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Abstract

We present a theory of logic programming for Girard’s linear logic. In the spirit
of recent work of Miller et al., we identify suitable classes of definite formulae and
goal formulae by considering classes of formulae that resemble the Harrop formulae
of intuitionistic first-order logic. We isolate the appropriate notion of uniform proof
in linear logic, and show that this characterizes resolution proofs. Resolution proofs
in linear logic are somewhat difficult to define. This difficulty arises from the need to
decompose definite formulae into a form suitable for the use of the linear resolution
rule, a rule which requires the clause selected to be deleted after use. Further
difficulties are encountered when we consider the addition of the modality ! (of
course) to our fragment of linear logic.

We provide an elementary quantale semantics for our logic programs and give
an appropriate completeness theorem.

We consider a translation — resembling those of Girard — of the intuitionistic
hereditary Harrop formulae and intuitionistic uniform proofs into our framework,
and show that certain properties are preserved under this translation.

We sketch the design of an interpreter for linear logic programs.

Keywords: Definite Formulae; Linear Logic; Logic Programming; Modules;
Proof Theory; Resolution; Quantales.

1 Introduction

An interesting recent development in logic of some significance for theoretical computer
science is linear logic [14], [15], a logic designed with bounded resources in mind. One of
the distinguishing features of this logic is that the two sequents ¢ - 1 and ¢, ¢ - ¥ may
behave very differently, as in the former sequent the formula ¢ may be used once only,
whereas in the second it may be used twice. Thus there is a difference between using a
formula once in a proof and using it many times in the same proof. Linear logic has been
applied to the study of concurrency, proving to be particularly valuable for reasoning

'Harland is supported by a grant of the Australian Research Council through the Machine Intelligence
Project. Pym is supported by UK. Science and Engineering Research Council grant GR/E 78487,
“Computer Assisted Formal Reasoning: Logical Frameworks”; and by European Community ESPRIT
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‘about Petri nets [13], [8]. Recently, there has been some work towards object-oriented
logic programming which uses certain fragments of linear logic [2].

In this paper we present a proof-theoretic analysis of how a certain fragment of linear
logic can be used as a logic programming language.

The starting point for a theory of logic programming in classical Horn clause logic is
the cut-free sequent calculus LK [12], [19]. Similarly, the sequent calculus LJ [12] provides’
the basis for logic programming with the hereditary Harrop fragment of intuitionistic logic
[20], [21]. A sequent calculus presentation of linear logic can be found in [14], [15], [4],
and in Appendix A. Linear sequents are expressions of the form

¢1’--',¢m*_¢1"'-,¢n7

and we shall let T’ and A range over antecedents and succedents, respectively.

Following the work of Miller et al. for intuitionistic logic [20], [21], [16], our analysis
rests on the identification of certain classes of linear logic formulae.

The first and most crucial class is that of definite formulae. These are the formulae
that can occur as the components of an antecedent of a linear sequent, ¢.e., these are the
components of a linear logic program. In the case of intuitionistic logic, definite formulae
are, essentially, the conjunctive and implicational fragment of the logic. Correspondingly
in linear logic, we take definite formulae to consist of the multiplicative conjunctive frag-
ment @, the additive conjunctive fragment & , and the implicational fragment —o : more
precisely, linear definite formulae are given by the grammar

_D w= LlD1®D2ID1&D2|G_OLI/\$.D,

where L denotes the class of positive literals — the constants of linear logic and atomic
formulae — and G denotes the class of goal formulae, to be discussed below. From a
programming point of view, definite formulae can be considered to those formulae that
are deterministic in their formation.*

In order to complete our description of the language of linear logic programming we
must describe the class of goal formulae goal formulae. These are the formulae that can
occur as the components of a succedent of a linear sequent. Goal formulae are given by
the grammar

G == L|L"|GRG|G®G|G®G|G&G
|D—-oG| Az.G|Vz.G.

Note that negative literals, i.e., those of the form L', may only appear in goals. The
reason for this restriction will be discussed in Section 3.

3Miller et al. identify the class of hereditary Harrop formulae as determining a suitable fragment of
(minimal and) intuitionistic logic for use as a logic programming language.

“In this respect it is not clear whether or not we should include & in the class of definite formulae,
for although it is a conjunction, its left rule has rather disjunctive behaviour (see Appendix A). We
choose to include it because it satisfies the required proof-theoretic properties, even though its inclusion
is philosophically dubious.



We can extend the classes of definite formulae and goal formulae with certain instances
of the ezponentials ! (of course) and ? (why not), but we delay consideration of this point
until we consider the translation of intuitionistic logic into linear logic in Section 6.

What, then, is to be our notion of computational proof or operational proof 7 We
shall develop such a notion in two steps.

The first step, the more proof-theoretic part, deals with the right rules and their
permutation properties with respect to the left rules.’

Suppose that we are faced with a sequent — a goal — of the form

¢1,""¢m|—¢17""¢n

and that we wish to attempt to construct a proof of this sequent by considering the rules
of linear sequent calculus as reduction operators from conclusion to premisses.®

Our approach is in the spirit of one of the distinguishing features of logic programming,
namely goal-directed proof-search. More precisely, there is a search operation correspond-
ing to each logical connective, and when searching for a proof of a given goal one applies
the search operation that corresponds to the outermost connective of that goal, and then
to the outermost connective of each subgoal so generated, etc.. For (classical) Horn clause
goals [19], i.e., existentially quantified conjunctions of atoms, this corresponds to using
unification to “delay” the choice of witnesses for the variables, and a strategy for selecting
a particular atom as the next subgoal. For a larger language, such as first-order heredi-
tary Harrop formulae [21], we need a richer set of primitive search operations, or search
primitives, so that each distinct connective corresponds to a distinct search primitive.

This approach can be adopted in linear logic. For example, suppose that our sequent
is of the form

¢17"')¢m |_77 &07¢l7"'3¢n;
the & -R rule, as presented in Appendix A,

THéA TFpA
TFé&y,A

directs us to reduce to the subgoals

¢17'--a¢mr—n’¢1a'--a¢n a'nd ¢17"',¢ml_0a'¢'l’“',¢n-
However, the ®-R rule,

& -R

'F¢,A I'Fap, A

OLI'F oy, A A
is more complicated when considered as a reduction operator, in that it requires both
the antecedent and the succedent to be non-deterministically split. The management of

®'R7

5The reader who is interested in Permutation Theorems more generally should compare this work
with that of Curry [10] and Kleene [18] for classical and intuitionistic logic, and Pym and Wallen [23]
for the All-calculus. Permutation theorems provide the key to understanding characterizations of proofs
in sequent calculus such as matrices [7], [3], [24] and proof nets [14].

8Kleene [18] explains this in the case of the classical predicate calculus.
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this non-determinism is a distinctive problem in the definition of an interpreter for linear
logic programs.”

Thus we identify as our notion of uniform proof those proofs which when considered
to be constructed from the endsequent or root, using the rules of linear sequent calculus
as reduction operators, always use a right rule whenever such a rule is applicable. We
prove that provided we restrict our sequents to be of the form ‘

D,,....D, FGy,...,G,

such proofs completely characterize proofs in linear sequent calculus.® Such antecedents
and succedents will be called programs, denoted by P, and goals, denoted by G, respec-
tively.

The second step in our identification of a notion of computational proof for linear
logic concerns the left rules and the representation of antecedents in such a way that a
form of resolution completely characterizes uniform proofs.

In first-order Horn clauses and hereditary Harrop formulae, as presented in [20], the
resolution rule can be considered to replace the A-L, D-L and V-L rules. This is affected
by the use of a decompostion [P] of a program P into a collection of clauses of the form
G D L, where G is goal formula and L is an atomic formula.

In linear logic the resolution rule must replace the & -L, ®-L, —o-L and A-L rules.
In fact, the resolution rule, which is to be considered as a reduction operator, is given by

Dlt/Z)|Fr G, G {L}FgplL
DU{G’—OLI}}"RL,Q

where D denotes a set of definite formulae and G —o L € Uz, { G'[t/#] —o L'[t/#] }, where
U denotes the universe of terms. It is important to note that the calculated substitution
[£/#] is not restricted to the the left hand premiss of this rule: it applies to the whole of
the derivation tree that lies above the same premiss of the last &-R rule.® Furthermore,
note that the absence of the structural rule of contraction in linear logic means that the
clause G' —o L' can not be retained in the premisses for further use, in contrast to the
situation in classical and intuitionistic logic.

How are we to obtain a completeness theorem for resolution ? We first decompose
a program into clauses, formulae of the form G —o L or the form L. Let [P] denote
this decomposition of the program P. A resolution proof of the sequent P F G is now
constructed as follows: '

¢ Decompose the program P so that we consider sequents of the form [P] F G;

o Use right rules to decompose the components of the goal until they are atomic;

"This point is discussed further in Section 7.

8 Actually, this does not quite work: from the proof-theoretic point of view we need to consider a more
local form of uniform proof in order to retain completeness. This point represents a significant additional
difficulty with linear logic over intuitionistic logic and is discussed in some detail in Section 3.

This point is discussed further in Sections 4 and 6.
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¢ Use the resolution rule to invoke the clauses of [P].

We prove the soundness and completeness of resolution proofs for sequents of the form
PEG.

In Section 5 we provide an elementary semantics for linear logic programs in the

setting of Girard quantales [25]. In Appendix B we present the necessary background.

work in the quantale semantics of linear logic.

In Section 6 we consider the extension of the class of definite formulae to include

formulae of the form ! D. This extension introduces very substantial further difficulty in
the definition of resolution proof.

We consider the translation of intuitionistic hereditary Harrop formulae in to linear
logic, and show that uniform proofs are preserved under this translation.

In Section 7 we consider various issues that arise when considering an implementation
of linear logic programming. Foremost amongst these is the question of how to split the
antecedent (and succedent) in the ®-R rule, as discussed earlier. A further question is that
of a system of modules. Just as in [20] our system permits modular logic programming
via the presence of the implicational formulae D —o G in goals, the dependence of a
computation being modelled by hypothetical conclusions. The left hand side of the
implication must be a definite formula since application of the —o-R rule, considered
as a reduction operator, results in the transfer of the left hand side of the implication to
the program. However since the inductive definition of definite formulae permits formulae
of the form G —o L, computations may invoke many modules.

The reader may find it helpful to refer back to this overview to identify the motivation
for the various technicalities that follow.

2 Formulae, Definite Formulae and Goal Formulae in
Linear Logic

2.1 The Language of Linear Logic

We begin by describing the language of linear logic, [14], [15], [25]. By a linear predicate
language L we mean:

o A set of constants C = {¢,d,...};
o A set of variables V = {z,y,... };

e A countable set of function symbols F = { f,g,...}, equipped with an arity map
wp : F' — IN, where IN denotes the natural numbers;

A countable set of predicate symbols P = {p,q,...}, equipped with an arity map
wp: P —IN;

The symbols 0, 1, T, L, 'L, ®,®, o, &, H, A V.

k]



Henceforth we shall assume that we have some fixed linear predicate language, L. We
are now able to define terms, atomic formulae and formulae.

DEFINITION 2.1 (TERMS) Terms are defined in the usual way:
e Constants and variables are terms;

o If f is a function symbol of aritywp(f) and ifty,... 1,5y are terms then ft;...1,.(5)
is a term. '

We denote the universe of terms (of L) by U. D

Note that If here denotes the set of all terms, including those containing variables, whereas
in [20] the same symbol is used to denote the set of all ground terms.

DEFINITION 2.2 (ATOMIC FORMULAE) We define the atomic formulae as follows: if p
is a predicate symbol of arity wp(p) and ty,...,1,,;) are terms then pty...1, () is an
atomic formula. We denote the set of atomic linear formulae of £ by A(L). O

DEFINITION 2.3 (FORMULAE) We define the formulae of linear logic as follows:
e 0,1, T and L are formulae;
o Atomic formulae are formulae;
o If ¢ and o) are formulae then ¢ @ ¢ is a formula;
e If ¢ and 7p are formulae then ¢ @ 1 is a formula;
o If ¢ and o) are formulae then ¢ is a formula;
o If ¢ and o are formulae then ¢ & 1 is a formula;
e If ¢ and oy are formulae then ¢ —0 1 is a formula;
o If ¢ is a formula then Ax.¢ is a formula;
o If ¢ is a formula then \/z.¢ is a formula;
o If ¢ is a formula then ¢* is a formula.

We denote the set of linear formulae (of L) by F(L). Also, we write ¢ oo for ¢ —o p&p —o ¢.
O

The last clause of this definition is the syntactic (linear) negation of a formulae ¢. Syn-
tactic negation is defined inductively over the structure of formulae.



DEFINITION 2.4 (NEGATION) Syntactic linear negation is defined as follows:
0 0=y T, 1=y L, Lh=g 1, TH=ge O;
(¢ Q%) =au & F Y
(pHY) = o @5
(¢ DY) =aur ¢ & o™
(¢ &) =asd” DY
(/\x-ﬁb)l-:def V33-¢J';
(
(

Vz.d) =4 Az.¢";
¢-L)l=def ¢

We note that if 7 = {¢y,...,0, } is a multiset of linear formulae then we write
&ger ¢ to denote the formula ¢; Q@ ... Q ¢,,.

The formulae of a linear predicate language can we extended by the exponentials “of
course” ! and “why not” ?. If ¢ is a formula then so are !¢ and 7. Syntactic negation can
be extended to formulae constructed using ! and ? by (1¢)* =4 76" and (?gb)l =0 167

Linear sequents are expressions of the form I' - A where the antecedent I and succe-
dent A can be considered to be multisets of formulae: we stress, however, that an an-
tecedent is characterized proof-theoretically by the tensor product ® of its components
and that a succedent is characterized proof-theoretically by the tensor sum & of its
components. The rules of linear sequent calculus, in two-sided form, are presented in
Appendix A.

The cut elimination theorem holds for linear sequent calculus [14].

2.2 Definite Formulae and Goal Formulae

Following Miller et al. we begin our study of logic programming and its proof-theoretic
foundation by identifying classes of definite formulae and goal formulae.

Our definitions of definite formulae and goal formulae are motivated by considerations
that are similar to those of Miller et al. [20], [21]. Informally, definite formulae are
intended to be the conjunctive, implicational fragment of the language and goal formulae
are intended to be the whole language, restricted to be compatible, via the form of
implicational clauses, with definite formulae. In linear logic we take the definite fragment
to be the conjunctive part of the multiplicative fragment, the conjunctive part of the
additive fragment, together with the implicational fragment. More precisely, we make
the following definition:



DEFINITION 2.5 (DEFINITE FORMULAE AND GOAL FORMULAE) Let A range over atomic
formulae. We define classes of positive literals, definite formulae and goal formulae as
follows:

Positive Literals L == O0|1|L|T|A

Definite formulae D L|ID&D|D®D|G—-L| Az.D
Goal formulae G == L|L'|GRG|G®G|GxG|G&G
|D—-oG| Az.G| Vz.G

Note that we allow the negation of positive literals only. This is because negations of
arbitrary formulae can destroy the consistency of the syntactic form of definite formulae.
For example, if were to allow the negation of arbitrary definite formulae then (4, ® A;)"*
would, by definition, be a definite formulae: however, by the definition of syntactic linear
negation (A; ® A,)" is equal to A:' »BA; , which is not a definite formula. We remark
that it is possible to extend the class of definite formulae by the clause !D and the class
of goal formulae by the clause 7G. The addition of !G to the class of goal formulae is not
possible in the present formulation.'®

In the corresponding definition for intuitionistic logic the restriction of the implica-
tional clause of definite formulae to be of the form G O A, where G is a goal formula
and A is an atomic formula, so that the resolution rule has a suitably deterministic form,
is equivalent, proof-theoretically, to the form G O D, where D is an arbitrary definite
formula [21]. In linear logic however the corresponding equivalence — of the form G —o L
and G —o D — does not hold; its proof would require the equivalence of

¢—o(¥®x) and (¢—09)®(¢—0x),

and these are not equivalent. For a counterexample, let ¢ = 1) = x. Clearly the sequent
F (¢ —o ¢)R(¢$ —o @) is provable, as an application of ®-R to the provable sequents + ¢ —o ¢
and F ¢ —o ¢ results in the sequent given. On the other hand, the sequent F ¢ — (¢ ® ¢)
has no proof.

2.3 Programs and Goals

We consider logic programs to be antecedents of linear sequents of the form D,,...,D,,
and goals to succedents of linear sequents of the form Gy,...,G,. It will be convenient
to consider programs and goals to be multisets of formulae. Note that we cannot use
set-theoretic “inferences” to determine logical inferences as may be done in e.g., in in-
tuitionistic logic [24]: in intuitionistic logic an antecedent can be considered to be the

19The impossibility of such an extension to the class of goal formulae arises from the failure of a certain
permutation property, ¢.v. Section 3.



conjunction of its components and such conjunctions can be considered to be character-

ized by set-theoretic union. Similarly, succedents can be considered to be the disjunction

of their components and such disjunctions can be considered to be characterized by set-

theoretic union. The intuitionistic structural rules of contraction and weakening can

therefore be considered to be characterized by properties of sets, ¢f. [20]. However, by

considering linear antecedents to be multisets of formulae we can eliminate the need to-
consider explicit uses of the exchange rules of linear logic.

DEFINITION 2.6 (PROGRAMS AND GOALS) Programs and goals are given by the gram-
mar.

Programs P == D|P,P

Goals G == G|G,G

in which we can interpret the program P=D,,...,D,, as the formula D,®...QD,, and
the goal G = G4,...,G, as the formula Gy & ... &G,. O

In Section 3 we define an appropriate notion of uniform proof: it is an open problem to
determine what is the largest class of formulae for which uniform proofs are complete.
The reader is referred to recent work of Hodas and Miller [17] and Andreoli and Pareschi
[2] for alternative discussions of this point.

A similar problem obtains for intuitionistic logic, ¢f. [16], [20].

3 Uniform Linear Proofs

As we discussed in Section 1, one of the distinguishing features of logic programming is
goal-directed search. More precisely, there is a search operation corresponding to each
logical connective, and when searching for a proof of a given goal one applies the search
operation that corresponds to the outermost connective of that goal, and then to the
outermost connective of each subgoal so generated, efc.. For Horn clause goals, i.e.,
existentially quantified conjunctions of atoms, this corresponds to using unification to
“delay” the choice of witnesses for the variables, and a strategy for selecting a particular
atom as the next subgoal. For a larger language, such as first-order hereditary Harrop
formulae [21], we need a richer set of primitive search operations, or search primitives',
so that each distinct connective corresponds to a distinct search primitive.

Clearly it is not difficult to identify the appropriate search operation for a given right
rule, and indeed it is clear that such a procedure will be sound. However, in addition, we
need to know that this method of searching for proofs is complete: that we are guaranteed
not to miss a proof. Hence our problem is not so much to identify the required search
primitives for the right rules of linear logic as to show that the goal-directed search
methodology is complete. In [21] it was shown how uniform proofs are complete for a
certain fragment of (intuitionistic) first-order logic. A uniform proof in that context is

" These can be considered to be reduction operators in the sense of Kleene [18].
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one in which the outermost connective of the succedent is introduced in the previous step.
Thus, in terms of goal-directed search, this means that right rules are applied as early
as possible in the proof-search process. In linear logic, not only are the connectives less
“symmetric” and hence more problematic, there is an added complication due to the way
that succedents may consist of more than one formula. Nevertheless, it is still possible
to define a similar notion of uniformity, although it is a little more intricate. '

The main novelty is that, under certain circumstances, it may be necessary to apply
a left rule in the middle of a sequence of right rules in order to maintain completeness. -
For example, consider the sequent ¢ ® ¥ I ¢ ® 1. Clearly there is a proof in which the
®-R rule precedes the ®-L rule, i.e.,

oo A
$Y QY
$Q@YF PRy

®-R

®-L

but we cannot apply the rules in the reverse order, as neither - ¢ nor ¢ ® ¥ + P is
provable. Hence, we cannot always push the ®-L above the ®-R rule; but the cases in
which this is not possible may be classified.

A similar example occurs for the C?-L rule. Consider the sequent !¢ F ¢ ® ¢. Clearly
there is a proof in which the ®-R rule precedes the C?-L rule, i.e.,

A KA
Gre | ore
10,100 Q ¢
Ty cri

but we cannot apply the rules in the reverse order, as ¢ is not provable. Thus, as in
the previous case, we cannot always push the C?-L above the ®-R rule; but the cases in
which this is not possible may be classified.

As it happens, these are the only two such cases; in all the others the “outermost
connective first” strategy will suffice. We develop formally the notion of a uniform proof
in this context, in the manner of [16].

Let ¢, 9, x and ¢ range over linear formulae, and let ', I'’ etc. range over antecedents
and A, A’ etc. range over succedents. We work with cut-free linear sequent calculus
throughout.

PROPOSITION 3.1 If there is a proof of a given endsequent which has a subproof of the
form

10



'HA
'+ A
FIII__AII

*-R
§-L

where *-R is either L-R, & -R, ®-R, —o-R, 7-R, W?-R, C?-R, A-R or V-R, and §-L
is one of either &-L, ®-L, I-L, W?-L, C?-L or A-L, then there is a proof of the same
endsequent with this subproof replaced by a subproof of the form

T'+A
™ e A" §-L
™k A *-R

Proor
We give the proof only for the cases ¥-R and ®-L, the others are similar. Given a
subproof

Fa » F 9 ’A
X,EF 8,9 %R
I, 6 oy, A
®-L
Lx®¢k¢oxyp,A
it is clear that there is a subproof
L, F ¢4, A
®-L
Lx®¢Hé,9,A
*-R

Lx®&Fomy, A
O

Note that this proposition does not hold for the rule L-L. For example, consider the
sequent ¢, (¢ ® z/))J' F, which is provable in the linear sequent calculus, as demonstrated
by the proof below.

$F ¢
oD Y
6, (p@ )+

®-R

However we cannot apply the rules in the reverse order to derive this sequent. This

is one of the reasons that we do not allow formulae such as ¢* to appear in programs.'?.

12Unless, of course, it appears in a goal.

11



We shall see later another important permutation property fails for this rule.

PROPOSITION 3.2 If there is a proof of a given endsequent in which there is a subproof
of the form
TyFA
—_—
'+ ¢,A" I,9,F A
I"T', ¢ —otp - A" A’

where *-R is one of L-R, % -R, ®-R, —-R, 7-R, W?-R, C?-R, A-R, V-R, then there is
a proof of the same endsequent with this subproof replaced by a subproof of the form
I\Il }_ ¢, A” I‘,'l,b,l'— A
I",T,¢—opF A", A
" T ¢—op A" A

PRrOOF
We give the proof only for the case ¥ -R. The others are similar. Given a subproof

Ly b x,§A
" " ! ! %-R
I"F¢,A 'y, b x &, A oL

I, g0 b x0oE, A" A
it is clear that there is a subproof

I+ ¢,A" L,k x6 A
"I, -0t b x, &, A", A' ot
K b -3 ? %—R

[,T', g~ b k¢, A", A
]

PROPOSITION 3.3 If there is a proof of a given endsequent in which there is a subproof
of the form
'e¢,A CFy,A
F'Fé&p,A
' &y, A

& -R

where §-L is either &-L, ®-L, I-L, W?-L, C?-L or A-L, then there is a proof of the same
endsequent with this subproof replaced by a subproof of the form

12



THé A T+, A
'+ ¢, A L '+, A bL
b b &..R

' o &b, A

PROOF
We give the proof only for the case ®-L. The others are similar. Given a subproof

Lx.¢{FéA Lx. Fy,A
Lox,fFo&y,A
Fx®¢Fo &y, A

&-R

it is clear that there is a subproof

Lx,{F¢,A L Ix,EF,A
®
Ix®{keA Lx®&k4,A
Lx®¢Fé&y,A

O

PROPOSITION 3.4 If there is proof of a given endsequent in which there is a subproof of
the form
IéFo,A  TI,EF @A
I'Fy, A Lo &y, A
I,T,x—o¢éFd&y,AA

then there is a proof of the same endsequent with this subproof replaced by a subproof of
the form

I'Fx,A  T,6F¢A I'tx, A" T,6Fy,A
—o-L —0 -

I'\[,x—o¢k¢,A,A I'\T,x—o{kg,A A
I',T,x—0&,TFA&y,A A

&-R

Proor
Obvious. O

COROLLARY 3.5 If there is a proof of a given endsequent in which there is a subproof
in which either L-R, % -R, ®-R, —0-R, 7-R, W?-R, C?-R, A-R, V-R or &-R precedes

13



either &-L, ®-L, I-L, W?-L, C?-L, \-L or precedes —o -L on the right, then there is proof
of the same endsequent in which this subproof is replaced by a subproof in which the left
rule precedes the right rule.

PROOF
Follows immediately from Propositions 3.1, 3.2, 3.3 and 3.4. O

PROPOSITION 3.6 If there is a proof of a given endsequent in which there is a subproof .
of the form '
¢ A ', A

DLI'Fé®p,AA

F”, PIII l_ ¢®1/)’ A, A,

®-R

§-L

where §-L is either &-L, I-L, W?-L or A-L, then there is a proof of the same ensequent
in which this subproof is replaced by a subproof of the form

Tke¢ A 'y, A
T rg: A L g kifp A’ Bl
b b ®_R

1-1//, FIII }_ ¢®¢’ A, A,

Proor
We give the proof only for the case &-L. The others are similar.

Without loss of generality, we assume that the &-L rule is applied to the sequent
[k ¢, A rather than I' ¢, A’. Given a subproof

IxF¢,A I'F o, A
' 1{) ®-R
Lx,I"FoQ@4,AA oL,
Tx&EF gy, AN
it is clear that there is a subproof
I x,F ¢,A
&-L ,
Ix&EF ¢ A 'y, A
®-R

Ix&éF¢@y,A A
O

PROPOSITION 3.7 If there is a proof of a given endsequent in which there is a subproof
of the form
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I,¢rFA 'EA
I\II i_ X,A” I‘,é.,].-‘, ‘_ A/ll
I‘”, P’, F, X —OE '___ A”, A’”

®-R

—o-L

then there is a proof of the same endsequent with this subproof replaced by a subproof of
the form
F'II‘X,AI, T,6FA
I T,x—fF A", A ) T A
FII, F’, F’ X __0{- l_ A”, All/

®-R

Proor
Obvious. O

COROLLARY 3.8 If there is a proof of a given endsequent in which there is a subproof
in which @-R precedes either &-L, I-L, W?-L, A-L or precedes —o -L on the right, then
there is a proof of the same endsequent with this subproof replaced by a subproof in which
the left rule precedes the right rule.

Proor
Follows immediately from Propositions 3.6 and 3.7.

PRroOPOSITION 3.9 If there is a proof of a given endsequent in which there is a subproof
of the form
I'-g¢,A ', A
ILT'Fé®p,A AN
M x @&k ¢@h, AN

®-R

where X, € TUTY, then if x,&€ €T or x,& € T there is a proof of the same endsequent
with this subproof replaced by a subproof in which the ®-L rule precedes the ®-R rule.

ProoOF
Without loss of generality we may assume that x,£ € I'. It should be clear that we then
have a subproof of the following form

THeé A

n ®L 1 1

' x®¢tFo,A I'F¥,A
IM"x®¢tFdRp,A A

®-R

15



Note that the restriction in the previous proposition is necessary in that there are
some cases in which the ®-R rule must precede the ®@-L rule in order for a proof to exist.
For example, consider the sequent ¢ ® ¥ F ¢ ® 1. Clearly there is a proof in which the
®-R rule precedes the ®-L rule, i.e.,

ol ol Y
oYY
PRV PR

®-R

®-L

but we cannot apply the rules in the reverse order, as neither F ¢ nor ¢ @ ¥ + 9 is
provable. Hence, we cannot always push the ®-L above the ®-R rule; but the cases in
which this is not possible may be classified.

PROPOSITION 3.10 If there is a proof of a given endsequent in which there is a subproof
of the form
Tk ¢ A I"'F oy, A
ILT'FoQy,A A
I"IxFé@p,AA

®-R
C?-L

where {!x,!x} € TUTY, then if {Ix,!x} CT or {Ix,!x} CI' there is a proof of the same
endsequent with this subproof replaced by a subproof in which the ®-L rule precedes the
®-R rule.

PROOF
Without loss of generality we may assume that {!x,!x} C I'. It should be clear that we
then have a subproof of the following form

THé A
C?-L

I Ixk ¢, A TR, A
I IxF @y, AN

®-R

0
As in the previous case, this restriction is necessary. For example, consider the sequent
'¢ F ¢ ® ¢. Clearly there is a proof in which the ®-R rule precedes the C'?-L rule, i.e.,

sré o bFe

Az bFe o
plerses
o ®¢

16



However, we cannot apply the rules in the reverse order, as I ¢ is not provable. Thus, as
in the previous case, we cannot always push the C'?-L above the ®-R rule; but the cases
in which this is not possible may be classified.

DEFINITION 3.11 (RL, LR AND LocALLY LR ProoOF¥s) We define the following shapes
of linear proofs:

1. A proof is RL if there is an occurrence of a right rule preceding a left rule;
2. A proof is LR if all occurrences of right rules appear after all left rules;

3. A proof is locally LR if the only occurrences of a right rule preceding a left rule are
either of the form

ey p—

=31 ="

_ R —mmm L
trea R T ! .
—_0 -
I, ¢—op A A
where Z; and =, are locally LR, or of the form
s 5
I'kg¢,A ', A
’ :‘b ®-R
LT'FéRy,AA L

I, x®¢F¢@p,AA

where x €T, £ €IV, and Z, and =, are locally LR, or of the form

— —
= mat

-1 -2
TFé A N
I,T'Fé@up,A A o-R
’ — C?-L

I,\!IxF¢@p,A,A

where Iy €T, Ix € IV, and =, and =, are locally LR. O

The next proposition, and its corollary, give the completeness of locally LR proofs
with respect to a certain class of linear sequent calculus proofs, namely those in which
there are no occurrences of the rules 1-L, @-L, &-L, ?-L and V-L. At this point, and
henceforth, it is crucial that we assume that negation is restricted to atomic formulae
(and constants) only. If we do not make this assumption then we can can force the
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contradiction of the condition that proof contain no instances of the ®-L, ¥%-L, 7-L and
V-L rules. For example, the rule:
T,p kg FA
F'Fp®Rq,A ’

is derived from an instance of L-R by the definition of syntactic linear negation.

PROPOSITION 3.12 IfI' - A has an RL proof not containing !-R, L-L, ®-L, &-L, 7-L
or V-L, then T' - A has a locally LR proof.

PRrROOF
Consider the occurrence of a right rule preceding a left rule which is closest to the root of
the proof tree. If the right rule occurs on the left of —o0-L, we are done. Otherwise, if the
right rule is not ®-R, then by Corollary 3.5 there is a proof with the left rule preceding
the right one.

Hence let the right rule be ®-R. If the left rule is neither ®-L nor C?-L, by Corollary
3.8 there is a proof with the left rule preceding the right one.

If the left rule is ®-L, the proof is of the form

— p—
-

=1 S
'+¢,A 'y, A
I‘,F'I— ¢®¢,A,A'

I x®EtF¢@¢p,A, AN

®-R
®-L

where y, £ e TUT.

Now if x € " and ¢ € I’ we are done. Clearly a similar result holds when x € I and
Eel.

Hence, without loss of generality, we assume x,£ € I', and so I' = {x} U {£} UT
I =T'UT". Then there is a proof of the form

Y/
and

=
Tk¢ A =,
n ® L 1 !
' x®@¢F ¢, A 'y, A

I, x®&F 09,44

®-R

Hence let the left rule be C'?-L, and so the proof is of the form

18



sy —
ot -

=1 =2
TFéA Tk, A
I,T'F¢@9,A, A
I',IxFé@4,AA

®-R
C?-L

where {!x,!x} CTUT".

Now if Iy € T' and !y € I'' we are done. Clearly a similar result holds when !y € I”
and !y € I.

Hence, without loss of generality, we assume {!x,!x} C T, and so T = {Ix} U {!x}ur”
and I'" = T" UT". Then there is a proof of the form

——
ot

-1
TF ¢ A =
" C?-L ' : '
' IxkFé,A I'y,A

AN ! ®-R
JIXF @Y, A A

We may then repeat this process for the next rule application (towards the root of
the proof tree), and so on until the resulting subproof is locally LR. We may perform this
operation for all occurrences of a right rule which immediately precedes a left rule, and
hence obtain a proof which is locally LR. O

COROLLARY 3.13 If there is a proof of I' b A which contains no occurrences of I-R, L-L,
®-L, &-L, 7-L or \/-L, then there is a locally LR proof of T' F A.

PRrROOF
If the proof of I' F A is LR, then it is locally LR and we are done. Otherwise, the proof
is RL, and by the above proposition, I' F A has a locally LR proof. O

Thus we find that locally LR proofs are complete for sequents of the form P + G,
where P is a program and G is a goal. We will sometimes refer to locally LR proofs as
uniform proofs, in order to emphasize the similarities between this class of proofs and the
uniform proofs of Miller et al. [21]. Corollary 3.13 shows that we may think of uniform
proofs as a normal form proofs in our fragment of linear logic.

However, locally LR proofs are not quite satisfactory for our purposes, as they might
involve some inessentially complicated subproofs on the right hand side of the —o-L rule.
Hence we introduce the notion of a simple proof, cf. [20].

The intuition behind simple proofs is that the right hand subproof used in the —o-L
rule should be trivial, i.e., require no effort to prove. For example the following proof is
not simple:
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o3 ol
xFx p& b ¢
X X—o¢&pk ¢

&-L
—o-L

Note also that a sequent P I G, where P is a multiset of definite formula and G is a
multiset of goal formulae, might also have a proof which is not simple. The following
proof is such an example.

AR vhy
A béopry
#6900y

However, it is clear that the sequent ¢, ¢ —o ¢, ¢ —0 1) - b does have a simple proof. This
property in fact holds for any sequent in which the antecedent is a program and the
consequent a goal. First we present a necessary technical result.

DEFINITION 3.14 (SIMPLE PROOFS) A linear proof Z is said to be simple if every for
occurrence in = of the —o -L rule

L) —
—

= g
'Fe¢,A I",¢ A
Dy¢g—o, IV F o, A, A

—
—
-3

the right upper subproof Z,, with root I',v - A’, is of height 1; that is it consists of just
one (aziom) inference. O

PROPOSITION 3.15 Let = be a proof of T+ A. If there is a subproof in = of the form

T, 6FA
T F o, A" T, 6,F A
" I, -0k A" A

—o -L,

where *-L is one of & -L, ®-L, I-L, W?-L, C?-L, A-L, then there is a proof of the form
I-\Il ‘_ ¢, A” I'\, ¢,|” A
I T, —o¢k A" A
" T'p—odk A" A
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Proor
We only give the proof for the case ®-L. The others are similar. Given a subproof

F)¢’X7£I-A

'+ o, A o, x®EFA
—o-L

I',T, o, xQ¢EFALA
it is clear that there is a subproof

T F o, A Ix, 6,6k A

I'.T,x, 6, —0 ¢ F A, A ~L
_..O

b 7X, ? ? ®-L

I'\T,x®&p—ogk ALA
This completes the proof. O

Note that this proposition fails for the L-L rule. For example, consider the proof

gk q pkp
—o-L
g, q—opkp
— LL
gk q g, q—op,p-
—o-L

4 9, g—op, g—op- I

There is no way to push the occurrence of —o-L any earlier in the proof, as then the
required formula cannot be constructed. This is the most important reason why we limit
the appearance of linear negation to goals, so that we need only use simple proofs. This
restriction also means that the process of searching for a proof will be goal-directed; for
example, the sequent p,p* F is provable, but clearly as the goal is empty, the notion of
goal-dericted search cannot be applied.

Next we show that any LR proof can be converted into a simple LR proof.

PROPOSITION 3.16 Let = be a proof of ' - A in which there are no occurrences of \-R,
L-L, & -L, &-L, V-L or ?-L. If = is locally LR, then T' F A has a simple locally LR proof.

PRrROOF

We proceed by induction.on the number of occurrences of the —o -L rule in the proof. The
base case corresponds to the occurrence(s) of —o-L which appear closest to the leaves of
the proof tree.

Consider the right hand sequent in the occurrence of —o-L. If this is initial, then we
are done. Otherwise, consider the rule immediately preceding it. If this is a right rule,
then by Propositions 3.2, 3.4 and 3.7 we know that we may replace this subproof with an
equivalent one in which the —o-L rule precedes the right rule. Otherwise the preceding
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rule must be either ®-L, & -L, I-L or A-L, and by Proposition 3.15 we know that we may
similarly replace this subproof with an equivalent one in which the —o-L rule precedes
the (other) left rule. Clearly we may repeat this process for each rule preceding the —o-L
rule until there is no preceding rule, i.e., that the occurrence is simple. Note that the
sequence of the other rules is not changed, so that the resulting proof is still locally LR.

Hence we assume that given an occurrence of the —o-L rule, all previous occurrences-
(i.e., those towards the leaves of the tree) are simple. Now as above, if the occurrence of
the —o-L rule is simple, we are done. Otherwise consider the previous rule on the right -
of the —o-L rule. As above, if it is a right rule or any of ®-L, & -L, I-L or A-L, then
there is a subproof with the order of the rules reversed. We may then proceed as above
until we either arrive at an initial sequent or we find that the rule preceding —o-L on
the rule is another occurrence of —o-L. By the hypothesis, we know that this must be a
simple occurrence, and the proof is of the form

LixF¢,A LFL
'y, A T,x,é—oLFA,L
I'\T,¢—oL,p—oxtAAN,L

—o0-L

—o-L

which clearly we may replace with a proof of the form
'+, A Tyxt¢,A

—0
I'.T, % —oy ko, A,A LV
I',T,¢—oLb—oxk AN, L

—o-L

in which the latter application is simple, and by the hypothesis the former application
may also be made simple. Note that this reordering of the proof also preserves the
property that the proof is locally LR.

Hence, any locally LR proof can be made into a simple locally LR, proof. O

LEMMA 3.17 Let P be a program and G be a goal. A proof of P+ G contains no occur-
rences of -R, 1-L, %-L, ®-L, ?-L or V-L.

ProoF
A simple induction on the structure of proofs. O

Thus we arrive at the following theorem:

THEOREM 3.18 Let I' be a multiset of definite formulae, and let A be a multiset of goal
formulae. Then I' F A has a linear proof if and only if T' - A has a simple locally LR

proof.

PRrOOF
By Lemma 3.17 we have that any linear proof of I' - A doesn’t contain L-L, %&-L, ®-L,
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?-L, I-L or V-L; and so by Corollary 3.13, I A has a locally LR proof. Hence by
Proposition 3.16 I' - A has a simple locally LR proof. O

Note that Theorem 3.18 also holds when I' contains formulae of the form ! D, where D is
a definite formula, ¢q.v. Proposition 6.3.
Thus we need only consider locally LR proofs which are simple.

4 Resolution

We saw in the previous section how locally LR proofs are complete for sequents P F G
where P is a multiset of definite formulae and G is a multiset of goal formulae. In this
section we show how a more specific class of proofs, which we call resolution proofs, may
be used in a similar fashion. The important characteristics of resolution proofs are that
they are goal directed and use just one left rule, namely resolution. First we introduce
the notions of clause and clausal decomposition of a program P.

DEFINITION 4.1 (CLAUSE) A linear clause is a formula of the form L or G —o L, where
L ranges over positive literals and G ranges over goal formulae. O

Note that when G is a conjunction of atoms, a linear clause in the above sense is just a
Horn clause.

Below we show how to generate a multiset of clauses from a multiset of definite
formulae via the mapping [-].

DEFINITION 4.2 (CLAUSAL DECOMPOSITION) Let U denote multiset union. We define
a mapping [—] from definite formulae to multisets of definite formulae inductively as
follows:

[P] =get  Upep [D]
[L] =def { L }
[Dy & D,] =4¢¢ [Dy] or [D2]
[-Dl ® Dz] =def [Dl] U [Dz]
[G—oI] =at {G—oL}
[Az.D] =4 [D].

O

Note that [P] is a multiset of linear clauses.'® For example, let P be given by the single
. P g g

definite formula
Az . (p(z) ® (p(z) — ¢(2)))

3The decomposition [] is related to the theory of proof nets, and indeed to the notions of reduction
ordering — a combination of subformula ordering and substitution ordering — and matriz methods,
described in (3], [7], [24] and [23]. Such constructions are useful in the study of Permutation Theorems,
¢.v. Theorem 3.3.
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then we have that [P] is the multiset

{p(z),p(z) - q(z) }.

Thus we may think of the transformation [—] as a mapping which given a program, i.e.,
a multiset of definite formulae, yields a multiset of clauses which are the compiled form
of the program, i.e., the form for which resolution proof can be defined. For given P, [P]
can be considered to be a normal form of P. )

Note that there are free variables in the clauses in [P]; these are the variables that
are “outermost” in P. Now we may think of the scope of these free variables as being
“global”, in that all occurrences of the variable must be updated consistently. Due to
the possibility of splitting the program during computation, this may mean updating
variables simultaneously across several branches of the proof.'* This leads us to the
definitions that follow.

1

DEFINITION 4.3 (DISTINCTNESS) Let D be a multiset of definite formulae. We say D'
and D" are distinct copies of D if D' and D" are obtained from D by renaming the free
variables of D so that D' and D" have no free variable names in common. O

We come now to the definition of resolution proof.

DEFINITION 4.4 (RESOLUTION PROOF) We define the notion of resolution proof by defin-
ing a relation . Let D range over multisets of definite formulae and let U denote multiset
union. A resolution proof is tree requlated by the following rules, which is constructed
from root to leaves, and is such that the resolution rule is applied only when no other rule
is applicable:

1. The aziom judgement is given by:

{L'}FR L
where L = L'[t)];
2. We shall refer to this rule as the resolution rule:

Dit/Z|FrG,G {L}FgrL
DU{G' —o L'} Fr L,G

where G —o L = (G’ —o L')[t/);

In terms of the resolution proofs defined below, those branches that are above the same premise
of the last & —rule (Rule 7 in the definition of resolution proof, below) as the sequent to which the
resolution rule is applied. The form of the &-rule in such proofs enforces the restriction of substitutions
to their own &-branches.
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10.

The L-rule:

DU{L}Fgr§G
DFg L, G
The @-rule:
Dy FprG1,G  DyFpGy,G
Dy, Dy kpr Gy ©® Gy, 6,4’
The &-rule:
DI_R Glag Dl—R G2ag
DFrGi®G,,G DFER G, 0 G,,6G
The v -rule:
D '_R GlaG2ag
Db GimG,y, G
The &-rule:

D'tr GG D'+r G, G"
DlFr Gy &Gy, G

where D' and D" are distinct copies of D, and where G’l, G' and G%,G" are obtained
from G1,G and G,,G by the applying the renamings of D' and D" respectively;

The —o -rule:

DU[D] kg G, G
D }_R D—o G, g
The A-rule:
DtgpGly/=],G
D I—R /\w . G, g
where y is not free in D or G;
The \/-rule:

DtrGlt/z), G
D l_R V.T.G,g

Note that Rules 1 and 2 affect other sequents in the proof, so that a resolution proof is
well-defined only if all occurrences of Rules 1 and 2 yield compatible substitutions. This
completes the definition of resolution proof. O

Rules 3-10 of Definition 4.4 can be considered to correspond to the right rules of uni-
form proofs and Rule 2 corresponds to the left rules, in the presence of the decomposition

[-].

An important property of resolution proofs is the instance property; that is, if
D[t/Z],P kg G, then D,P g G. Thus we may think of resolution proofs as those in
which the only left rule required is the resolution rule, as the others have been encoded by
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the form of [—]. Hence we may concentrate on the right rules, and use only the resolution
rule — a specialized form of —o-L — on atoms. ‘

Before proceeding to prove the soundness of resolution proofs, we consider three small
examples of a resolution proof. First, consider the construction, from the root to the
leaves, of a resolution proof of the sequent

Nz (p(z) ® (p(z) 0 q(2))) F q(t) .

We must construct a resolution proof of

[Az-(p(z) ® (p(z) 0 q(2)))] Fr q(2).-

JFrom our earlier example, we know that

Az (p(z) ® (p(z) —0 q(2)))] = { p(2) , p(z) 2 ¢(2) },

and so we must show that

{p(z), p(z) 0 q(z) } kg q(t)

has a resolution proof. We apply the resolution rule, selecting the clause p(z) —o ¢(z),
and obtain the subgoals

{p(t)} Frp(t) and {q(?)} Fra(t).

Both of these are axioms, and the resolution proof is completed.
Now consider the sequent

Az.(p(z) ® ¢(z)) F p(t) ® q(u),

which is not provable in linear sequent calculus. We attempt to construct a resolution

proof of
[Nz (p(z) @ g(2))] Fr p(t) ® a(u),
i.e., of
{p(z),q(z) } Fr p(t) ® q(u).
We apply the ®-rule, and obtain the subgoals

{p(z)} Frp(t) and {q(z)}Frq(v).

Now, both of these are of the form of axioms, but they are not compatible as the first
requires z to be replaced by ¢ and the second requires z to replaced by u. Consequently,
we have failed to obtain a resolution proof.

Now consider the sequent

L
q—opkq,p,
which is provable in linear sequent calculus. We apply the L-rule to obtain the subgoal

¢,q—opkp.
By applying the resolution rule, we obtain the subgoals
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{(I}FRQ and {P} Frp,

and both of these are axioms.
We now come to the soundness of resolution proofs.

PROPOSITION 4.5 (SOUNDNESS OF RESOLUTION PROOFS) Let P be a multiset of defi-
nite formulae, and let G be a multiset of goal formulae. If [Pl Fr G, then P+ G has a

simple locally LR proof.

PRroOF
We proceed by induction on the height of the resolution proof. By Theorem 3.18 it will
suffice to show that P F G has a linear proof.

The base case occurs when [P] = {L} for some positive literal L, and it is clear,
by considering possibly several applications of the A-L, ®-L and & -L rules, that the
proposition holds in this case.

Hence we assume that the proposition holds for all sequents whose resolution proof is
no more than a given height.

Consider the step used to derive the current sequent. There are nine cases:

resolution: In this case we have that [P'][i/Z] Fr G',G' where [P|U {G—o L}y =[P], G - =
(G—o L)[t/#], and ¢ = ¢ U {L'}. By the hypothesis, P'[{/Z] + G',G has a
proof, and as L' F L' is an initial sequent, we may apply the —o-L rule to de-
rive P'[t/Z],G’ — L'+ G, I'. Then we may apply A-L, & -L and/or ®-L a number
of times to get a proof of P |- G.

L-rule: In this case we have that [P], L b G’ where G = {L*}UG’, and so by the hypothesis
P, L+ G’ has a simple locally LR proof, and so P + L™, G’ has a simple locally LR
proof.

& -rule: In this case we have that P; Fp G,G" and P2 Fr G,,G" Where G ={G, & G,}UG’,
Py, P, are distinct copies of [P] and G G2, G" nd G" are the correspondmgly
updated vers1ons of Gy, Gy and G’ respectlvely, and so by the hypothesis 'P F G' G"
and ’P = G’ ,G" are provable, where 'P1 and 'P are distinct copies of P. It follows
that ’P H Gl,g and P+ G,, G’ are provable, and so P+ G, & G,,G' is provable.

®-rule: In this case we have that P, bp G,,G, and P, ki G,,G, where [P] = P, UP, and
G = G, UG,, and so by the hypothesis P;  G;,G; and P, I G,,G, are provable,
as [P;] = P; and [P,] = P,, and so Py, P, F G; ® G4, G is provable. We may then
apply A-L, & -L and ®-L to the latter sequent to obtain a proof of P + G, ® G,,§.

@-rule: In this case we have that [P] Fp Gy,G or [P] Fr G,, G’ where G = {G, ® G,} UG,
and so by the hypothesis P F G;,G’ or P + G,,G’ have simple locally LR proofs,
and so P+ G, ® G,, G’ has a simple locally LR proof.

-rule: In this case we have that [P] by Gy,G,, G’ where G = {G; ¥ G,} UG', and so by
the hypothesis P  G;, G5, G’ has a simple locally LR proof, and so P - G, % G,, G’
has a simple locally LR proof.
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—o-rule: In this case we have that [P],[D] b G,G’ where G = {D —o G} UG’, and so by the
hypothesis P, D F G, G’ has a simple locally LR proof, and so P+ D —0G,G' has a
simple locally LR proof.

A-rule: In this case we have that [P] Fg Gly/z],G’ where G = {A2.G} UG, and so by the
hypothesis P + Gly/z], G’ has a simple locally LR proof, and so P - Az.G, G’ has.
a simple locally LR proof.

V-rule: In this case we have that [P] b G[t/z],G’ where G = {Vz.G}UG’, and so by the
hypothesis P  Gly/z], G’ has a simple locally LR proof, and so P  \Vz.G, G’ has
a simple locally LR proof.

Hence, as P F G, by Theorem 3.18, P I G has a simple locally LR proof. This completes
the proof. O

Next comes the completeness of resolution proofs.

PROPOSITION 4.6 (COMPLETENESS OF RESOLUTION PROOFS) Let P be a multiset of

definite formulae, and let G be a multiset of goal formulae. If P+ G has a simple locally
LR proof, then [P] Fxr G.

Proor

We proceed by induction on the length of the proof of P I G. The base case occurs when
Pt G is initial, i.e. P = G = {L} for some positive literal L, and clearly the proposition
holds in this case.

Hence we assume that the proposition holds for all sequents whose proof is of no more
than a given height. Consider the rule used to derive P - G. By Lemma 3.17, we need
only consider the rules ®-L, &-L, A-L, —o-L, L-R, ®R, & -R, *%-R, &R, —-R, A-R
and V-R.

®-L: The previous sequent must be Dy, D,,P’' + G where {D; ® D} UP’' = P, and so
by the hypothesis, [D;],[D,],[P] Fr G, i.e. [P] Fr G.

& -L: The previous sequent must be either D;,P' + G or D,, P’ - G where {D, & D,} U
P’ = P, and so by the hypothesis, either [D;],[P'] Fgr G or [D,],[P] Fr G, i.e.
[P FrG.

A-L: The previous sequent must be D[t/z],P' + G, where {Az.D} UP' = P, and
so by the hypothesis we have that [D[t/z],P'] Fr G has a resolution proof, i.e.,
[D[t/z]]JU[P'] FR G has a resolution proof. Now it follows from this and the instance
property of resolution proofs that [D] U [P'] g G has a resolution proof — the
resolution proof of the induction hypothesis will suffice — and so [Az.D,P] Fg G.

—o-L: The previous sequent must be P’ + G, G’ where {G —0 L}UP' = P and {L}UG' =G,
and so by the hypothesis, [P] kg G,G’, and by an application of the resolution rule
[PI], G—oL "R L, gl, 1.€. [P] }_R g
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1-R: The previous sequent must be P,L + G', where {LJ'} UG = G, and so by the
hypothesis, [P],L kg G,G', i.e. [P] Fr G

®-R: The previous sequents must be P, F G;,G, and P, F G,,G,, where P, UP, = P and
{G,®G,;},G,UG, = G, and so by the hypothesis, [Pl] Fr G1,G, and [P,] kR G,,G,,
and so [Py}, [P,] g Gy ® G3,G1,Gs, i-e. [PIFR G

& -R: The previous sequents must be P + G;,G’ and P - G,,G’, where {G, & Gz} ug' =
G, and so the sequents P’ |- G’ ,G" and P" G g” are provable, where P’ and P"
are distinct copies of P and G' G' G" and g are the correspondlngly updates
versions of G, G, and G’ respectlvely, and so by the hypothesis, [P'] kg g” and

[Pl R Gy, G, ie. [P R G.

®-R: The previous sequent must be either P I Gl, G orPtG,, g where {G, €BG2}UG' =
G, and so by the hypothesis, [P] Fg Gy,G’ or [P] Fg G,,G', ie. [P FR G

% -R: The previous sequent must be P - G4, G5, G’, where {G; % G,} UG’ = G, and so by
the hypothesis, [P] Fr G1,G,, G, i.e. [P] Fr G.

—o-R: The previous sequent must be P, D F G,G’, where {D -G} UG’ = G, and so by
the hypothesis, [P],[D] bg G,G', i.e. [P] Fr G.

A-R: The previous sequent must be P F Gly/x],G’, where {Az.G} UG = G, and so by
the hypothesis, [P] Fg Gly/z],G’, i.e. [P]Fr G

V-R: The previous sequent must be P + G[t/z],G’, where {Vz.G} UG’ = G, and so by
the hypothesis, [P] Fg G[t/z],G’, i.e. [P] Fr G.

This completes the proof. O

Thus we arrive at the following theorem:

THEOREM 4.7 Let P be a multiset of definite formulae and let G be a multiset of goal
formulae. Then P+ G is provable iff [P]Fr G.

PRrROOF
The proof follows immediately from Corollary 3.18 and Propositions 4.5 and 4.6. O

In this way we may think of of resolution proofs a relatively efficient way of proving
theorems in the given fragment of linear logic. Furthermore, such proofs form a basis for
logic programming in this fragment, as the choice of step in the proof-search process is
determined by the structure of the goal'®, and so any (multiset of) goal formulae may be
considered as a goal.

15The search steps are not totally determined in linear logic. Some choice remains in the decomposition
of antecedents and succedents in the ®-R rule. One could simply exclude ® from goal formulae. However
we propose, in work in progress on an implementation of our notion of linear logic programming, to handle
such choices by certain techniques at the level of an abstract interpreter and mechanical implementation.
This is point discussed in some detail in Section 7.
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5 A “Herbrand” Quantale Semantics

The semantics of logic programming in both classical and intuitionistic logic is usually
given in terms of a least fized point construction over a collection of Herbrand interpre-
tations [18], [19]. These constructions rely upon the monotonicity of the consequence
relation of operational proof.'® :

For example, Miller [19] provides a least fixed point construction of a Kripke-like
model of intuitionistic logic programs (hereditary Harrop formulae). The main point.
here is that program clauses can be reused; so that, informally, if the program P can
compute the goal G after a finite number of computation steps then the program P,
where P C P, can compute the goal G after a finite number of computation steps.

In linear logic such a monotonicity property is not available. However, we can con-
struct a semantics for linear logic programming by considering the quantale semantics of
linear logic.

The reader is referred to Appendix B for the basic definitions of quantales and for
the standard soundness and completeness results for the interpretation of linear logic in
quantales [24]. In this section we construct a family of interpretations, in the linear term
quantale of Appendix B, one for each program P.

We do this by “parameterizing” the interpretation | — |p ) of Appendix B to give an
interpretation Hp such that Hp(G) = Prp(G), where

Prp(G) =4t {B|PF G, B is provable },

in which we interpret B = B,,..., B, as the formula B; % ... ¥ B,, and in which “prov-
able” means provable in linear sequent calculus.

THEOREM 5.1 (HERBRAND COMPLETENESS) If Hp(G) is valid then [P] b G has a res-
olution proof.

PROOF SKETCH

By Theorem 4.7 it is sufficient to prove that if the goal G is valid in Hp then P I G has
a proof in linear sequent calculus. We demonstrate the existence, for each program P, of
an interpretation Hp such that

Hp(G) = Prp(9) -

We begin by defining
Hp(A) =4e Prp(A)

for each atomic formula A € A(L). By induction on the structure of G, and by utilizing the
definition of the linear connectives in the term quantale, we prove that Hp(G) = Prp(G).
This part of the proof can be copied almost exactly from the proof of the completeness

6The reader is referred to recent work of Avron [5], [6] on consequence relations, which pays particular
attention to sequent calculi.
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theorem of [14] (see also Appendix B), provided one takes care of the parameterization
of our construction by programs P.

Finally, we prove a lemma to the effect that 1 < Prp(G) if and only if P - G is
provable. This part of the proof can be copied almost exactly from the proof of the
completeness theorem of [25].

The required result follows. O

We give some examples of the Herbrand quantale semantics:

1.

Let P; be the program that consists of the single atomic definite formula p and let
g be an atomic goal formula; then

H’P1(Q) = {Blpkq’B}
= {(pog*,r"E(r—o(pog)",...}.

We remark that it is a simple matter to verify that the sequents
L L L
ptq,(p—-q)” and pkgq,r ¥ (r—o(p—ogq))
are provable in linear sequent calculus.

Let P, be the program that consists of the single definite formula p —o ¢; then

Hp,(q) = {B|p—oqtq,B}
= {p",(r—op)t&rt,...}.

We remark that it is a simple matter to verify that the sequents
L Ly 1
p—oqtgq,p” and p—ogk g, (r—op) &r
are provable in linear sequent calculus.

Let P3 be the program that consists of the single definite formula A z . (p(z) —o ¢(z))
and let ¢(t) be an atomic formula; then

Hp,(¢(t)) = {B| Az.p(z)—oq(z)F q(t),B}
= {p(t)", (r(t) o p())" Er(t)",...}.

We remark that it is a simple matter to verify that the sequents

Az.p(z) —oq(z) F g(t), p* and Az.p(z) —oq(z) F q(t), (r(t) —op(t))" Fr(t)"

are provable in linear sequent calculus.

We remark that this semantics is inadequate in several ways. For example, it fails to
provide what we might think of as a clause-directed denotational semantics in the manner
of the T-operators of intuitionistic logics.'”

We plan, in further work, to construct a categorical semantics for linear logic pro-
gramming, perhaps in the manner of [4].

7See [20] and [22] for a discussion of this in the setting of intuitionistic hereditary Harrop formulae
and the All-calculus respectively.
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6 Intuitionistic Logic

We have seen that one of the main difference between intuitionistic logic and linear logic
in the context of logic programming is that the resolution rule in the latter case requires
the clause used to be deleted from the program. This difference is essentially due to
the lack of the weakening rule in linear logic. However somewhat restricted forms of.
contraction and weakening are present in linear logic through the exponentials ! and ?.
Hence it seems natural to encode intuitionistic logic in linear logic by means of these .
connectives. In this section we show how this may be done — essentially by placing the
exponential ! in front of the clauses, and defining an extra resolution rule for this case.
First we consider the larger class of definite and goal formulae given below.

DEFINITION 6.1 (EXTENDED DEFINITE FORMULAE AND EXTENDED GOAL FORMULAE)
Let A range over atomic formulae. We define the classes of positive literals, extended
definite formulae and extended goal formulae as follows:

Positive Literals L == 0|1|L|T|A
Eztended definite formulae D = L|D&D|D®D|G—-oL| Az.D
| 1D
Extended goal formulae G == L|L"|GRG|GaG|GxG|G&G

|D—-G| Az.G| Vz.G
This completes the extension of definite formulae and goal formulae. O

We use the prefix “extended” in order to disambiguate between the latter classes of
formulae and those defined in Section 2. When it is clear from the context which class is
meant, we will often omit the word extended.

It is easy to see that a lemma analogous to Lemma 3.17 holds.

LEMMA 6.2 Let P be a program and G be a goal. A proof of P F G contains no occurrences
of L-L, m-L, ®-L, ?-L, or \/-L.

PRrROOF
A simple induction on the structure of proofs. O

Now this result together with the permutation results of Section 3 allow us to derive
the following proposition.

PROPOSITION 6.3 Let P be a multiset of extended definite formulae and let G be a mul-
tiset of extended goal formulae. Then P+ G has a linear proof iff P + G has a simple
locally LR proof.

Proor
By Lemma 6.2 we have that any linear proof of I' - A does not contain 1-L, %&-L, &-L,
?-L or V-L; and so by Corollary 3.13, I F A has a locally LR proof. Hence by Proposition
3.16 T' - A has a simple locally LR proof. O

Thus we only need to concentrate on the extensions to [D] and 5. First we extend
the notion of a clause to include the exponential !.
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DEFINITION 6.4 (CLAUSE) A linear clause is a formula of the form L or G —o L, where
L ranges over positive literals and G ranges over goal formulae. A mixed clause is a
formula of the form L, G—o L or(C; ®...Q C,), where each C;, 1 < i < n, is a linear
clause. We let C' range over mized clauses. O

Note that when G is a conjunction of atoms, a linear clause in the above sense is just a-
Horn clause.

We will find it convenient to divide an antecedent into two parts — those formulae.
which are of the form !F, and those which are not.

DEFINITION 6.5 (ANTECEDENT DIVISION) Let U denote multiset union, and let D be a
multiset of formulae. We define two multisets D! and D* such that D = D' U D" as
follows:

D' = Urpep { F | the outermost connective of F is ! }

D" = Upep { F | the outermost connective of F is not ! } O

We may think of this distinction as specifying which formulae are known to be able to
be re-used (those commencing with !) and those which are not.

We also need to extend the mapping [—], so that we can generate a multiset of mixed
clauses from an extended program.

DEFINITION 6.6 (EXTENDED CLAUSAL DECOMPOSITION) Let U denote multiset union.
We define a mapping [—] from definite formulae to multisets of definite formulae as
follows:

[P] =4¢et Upep [D]
[L] =af {L}
[D1 & Dy] =gt [D] or [D,]
[D1 ® D3] =qes [D1] U [Dy]
[G—oL] =44 {G—oL}
[Az.D] =4 [D]
1D =a {! ® C}UD
Cel[D}%
where vartables x that occur in P and outwith the scope of any ! are marked as global

variables and where variables x that occur in P within the scope of some ! are marked as
local. O

Note that [P] is a multiset of mixed clauses. Note also that there are free variables in the
clauses in [P}, with certain of the free variables marked as being “global” and the other free
variables marked as being “local”; these are the variables that are “outermost” in P. One
point to note is that the mixture of universal quantifiers and ! may lead to some (possibly)
surprising results. For example, let P be the single definite formula Az.!Ay.p(z,y),
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and consider the goal p(a,b) ® p(a,c). It should be clear that ' Ay.p(a,y) F p(a,d) ®
p(a,c) is provable, and so Az.! Ay.p(z,y) F p(a,d) ® p(a,c) is provable. However
Az.! Ay.p(z,y) F p(a,b) ® p(b,c) is not provable. Hence we may think of universally
quantified variables outside the scope of ! as “global”, in that all occurrences of the
variable must be updated consistently. Due to the possibility of splitting the program
during computation, this may mean updating variables simultaneously across several
branches of the proof.’® On the other hand, the universally quantified variables within
the scope of | may be thought of as “local”, in that they need only be updated in one-
formula. This leads us to the definitions that follow.

DEFINITION 6.7 (GLOBAL AND LOCAL VARIABLES) Let P be a program. If x is a free
variable in [P], then it is a global variable if it occurs outside the scope of any ! in P.
Otherwise, = is a local variable. O

Note that the marked “global” and “local” variables of Definition 6.6 satisfy this defini-
tion. For a given substitution [f/&], we write [{/Z]° to denote that the application of the
substitution is to only those free variables that are global, throughout the proof. Oth-
erwise, [£/Z] applies to all global variables, throughout the proof, and to local variables
only in the sequent in which the substitution arises (and to those above it, of course).
Clearly one way to enforce this discipline is to ensure that local variables are unique to
each sequent, so that local variables in different sequents have different names.

One of the major differences between intuitionistic logic programming and linear logic
programming is that in the latter case we may need to split the program (and indeed the
goal), due to the form of ®-R rule. In the case of linear clauses, this is simply a matter of
dividing up the given multiset. However for mixed clauses, we need a more sophisticated
approach, as formulae beginning with a ! may be used any number of times in a proof.
From the contraction rule we know that if P,!D,!D | G is provable, then so is P,!D I G,
and so when searching for an approprate splitting of the program, we need to add formula
of the form !D to each branch. We will also need to “balance” the use of subformulae
of 1D, as we can only add an arbitrary number of copies of D to the antecedent, and
not arbitrary numbers of a given subformula of D. For example, consider the program
I(p® q) and the goal p® (¢ ® ¢)."° By use of the contraction rule in conjunction with !-L
and ®-L, the program will imply the goal if p,q,!(p ® ¢) F p ® (¢ ® ¢) is provable. If we
reduce this to p, (p® ¢) F p and ¢,!(p® ¢) F ¢ ® ¢, then the first sequent is provable, but
the second is not, as we need to add p, ¢ to the antecedent before splitting again, and we
find that p,q,!(p® q) - ¢ is not provable. However, if we were allowed to duplicate more
copies of the subformula ¢ of p ® ¢ than of the subformula p we should be able to prove

¥In terms of the eztended resolution proofs defined below, those branches that are above the same
premiss of the last & —rule (Rule 7 in the definition of resolution proof, below) as the sequent to
which the resolution rule is applied. The form of the &-rule in such proofs enforces the restriction of
substitutions to their own &-branches. »

1®Note that the sequents {(p® ) F p® (¢® ), {(Pp® ) F (r® p) ® (¢ ® ¢ ® q), etc., are not provable
in linear sequent calculus.
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the goal p® (¢ ® q) from the program !(p® ¢). Hence we need to ensure that the splitting
of the program is done in such as way as to respect the structure of the original formulae.
The reader should note however that as yet we have not provided any mechanism for
the calculation of an appropriate splitting of the program (and goal). We postpone the
description of such a procedure until we have defined the notion of resolution proof and
are ready to describe an interpreter. '

DEFINITION 6.8 (MULTISET EXPANSION) Let C be a multiset and let U denote multiset .
union. We define C" for integers n > 0 inductively as follows:

c’=0 c"'=cuc® o

DEFINITION 6.9 (EXPANSION) Let D be a multiset of mized clauses, and suppose that
Dl = {{C1u®...8Chy)y o, (Crn1 @ ... Q Cpp, )} An expansion of D is a pair of
multisets Dy and D, such that

Dl UD2 - DL U{Cll7"'701n1 }“

U{le,.. . ,Cmnm }im

for integers ¢y,...,1,, > 0. A linear expansion of D is a pair of multisets D, and D, such
that D, UD, =D". O

Note that a linear expansion of D corresponds to the case in which i; =... =1, =0.
We come now to the definition of (extended) resolution proof.

DEFINITION 6.10 (EXTENDED RESOLUTION PROOF) We define the notion of extended
resolution proof by defining a relation bg. Let D range over multisets of definite formulae
and let U denote multiset union. An extended resolution proof is tree regulated by the
following rules, which is constructed from root to leaves, and is such that the resolution
rules are applied only when no other rule is applicable:

1. The aziom judgement is given by:

DrgL

where either D” = { L'} and L = L'[t]Z], or D" = 0 and there exists L’ € D' such
that L = L'[t]F);

2. We shall refer to this rule as the resolution rule:

DIE/Z FrG,G {L}FgplL
DU{G —oL'}Fg L,G

where G —o L = (G' —o L')[t/&];
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10.

We shall refer to this rule as the !-resolution rule:

D[E/F)7° U [ClH/Z] U {{(G' -~ L)@ O)t/Zf} Fr G, G  {L}‘ gL
DU{((G'—-L)®C)} Fr L,G

where G —o L = (G' —o L')[t/ %], and where C denotes C1, @ ... ® Cy, for some C;s,
1<i<m %

The L-rule:
DU{L}Fr@G
Dty Lt,G

The ®@-rule: o o ’
D7D17D1 I—RG'hg D,D;nDZ |_RG’27g

Dtp Gy ® G2, 6,9

where Dy, Dy is a linear expansion of D, and where D, U'D{, 'D2UD; is an expansion
of D;

The ®-rule:
“ Dty Gy,G DtgrG,,G
DrrG1®G,,G DErGy @G, G
The v -rule:
D t_R G17G27g
DtpGimG,, G
The &-rule:

D' kg G"l,g' D" kg G;’,g"
DrrG, &Gy, G
where D' and D" are distinct copies of D, and where G'l, G' and G;’,g" are obtained

from Gy4,G and G4, G by the applying the renamings of D' and D" respectively. Note
that we maintain “global” and “local” markings;

The —o -rule:

DU[DIFRG,G
D“R.D—OG,G

The N\-rule:
D I—R /\.’B . G,g

where y is not free in D or G.

2Note that there may be no such component, i.e., that m may be 0.
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11. The \/-rule:
D '_R G[t/m]a g

DI‘RVQIG,G

Note that Rules 1, 2 and 3 affect other sequents in the proof, so that a resolution proof is
well-defined only if all occurrences of Rules 1, 2 and 8 yield compatible substitutions. O .

Note that the extended form of the axiom judgement is not an initial sequent. For
example, from the above we immediately get that !¢,!¥, x Fr x, and it is clear that this
sequent may be derived from the initial sequent x I x via two applications of !-L.

It should be clear that the !-resolution rule and the second part of the axiom judgement
are directly analogous to the corresponding rules in intuitionistic logic. The !-resolution
rule clearly has the property that P Fp A if there is a clause !G' —o L' in P such that
G—oL = (G — L')[t/Z] and P kg G, which is a more intricate form of the resolution
rule given in [20]. Similar remarks apply to the second part of the axiom judgement.

The only other significant difference is the form of the ® rule. In the previous case,
there were no occurrences of ! anywhere, and hence the C7-L rule would never be ap-
plicable to sequents consisting of programs and goals. However this does not apply for
extended programs and extended goals. We saw in Section 3 how the permutation results
for ®-R are somewhat more delicate than those for the other rules, particularly for the
cases ®-L and C7-L. In the former case, we were able to circumvent the problem by the
use of [P] rather than P itself. In this way we may think of [—] as a compile-time trans-
formation, so that P is transformed before execution into a form which is more easily
manipulated. In particular, this means that no occurrences of ®-L are used in the search
for a proof of the goal. In the latter case, we cannot get around the difficulty quite so
easily, as we do not know in advance (i.e. at compile time) how many occurrences of
C?-L may be needed, or equivalently how many times a given formula !F' will be needed
in the proof. Hence, we need to preserve formulae of the form !F in all parts of the
proof where they may be needed. In particular, we need to include all such formulae in
each antecedent created by the use of the ®-R as a search operation. Clearly if some
or all of these formulae are not needed in the proof, they may be discarded (by the use
of weakening as a search operator), and so no proofs will be missed. In this way the !
connective at the front of a formula ensures that it behaves in a fashion characteristic of
intuitionistic logic, rather than of linear logic, and hence extended resolution proofs may
be thought of as a mixture of purely linear deduction and intuitionistic deduction.

Before proceeding to develop the theory of extended resolution proofs, we give two
small examples of the use of the !-resolution rule:

¢ Consider the sequeht

{q(z,2),(((¢(=,y) ® r(z,y)) < p(z,y)) @ r(z,y)) } Fr p(t,u).

By applying the !-resolution rule, we obtain the subgoals
{p(t,w) } Frp(t,u)
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and
{a(t:2),/(((a(t,9) ® (2, y)) o p(t,y)) @ r(t,y)),r(t,u) } Fra(t, v) @ r(t,u);

Consider the sequent
{ 4(a),!(g(a) —~p(a)) Fr p(a).
By applying the !-resolution rule, we obtain the subgoals
{p(a) } Fr p(a) and {¢(a),!(¢(a) o p(a)) Fr p(a) } .

This example corresponds to the usual resolution rule intuitionistic logic [20], [21].

We now proceed to show that extended resolution proofs behave in the expected
manner. We show that the appropriate notions weakening and contraction are admissible

rules.

LEMMA 6.11 (WEAKENING) Let P be a multiset of mized clauses, |D be a mizred clause
and let G be a multiset of goal formulae. If P g G, then P,!D g G.

Proor

We proceed by induction on the height of the proof. The base case occurs when G is just

a positive literal L, and it is clear that the lemma holds in this case. Hence we assume

that the lemma is true for all sequents whose proof is no more than a given height.
Consider the step used to derive the current sequent. There are ten cases.

resolution:

l-resolution:

A -rule:

& -rule:

®-rule:

The previous sequent must be P'[t/Z] F G,G' where P = P'U{G' - L'}, G = G, G’
and G —o L = (G' —o L')[t/]. By the hypothesis we have P'[t/Z],!D + G,G’, and
so we may apply the resolution rule to obtain P,!D k5 G.

The previous sequent must be P[i/#]¢ U [C[i/Z]] U {{((G' — L) @ C)[t/&°} + G, G’
where P = P'U{{((G' o L')®C)}, G = G,G and G —o L = (G’ —o L')[t/]. By the
hypothesis we have P[{/Z)? U [C[t/z]) U {((G' - L") & C—")[F/:E]g}, D+ G,G' so we
may apply the !-resolution rule to obtain P,!D g G.

The previous sequent must be P, L G/, where G = L*,G’, and so by the hypothesis
we have P,!D, L+ G, and so P,!D g L*,G'.

The previous sequents must be P’ le G, and P"+G,,G,, where G =G, &G, G,,G,,
P', P” are distinct copies of P and G’:, G,, G,, G, are the correspondingly up-
dated versions of Gy, G;, G5, G, respectively, and so by the hypothesis we have
P,\D' +p G'l,g; and P,!D" g G;,g; where !D’ and ! D" are distinct copies of !D,
and so P,!D Fp G, & G,,G,G,.

The previous sequents must be P1,P, F G,,G, and P, P, + G;,G,, where P;,
P, is an expansion of P and § = G; ® G,,G,,G,, and so by the hypothesis we
have P1,Py,1D bp Gy,G; and PT, Py, 1D by Gy, G,, and so P1,ID, Py, Py bp Gy ®
G2,01,0s, t.e. P,!D kg Gy ® Gy, G1,Gs-
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®-rule:

-rule:
-0 -rﬁle:
A-rule:

\-rule:

The previous sequent must be either P F Gy,G or P, F G,,G’, where G = G, &
Gy, G', and so by the hypothesis we have P,,!D kg G;,G’ or P,!D kg G,,G’, and
SO p, !D |—R Gl &, Gz, g,.

The previous sequent must be P F Gy, G,,G’, where G = G; % G,,G’, and so by the
hypothesis we have P,!D Fg G;,G,,G’, and so P,!D kg G % G,, G

The previous sequent must be P, D' F G,G’, where ¢ = D' — G, ', and so by the
hypothesis we have P,!D, D'k G,G', and so P,!D g D' - G,G'. '

The previous sequent must be P + Gly/z],G’, where G = Az.G,G’, and so by the
hypothesis we have P,!D g G[y/z],G’, and so P,!D Fp Az.G,G'.

The previous sequent must be P + G[t/z],G’, where G = \Vz. G, G, and so by the
hypothesis we have P,!D +p G[t/z],G', and so P,!D Fg Vz.G,G'.

This completes the proof. O

We may think of the above lemma as showing that we may add a formula !D to an
antecedent, a multiset of mixed clauses, P and retain the consequences of the original
antecedent. Below we show that contraction is admissible, i.e., adding ! D once will suffice,
as adding it twice or more does not allow any new results to be derived.

LEMMA 6.12 (CONTRACTION) Let P be a multiset of mized clauses, !D be a mized clause
and let G be a multiset of goal formulae. If P,'D,'D tg G, then P,!DFgG.

PRrooF

We proceed by induction on the height of the proof. The base case occurs when G is just

a positive literal L, and it is clear that the lemma holds in this case. Hence we assume

that the lemma is true for all sequents whose proof is no more than a given height.
Consider the step used to derive the current sequent. There are ten cases.

resolution:

l-resolution:

L-rule:

The previous sequent must be P'[{/Z],!D,!D F G,G' where P = P’ U {G' = L'},
G =G,¢ and G— L = (@ —o L')[t/Z]. By the hypothesis we have P'[{/],!D F
G,G', and so we may apply the resolution rule to obtain P,!D kg G.

The previous sequent must be P[{/Z)? U[C[F/&]]U{1((G' — L)@ C)[t/Z)},!D,'D +
G,G' where P = P'U{{((GC'= L) ® C)}, G = G,G' and G— L = (G' —o L')[t/3].
By the hypothesis we have P[t/&)? U[C[E/]] U {((G = L) ® OVE/Z)},'D F G,G'
so we may apply the !-resolution rule to obtain P,!D kg G.

The previous sequent must be P,!D,!D,L + G', where G = L*,§’, and so by the
hypothesis we have P,!D, L+ G', and so P,!D b L+, G’
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& -rule: The previous sequents must be P',1D',!D’ G g and P",\D"\D" + Gz,gz,
where G = G, & G,, gl,g2, 'P' P" are dlstmct coples of P, D" and 'D are distinct
copies of 1D and G’l, gl, g are the correspondingly updated versxons of G4,
Gi, Gay Ga respectlvely, and SO by the hypothesis we have P,!D' Fp G g and
P,\D" g G,,G,, and so P,!D Fp Gy & G3,G;,G,.

@-rule: The previous sequents must be P’, P, F Gy,G, and P!, P, F G,,G,, where Py, P,
is an expansion of P U {ID,!D} and G = G, ® G,,G;,G,, and as Py, P, is clearly-
also an expansion of P U {!D}, we have P,!D Fp G, ® G,,G,,G,.

@-rule: The previous sequent must be either P,!D,!D F G,,G’ or P,!D,!D + G,,§G’, where
G =G, ®G,,G, and so by the hypothesis we have P;,!D Fgr Gy,G or P,!D Fp
G,,G',and so P,!DFr G, ® G,,G'.

% -rule: The previous sequent must be P,!D,!D + G;,G,, G, where G = G, % G,,G’, and
so by the hypothesis we have P,!D by G;,G5,G’, and so P,!D kg Gy G,, G

—o-rule: The previous sequent must be P,!D,!D, D'+ G,G’, where G = D' <G, §G’, and so
by the hypothesis we have P,'D, D' Fr G,G', and so P,!D b D'~ G, G’

A-rule: The plievious sequent must be P,!D,!D F G[y/z],G’, where G = Az.G,G’, and so
by the hypothesis we have P,!D Fg G[y/z],G’, and so P,!D Fxr Az.G, G .

V-rule: The previous sequent must be P,!D,!D + G[t/z],G’, where G = Vz.G,G’, and so
by the hypothesis we have P,!D Fg G[t/z],G’, and so P,!D Fg Vz.G, G .

This completes the proof. O

Next we show that we may strengthen the antecedent itself. Indeed, the following
lemma is analogous to the I-L rule of linear sequent calculus.

LEMMA 6.13 (I-LEFT) Let P be a multiset of mized clauses, and let G be a multiset of
goal formulae. Let D be a linear clause. If P U{D}" Fr G for some integer n > 0 then
P,'DFgpQG.

ProOOF
The n = 0 case was shown in Lemma 6.11. Consider the case for n = 1.

We proceed by induction on the height of the proof. The base case occurs when G is
a single positive literal L, and it is clear that the lemma holds in this case.

Hence the induction hypothesis is that the lemma holds for all sequents whose reso-
lution proof is no more than a given height. Consider the step used to derive the current
sequent. There are ten cases.

resolution: There are two cases here. If the clause used is in P, then the previous sequent is

P'[t/#],D + G,G where P = PU{G' = L'},G = G,G' and G — L = (G’ — L')[t/3].
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l-resolution:

d-rule:

& -rule:

®-rule:

®-rule:

% -rule:

—o-rule:

A-rule:

V-rule:

By the hypothesis we have P'[t/],!D F G,G’, and so we may apply the resolution
rule to obtain P,!D kg G. Otherwise P = 'P', i.e., D is the clause used, and so
as above, P[t/&] Fr G,G, and by Lemma 6.11 we have P[t/7],}(G' — L )[t/a'c‘] Fr
G,G', to which we may apply the !-resolution rule, and so P,!D +5 L,G'.

As D is not of the form !F, D cannot be the clause used, and so the the previous.
sequent is P[f/z]° U [é[f/:i’]] U{((G' - LY® O)[{/ZF},D v G,G' where P = P'U
{{(G"-L")® C)} G =G,G and G—oL= (G' —o L')[t/Z]. By the hypothesis we .
have P[i/)° U[CE/Z]| U {((G' - L)) ® C)[t/:i']g},'D F G,G' and so we may apply
the !-resolution rule to obtain P,!D k5 L,G'.

The previous sequent must be P,D,L + G', where § = L*,G', and so by the
hypothesis we have P,!D, L+ G', and so P,!D b5 L*,G'.

The previous sequents must be P, D’ I G g and P",D" Gz,gz, where G =
G & Gz,gl,gz, P!, P" are dlstmct copies of P D' and D" are distinct copies of
D and G' gl, G Q’ are the correspondingly updated verswns of G4, Gy, G, G,
respectlvely, and so by the hypothesis we have P,!D’ Fp G g and P,!D" bp
G, Gy, and so P,!D kg Gy & G,64,G,.

Without loss of generality we may assume that the previous sequents are p! ,Pi,DF
Gy4,G, and P, P, b Gy, G,, where Py, P, is an expansmn of PU{D} and G =
G,®G,, G1,G,, and so by the hypothesis we have PL P IDVFrGy,G and P, Py R
G4,G,, and by Lemma 6.11 this implies that P P, \Dtp G,,G,, and so P,!D Fp
G1 ® Gy,61,%,.

The previous sequent must be either P,D F G,,G or P,D F G,,G', where G =
G, ® G,,G', and so by the hypothesis we have P,,!D kg G;,G or P,'D g G,,G,
and so P,!D Fp G, & G,,G'.

The previous sequent must be P, D F G;,G,, G, where G = G; % G,,G’, and so by
the hypothesis we have P,!D Fx Gy, G,,G', and so P,!D Fp Gk G,, G .

The previous sequent must be P,D,D' F G,G', where G = D' -0 G,§G’, and so by
the hypothesis we have P,!D,D' 5 G,G', and so P,!D g D' - G,G'.

The previous sequent must be P, D F G[y/z],G’, where G = Az.G,G’, and so by
the hypothesis we have P,!D k5 Gly/z],G’, and so P,!D Fp Az.G,G'.

The previous sequent must be P, D + G[t/z],G’, where G = Vz.G,G’, and so by
the hypothesis we have P,!D kg G[t/z],G’, and so P,!D b5 Vz.G,G .

Thus the lemma holds for n = 1. A simple inductive argument then establishes the
general case. This completes the proof. O

41



One interpretation of this result is that we may replace an occurrence of the resolution
rule using the clause D with an occurrence of the !-resolution rule using the clause !D.
Note that these three lemmas imply that the set-theoretic properties of formulae com-
mencing with ! in arbitrary linear proofs are preserved in extended resolution proofs. It
is this property which allows us to perform “mixed” intuitionistic and linear deduction in
this system. This justifies our remark above that a formula with a ! at the front behaves-
in an antecedent precisely the same way as the same formula in an antecedent in the
intuitionistic sequent calculus.

Finally we show a lemma of some technical importance; essentially this is that an oc-
currence of the resolution rule may be replaced by the !-resolution rule on a corresponding
program. This correspondence is given by the mapping —!, defined below.

DEFINITION 6.14 (THE MAPPING —') Let D be a multiset of mized clauses. We define
a mapping - from multisets of mized clauses to multisets of mized clauses as follows:

D'={! ® cyup’ o
Ce[D|L

Note the similarity between this definition and the definition of [!D]. We may think of
the mapping —' as converting a set of linear clauses into a single mixed clause, and hence
replacing uses of the resolution rule with the !-resolution rule. Below we show that this
mapping preserves provability via resolution proofs.

LEMMA 6.15 (SOUNDNESS OF —') Let P be a multiset of mized clauses, and let G be
a multiset of goal formulae. Let D be a multiset of mized clauses. If P,D Fgr G then
P,D' g 6.

PROOF
We proceed by induction on the height of the proof. The base case occurs when G is a
single positive literal L, and it is clear that the lemma holds in this case.

Hence the induction hypothesis is that the lemma holds for all sequents whose reso-
lution proof is no more than a given height. Consider the step used to derive the current
sequent. There are ten cases.

resolution: There are two cases here. If the clause used is in P, then the previous sequent
is P'[t/Z),D[t/d] + G,G where P = P'U{G' —L'}, G = G,G' and G—oL =
(G'—oL')[t/%). By the hypothesis we have P'[t/&], D'[{/Z] F G,G’, and so we may
apply the resolution rule to obtain P,D! Fr G. Otherwise P = P’, i.e., the clause
used is in D, and so as above, P[t/Z], D'[{/Z] b G,G’ where D = D' U {G' — L'},
and by Lemma 6.11 we have P[t/Z], D'[t/Z], D'[t/Z] Fr G,G', to which we may
apply the !-resolution rule to get P, D'+r LG

I-resolution: As the clause used must be either an element of P or an element of _"DI, let
P'U{I((G'— L'Y®C)} = PUD’. Hence the previous sequent is P'[{/Z]°, [C[/Z]]U
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& -rule:

L-rule;

®-rule:

®-rule:

7k -rule:

—o -rule:

N-rule:

V-rule:

{1((G' — L)QC) ]2}, D*[E]&)° + G, G where G=G, G’ and G—oL=(G'—oL')[{/].
By the hypothesis we have P'[{/Z)?, [C[F/Z])U{}((G' —o L’ )®C)[t/ z°}, (DL) [/Z)°
G, G’ and so we may apply the !-resolution rule to obtain P, D'+ rL,G.

The previous sequents must be P, D' F G g and P",D" I G’ gz, where § =
G, & G,, gl,g2, ', P" are dlstlnct copies of 'P D' and D" are dlstmct copies of-
D and Gy, G, G g are the correspondingly updated versions of Gy, G;, G3, G,
respectively,' and so by the hypothesis we have P, D' R G"l, Q; and P, D" R G’;, g;, -
and so P,D kg Gy & G,,G,G,.

The previous sequent must be P,D,L F G', where G = LY. G, and so by the
hypothesis we have P,D',L +5 G', and so P,D' by L1, G’

The previous sequents must be P!, P,, D' + G,,G, and P’,P,, D' + G,,G,, where
Py, P, is an expansion of PUD and G = G4 ® G4, Gy, G, and as an expansion of D
is an expansion of D', we may conclude that P,D' Fr Gy ® Gs,G1,Ge.

The previous sequent must be either P,D + G,,G or P,D + G,,G’, 'Where g =
G, ® G,,G’, and so by the hypothesis we have P;, D' b G4, or P, D' kg G,, G,
and so P,D' Fr G, ® G,,G'.

The previous sequent must be P,D F Gy, G,,G’, where G = G; ¥ G,,G’, and so by
the hypothesis we have P, D' FrGy,Gs,G', and so P, D'brGyEG,, G

The previous sequent must be P,D, D' F G, G, where G = D' - G,G’, and so by
the hypothesis we have P, D', D't G,G’, and so P, D' +r D' -G, ¢’

The previous sequent must be P, D+ G[y/ z],G’, where g Az.G,G', and so by
the hypothesis we have P, D' b5 Gly/z],G’, and so P, D' kg Az.G,G'.

The previous sequent must be P,D + G[t/z],G’, where G = Vz.G,G’, and so by
the hypothesis we have P, D' k5 G[t/z],G’, and so P,D' Fxr Vz.G, G .

This completes the proof. O

Now we show that extended resolution proofs are sound with respect to linear deduc-

tion.

PROPOSITION 6.16 (SOUNDNESS OF EXTENDED RESOLUTION PROOFS) Let P be a mul-
tiset of definite formulae; and let G be a multiset of goal formulae. If[P|Fg G, then P G
has a simple locally LR proof.

ProoF
By Proposition 6.3 it will suffice to show P I G is provable.

We proceed by induction on the size of the proof. The base case occurs when G is
just a positive literal L such that either [P]* = {L'} and L = L'[t/&], or [P]* = 0§ and
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there is a clause !L’ € [P] such that L = L'[{/Z], and in either case it is clear that P+ L
is provable.

Hence the induction hypothesis is that the proposition holds for all sequents whose
extended resolution proofs no more than a given height. Consider the step used to derive
the current sequent. There are several cases.

resolution:

I-resolution:

L-rule:

& -rule:

®-rule:

®-rule:

K -rule:

In this case we have that [P'][{/#] Fr G',G’ where ['P]U{G——OL} [P],G'—o L' =

(G — L)[t/], and ¢ = G’ U {L'}. By the hypothesis, P'[{/Z] + G',G' has a-
proof, and as I' + L' is an initial sequent, we may apply the —o-L rule to de-

rive P'[t/Z],G'—o L' + G', L'. Then we may apply A-L, & -L and/or ®-L a number

of times to get a proof of P I G.

In this case we have that [P'|[£/Z), [C[t/]), (G —o L) @ C)[/@)° Fr G',G' where
[PU{{((G—oL)@ )} = [P)], G- L' =(G—oL)[t/d], and G = G'U{L'}. By
the hypothesis, P'[f/Z]?, C[t/Z],|D[f/Z)°C)[i/Z)° + G',G' is provable, where [ID] =
(G- L)® é) and as L' F L' is an initial sequent, we may apply the —o-L rule to
derive P'[t/3)?, ' —o L', C[t/Z),\D[t/Z)° + ¢',L'. Then we may apply A-L, ®L, I-L
and/or & -L a number of times to get a proof of P'[{/F]?, D[t/:i']g 'D[t/a’:’]g G, L,

and we then apply !-L and contraction to get a proof of P'[{/Z),\D[t/Z)° + G',L'.

We may then apply the A-L, ®-L, & -L and/or I-L a number of times to get a proof
of PFG.

In this case we have that [P], L kg G’ where G = {L*}UG’, and so by the hypothesis
P, L+ G is provable, and so P + L, G is provable.

In this case we have that P; Fp G},G" and 'P2 Fr G, G" Where G ={G, & G,}Ug,

P,, P, are distinct copies of P a,nd G G’ Gg" and G" are the correspondlngly
updated versions of G;, G, and G’ respectlvely, and so by the hypothesis P; Gv G"
and ’P F G ,G" are provable, where 'P and 'P are distinct copies of P. It follows
that ’P F Gl,g and P + G,,G are provable, and so and so P F G, & G,,G' is

provable.

In this case we have that [P)',P, Fr Gy,G; and [P}, P, kg Gs, G, Where Py, P,
is an expansion of [P] and § = G; U G,, and so by the hypothesis P! 'P1 F Gy, G,
and P!, P, b G,,G, are provable, as [P;] = P, and [P,] = P, and so P!, P, P,

G1®@G,, G is provable. As in the !-resolution case, we may then apply the rules A-L,

I-L, & -L and/or ®-L a number of times to the latter sequent to obtain a proof of
PEG,RG,,G.

In this case we have that [P] Fr G;,G’ or [P] g G3,G where G = {G, ® G,} UG,
and so by the hypothesis P F G;,G or P I Gy, G’ is provable, and so P - G; % G,, G’

is provable.

In this case we have that [P] kg Gy,G,,G’ where G = {G; % G,} UG’, and so by
the hypothesis P F G,,G,, G’ is provable, and so P + Gy & G,,G' is provable.
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—o-rule: In this case we have that [P],[D]' kg G,G’ where G = {D —0 G} UG, and so by the
hypothesis P, D + G, G’ is provable, and so P+ D —0 G, G’ is provable.

A-rule: In this case we have that [P] kg G[y/z],G’ where G = {Az.G} UG’ and so by the
hypothesis P - Gly/z],G’ is provable, and so P+ Az.G,G’ is provable.

V-rule: In this case we have that [P] b G[t/z],G’ where G = {Vz.G} UG’ and so by the
hypothesis P - G[y/z],G' is provable, and so P+ \Vz.G,G' is provable.

We remark that for this fragment of linear logic we have, by Theorem 3.18, that for any
linear proof there is a corresponding locally LR proof. This completes the proof. O

Now we turn to the completeness of extended resolution proofs.

PROPOSITION 6.17 (COMPLETENESS OF EXTENDED RESOLUTION PROOFS) Let P be a
multiset of definite formulae, and let G be a multiset of goal formulae. If P+ G has a
simple locally LR proof, then [P]Fr G.

PRrooF
We proceed by induction on the length of the proof of P - G.

The base case occurs when P F G is initial, i.e. P = G = {L} for some positive literal
L, and clearly the proposition holds in this case.

Hence we assume that the proposition holds for all sequents whose proof is of no more
than a given height. Consider the rule used to derive P F G. By Lemma 6.2, we need
only consider the rules ®-L, & -L, A-L, —o-L, I-L, C?-L, W7-L, ®-R, & -R, ®&-R, *&-R,
—o-R, A-R and V-R.

®-L: The previous sequent must be D;, Dy, P’ + G where {D, ® D,} UP’ = P, and so
by the hypothesis, [D,],[D,],[P'| Fr G, i.e. [P] Fr G.

& -L: The previous sequent must be either D;,P'+ G or D,,P' + G where {D, & D,} U
P’ = P, and so by the hypothesis, either [D,],[P’] Fgr G or [D,],[P'] Fr G, i.e.
[PIFRrG.

A-L: The previous sequent must be D[t/z],P’ + G, where {\z.D}U P’ = P, and so
by the hypothesis we have that [D[t/z],P'| g G, i.e., [D[t/z]] U[P']| Fr G. Hence
by the instance property [D] U [P'] Fr G (the resolution proof of the induction
hypothesis will suffice) and so [Az.D,P'] g G.

—o-L: The previous sequent must be P’ - G, G’ where {G —o L}UP' = P and {L}UG’ =G,
and so by the hypothesis, [P'] kg G, G, i.e. [P]Fr G.

I-L: The previous sequent must be P', D  G,G" where {!{D} U P’ = P, and so by the
hypothesis, [P'],[D] kg G,§’, and by Lemma 6.15 [P'], [D]' F G, G, i.e. [P] kR G.

C?-L: In this case the result follows by Lemma 6.12.
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W?-L: In this case the result follows by Lemma 6.11.

®-R: The previous sequents must be P; + G;,G; and P,  G;,G,, where P,UP, = P and
{G,8G,},G,UG, = G, and so by the hypothesm, [P] Fr Gy, G, and ['P2J Fr G,,G,.
Now by Lemma 6.11 thls 1mp11es that [P,],[P,)' Fr G1,G, and [P,),[Py]’ Fgr Gs,Gs,
and so we get that [Py]%, [P.]%, [Pi], [Pa] Fr G1 ® Ga,G1, Gy, which by Lemma 6.12.
gives us [P1],[Py] g G1 ® G4,G1,Ga, ice. [Pl FRG.

L-R: The previous sequent must be P,L + G', where {L*} UG’ = G, and so by the
hypothesis, [P], L Fr G,G’, i.e. [P] Fr G.

& -R: The previous sequents must be P - G;,G’ and P + G,,G’, where {G; & G2} ug' =
G, and so the sequents P’ - G’ ,G" and P" G g”’ are provable, where P’ and P"
are distinct copies of P and Gl, G2, G" and g are the correspondingly updated
versions of Gy, G, and G’ respectively, and so by the hypothesis, [P'] Fg G ,G" and

[PI’] I—R G2, gm, i.e. [P] I_R g

®-R: The previous sequents must be P + G;,G and P F G,, G, where {G; ¥ G,}UG' = G,
and so by the hypothesis, [P] kg G1,G or [P] Fr G,,G, i.e. [Pl FRG.

% -R: The previous sequent must be P F G, Gy, (]' where {G, % G,} UG’ = G, and so by
the hypothesis, [P] g G1,G,,G’, i.e. [Pl Fr G

—o0-R: The previous sequent must be P,D + G,G’, where {D -G} UG’ = G, and so by
the hypothesis, [P],[D] Fr G,G', i.e. [P] Fr G.

A-R: The previous sequent must be P + G[y/z],G’, where {Az.G} UG = G, and so by
the hypothesis, [P] g G[y/z],G’, i.e. [P] Fr G.

V-R: The previous sequent must be P + G[t/z],G’, where {Vz.G} UG’ = G, and so by
the hypothesis, [P] Fr G[t/z],G', i.e. [P]Fr G.

This completes the proof. O

Thus we find that extended resolution proofs are sound and complete with respect to
linear provability.

THEOREM 6.18 Let P be a multiset of extended definite formulae and let G be a set of
extended goal formulae. Then P+ G is provable iff [Pl Fr G.

PRrROOF
The proof follows immediately from Propositions 6.3, 6.16 and 6.17. O

Note that this does not imply, for example, that F!(p®!q)o—o Ip®!g (which is not provable
in linear sequent calculus) is provable, even though [!(p®!q)] = {!p,!¢} = [Ip®!q].
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As noted above, we may think of the mixture of the resolution and !-resolution rules
as providing mixed deduction. Also, we saw in Section 4 how purely linear deduction
may be used. Hence it is natural to ask what purely intuitionistic deduction looks like
in this setting. In particular, we show how intuitionistic proofs in the hereditary Harrop
formulae fragment of first-order logic may be encoded as proofs in this fragment of linear
logic. ‘

" In order so to do, we recall some definitions from [21], [20] for intuitionistic logic. We
assume that we are dealing with first-order intuitionistic logic and first-order linear logic-
over some common language L.

DEFINITION 6.19 (HEREDITARY HARROP FORMULAE) Let A range over atomic formu-
lae. We define the classes of hereditary Harrop definite formulae and hereditary Harrop
goal formulae as follows:

Definite formulae D

Il

A|DAD|G>A|Vz.D

Goal formulae G == A|GVG|GAG|DD>G
|V2.G|3z.G

A hereditary Harrop program is a set of closed Hereditary Harrop definite formulae. A
hereditary Harrop goal is a closed Hereditary Harrop goal formula. O

Now we recall the definition of the relation I, [21], [20]. In order to avoid notational
confusion, we will use || — || to denote the [~] operation of [20].

DEFINITION 6.20 (HEREDITARY HARROP CLAUSAL DECOMPOSITION) Let U denote set

union. We define a mapping || — || from sets of hereditary Harrop definite formulae to
sets of hereditary Harrop definite formulae inductively as follows:

IPll =4t Uper [|ID|

[l All =at {A}

1Dy A Dyl =ges || D1l| V| D2l
IGD Al =4 {GDA}
IVe.D|l =gt User |1 D[t/ 2]l

where U' denotes the universe of ground terms. D

DEFINITION 6.21 (HEREDITARY HARROP UNIFORM PROOFS) Let P be a hereditary Har-
rop program and let G be a hereditary Harrop goal. The relation b, is the least relation
satisfying:

o P, A iff either A € ||P]| or there is some G D A € ||P|| such that P+, G
® p|—0 GIVGZ Zﬁp I_o Gl OTPI'"OG2
s P I_a Gl A G2 Zﬁ'lp l_o Gl and P ‘_0 G2
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¢« PH-,D>G iff P,D+,G

o Pt,3z.G iff P+, G[t/x] for somet € U’

e P, Vz.G iff P+, Gly/z| where y is not free in P
U
The following result was shown in [21].

THEOREM 6.22 (INTUITIONISTIC OPERATIONAL PROVABILITY) Let P be a hereditary
Harrop formula program and let G be a hereditary Harrop goal. Let \-; denote intu-
itionsitic provability. Then P+, G iff P+H; G. O

Next we present the encoding of intuitionistic formulae in linear formulae, via two
mappings, (—) and (-)".

DEFINITION 6.23 (ENCODING) Let D range over hereditary Harrop definite formulae,
let D range over multisets of (linear) definite formulae and let G range over hereditary
Harrop goals. We define the linear encoding (D)~ of D and the linear encoding (G)* of
G as follows:

( ) “def A

(GL A Gy =as (G)T & (Gy)* P =4t Upep (D)~

(G1 v G2)+ =def (Gl)+ ® (G2)+ (D)_ def UC€||D||{(C)~}
(32.G)t =45 VE. ()T (VZ.A)~ =qt 'AZ.A
VZ.G)t =4 ANE.(G)F (VZ2.G DA™ =4 'ANZ.(G) ' —L

(Do@)" =4 (QD))—(G)*
where @D denotes Qgep C. O

We may think of these encodings as operating at the level of proofs, rather than at
the level of formulae. This is due to the way that an intuitionistic conjunction may be
translated as either of the two linear conjunctions, depending on whether it occurs in a
positive position or not. We now show that this encoding behaves as expected.

PROPOSITION 6.24 (RESOLUTION PROVABILITY UNDER ENCODING) Let P be a hered-
itary Harrop program and let G be a hereditary Harrop goal formula. Then P+, G iff

(P)” Fr (G)*.
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PRroOF
We proceed by induction on the size of the proofs. The base case is when G is an atom,
and it is clear that the proposition holds in this case.

The induction hypothesis is that the proposition holds for all proofs of no more than
a given size. There are six cases.

- A:

G;V Gy

Gy NGy

dz . G-

Vz.G:

D>aG:

P F, A iff either A € ||P||, in which case we are done (this is the base of the
induction), or there is some GD A € ||P|| such that P F, G, and by the hypothesis .
this is equivalent to [(P)”] Fg (@)F. This in turn is equivalent to the existence
of a clause (G —o L') € [P] such that (G)* —o L = (G’ —o L')[t/], for some £, and
[(P) ] kR (G)F, which is just [(P)7] Fr (A)T.

Pt,G VGyif PF, G, or PF, G, and by the hypothesis this is equivalent
to [(P)7] Fr (Gy) or [(P)7] Fr (G,)*, which in turn is equivalent to [(P)7] kg
(G))* @ (G,)T, which is just [(P)7] Fr (G1 V Gy)t.

Pr,G NGy, it P+, G, and P I, G, and by the hypothesis this is equivalent
to [(P)7] Fr (G and [(P)7] Fr (G,)T, which in turn is equivalent to [(P)7] g
(G)Y & (G,)* (by some renaming), which is just [(P)7] Fr (G1 AG,)™.

P, 3z.G iff P+, G[t/z] for some t € U’, and by the hypothesis this is equivalent
to [(P)”] Fr (G[t/z])¥, which in turn is equivalent to [(P)7] Fr V. (G)*, which
is just [(P)7] Fr (Bz.G)*.

P, Vz.Giff P+, G[y/z] where y does not occur free in P, and by the hypothesis
this is equivalent to [(P)”] kg (G[y/z])*, which in turn is equivalent to [(P)7] b5
Az.(G)F, which is just [(P)"] Fg (Vz.G) .

Ptr,D>GIiff P,D I, G, and by the hypothesis this is equivalent to [(P U
{D})7] Fg (G)T, which in turn is equivalent to [(P)7] Fg (®Q(D)7) —o (G)*, which
is just [(P)7] Fg (D D G)*.

This completes the proof. O

Thus we arrive at the following theorem.

THEOREM 6.25 (PROVABILTY UNDER ENCODING) Let P be a hereditary Harrop pro-

gram and G be a hereditary Harrop goal. P+ G is provable in intuitionistic logic iff
[(P)7]+ (G)T is provable in linear logic.

Proor

By Theorem 6.23, P | G is provable in intuitionistic logic iff P -, GG, and by Proposition
6.24 this is equivalent to [(P)7] Fg (G)*, and by Theorem 6.18, this is equivalent to the
provability of (P)” F (G) in linear sequent calculus. O
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7 Implementation Issues

In this section we sketch the design of an interpreter for linear logic programs. Essentially,
the interpreter will execute resolution proofs, however as we noted in Sections 4 and 6, the
definition of resolution proof does not provide a mechanism for calculating the appropriate
splitting of the antecedent and succedent in the ®-rule. This problem is particularly acute
in the presence of clauses whose top-level connective is !, and so we shall begin with this
case here. Furthermore, for the purposes of this section we restrict our attention to-
single-conclusioned sequents.?

We proceed by presenting several examples, each of which will illustrate certain aspects
of the definition of an interpreter. Full details of such an interpreter are provided in a
forthcoming paper by the authors which describes a prototype implementation of logic
programming for this fragment of linear logic.

EXAMPLE 1 First we consider only the ®- and & -rules. Suppose that we are faced with
the endsequent

p)F (P29 & (p®(¢®49)),

which is not provable in linear sequent calculus. We must attempt a resolution proof of

@)= {{r@)HFr(P®q & (P2(¢®9)),

and fail. According to the definition of resolution proof, we must identify a suitable
expansion of !(p ® ¢) and proceed to identify suitable splittings of that expansion: com-
putationally, this is unacceptable. Our solution is to adopt a lazy approach, and to this
end we permit the interpreter to construct the following proto-proof by modifying the
rules of resolution proof:

{{p®9)}tre {{P®Q}re
{{p@q}rrp {!p®)}rre  {!@®Q}rrp {{pP®Q}IFre®q
{l(p®q)}FrrRP® 4 {{pr®q9)}rrr®(¢®9)
{{r®q It (P2 & (p®(¢®9))

Define the construction of a path in such a proto-proof as follows:
e The ensequent is in every path;
e Traverse the tree towards the leaves, starting at the ensequent:

— Whenever a &-rule is reached, choose a branch and proceed;

— Whenever a ®-rule is reached, proceed along both branches;

e Continue until all branches of the path have reached a leaf.

21 his forces us to abandon M.
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The proto-proof determines a resolution proof just in case for each possible such path in
it, there is an expansion of the antecedent that is compatible with the leaves in the path.
For example, the proto-proof given above has a path marked by asterisks (*). For this
path, there are 2 occurrences of ¢ in the leaves, so that we need the expansion { p, p, ¢, ¢}
of {!{(p ® q)}. However, there is only 1 occurrence of p in the leaves of this path, so
this expansion is not suitable. We conclude that this proto-proof does not determine a’
resolution proof of the given endsequent.

EXAMPLE 2 Now we introduce the —o-rule. Suppose that we are faced with the endse-
quent

PR F(¢—~(g®(P®9)) & (»®9),

which is provable in linear sequent calculus. We must construct a resolution proof of

{{r®q)}Fr(g—- (@20 (P®q) & (p®9).

Adopting our lazy approach, we obtain the following proto-proof:

- {p®a),g}tryp {{(P®4), )t pa o
{{lr®g)hattre {(r®9),q}FrpP®9q
{{r®q)q}Fra®(P®9) B {{pegthr {l(p®q)}tha
{{(p@a)} s a—-(¢®(p®4q)) {{p®q)} i p®q
{{r®a)}Fa (1= (@@ (pP®1)) & (p®g)

There are two paths in this proof, marked distinctly by * and §. It follows immediately
that the expansion { p, q } is compatible with the path marked by f. The path marked by *
is a little more complicated, as the antecedent is a multiset of mized clauses. Thus we must
first use up the purely linear part of the antecedent, namely g, before considering the the
existence of a suitable expansion of !|(p®q). Suppose then that this ¢ is used in the leftmost
leaf, then it remains for us to check the existence of an expansion that is compatible with
the remaining leaves, with ¢ deleted from the antecedent, i.e., {!(p ® ¢)} F; p and
{(p® q) } F g. Here we see that the expansion { p,q} is compatible with these leaves,
so that we can conclude that this proto-proof does indeed determine a resolution proof
of the given endsequent.

EXAMPLE 3 Now we introduce the resolution rule. Suppose that we are faced with the
endsequent

4,7 (g®r)—opkpRp,

which is provable in linear sequent calculus. Since we have that [p,q,r,(¢ ® r) —op] =
{p,q,7,(¢®r)—op}, we must construct a resolution proof of

{p,q,r,(¢®r)op}trp®p.
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Adopting our lazy approach we obtain the following proto-proof:

{p,q,r,(¢®7)—op}Fpq {p,¢,m,(g®r) —0p}tpr
{p,q,r,(¢®r)—op}typ {p.q,r,(¢®@r)—op}rpe®r s
{p.q,r,(¢®@r)—op}typ {pg,r(¢g®r)—opttyp
{p,q,r,(¢®r)—op}Fpp®p

We construct paths as before (in this case there is just one, marked by *), but upon
reaching the lazy resolution rule (labelled by res) we must take adjust our calculations.
The branch of the lazy version of the resolution rule that corresponds to the branch of
the resolution rule of the form { L} kg L, in this case {p,q,r,(¢ ® r) 0 p} k3 p, is not
included in the calculation of the usage of the elements of the antecedent; however the
resolvant clause, in this case the clause (¢® r) —o p, is used at this point in the proof. We
note that for this proto-proof, each of the remaining components, namely p, ¢, r, is used
exactly once in the remaining leaves; and so we conclude that a resolution proof of the
given endsequent is indeed determined.

EXAMPLE 4 Now we introduce the universal quantifier, A, into the antecedent. Suppose
that we are faced with the endsequent

Az (p(z) @ q(2)) F p(t) ® q(u),

which is not provable in linear sequent calculus. Since we have that [Az.(p(z) @ ¢(z))] =
{p(z),q(z) }, with z marked as being global, we must attempt to construct a resolution
proof of

{p(z),q(z) } Fr p(t) ® q(u),
and fail. Adopting our lazy approach, we obtain the following proto-proof:

{p(z),q(x) } F p(t)  {p(z),q(z)} F} q(u)
{p(z),q(z) } b3 p(t) ® q(u)

Each of the leaves (on the unique path marked by *) is of the required form for axioms,
but on one branch the global variable = receives the instantiation ¢ and on the other
it receives the instantiation u; since these are incompatible, we conclude that the given
proto-proof does not determine a resolution proof of the given endsequent.

The examples given above illustrate most of the difficulties encountered in the con-
struction of an interpreter for our notion of linear logic programming. We note that all of
the necessary path constructions can be performed dynamically as the search proceeds.
However, a few further issues are noteworthy.

The occurrence of & in a program may result in behaviour which appears somewhat
disjunctive. For example, as ¢ I ¢ is provable, it follows that ¢ & ¢ - ¢ is provable for
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any 1. Thus when searching for a proof of a given goal A from a program of the form
I', ¢ & 1 we need to search for a proof of both I', ¢ - A and T', % F A, and halt the search
when one branch of the search process succeeds. As the definition of [P] shows, this may
be thought of as finding a formula amongst the alternatives for which the desired result
follows. Hence, rather than literally constructing each alternative program, we may think
of & as a mutual exclusion operator; if any one of the formulae C; in C; & ... & C,;
has been used in the proof, then none of the others may be used. There may be several
such C; for which the goal succeeds, but only one such formula may be used in a given-
proof. For example, both p(a) F \Vz.p(z) and p(b) F Vz.p(z) are provable, and so is
pla) & p(b) F Vz.p(z).

For these reasons an abstract machine for this linear logic programming language
will need to incorporate labelling and mutual exclusion facilities in addition to the usual
unification and resolution mechanisms. Another possible feature of an implementation is
to incorporate modules into the abstract machine along the lines of [20], as mentioned
in Section 1. Such a modules system relies on the presence of goal formulae of the form
D —o @, and as such formulae may be present in the body of a clause, it is possible that
several formulae may be added to the program during computation, which corresponds
to allowing several different modules to be used.

Another complication presented by the linear language which is not present in the
intuitionistic one®? is the management of the goal. In the case of intuitionistic logic, the
goal consists of only one formula at any given stage, and so the only degree of freedom is
involved with the management of the different branches of the search process. Typically
this is done by a depth-first strategy for efficiency reasons. In our case there is an
extra degree of freedom as the goal may consist of several formulae at any one time. It
would seem natural to bow to the usual practice and reduce each formula in a depth-first
manner, but it is less clear whether or not to apply the same strategy to the choice of
formula. This question is further complicated due to the fact that clauses may be deleted
from the program and that programs and goals may be split into smaller progams and
goals during the computation process. Given these complications, it might be best to
reduce all formulae in the goal to atoms before proceeding with any resolution step. It
is anticipated that experimentation with a prototype implementation will provide some
insight into the feasibility of various strategies.

8 Conclusion and Further Work

We have given a proof-theoretic basis for logic programming in linear logic, and we have
seen how a fragment of linear logic may be used as a logic programming language. As
described in Section 6, hereditary Harrop formulae (and hence Horn clauses) may be en-
coded into the linear system in such a way that the properties of the intuitionistic system
are preserved, and so our system may be seen as a generalization of the intuitionistic one.
In particular, “mixed” deduction may be performed, using either the linear resolution

22 As presented in [20].
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rule or the standard resolution rule. This provides the the programmer with a facility to
specify an upper bound on the number of times that a given clause may be used during
execution; if the clause C is to be used twice only during the execution of the goal G,
then this may be expressed by attempting to prove C,C I G. Thus our language may be
used to incorporate both bounded and unbounded resources in this sense.

Linear logic has been applied to the study of concurrency, and hence it is perhaps not
surprising that labelling and mutual exclusion mechanisms will form an important part
of the relevant abstract machine. This suggests that the above linear logic programming -
language may provide an appropriate setting for the study of concurrent logic program-
ming. The “resolve and retract” nature of the linear resolution rule seems particularly
apt in this context. The mutual exclusion properties of the connectives ® and & also
indicate the concurrent nature of the language, as well as being prime candidates for the
application of parallel execution techniques. The use of ® as a search operator seems to
be a valuable feature in its own right, and is the subject of active research. '

A prototype implementation is under way, and it is hoped that experiments with this
implementation will lead to the development of appropriate search strategies and man-
agement techniques. There has been an increasing interest in linear logic amongst the
logic programming community of late, particularly in regard to object-oriented program-
ming [2]. We aim to investigate applications of linear logic programming, particularly in
connection with recent work of Abramsky [1].

It was shown in Section 5 how the quantale semantics for linear logic may be adapted
to the linear logic programming language given in this paper. However, this semantics is
not entirely satisfactory, and we plan to investigate a categorical semantics for linear logic
programming. Some possibilities in this area are the categorical semantics of Asperti [4]
and Corradini and Montanari [9] for classical logic programming.

An interesting point to note is that in [25] there is a semantics for non-commutative
linear logic, i.e., where ¢ ® 1 need not be equivalent to ¥ ® ¢. This clearly has potential
for the study of fixed computation rules, such as left-to-right with depth-first search.

Another area of future research is to investigate intermediate linear logic. The re-
stricted linear logic presented in this paper is not full classical linear logic: negation of
literals only is permitted. However, we certainly have more than intuitionistic linear logic,
due to the fact that succedents may be multisets of formulae, and not just singleton sets.
We aim we develop a theory of intermediate linear logic in the manner of Fitting [11] for
modal and intuitionistic logics.

A related matter is the occurrence of ! in a goal. In the language studied in this paper,
the only place that ! could occur was in a clause, and not (positively) in a goal. This is
due to the failure of the relevant permutation results. It is possible to allow !G under
some circumstances: such as in a language with fewer constructs or a more restricted class
of definite formulae than in this paper. The reader is referred to [17] for a discussion of
such an alternative. It is hoped that a study of intermediate linear logic may be helpful
in identifying such cases.
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A Linear Sequent Calculus

We present the two-sided linear sequent calculus. We let ¢ and 3 range over formulae
and I' and A, etc. range over sets of formulae.

axiom
ok ¢
THéA T.éFA

TTFAA
T, ¢,9,T'FA Tk A, é,p,A
T, 6,0 F A TFA, 65
Tk ¢ A T,éFA
T,¢t+ A A-L Tk ¢t A LR
T, 6,9+ A THé,A Tk A
..__¢_¢____®_L ¢ ¥ R-R
T.oQdFA T.I'F 6@, A, A
T,é6F A LyrA  TEéA THyA, o
To&orFrA T.o&opFA TFé&v,A ”
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T,6FA T,%FA TFé A THe, A

i -R
Tsapra  OF Troov,A Tread,aC

T,6FA r’,«prA'%L Tk ¢,9,A R

T, ¢k - A A Tk ke, A

Ik, A TokA . T, A R

T.I. 6o FAN TFé—ob,A

r,¢1—A'L !I‘f—q&,?A'R

TloF A T Hlg,7A

IT, 6 F7A oL TH¢ A 'R

IT, 7¢ F7A T F76, A

TFA THA

e - JR ?.

I‘,!¢I—AW'L Fl—?gb,AW'R

L1616+ A T 24,76, A

et ?. P A S A ?-

T,16F A ¢r-L T 26, A CT-R

Lgft/z] A I't ¢ly/z], A AR

T,A\z.6F A THAz.6,A

L, ¢ly/z] F A T'F ¢[t/z], A

I‘,Vx.¢I-AV-L THVz.é A V-R

where z is not free in T', A.
We note that the presentation of linear sequent calculus for the full language of linear
logic can be simplified by replacing each two-sided sequent

¢1>---7¢m|_"/)17"'7¢n

by the one-sided sequent
L L
+ ¢1 3‘"7¢mad)l)°",¢n'

The one-sided rules are then given by

T 7 |_¢7A l_(ﬁ-L’A, FA7¢7¢7A,
1

e Fas S FAReA

Faé,A Fap, A % Fé,A I‘f‘tﬁ,A&

TR F e &%,
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k¢, A F o, A o
Fédy,A Féody,A

Fé,4,A

Féxh, A

Fé,7A FA F?4,7¢,A
Fig,7A s s O
o/l A /el A |

FAz. 6, A FVz. A

where z is not free in A.
Here linear implication —o is defined by ¢ —0 ¥ =4 (¢ @ %)™ .

B Quantale Semantics

We present the quantale semantics of linear logic. In the first instance we work with
the language without the exponentials ! and 7. We remark that this semantics can be
extended to include the exponentials ! and ?. The reader is referred to [25] for the details
of this work. We note that this semantics can be extended to include a quite general
analysis of exponentials [25].

DEFINITION B.1 (QUANTALES) A quantale (Q,V,®) is a complete lattice (Q, ) equipped
with an associative tensor product ® which distributes over arbitrary \/s on both sides.

Q is said to be commutative if ® is commutative. Q is said to be unital if there is an

element 1 such that for alla € Q,a®1l=a=1Qa. O

Let Q be a quantale. If we regard Q as a category in the usual way, via the lattice-
order <, then we obtain:

PROPOSITION B.2 The endofunctors (a® —) and (— ® a) have right adjoints, denoted by
—, and —; respectively. O

DEFINITION B.3 (DUALIZING ELEMENTS) An element d of a quantale Q is dualizing if
we have
(a—,d) > d=a=(a—d)—,d

forallae Q. O
DEFINITION B.4 (COMMUTATIVE GIRARD QUANTALES) A commutative Girard quan-

tale is a commutative quantale equipped with a dualizing element L. The operation
— —, L(= — —, 1) is called linear negation and is denoted —*. O
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DEFINITION B.5 (INTERPRETATION) An interpretation of a linear predicate language L
is an ordered triple (A,V,|—|,), where A is an algebra for the theory with constants
0,1, T, L, a unary operation *, binary operations ®, %, & and @, and infinitary
operations \/ and \. V is a subset of A called the valid elements and | — |, is a map from
F(L) to A. O

DEFINITION B.6 (QUANTALE INTERPRETATIONS) A quantale interpretation of a linear
predicate language L is an ordered pair (Q,| —|q), where Q is a commutative Girard”
Quantale and | — | is @ map | —|q : A(L) — Q. An element ¢ € Q is valid if 1 < q.
O

The constants and operations required by Definition B.6 are defined by extending
those of the quantale by the definition ¢; F ¢3 =ges (qlJ' ® q;' )t. We note that using these

operations on Q there is an obvious extension of | — | from A(L) to F(L).
A semantics for a linear predicate language is a class of interpretations. A semantics
is sound with respect to linear sequent calculus if whenever - ¢,,...,¢,, is provable

|¢y " ... B P, |y Is valid for every interpretation I in the semantics. A semantics is com-
plete with respect to linear sequent calculus if the validity of |¢|; for all interpretations I
in the semartics implies that F ¢ is provable in linear sequent calculus.

The reader is referred to [14] and [25] for the proofs of the next two theorems. We
remark that it is sufficient to consider one-sided sequents, [14], [15], [25]. We give the
construction of the linear term quantale and the quantale interpretation of linear logic in
the term quantale, which facilitate the completeness theorem.

THEOREM B.7 (SOUNDNESS OF QUANTALE SEMANTICS) Quantale semantics is sound
with respect to linear sequent calculus: if - ¢,,. .., ¢,, is provable in linear sequent calculus
and if | — |q is a quantale interpretation then ¢y ¥ ... ¥ bmlq 18 valid. O

DEFINITION B.8 (THE LINEAR TERM QUANTALE) Let M be the monoid of lists of ele-
ments of F(L). The linear term quantale is the quantale P(M), with elements the subsets
of M, with \/ as set-theoretic union, @ given by

$@U={¢p|¢cdpecl)

and L given by L = {® | F ® is provable }, where “provable” means provable in linear
sequent calculus. O

It follows that this construction yields a commutative Girard quantale [25].
We now define a quantale interpretation | — IPéMé of linear logic in the linear term
e

quantale P(M). Let Pr: 7(£) — P(M) be map defined by
Pr(¢) =4 {® | F 4, ® is provable},

where “provable” means provable in linear sequent calculus.
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DEFINITION B.9 (THE INTERPRETATION | — |py)) We define the quantale interpreta-
tion
| - IP(M) : A — P(M)
of linear logic in the term quantale P(M) by
| - |p(M) =gef Pr[ A

where | is the usual restriction of mappings. O

THEOREM B.10 (COMPLETENESS OF QUANTALE SEMANTICS) Quantale semantics is
complete with respect to linear sequent calculus: if |¢, & ... ’I‘¢an(M) is valid then
&1, @, is provable in linear sequent calculus. O

60



Copyright © 1990, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.



