LFCS

Laboratory for Foundations of Computer Science

sebenbue Buluweibold paiusu-109[qO 10 sonuewas sninojeo- L

LFCS Report Series

Department of Computer Science - University of Edinburgh

Tr-calculus Semantics of Object-Oriented
Programming Languages

by
David Walker

ECS-LFCS-90-122

LFCS

Department of Computer Science
University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ

October 1990

Copyright © 1990, LFCS

z-calculus Semantics of Object-Oriented
Programming Languages

David Walker
University of Technology, Sydney

September 1990

Introduction

The w-calculus provides a rigorous foundation for the study of concurrent systems with
evolving communication structure. [7] contains an introduction to the calculus through
a sequence of examples, while in [8] its elementary theory is developed in detail. In
addition to the examples in [7], evidence of the expressive power of the calculus is
provided by [6], in which encodings of A-calculus in the w-calculus are studied; by [9],
where a communications protocol used in a mobile telephone network is modelled; and
by [11] which contains a translation of CCS with value-passing into the w-calculus.
In the present paper we develop this theme further, providing semantics for a pair of
object-oriented programming languages by translating them into the w-calculus. The
translations build on earlier work on the w-calculus and the translation of a parallel
imperative language into CCS from [5]. They illustrate how the calculus may be used
to provide succinct, natural and illuminating representations of systems described in an
object-oriented style.

The first language considered is a mild enrichment of the language P of [4]; the second
is closely related to the parallel object-oriented language POOL [1]. The languages differ
essentially from one another only in the mechanisms they provide for interaction between
objects: in the first language, interaction occurs via synchronous communication of data;
in the second, a rendezvous mechanism is employed. The encodings of these mechanisms
in the w-calculus are very close to natural operational intuitions.

It is interesting to compare the semantics offered here with alternative semantics of
related languages, for example the denotational semantics for POOL using metric spaces
in [3]. One point worthy of note is that by providing the semantics by translating into the
m-calculus, we avoid the need to wield any heavy mathematical machinery in establishing
the well-definedness of the semantics. Further the translation provides, amongst other
things, a clear view of the central concept: the object. It is interesting also to note
how a few natural ideas, such as replication and the use of private communication links,
may be used to model data values, methods and classes uniformly by viewing them as
generators of instances of appropriate kinds of entity.

Several variations of the translations have been examined; we believe it is not easy
to find translations notably simpler than those presented. This paper contains only the
translations: no detailed investigation of their properties is included. This investigation,
together with study of the relationships of the semantics to those given by other means,
for instance the semantics for POOL in [2] and [10], remain topics for future research.

This paper assumes familiarity with the m-calculus as presented in the papers cited
above. In particular we adopt the notational conventions of [7].

1 The langnages

A program of either of the languages we consider describes the computational behaviour
of a system of entities called objects. In the first language £;, which is a mild enrichment
of the language P of [4], an object consists of a sequential statement together with a
family of variables local to the object. Variables may contain data values such as integers
or references to objects. The second language L, is closely related to the parallel object-
oriented language POOL [1]. In addition to the features of an £;-object, an L;-object
possesses a number of procedures or methods.

The languages differ essentially from one another only in the mechanisms they pro-
vide for interaction between objects. In Ly, objects interact via a synchronous communi-
cation mechanism in which a data value is sent from one object to another and assigned
to a variable of the receiving object. In order for such an interaction to be possible, one
of the sending object’s variables must contain a reference to the receiving object. There
are two modes of reception of a data value. In the first, one of the receiving object’s
variables must contain a reference to the sending object, while in the second the receiv-
ing object may accept a value (of the appropriate type) from any object. Interaction
between objects in £, occurs via a rendezvous mechanism in which a method is invoked
in one object on receipt of a message from a second object. The sending object’s activity
is suspended until the method invocation is completed and a value returned to it by the
receiving object.

Objects may be created during a computation. Moreover the communication struc-
ture among objects may evolve through the communication of references to objects.
Each object is an instance of some class, and a program consists of a sequence of class
declarations and a (conventional) indication of which of these classes furnishes the root
object which alone exists at the initiation of a computation. We now describe the
languages in detail, beginning with C,.

The language £,

We begin with a set of program variables ranged over by X,Y,Z. The class of £;-
expressions ranged over by F is given as follows:

b

X
k - (k=0,1,2,...)
b (b = true, false)

Ey + E,
E, =E,
-E

E, ANE,

Each well-formed expression is of one of the types nat, bool and ref; the type of a
variable is given via a declaration. nil and self are of type ref; nil signifies a reference
to no object while, loosely speaking, self signifies the object in which it occurs. This
simple language of expressions is adequate for illustrating the principal points of interest
in the encoding. Richer languages may be accommodated by extending the techniques
described below; see also [7] and [11].

We assume further a set of class names ranged over by C. The class of £;-statements
ranged over by S is given as follows:

S skip

X =F

X = newg (C a class name)
XE

XY

Y

S15 52

if E then 5; else 5,

while £ do S

.o
.o

Statements of the forms X := new¢g, X!F and X 7Y are well-formed only if X is of type
ref. The effect of X := new¢ is to create a new object of class C' and to assign to X a
reference to it. In X!F the value of the expression E is sent to the object to which X
contains a reference (if it exists), while in X7Y a value is received from the object to
which X contains a reference (if it exists) and assigned to Y. In 7Y a value is received
from some object and assigned to Y. In any communication arising from X!FE and Y?7Z
or from X!E and ?Z, the types of E and Z must agree. The remaining constructs have
their usual meanings. X := FE is well-formed only if X and F share a common type;
if F then 5] else S; and while E do S are well-formed only if E is of type bool.

The class of £;-declarations is given as follows with ¢ ranging over types. First there
are sequences of variable declarations:

Vdec == var Xj :ty,...,X,: 1,
with the X; distinct from one another. Next there are class declarations:

Cdec ::= classCis Vdecin S

with every variable occurring in S being declared in Vdec. And finally there are program
declarations:

Pdec ::= program P is Cdecy,...,Cdec,

where if Cdec; = class C; is Vdec; in 5;, then: the C; are distinct from one another;
and if X := newer occurs in one of the S; then C' is one of the C;. By convention, C is
the class of the single root object which alone exists at the initiation of a computation.
On creation, an object augments the computation by executing the statement ap-
‘pearing in the declaration of the class of which it is an instance with its own family of
local variables determined by the variable declaration part of the class declaration.

The language £,

L, shares many features with £4. To describe its expressions we assume a set of method
names ranged over by M. The class of Lo-expressions is obtained by augmenting the
definition of the class of £;-expressions with one extra clause:

E o= ...
| E1!M(E,)

An expression of the form Ey\M(FE,) is well-formed only if E; is of type ref. If the
value of Ey is a reference to an object, the value of the expression is the value returned by
that object after an invocation of the method M with parameter E,;. Such an invocation
may occur if the object referred to executes an answer statement as described below.

The class of £,-statements is obtained by deleting from the definition of the class of
L,-statements the clauses for X!E, X?Y and ?Y, and adding instead one new clause:

S = ...
| answer(M;,..., M)

A statement answer(Mi,..., M) requires that for some ¢ with 1 < i < k, the
statement comprising the body of the declaration of M; (see below) be executed with
a parameter supplied by an object seeking to evaluate an expression FEy!M;(E,) with
E; a reference to the object containing the answer statement. On termination of the
method invocation a value is returned to the sending object, this being the value of
the expression Ey!M;(E;). Note that under this interpretation an answer(My, ..., M;)
statement requires that an appropriate method be invoked. An alternative in which if no
invocation requests are outstanding the answer statement may successfully terminate
is also possible. With a little more work this too may be encoded in the 7-calculus.

The class of £,-declarations contains in addition to sequences of variable declarations,
sequences of method declarations of the form:

Mdec = method M;(X1,Y1)is Sy,..., M (X,,Y,) 1s S,

with the M; distinct from one another. In a method declaration method M(X,Y) is S,
X is the formal parameter supplied by an invoking expression FEy!M(FE;), and Y a
variable in which will be stored the value to be returned as the value of that expression

4

on completion of the execution of the body S. We consider only one-parameter methods,
the extension of the translation to the many-parameter case being quite straightforward.
The clause for £,-class declarations is:

Cdec := class Cis Vdec, Mdec in S

with every variable and every method name occurring in S being declared in Vdec and
Mdec. '
Finally, the clause for Lo-program declarations is:

Pdec = program P is Cdec,..., Cdec,

with caveats and interpretation similar those in the case of L;.

2 The translations

Each entity of each syntactic category is represented as an agent!, the representations of
complex entities being constructed from those of their constituents. There are delicate
relationships between certain parts of the translations, and for this reason some details
may not be entirely clear when read in isolation. We begin with the translation of £;.

The translation of £

To give a feel for the overall structure of the translation we begin with declarations.
First we consider variables of non-reference types. We assume that for each variable X
there are constant names rx and wy. As discussed in [7], the introduction of constant
names may be avoided. However rather than introducing a further level of encoding we
admit them here.

With ¢ being either nat or bool we define:

[var X : t] & Locy

where

Locyx & wx(y). Regx(y)

Regx(y) ¥ 7xy. Regx(y) + wx(2). Regx(2)

Locx represents a memory location at which the name of a link to an agent representing
a value may be stored. Such a name may be written via the link wx, while the name
currently stored may be read via the link rx. Assignment to X will be represented by
the storing of the name of a link to the agent encoding the new data value. Note that
on its declaration no link name is stored; an attempt to read from the variable will fail.

Imore accurately, as a mapping from names to agents

The translation of the declaration of a variable of type ref is slightly different. How-
ever it is convenient to use the same agent constants relying on context to resolve any
ambiguity. We use two further constant names: NIL and REF. We define:

[var X : ref] & Locx

where

Locx % 7% NIL.Locy + wx : [NIL = Locy, REF => wx(y). Regx ()]
Regx(y) ¥ 7x REF.7xy.Regx(y) + wx : [NIL = Locyx, REF = wx(z). Regx ()]

REF and NIL signify, respectively, that X does or does not contain a reference to an
object; note the use of the match construct in the definitions. Otherwise the behaviour
is similar to the case of X of non-reference type. Note that on its declaration X is
deemed to contain no reference to an object.

A sequence of variable declarations is represented as the composition of the agents
representing the individual declarations:

[var X; : ty,..., X, i &, ‘gl[varXI:tl]]|~~|[[vaan:tn]]

Next we consider class declarations. We assume for each class name C a constant
name c of the w-calculus. The translation is:

[class C is Vdec in S](c) & &(w) * [Vdec in S](w)

where

[Vdec in SJ(w) € (N)([Vdec] | [S](w))

with N = {rx, wx | X occurs in Vdec}. Recall from [7] that a * P is a replicator.

As explained below, each statement S is represented as an agent [S](w) with w
playing the réle of a reference to the object of which S is a part. The agent representing
the class declaration may provide at ¢ an indefinite number of private instances of
the agent [Vdec in S] which represents an object with statement agent [S] composed
with agents representing the local variables. Note the rdle of the restriction operator in
localizing the scope of the variables. Note also the means by which the agent representing
the class declaration produces a new instance of the class accessible only to the recipient
of the private name w. As explained below, the recipient will be an agent representing
the expression newg.

Finally if Pdec = program P is Cdec,,..., Cdec, is a program declaration, its
translation is as follows:

[Pdec)(w) & (e1,. .., em)([Cdect](er) | -+ | [Clecal(ca) | x(w).0)

Note how the initiation of the computation with the single root object of class C; is
represented using the trigger ¢;(w). 0.

Next we consider the translation of expressions of non-reference type. Each such
expression E is represented as an agent [£](v) with v the name of a link through which

6

the agent may communicate its value. Such agents have a transient existence: they may
yield their value only once. However as explained below, more permanent forms are also
used in the translation. We assume four more constant names: ZERO, ONE, TRUE and
FALSE. We have:

[£](v) (T ONE.)* 5 ZERO
[true](v) U TRUE
[false](v) = OUFALSE
[E: + El(v) € (v1,0)([Exl(v1) | [Bal(va) | [+] (01, v2,0))
[By = Ea](v) £ (v1,02)([Eal(v1) | [Ea](v2) | [=](v1,02,))
[FElv) ¥ (o)([Edl(v) | [-)(v1,0))
[Ey AB)(v) F (v1,v)([Exl(vr) | [E:l(v2) | [A) (01,2, 0))

e Ig

o
2,

where

[+](v1,v2,0) = vy : [ZERO = [+]'(va,v), ONE => BONE. [+](v1, v2, v)]
[+]'(ve,v) ¥ vy : [ZERO = T ZERO, ONE = TONE. [+](ve, v)]

[=](v1,v2,v) = w1 :[ZERQ = v, : [ZERO = TTRUE, ONE => TFALSE],

ONE => v, : [ZERO = TFALSE, ONE => [=](vy,vs,v)]]

[Fl(vi,v) % v, : [FALSE = B TRUE, TRUE => 5 FALSE]

[Al(vy,va,v) %) : [FALSE = DFALSE, TRUE = v,(y). Ty]

Note that in these definitions we abbreviate a. 0 to a.
For X of non-reference type we have:

[X](v) ¥ rx(y). y(w). Copy(u,v)

where
Copy (v, v) ¥ u(z). 2. Copy(u, v)

Some explanation of this representation is required. However, it is much more readily
appreciated in conjunction with the translation of the assignment statement X := E,
so we proceed to this first. Three preparatory steps are required.
The first involves the introduction of a further constant name done and the following
definition:
Done * done done. 0

The role of Done is to provide a signal of successful termination of a statement. This
will be elaborated below.
The second step is the introduction of a derived operator before as follows:

P before Q % (done)(P | done(z). Q) where z ¢ fn(Q)

Finally the third step involves the introduction of a family of agents representing the
evaluation of expressions (of all types). We set:

Eval(vq,v) dof vy : [ZERO = Natevaly(v),
ONE => Nateval;(vy,v),
FALSE = Boolevalp(v),
TRUE = Boolevalr(v),
NIL = Refevaly(v),
REF = Refevalg(vy,v)]

~where
Natevalp(v) % Done | 5(w) * [0](w)
Natevalg(v1,v) - [ZERO => Done | 5(w) * [k]}{w),
ONE = Natevalky1(v1,v)] ifk>1
Boolevalp(v) % Done | 5(w) [false](w) '
Boolevalr(v) % Done |o(w) * [true](w)
Refevaly(v) % Done | v(w) % Nil(w)
Refevalg(vi,v) % v (u).(Done | o(w) * Ref (w,u))
where

oy

Nil(w) ¥ wNIL
Ref (w, u) & WREF. wu

Note in passing that the encoding of data values may be extended easily to arbitrary
sets of values built recursively from a finite set of constructors.
Then for X and E of common non-reference type we have:

[X := E](w) ¥ (v)((v1)([E](vy) | Eval(vy,v)) before Txo. Done)

Thus the assignment is represented by the evaluation of E followed by the passing to
Reg y of a private link to the replicator representing the value of F and a signal (to the
agent representing the subsequent command) of successful termination. Note from the
definition of Eval that an indefinite number of private instances of the agent representing
the value of F may be obtained via the link stored in Regy.

The definition of [X] may now be clearer. The evaluation of an expression X (of
non-reference type) is represented by the reception from Regy of the name of a private
link to the replicator representing the current value of X, followed by the reception from
the replicator of the name of a private link to an agent capable of yielding the value,
followed in turn by the transmission of the value piecemeal. To gain some feel for the
representation the reader may care to examine the encoding of a fragment such as:

var X :nat, Y :natin X :=3; Y =X+ X
The translation of the sending statement is similar. We have:

[X!E]J(w) % rx(u).[u=REF]rx(z).
(©)((v1)([E](v1) | Eval(vy,v)) before Tv. Done)

8

First the name z of the link to the agent representing the receiving object is read from
Regy. Then E is evaluated and the private link to the replicated version of its value
passed along .

The receiving statements are represented as follows:

[X?7Y](w) ¥ ry(v). [u = REFlrx(2). z(y). Wyy. Done

in which the name z of the link to the sending object is read from Regy, the name y
of the private link to the replicated version of the incoming data value is received along
z, and this name is sent to Regy. Secondly: ’

7Y (w) &of w(y). wyy. Done

Here one point of the parameter w in the representation of statements is seen. The
reception of a value from an unspecified object is represented by the reception of a name
along the link named w. The other role of this parameter is in the translation of the
expression self as described below.

The translation of expressions of type ref is as follows:

[nil](w,v) % wNIL
[self](w,v) & wREF.vw
[X](w,v) ¥ Copy(rx,v)

Note the presence of two parameters in these definitions. The first of these will be
the parameter in the translation [S](w) of the statement in which the expression in
question occurs. Also, compare the representation [X] with the corresponding definition
for X of non-reference type. In this case no passing of private links to copies of agents
representing data values is required.

The translations of the assignment, sending and receiving statements for reference
types are as follows:

[X := E}(w) ¥ (u)([E}(w,v)|v:[NIL=>wxNIL.Doze,
REF = wx REF. v(u). Wxu. Donel)

[XIE)(w) % ()([E](w,v) | rx(u). [= REF] rx (2). (v)7y-
v : [NIL = §NIL. Done, REF => FREF. v(u).Ju. Done])

[X7Y](w) ¥ rx(u).[u=REF]rx(z). z(y).
y : [NIL = Wy NIL. Done, REF => Wy REF. y(u). Wyu. Done]

[?Y](w) % w(y).y:] NIL = wy NIL. Done,
REF = Wy REF. y(u). Wy u. Done]

Compare these clauses with the corresponding representations in the case of non-
reference types. A value of type ref is communicated via a molecular action (see [7]). A
more uniform treatment of the encoding of expressions is possible. We adopt the present
approach in order to illustrate the possibilities and also because the alternative does not
appear to be simpler.

The final assignment involves the creation of a new object:

[X := newc](w) ¥ ¢(2). wx REF. Wxz. Done

Referring back to the translation of class declarations, this assignment is represented by

the reception from the agent representing the declaration of C of a private link z to an

agent representing a new object of class C followed by the sending of this link to Regx.
It remains only to deal with the standard statement constructs. We have:

[skip](w) % Done
[S1; S2](w) ¥ [Si](w) before [S5](w)
[if E then 5, else $;](w) ¥ (v)([E](v) | v : [TRUE = [S1](w), FALSE = [S5](w)])
[while E do SJ(w) ¥ W(w)

where
W (w) o v)([E](v) | v : [TRUE = ([S](w) before W(w)), FALSE = Done])

These clauses are fairly self-explanatory (see [5]). This completes the translation of £;.

The translation of £,

The L,-translations of those constructs common to the two languages are identical to
their L£;-translations. The translations of the other constructs, method declarations,
answer statements, and method invocation expressions, are intimately related to one
another.

Suppose method M(X,Y) is S is a single method declaration taking a parameter
of non-reference type and returning a value of non-reference type. Then the translations
are as follows where for each method name M we assume a constant name m of the
w-calculus:

[method M(X,Y) is S](m) ¥ m(z) * M(2)

where
M(2) ef (N)(Locx | Locy | z(w). z(z). wxz. ([S](w) before ry (v').zv"))
with N = {rx,wx,ry,wy };
[answer(My, ..., Mp)]|(w) & w(w). u : [m; = u(v). mi(z). Zw. Zv. 2(v'). W', Done]’_,

and

10

[EAM(Ey)](v) € (vs) ((v1)([Ex](v1) | v1(w) [u = REF] vy (w). Done)
before ((v2)([E2](v2) | Eval(vq,vs))

before (u)Wu.Tm. Uvs. u(v'). v'(v"). Copy(v",v)))

The agent representing E!M (F,) first obtains the name of the link w to the agent
representing the object to which E; refers (if it exists), and then the parameter E,
is evaluated. Its activity is then suspended until the agent representing the object
referred to is able to receive a communication along this link, indicating the execution

‘of an answer statement. Then a private link u is communicated from the expression
agent to the answer statement agent, and along this link there follows the name m-
representing the method M. If the method requested is among those offered, modelled
using the match construct, the private link v3 to the replicated version of the value of
E, is sent along u, and then the answer agent requests from the agent representing
the appropriate method declaration a private copy of the agent representing the method
body (with private local variable agents). To this agent it communicates the parameter
w indicating in which object it occurs — this is necessary as the body may contain
answer statements or occurrences of the expression self — followed by the private link
to the replicated value of the parameter. The method body agent stores this link in its
local Regy, the agent [S] becomes active, and on completion the name stored in the
local Regy is returned to the answer agent. This agent in turn returns this name to
the E11M(E,) expression agent, along the private link u previously established between
them, and then indicates successful termination. Finally a link to a private copy of the
value is obtained and the value is copied piecemeal via the Copy agent.

It is straightforward to modify the translation to handle the case when either the
parameter or the value of the invoking expression is of type ref. Similarly, the representa-
tion of many-parameter methods is not difficult. As mentioned earlier, the interpretation
of the answer statement adopted here is such that it may successfully terminate only
after a method has been invoked. A representation of an alternative in which this is not
the case is possible but is not given here.

If several objects are suspended awaiting an opportunity to invoke a method in a
given object then according to the translation given here, when an answer statement
is executed, only one will have this opportunity. Moreover if the method requested
by the selected object is not among those offered in the answer statement, the agent
representing the answer statement will be unable to proceed. An alternative in which
incoming messages are stored in queues, with method invocations occurring in an order
determined in some way by the queues’ contents, may also be represented with a little
more work.

It remains only to complete the translation of L£y-declarations. The translation of a

sequence Mdecy, ..., Mdec, of method declarations with M; the method name appearing
in Mdec; is:
[Mdecy, ..., Mdec,|(my, ... ,my) & [Mdec,](my) | - - - | [Mdec,](m.,)

The translation of an £,-class declaration is:

[class C is Vdec, Mdec in S](c) ¥ e(w) % [Vdec, Mdec in S](w)

11

where

[Vdec, Mdec in S](w) o (N)([Vdec] | [Mdec] | [ST(w))

with
N = {rx,wx | X occurs in Vdec} U {m | M occurs in Mdec}

Finally the translation of a program declaration is as for £, with the above defini-
tions. This completes the translation of Co.

References

[1] P. America, Issues in the design of a parallel object-oriented language, Formal
Aspects of Computing, vol.1 no.4 pp.366-411 (1989).

[2] P. America, J. de Bakker, J. Kok and J. Rutten, Operational semantics of a parallel
object-oriented language, in 13th POPL, 194-208 (1986).

[3] P. America, J. de Bakker, J. Kok and J. Rutten, Denotational semantics of a parallel
object-oriented language, Information and Computation, vol.83 no.2 (1989).

[4] P. America and F. de Boer, A Proof System for Process Creation, Philips Research
Laboratories Report RWR-116-D0-90506-DO (1990).

[5] R. Milner, Communication and Concurrency, Prentice-Hall (1989).
[6] R. Milner, Functions as Processes, Research Report 1154, INRIA (1990).

[7] R. Milner, J. Parrow and D. Walker, A Calculus of Mobile Processes, Part I, to
appear in Information and Computation (1989).

[8] R. Milner, J. Parrow and D. Walker, A Calculus of Mobile Processes, Part II, to
appear in Information and Computation (1989).

[9] F. Orava and J. Parrow, Algebraic description of mobile networks: An example,
to appear in Proc. 10th' IFIP Symposium on Protocol Specification, Testing and
Verification, North-Holland (1990).

[10] F. Vaandrager, Process algebra semantics for POOL, Technical Report CS-R8629,
CWI Amsterdam (1986).

[11] D. Walker, Some results on the w-calculus, to appear in Proc. 2nd UK/Japan
Workshop on Computer Science, Oxford, September 1989, Springer LNCS.

12

Copyright © 1990, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

