0|{s|s(m)=0}}U{L|{s]s(r)=1}}

Define
Xo 2 {2n}new U {{0}, {1}}

and

X, 2 XU {{2}}
Pick s € 2<“. Then
s |Ho =, # {0}V -z, ={0}
for n > |s|, therefore

<w )op

Ve = = Vao, 21 € X, (o # 34 V = € = )
but X, can be split (‘zerlegt’).

It remains to be proved that neither 4. — 5. nor 5. — 4. The last example
shows that 4. — 5. need not hold. We have

s |t {0} # {1}

but
s |Hy Yz € Xy (z # {0} Vo #{1})

hence

V(2<W)°P }= - meml e XO (xo % T -—-) (V!Z' € X1 ($0 '7'é T V T4 # .'L‘)))
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but as we have already seen, X, splits into X, and {{2}}.
To disprove 5. — 4., consider again the model VO Define .7:; e VE=I*

foralln e w, 1 €2 by

222 {0[{s]s(m)=0}}U{1]{s|s(m)=1}}U{2]{s]s(n)=2}}

and

i 2{1|{s]s(n)=0}}uU{0|{s]s(m)=1}}u{2|{s|s(n)=2}}
Set
X 2 {20} new U {2, }new U {{0}, {1}, {2}}

X is unzerlegbar. For pick s € 3<“ and assume that for some X, Cc X

s [y XoU Xg =X (6.3)
Further assume

s I {2} € X

But we have ’

s0 |y =), = {0} € Xo

Is

and
52 |k, w?sl = {2} € Xg\l\n

hence .

s |t {2} € X;
and by (6.3)

s [ {2} € Xo
With a similar argument we prove

s [y {1} € Xo
and finally for all n € w

s |Fp 2n € Xo

On the other hand clearly

VO e Vng,ny €2 (ng # ny = Vo € X ({no} # 2 V {ny} # 2))

We are interested in one more and by now well known statement.
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8. Not all functions f : X — X, have extensions in X; = X;.

We have already seen that 8. — 6. Now we prove that neither 8. — 5. nor 8. — 4.

Proof.

9

¢ 8. does not entail 5. .
This is easily disproved by considering U in the proof of Theorem 5.4.
Clearly not all functions f : M + M—M + M have extensions in U +
U= U-+U,yet U+ U is evidently zerlegbar.

¢ 8. does not entail 4.

We can again consider V)™ and X constructed to disprove 4. — 6. The

function f : {{0},{1}} — {{0},{1}} with
f({0}) = {1} and f({1}) = {0}

does not have an extension in X = X.

0

I +1)- We cannot have

At s € 3%“ try to assign a value to f(z

s [y flzp) = {0}

because ;

s0 |y =z}, = {0}
hence

0 Iy £l = {1} N

s £(2%) = {2)
similar.

s o £2%) = {1}
because

$2 o @y =3y,
hence

s2 H"@ f($|1_.,|) = {1}
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but also '
1 Iy oy = {1}
therefore '

sl fy f(=,) ={0}

But there is no point  in X such that

sl ||y == {1} and s2 |}, == {0}

s |k f(:cﬁsl) = :c; for n > |3

because
s0 I flay,) = {1}
but
s0 [Hp @, = {1}
]

We sum up: sets can have various degrees of ‘fuzziness’. This can be thought
of as a measure of our being able to distinguish between two points. Our list
is admittedly fairly ad hoc. It would be interesting to find a general method of
generating a ‘fuzzy’ hierarchy.

In classical mathematics, where all sets are discrete anyway, a measure of the
distinctness of points can be introduced via topologies. It would be interesting to
know whether the above results could be expressed and indeed refined in those

terms.

6.3 Towards an axiomatic approach

Assume we have a classical nontrivial and extensional A-model M. What do we
have to require (in first order terms) of a set U with M C U C M® such that

there is a bijection between U and UY and the induced A-model U satisfies
MCUC M

Try this idea: we construct U by first taking a set Uy, M C U, C M® such that
only the constant functions and the identity in M M }ave extensions in U, g] °. We

then add exactly enough points to Uy, obtaining a set U;, such that all functions
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in M™ represented by a point in M have an extension in UIU °. Then we add
enough points to U, obtaining a set U, such that all the functions in Uéj ® have
an extension in U2U ! and continue in that manner defining an w-chain of sets
{U,} new whose union with some luck will be the required set U.

Now the details: Let Uy be such that M ¢ Uy C M*® and

1. _‘VUOGUO Hul EUO (UO#Ul)
2. VUO,uler((uOEM—'*UIEM)"‘)uleMvuO=u1)

We know that exactly the constant functions and the identity in M M have ex-
tensions in Uy = U,. We need the smallest set U; such that all functions in M M

represented by a point m € M have an extension in Uy = U;. We define
U 2 My Uy

Now not necessarily all functions in M => M represented by an m € M have an
extension in U; = U;. So again we have to add something. Moreover since we
eventually need

UnUY

we now want a U, such that all functions in U, = U, represented by a point

ug € U, have an extension in U; = U,. We define

Us £ Uy ars Us
And so on. Finally we set
va Ju,
new
and with any luck
UnUY (6.4)

I do not know whether (6.4) is provable. An indication that it might be is the
fact that the set U appearing in the proof of the (untyped version) of the main
theorem can be constructed in the way described above. On the other hand it
is easy to see that sets U, such that M C U, C M’ and conditions 1. and 2.
hold exist in the model V™). This would give an answer to the second point

raised in Section 4.3.5.
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6.4 Problems

I state again some of the problems worth investigating.
First, the main results of Sections 4. and 5. should be improved by pruning
the underlying tree. Are Theorems 4.8 and 4.9 valid for P = w0<°’°? g
Then, we can ask again the question raised at the beginning of Section 4.3. Is
it consistent with IZF that there is a full function space model V for any X-typed
ca U such that for ally € T’

U'cV?c (U

and U is isomorphic to E({U"},er, V)? Related questions are: what can be said
about the space of singletons of a set which is not ——-separated? Can the family
of singletons of any ca be made into a combinatory algebra, and if so, which other
properties are preserved?

This brings us to the last question. Is there a way to describe everything

axiomatically as we tried to do in the previous section?
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Heyting algebra
complete, 22

Kripke interpretation 27

Markov Principle 56

antichain 14
associated j-sheaf functor 76

axiom 28

category
_ cartesian closed (ccc), 13
dual, 11
small, 11
chain
ascending, 14
descending, 14
cofinally 46
colimit 12
combinatory algebra 71
combinatory sub-algebra 73
generated by a set, 74
cone 12
colimiting, 12
limiting, 12
consequence 27
coproduct 13
counterexample
strong, 58
weak, 58
cpo, see order, complete partial
crible 19

‘:deﬁnition

inductive, 25

diagram 11

embedding 73
environment 105

exponential 13

fixed point 68
formula 26
atomic, 25
decidable, 33
negative, 84
restricted, 31
stable, 35
full function space hierarchy 93
function
determined by its values on a set,
38
bijective, 37
defined at a point, 36
domain of, 37
extension of, 38
image of, 37
injective, 37
partial, 36
range of, 37
representable, 93
restriction of, 38
sequential, 102

surjective, 37
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total, 37

functor
Yoneda, 20
diagonal, 11
faithful, 20
full, 20

homomorphism 73

irrelevant variable 111
isomorphic 73

isomorphism 73

j-closed 36
j-closure 36
j-dense 36
J-separated 36
j-sheaf 75
associated, 75

Jj-singleton 76

language
of a theory, 28
left or 101
limit 12
lower closed subset of a po 23

lower closure of a subset of a po 23

model
CL*(C)-, 12
equationally equivalent, 73
extension, 95
extensional A\¥(C)-, 73
full function space, 94
fully abstract, 72
functional, 94

models
V, 42
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V©, 43

object
reflexive, 116
terminal, 12
order
complete partial (cpo), 14
complete pointed partial (cppo),
14
partial, 14
reversed, 14
ordinal
classical, 62

constructive, 63

parallel or 101
partial element 78
powerobject 15
presheaf 16
representable, 18
product 12
program 100
program context 100
pullback 12

relation
consequence, 26
forcing, 44
logical, 94

retraction 117

sentence 26

set
Y-typed, 65
classical, 56
countable, 63
discrete, 34
finite, 63
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infinite, 64
inhabited, 33
nonempty, 33
pseudo-classical, 53
standard, 48
strictly finite, 63
subcountable, 63
subfinite, 63
transitive, 62
singleton 75
subobject 14
subobject classifier 14
subset
decidable, 34
stable, 35

successor 22

term
incompatible terms, 67
A¥(C)-, 66
CL*(C)-, 69
theorem 27
theories
CL>(C), 69
EQ, 32
IZF, 32
ABn*(C), 67
MON, 97
PCF, 98
theory 28
CL*(C)-, 69
AZ(C)-, 67
of a model, 72
closure of, 28
inconsistent, 67

topology 23, 35
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topos 15

tree 22
a-branching, 22
binary, 22
height of, 22
hereditary width of, 22
rooted, 22
width of, 22

type 65

unzerlegbar 127

well ordering 62
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