LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Towards a Formal Framework
for Evaluation of Operational Semantics
Specifications

by
Fabio da Silva

" YIOMBLUR. [BULIO B SPIeMO |

LFCS Report Series ECS-LFCS-90-126

LFCS December 1990
Department of Computer Science

University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ Copyright © 1990, LFCS

Towards a Formal Framework
for Evaluation of Operational Semantics
Specifications

Fabio da Silva

LFCS - Department of Computer Science,
University of Edinburgh,
fabio@uk.ac.ed.lfcs

Abstract

This paper describes the theoretical basis of a framework for writing and execut-
ing operational semantics descriptions of various aspects of programming languages.
We consider a such framework as a fundamental step towards an environment for
semantic based formal program manipulation in a broader sense. The framework
described here share some common characteristics with other work in semantic
based evaluation, e.g. the Centaur System [BCD*87], and the Animator Gen-
erator [Ber90]. Our approach differs from these works mainly in (1) the formal
characterisation of an operational semantics, and (2) the meta-language of seman-
tics specification, and its evaluation model. Regarding (1), we present a notion
of operational semantics in the framework of first order signatures and first order
structures. Our objective is to present operational semantics specification in a form
that is more amenable to formal manipulation of the kind done by semi-automatic
theorem provers. As far as (2) is concerned, we define a meta-language in which
only a class of deterministic specifications can be expressed. For this meta-language
we define an evaluation model that describes how deterministic specifications can
be evaluated. In this work we present our characterisation of operational semantics,
define the meta-language, and describe its evaluation model. We then describe how
another sub-class of semantics specifications, called determinate semantics, can be
transformed into deterministic ones. This transformation shows how the evalua-
tion model can be applied to a wider class of specifications without changing its
complexity.

Contents
1 Introduction

2 A Formal Characterisation of Operational Semantics
2.1 Preliminary Definitions i e
2.2 First Order Signatures and Relation Semantics
2.3 Inductive Definitions and Operational Semantics

2.3.1 The Treatment of Side Conditions

A Proof Search Strategy

A Semantic Specification Meta-Language

4.1 Well Formed Rules and Definitions
4.2 Deterministic Semantic Specifications

An Evaluation Model

Evaluating Determinate Semantics

6.1 Conditional Expressionst eene...
6.2 Function Application,
6.3 Operator Overloading

The Factorisation Algorithm
The Correctness Proof of FATIR

Conclusions

18

19
21
22
23

23

25

29

1 Introduction

This paper summarises the work we have been doing for the last year towards the def-
inition of a framework for writing and executing operational semantics specifications.
Similar frameworks have been proposed, and some of them have received actual imple-
mentations. One of the motivation for such frameworks is that the formal manipulation.
of real size semantics specifications (e.g. the definition of Standard ML [HMT89]) need
some kind of machine assistance.)

The Centaur System [BCD187] is one step towards this automatic assistance, which
has facilities for helping the writing and testing of operational semantics specifications.
In this system, the meta-language TYPOL [Des88] is an implementation of the Natu-
ral Semantics formalism [Kah87], in which semantic specifications can be written, and
executed. Berry’s Animator Generator [Ber90], although designed with other objectives
in mind, is another example of a system that has facilities for the prototyping of pro-
gramming languages, including a specification meta-language in which a restricted form
of structural operational semantics can be written.

In both systems, an evaluation model is defined to execute the semantic specifica-
tions written in their meta-languages. TYPOL specifications are compiled into MU-
Prolog [Nai83], and then the Prolog program is evaluated according to the usual depth-
first left-to-right evaluation strategy. The Animator Generator has its own evaluation
model for the LSL (Language Specification Language), which does not rely on any other
evaluation strategy.

One central problem with the Centaur approach is that it creates a gap between the
underlying theory of the semantics formalism, and the behaviour of the evaluation model
as defined by the search strategy used by the Prolog compiler. For instance, although
the theory of Natural Semantics regard the order in which semantic rules appear as
insignificant, in fact, since TYPOL is compiled into MU-Prolog, the order of the rules
has the same meaning as in the MU-Prolog evaluation strategy. The problem then is
that changing the order of the rules in a specification may lead to non-termination of
its evaluation. In the Animator Generator, on the other hand, the evaluation model of
the meta-language is considered as the underlying theory of the semantics formalism.
Therefore, no semantic gap exists, since both concepts are made to coincide, although
rather artificially.

We do not agree with both approaches because in some way most of the clarity,
abstraction, and formality that comes with the semantics formalism is lost, which is un-
fortunate. Moreover, the semi-formal treatment of issues like side conditions in semantic
rules given in both approaches, makes difficult any formal reasoning about the semantic
specifications.

We follow yet another approach when designing and presenting our framework. We
start by defining a formal notion of operational semantics, in which inductive systems [Acz77]
play the central role in the semantic specifications. A proof search strategy is then defined
that specifies how to evaluate such semantic specifications. This strategy can be proved
correct according to the underlying theory, but it fails to have an efficient implementation.

Therefore, the second step in the definition of the framework is to present an efficient
evaluation model, even though some expressiveness power in the semantic specifications
has to be sacrificed in the process. This evaluation model is defined three stages, which
are outlined below.

First, the points in the proof search strategy in which, for various reasons (see sec-
tion 4), a non-deterministic choice has to be made during the evaluation are identified."
Then a specification meta-language is defined in which only a subset of the theory can
be expressed, namely the class of deterministic specifications. The motivation for the -
definition of the meta-language is that for each non-deterministic choice identified in the
previous stage, a restriction on the meta-language is defined that rules out the possibility
of the occurrence of such a choice during the evaluation. Finally, we define an evaluation
model for the meta-language, which, together with the definition of the underlying the-
ory, constitutes the basis of a formal framework for the evaluation of a restricted form of
operational semantics specifications.

We believe that this is a good way develop a framework for operational semantics for
three main reasons. First, the definition of the underlying theory opens the possibility
of using the framework, together with other tools like theorem provers, for formal ma-
nipulation of semantic specifications. Second, the way the meta-language was designed
emphasizes which kinds of semantic specifications are ruled out, i.e., which subset of the
underlying theory is being addressed when using this particular evaluation model. Fi-
nally, it leaves open the possibility of other evaluation models, perhaps to address other
subsets of the theory, to be defined without any alteration to the underlying theory itself.

Although the presentation of the framework is completed within the definition of the
evaluation model, it is sometimes very tedious to present some semantics in the form of
deterministic specifications. However, a large number of semantics can be expressed in
a form called determinate specification, which allows more readable and concise specifi-
cations. Therefore, the final step in the description of the framework for the evaluation
of operational semantics is to show how determinate specifications can be automatically
converted into semantically equivalent deterministic specifications by a process called
factorisation. This is an interesting result for (1) it shows that determinate specifications
are not more general than deterministic ones w.r.t the class of semantics that can be
expressed in them, (2) it demonstrates the suitability of the theoretical framework in the
formal manipulation of semantic specifications, and (3) it extends the applicability of the
evaluation model.

This paper is organised as follows: section 2 presents a formalisation of operational
semantics. In section 3 a proof search strategy for inductive definitions is given. Sec-
tion 4 defines a formal meta-language which only the class of deterministics semantic
specifications can be expressed in. Section 5 defines an evaluation model for the class
of deterministic specifications. In section 6, we discuss how determinate semantics spec-
ifications can be factorised into deterministic equivalent ones, and give some examples
of factorisations of common semantics specifications. The factorisation algorithm is pre-
sented in section 7, and in section 8 we prove its correctness. Finally section 9 shows
presents some conclusions, and areas for future research.

4

2 A Formal Characterisation of Operational Semantics

In this section a notion of relational semantics is defined, and then specialised to obtain a

definition of operational semantics, where relations are inductively defined. The objective

of this characterisation is twofold: (1) to have a form of semantic specifications that is

suitable for uniform formal treatment and manipulation of the kind done by theorem-
provers or proof editors; (2) to define the basic underlying theory of a practical framework

in which interpreters, compilers, and debuggers for programming languages can be semi- .
automatically generated from operational semantics specifications.

Although there is a large number of definitions of operational semantics in the liter-
ature ([Plo81], [Kah87], and [Ast89], to give just a few examples), there are two main
aspects of these definitions that make then unsuitable for the kind of framework pro-
posed in this work. First, even though it is possible to formally reason about particular
semantic specifications when using some of the existent definitions cited above, the formal
manipulation that is achieved does not provide an uniform treatment that could be ap-
plied generically to a whole class of specifications. Moreover, if we want to define generic
functions to manipulate any operational semantic specification of some type, those func-
tions must be defined over a rigorously defined abstract object, and not over a particular
specification.

The second aspect is that although the underlying theory of operational semantics
is considered by many as being very simple, fairly often what is considered as a formal
semantic specification has components that do not have formal definitions. Since our
objective is to use the specifications with tools like theorem provers, each component of
the semantic specifications must have been formally defined. For instance, in most of the
descriptions of an inference rule style of operational semantics, which includes [Ast89]
and [Kah87] among others, the issue of side conditions is not formalised

The two aspects discussed above justify the level of formalisation we want to achieve in
our characterisation of operational semantics. In order to motivate the formal definitions
we informally present one small example of a semantic specification, which presents the
dynamic semantics of a small language of expressions as a set of inference rules. The
expression language has constant values denoted by n, variables z whose values are in an
environment E, and one prefix operator called plus. The rules below should be read as
natural deduction style rules, with premisses above the horizontal line and a conclusion
underneath the line. The meaning of a such rule is that if we can prove each of its
premisses we can infer its conclusion.

Ebn—on
E(z)=v ,
m ifz € domE
Etbe — v EFe, — v,

E - plus(e), e5) — v + vy

5

where: n is a constant expression, e.g. 3, 24 or 0; z is a variable and v is its value in
the environment E; the side condition restricts the applicability of the second rule to the
cases when z is defined in E; e; and e, are general expressions, with v, and v, as their
values respectively; and + is the plus operation on values.

Intuitively, the above rules are defining a ternary relation -— among environment,
ezpressions and values, which is a set of triples like (E, e, v) such that (E,e,v) € F— iff vis-
the value of e in an environment E, e.g. (0, plus(3,4),7) € F— and (0, plus(5,10),48) &
F— (where § denotes the empty environment). As can be easily seen in the above -
example, it is not obvious why this particular style of presenting a semantics should
be called operational. Moreover, the meanings of the side condition, the use of the
environment in the premiss of the second rule, and the application of the + operator in
the thir rule are not very clear. In the next sections these points are clarified when this
notion of operational semantics is formalised.

2.1 Preliminary Definitions

We first give some definitions and notation that will be used throughout this section.
The set theoretical notions can be found on any good book in axiomatic set theory, while
most of the definitions on inductive systems are borrowed from [Acz77].

Let A and B be sets; Pow(A) denotes the set of all subsets of A; FinPow(A) denotes
the set of all finite subsets of A; [A — B] denotes the set of all functions from A to B;
and [n] denotes the finite subset {1,...,n} of the natural numbers.

Let S be a set (of sorts); then {A,},cs is the family A of sets sorted, or indexed, by
S. For A an S-sorted family, UA, is the union of all sets in the family A (and NA, is
the intersection), and we often use A to ambiguously denote JA,. If w € S* is a string
sl...sn of sorts in S, and A is an S-sorted family of sets then AY = A,; x ... x A,,.

For this presentation we assume we have an universe U of objects of interest. A rule
is an object (X, x), where X is a set (contained in ¥f), called the premisses, and x is an
object (in U), called the conclusion. An inductive system is a set of rules, usually denote
by @. If ¢ is a set of rules, and A is some subset of U, we define A to be ¢-closed if each
rule in ¢ whose premisses are in A also has its conclusion in A. More precisely, A C U is
¢-closed if for each (X,x) € ¢, X C A implies x € A.

If ¢ is a set of rules, then 1(¢), the set inductively defined by ¢, is defined by:

I(¢) = [{A CU|A is ¢-closed}

Let S be a set (of sorts); an S-sorted rule is an object (X, x,), where X is an S-sorted
set and x, is an object of sort s, such that s € S. All definitions above extend trivially
to sets of S-sorted rules. Moreover, if ¢ is an S-sorted set of rules, then I(¢) is the S-
sorted set inductively defined by ¢. Rules are the special case of S-sorted rules where S is
singleton. Hereafter, we use the sole name rules for both single sorted and many sorted
rules.

When a set of rules ¢ is finitary, i.e., X is finite for each rule (X, x) in ¢, then there
exists a notion of finite length proof, defined below:

6

Definition 2.1 (Finite Length Proof) Given a finitary set of rules ¢, a sequence
ag, a, 18 a finite length ¢-proof of an object b if:

1. a,=b, and

2. for allm < n there is an X C {q;|t < m} such that (X, a,,) € ¢

The next proposition relates ¢-proofs to the set I(#) inductively defined by ¢. We omit
the proof here, which can be found in Aczel’s paper [Acz77]. ’

Proposition 2.1 For a finitary set of rules ¢:
I(¢) = {a|a has a ¢-proof}

This proposition will be central in the definition of a proof search strategy in section 3.

2.2 First Order Signatures and Relation Semantics

In this section a formalisation of relation semantics in the framework of first structures
and related models is presented. The objective is to achieve a better understanding
of the nature of the semantic domains and objects involved in a relation semantics.
This formalisation presents relation semantics as a very general and precisely defined
mathematical object, which is then specialised in section 2.3 to the notion of operational
semantics. The notation and some definitions on many sorted universal algebras are
those of [TWWT78]. Most of the notation and some definitions on many sorted first order
signatures and related models are borrowed from [GB90].

Definition 2.2 (First Order Signature) An S-sorted first order signature Q, called
an -signature, is a triple (S,X,1I) , where S is a set of sorts, X is an S* X S-sorted
family of sets (of operator or function symbols), and 11 is an S*-sorted family of sets (of
predicate or relation symbols).

For all Q-signatures (S, X,II) we require that: (1) NII, = @, i.e., there is no over-
loading of relation symbols'; (2) ¥ satisfies the condition that ZusNZy, =0 for all
s € S and w,w’ € S”, such that w # w’, i.e., if there is overloading of operations symbols
then the result sort must be different whenever the input sorts are different, for each
overloaded symbol in X.

To illustrate the presentation a small example of signature is given. In order to
simplify the reading of the example, suppose we are working with an Q-signature (S, X, II)
. Whenever a string w € S*, w = sl ... sn, is the sort of some relation symbol in II, this
sort is written as the sequence sl,...,sn. If w is as above and s € S is some sort, then
if w,s is the sort of an operation symbol in X, this sort is written as s1,...,8n — s.

! Although this restriction is not strictly necessary its relaxation makes the notation rather obscure.
Therefore, we preferred the more restricted version in this presentation.

Moreover, if w is the empty string of sorts (denoted ¢), the sort ¢, s is written as simply
s.

Consider the signature Bin = (S, X, II) that could be used in the relation semantics of
binary numerals, where:

S = {bin,nat}

Y= {{07 I}bina {Ne:ctOdd, NeztEven}bin—'»bin’ {O}nat’ {Succ}nat-»naty { x}nat,nat—onat}
= {{:?}bin,nat}

Intuitively, the way of assigning meaning to the symbols in the signatures, is by giving
it a model. A definition of first order model, or structure, is given below.

Definition 2.3 (2-Model) An Q-model, for an Q-signature (S,X,1II) , is a triple M =
(|A], @, B), where |A| is an S-sorted family of non-empty sets {A,},cs , where A, is called
the carrier of sort s, a is an S* x S-sorted family of functions a,,, : &,,, — [AY — A/]
assigning a function to each function symbol in ¥, and B is an S*-sorted family of
Junctions B, : 11, — Pow(A") assigning a relation to each relation symbol in II.

A possible Q-model for the Bin signature is given by ModelBin = ({Ay;n, Anas}, @, 6),
where:

Abin = {07 1}
Anat = {0}

The functions in the family o are the usual operations and constants on the nat-
ural numbers, and a;,(0) is the constant function 0 (similarly for ay;,(1)), and
Opin—bin(NeztOdd) and oy, i, (NeztEven) are the obvious functions to construct the
next odd and next even binary numerals respectively. The relation Byipnat(=>) is the
set of pairs like (0,0), or (NeztEven(1), Succ(Sucec(0))), which defines the decimal base
values of the binary numerals in terms of the natural numbers.

For = € II,, with w = s1,...,sn and a; € A,;,, we say that “r(ay,...,a,) holds”
in (JA], @, B) iff (ay,...,a,) € B(x). Usually an object (ay,...,aqa,) is called an n-tuple
in a relation B(r). In what follows, whenever 7 is a binary relation we write a,ma, for
7(ay, a3). In order to formalise a notion of relation semantics we first define how to write
relation expressions, i.e., atomic formulae over an {)-signature, with variables in an S-
sorted set X. This is done in the usual way, by first defining the set of terms over an
)-signature.

Let = (S,X,I) be a first order signature, and X be an S-sorted family {X,},es
of sets of variables such that (X, = 0, and X is disjoint from both ¥ and II. The
S-sorted family TERMx(Q2) of (92, X)-terms is defined to be the carriers of the the free
Y-algebra Tyg(X) , with generators X. In what follows we use z, possibly with subscripts
and superscripts, as a generic element of X, and z, when we want to emphasize its sort.

The S-sorted function V, of variables in a term, i.e., V, : TERMx(Q) — Pow(X,), for
s € S, is defined inductively as follows:

1. V,(z) = {z}, for z € X, and { } otherwise.
2. Vy(o(ty,...,t,)) = U, Vs(t:), for o(ty,...,t,) € TERMx(Q2)

For the Q-signature Bin, and for a set X of variables sorted by S of bin, such that
Xpin = {bo,b1,...}, and X, s = {ng,ny,...}, a term in TERMx(Bin) is x(n,, Succ(0)),
with the set of variables given by V,..(ny x Succ(0)) = {n,}.

If t € TERMx()), then a substitution 8 of terms for variables in ¢ is an S-sorted
mapping such that each 8, has type 6, : V,(t) — TERMx(Q),. It is often necessary to
write a substitution explicitly, in this case we use [] to denote the empty substitution, and
[Zs1/ts1s- -« Tsn/tsn] to denote the substitution of the terms t,;,...,1,, for the variables
Ty .-y Top, Lespectively. We write 8(t) to denote the application of a substitution on a
term ¢.

An a-conversion is a one-to-one substitution 8 : V() — X, and we write t; =, 1,
when there exists an a-conversion for ¢; such that 8(¢,) = t;. A renaming of variables
in a formula f is a one-to-one substitution p : V(f) — X \ V(f), which has the effect
of changing the names of each variable in f to other variables not appearing in f. Two
terms ¢, and t, unify iff there exists a substitution 8 such that 6(¢,) = 0(t,), and the
two terms are different, written t, # t,, iff they do not unify. The composition of two
substitutions 6, and 6,, is denoted by 6,0,.

Then, for a given Q-signatures Q = (S, X, II), the set of well-formed (£2,X)-formulae
is defined as the one-sorted set of expressions WFFx (Q) ? given by:

WFFx(Q) = {7 (ty,...,t,)|r € II,,w = s1,...,sn,t; € TERMx(Q),;}

Hereafter, the term formula is used meaning a formula in WFFx(€2) . The definition
of the S-sorted function V such that V, : WFFx(Q2) — Pow(X,), is extended to formulae
in the following way: V,(n(t,...,t,)) = U;_; Vs(t;). The definitions of substitution,
a-conversion, and unification are also extended to formulae in the trivial way.

An example of formula in WFFx(Bin) is b5 = Succ(n,), for which the set of variables
is given by Wyin(bs = Succ(ng)) = {bs}, and V(b3 = Suce(ng)) = {no}.

Now, a satisfaction relation of formulae in WFFx(Q2) by Q-models is defined in the
following way:

Definition 2.4 (Satisfaction Relation) Let f be a formula 7(ty,...,t,) € WFFx(S).
An Q-model M = (|A|, @, B) satisfies f, or f holds in M, written M |= f, iff for all (S-
sorted) valuation functions v : X — |A|, (v¥(2,),...,v*(1,)) € B(x), where v¥(t) denotes
the evaluation of the term t in the X-algebra (|A|,a) part of M using initiality, with the
values of the variables given by the valuation function v.

>The set WFFx(R) is not the usual definition of formulae over a first order signature, which may
include formulae with quantifiers and logic connectives which are not necessary for our purposes.

In the example, ModelBin = NeztEven(1) = Succ(Succ(0)), but if we use & meaning
“does not satisfy”, ModelBin [~ 1 = Suce(Succ(0)).

An Q-sentence is defined as a ground (Q2,X)-formula, i.e., an (Q,X)-formula f with
V(f) = 0, and Sen(f2) is used to denote the set of all (-sentences. Finally, relational
semantics is defined in the following way:

Definition 2.5 (Relational Semantics) Let O = (S,%,II) be a first order signature,
and S C Sen(Ql) be a nonempty set of sentences, then a relational semantics for S is an

Q-model M if Ml=S iff SeS.

In the example, ModelBin is a relation semantics for exactly the set of pairs (b,n) in
which n is the decimal base value of the binary numeral b.

2.3 Inductive Definitions and Operational Semantics

In this section operational semantics is defined as a particular case of relation semantics
where the relations can be inductively defined. The justification for giving the name
operational to inductive definitions can be informally explained as follows: (1) for the
particular definition of inductive definitions given below, a notion of ¢-proofs similar to
the definition 2.1 exists, and a proof search strategy can be defined that uses the inductive
rules to find ¢-proofs of objects; (2) by examining the way proofs are constructed by
the search strategy, it is possible to identify the individual steps of a particular proof,
and then define a general notion of proof steps; (3) the notion of directed relations of
section 4.1 allows relations to be intuitively interpreted as taking some inputs, performing
some operations on them, and delivering some outputs. Then, whenever a semantics of
some operation is given by an inductively defined directed relation, the proof steps will
describe exactly how such operation acts on its inputs to produce its outputs, and this
is the operational notion we want to characterise.

We start by describing how to define sets of relations inductively. Let M = (|A], a, 8)
be an Q-model (for an OQ-signature Q = (S, L, 1)), in which |A| and « are already defined,
and /3 is to be inductively defined. We first introduce a notion of inductive definitions
over an {)-signature with variables in a set X, and then show how to go from an inductive
definition to the inductive system it defines. Finally, if ¢# denotes the inductive system
obtained from an inductive definition over Q, then I(¢¥) is the set of relations necessary
in order to define 3. This notion is formalised below.

An inductive (©,X)-rule is an object (Pre,c), where Pre is a finite set of (,X)-
formulae, called the premisses, and c is an (,X)-formula, called the conclusion. All
variables in the formulae in a rule are implicitly bound to the rule. An inductive definition
is a set of inductive (2, X)-rules, and ¢x is used to denote generic inductive definitions
with variables in X. When the -signature and the set of variables X can be inferred from
the context, the term inductive rules is used meaning inductive (2, X)-rules, and rules to
denote the rules of an inductive system, as in section 2.1.

10

An example of how to inductively define = of signature Bin would be the following
set of inductive rules, in which we write the rules in a more readable form of natural
deduction style rules:

0=20

1= Succ(0)
bo = Ny
NextEven(by) = x(Succ(Suce(0)),ng)
bo = Ng
NeztOdd(by) = Suce(x(Suce(Succ(0)),n,))

We show how to go from an inductive definition to the inductive system it specifies,
by first showing how to obtain an n-tuple from a formula. Suppose f is a formula
7(ty,...,1t,), for some 7 € II,,. Then for a (S-sorted) valuation function v : X — |A], the
n-tuple derived from f is (v*(¢;),...,v%(t,)), where v¥(t) denotes the evaluation of a
term ¢ in the X-algebra (|A|, @) part of M using initiality, with the values of the variables
given by the valuation v.

As an example, suppose f is a formula b; = x(Succ(Succ(0)),ny). For an assignment
[b1/ NextEven(1),ny/Succ(0)] the tuple derived from f is (NextEven(1), Succ(Succ(0))).

This example emphasizes what we want to achieve with the construction of tuples from
formulae. Intuitively, for objects like the natural numbers, we can define the operations
like x straight in the X-algebra part of the semantics. For more complex objects, like
the binary numerals, we give their meaning in terms of the natural numbers, by defining
the relation =-. Therefore, evaluation by initiality on these objects is just the identity
function on TERMx(Q) .

Once it has been defined how tuples are obtained from formulae, we show how rules
can be derived from inductive rules. Let (Pre,c) € ¢x be an inductive rule; for a given
(S-sorted) valuation function v : X — |A|, the II-sorted rule (X,x,) derived from (Pre,c)
is defined as follows:

e X is a II-sorted family of sets {X,} e, , such that:
X, = {(v*(t), .., v* (ta)I(ts, .. 1) € Pre}
e X, is a II-sorted object:

%, = (), ..., v*(¢,)), for c = w(ty,...,1,)

where the tuples are obtained by the construction given above.
Then the inductive system specified by @y is the union of the sets of rules derived from
each rule in ¢y for all possible valuations v, and is denoted by ¢¥. Therefore, ¢* is the

11

inductive system uniquely determined by an inductive definition ¢y. In what follows we
use I(¢x) for I(qS#), and a ¢y-proof for a formula f is just a ¢*-proof for some evaluation
v"(f) of f, for a given valuation function v.

The concept of an inductive -model is defined as a first order -model in which the
family of functions § is replaced by an inductive definition ¢x of a family of relations.

Definition 2.6 (Inductive 2-Models) An inductive Q-model O for a signature Q is
a triple (|Al, a, ¢x) where |A| and a are as in the first order Q-model, and ¢x is a set of .
(Q,X)-rules.

Then the satisfaction relation of definition 2.4 can be generalised to inductive (2-
models. Consider that an inductive Q-model O = {|A|, e, ¢x) is a way of defining a first
order 2-model (|A|, a, B) such that 8 is the S*-sorted family of functions j,, : II,, — I(¢x),
given by B,(m) = I(#x).- Therefore, if f is a formula =(¢y,...,t,) € WFFx(2), then
O = f iff for all valuation functions v, v¥*(f) € I(¢x),.

And a definition of operational semantics can be formally presented as follows:

Definition 2.7 (Operational Semantics) Let Q = (S, X, II) be a first order signature,
then an operational semantics for a non-empty set of sentences S € Sen(f) is an inductive

Q-model O = (|A], 0, dx) f OES ff S€S.

From the definitions given above an Q-model O = (|A], @, ¢x) is an operational se-
mantics for exactly the II-sorted set of relations I(¢x). Therefore, hereafter O will be
called an operational semantics without specifying for which set of sentences, since this
can be easily deduced from O.

Finally, an operational semantics specification is a pair D = (2, O), where € is a first
order signature and O is an {2-model such that O is also an operational semantics. Since
the set of variables X can often be inferred from the context, in what follows ¢ will be
used for ¢x.

2.3.1 The Treatment of Side Conditions

Before the characterisation of operational semantics is finished, it is necessary to show how
the concept of side conditions fits in the framework. In most of the work on operational
semantics, side conditions are treated in one of two ways: (1) by considering them as
normal premisses, for which a pre-defined inductive definition exists; (2) by treating
them as special objects, whose meaning is somehow defined in an ad hoc way, e.g. by
calling Prolog predicates, as in TYPOL.

Both treatment have problems which make the side conditions in semantic specifica-
tions objects that are difficult to formally reason about. In (1) there is no nice way of
inductively define some side conditions, basically because some objects (e.g. real num-
bers), and some relations (e.g. inequality) cannot be inductively defined. The problem
in (2) is that the meaning of side conditions somehow “depends on the implementation”,
and therefore any formal reasoning about them become difficult, if possible.

12

The approach proposed here is formalised in three stages: (1) for each operational
semantics specification (2, O) , a new sort bool is included in S of 2, together with a new
carrier {true, false}poo in |A| of O. Then, (2) the predicates that are to appear in side
conditions are defined in ¥, poo1, and their implementations are defined as some o, poot
functions, for some w. Finally, (3) a new relation name, say =, is included in II}401, and
the following rule is added to ¢ of O: ‘

Thool (true)

This has exactly the desired effect for the side conditions, since each term in T5(X),, boot
will be evaluated to either true or false when initiality is applied, and only the ones re-
sulting in true will be given a proof.

The reason why this formalisation was chosen is that: first, it allows side conditions
to be treated as formulae, and therefore appearing as normal premisses in the rules.
Second, the precise meaning of side conditions is given as the evaluation of a term in
the X-algebra part of the semantics. Finally, it does not preclude the use of pre-defined
inductive definitions of predicates as discussed above.

In this way the only special treatment for side conditions are the points discussed
above. No special treatment is necessary in the definition of a proof search strategy or an
evaluation model, since the terms in the inductive rules are already being evaluated using
initiality. This discussion finishes the definition of the characterisation of operational
semantics. It remains to show how this notion can be used to automatically check whether
an object is defined by some semantics. This is done in the definition of a proof search
strategy of next section.

3 A Proof Search Strategy

Recall that proposition 2.1 states a relationship between a particular definition of proofs
in an inductive system and its associated inductively defined set. In the context of
inductive definitions presented in section 2.3 that proposition can be restated as: if ¢
is an inductive definition, and fis a formula =(¢y,...,%,), then for a given valuation v,
v#(f) € I(4), iff v*(f) has a ¢-proof.

With a given operational semantics specification (2, O) , there are many useful ques-
tions one can ask. For instance, whether a sentence s € Sen(2) holds in O, i.e., is it the
case that O |= s?7 Another, more interesting, question could be: for a given formulae f,
does there exist a valuation v, such that O = v*(f)? From the discussion of the last
paragraph, this question is equivalent to ask whether v#(f) has a ¢-proof.

Thus, to check whether an operational semantics satisfies some formula f means to
use the inductive definition ¢ to find a @-proof for v#(f), for some valuation v. In the
process of searching for this proof, variables in f get instantiated appropriately such that
if a ¢-proof exits the final instantiation of f belongs to I(¢),. In other words, the search
for a ¢-proof for f also finds a valuation v such that v*(f) € I(¢),.

13

Back to the example of section 2, the sentence NeztFven(1) = Succ(Succ(0)) can be
given a ¢-proof in the rules of section 2.3. On the other hand, the search for a ¢-proof
for the formula NextEven(1) = n, should find a valuation v = [n/Succ(Succ(0))] such
that v¥#(NextEven(1) = n) has a ¢-proof.

In this way the operational semantics can be used not only to check whether a sentence
is satisfied by some semantics specification, but also to query about the values of certain
variables in a formula (like n in the above example). Usually these variables are in the
place of results of programs, and the proof becomes a way of evaluating the programs
according to the operational semantics.

In what follows a proof search strategy for inductive definitions is presented, which can
be proved sound and complete according to the definition of ¢-proofs. Let D = (Q2,0) be
an operational semantics specification, such that @ = (S,%,1II), and O = (|A|,,4). A
closure is an object (6 : ®), where 4 is a syntactical representation of an S-sorted family
of substitutions, and @ is a finite set of (2, X)-formulae.

The basic idea is to present for each set of inductive rules ¢, a non-deterministic
terminal transition system PSS, = (=4, S, T), where S is a set of closures, also called
states, T C S is a set of closures of the form (0 : 0), and =4C S x § is a transition
relation defined by the rewriting rule below:

(0:®) =, (Eat(00') : (8 \ {f}) U p(Pre))

where: f € ®, (Pre,c) € ¢, §' is the most general unifier of 8(p(c)) and 6(f). p is a
renaming of variables in the formulae to new variables not appearing in the left-side of
the arrow®. The operation Ezt applied to the substitution 86’ has the effect of extending
the substitution by the following construction: for all variables z in the domain of 6¢’, if
06'(z) is a ground term ¢ (i.e., a term without variables), then obtain the evaluation of
t by using initiality in the X-algebra part of the semantics. Finally, extend 68’ with the
binding [z/06'* (t)], where 06" (t) denotes the evaluation of t.

Then, a non-deterministic acceptor for PSS, can be used to check for proofs of formu-
lae. The correctness of PSS, can be stated as follows: for all formulae f, ([]: {f}) =>;

(0 :) iff O(f) has a ¢ — proof, where = denotes the transitive closure of =>4. The
proof, although trivial, will not be given here due to shortage of space.

With the proof search strategy above the underlying theory of the framework for
operational semantics is actually completed. What remains to be done is to show how
the proof search strategy can be used in a practical tool for the execution of semantics
specifications. This means that an implementation for the PSS, must be given. In par-
ticular we are interested in an efficient implementation in the sense that no backtracking
strategy is used. k

The design of an efficient implementation for PSS, sums up to point out where non-de-
terminis-tic choices occur in PSS, and then give these choices a deterministic implemen-

3The renaming p is technically necessary to assure that variable names do not get mixed up when
either the same variable name appears in more than one rule, or there is a recursive use of some rule
during a proof.

14

tation which does not involve backtracking. What then becomes the problem is that it is
not always possible to achieve this efficient implementation for all specifications that can
be expressed in the theory. Therefore, we take the approach of first defining a semantics
specification meta-language, in which only a subset of the theory can be expressed. An
evaluation model for the meta-language is then defined, which can be given an efficient
implementation.

4 A Semantic Specification Meta-Language

In this section a specification meta-language is designed, in which only a class of de-
terministic semantics specification can be expressed. This design is done in two steps:
(1) a definition of a notion of well formed rules; (2) the characterisation of the class of
deterministic semantics specifications. Both steps are necessary to avoid two sources of
non-determinism in the search strategy, which are pointed out below.

Considering (1), the problem is how in a state (6 : ®) the next formula to be proved
is chosen. Since @ is an unordered set, we have a choice of picking up any element of it to
be the next formula to be proved. However, some formulae in ® may have non-complete
terms, i.e. terms whose some of the variables are non-instantiated. It can be problematic
to chose such formulae to continue a proof, because for some possible proof strategies
backtracking may be necessary to recover from a failure state in some proofs.

However, the problem of picking up the next formulae in a state can be solved without
the need for backtracking, if ® can be ordered such that its smallest element is always
the correct next formula to be chosen at any state. This solution involves to know what
are the possible correct orders in which the premisses of rules must be tried. If we know
such ordering on the premisses of each rule in a semantic specification, then ® can be
treated as a sequence of formulae. Moreover, the operations for insertion and deletion
of formulae in ® can be defined consistently with the ordering of the premisses (this is
further discussed in section 5). Therefore, an evaluation model that uses sequences of
formulae with insertion and deletion operations as discussed above would be deterministic
and work without the need for backtracking. The definition of well formed rules has the
objective of allowing a natural definition of an ordering relation on sets of premisses of a
rule.

As far as (2) is concerned, we want to treat another source of non-determinism in
PSS, which is related to the problem of choice of rules. By restricting the semantics
specifications to be deterministic we want to exclude a class of inductive rules, which one
example of is the rules for conditional expressions, given below:

e, = true e =>r

"if ¢, then e, else e3 = r

;€ = false e3=> 1
" if ¢, then e, else e; = r

15

Whenever rules like R and R’ are allowed, it is not possible to choose which one to use
to follow a proof until some of the premisses have been tried. This leads to the necessity
of some kind of backtracking strategy, which we want to avoid for efficiency reasons as
already discussed above.

4.1 Well Formed Rules and Definitions

In this section a notion of well formed rules is presented. The defined conditions are.
imposed on each rule in an inductive definition.

Let D = (Q,0) be an operational semantics specification with @ = (S, %,II) and
O = (|A|, e,). A direction in a relation symbol 7 C II,,, for w = sq,..., s, is a partition
D = {P,R} on [n]. For this presentation it is assumed that each §-signature is given an
unique II-sorted set of directions {D,},er , one direction for each relation symbol in II.
A relation symbol with a direction is called a directed relation. The definition of directed
relation presented here is an extension to the definition given in [Chi89] for the case of
binary relations.

If 7 is a directed relation with D, = {P,,R,}, a formula =(¢,...,t,) € WFFx(Q)
is written 7(¢p_,tg_), or even w(tp,tg) when the subscript = can be determined from
the form of the formula. Notice that this is not an extension to WFFx(€2) but only a
“syntactic sugar” for writing formulae in a directed relation. Therefore, when we write
7(tp,tg) € WFFx(Q2) we mean n(ty,...,t,) € WFFx(Q), where the formula = (¢y,...,t,)
is the “desugared” form of 7(fp,tg). The terms in tp are called phrases and those in tg
are the results of a directed relation 7.

For the relation =p;, nat Of section 2, a possible direction can be such that for a tuple
by = Succ(0), tp_ = by and tg_ = Succ(0).

The function V and the definitions of substitution, a-conversion, and unification ex-
tend to the object tp (also to ¢g) by considering their effect on each term t in #p (also in
tR)o

We follow by defining a dependency relation < in WFFx () . The intuition behind
this relation is that if a formula f’ depends on another formula f, then some terms
in the results of f have variables that also appear in some terms in the phrases of f.
This indicates that f is “producing” the instantiation of some variables which will be
“consumed” by f’. Therefore, in a proof f must be tried first.

The relation < is defined as follows: for f = n(tp_,tg) and f' = W'(t;,",,t%”'), f=<f
if V(tr,) N V(tp) # 0. Then let a relation T to be the transitive and reflexive closure of
<. The relation C is used in the definition of well formed rules given below.

An inductive rule (Pre,c), where Pre € FinPow(WFFx(Q)) and ¢ € WFFx(Q), is
defined to be well formed iff for ¢ = 7(tp,tg), both conditions below hold:

1. £ is antisymmetric on the elements of Pre, i.e. C is a partial order on the set of
premisses.

16

2. For each term ¢ in tg, either V(t) = 0, or for each variable v € V(¢), either v € V(tp),
or there exists a formula f € Pre, such that v € V(f).

Hereafter,inductive rules are written in the more common form of natural deduction
style rules, as below:

Pre € FinPow(WFFx(Q))
c € WFFx()

For a given set of premisses Pre, and f € Pre, the notation s(f) denotes the formulae
in Pre that are strictly smaller than the formula f according to C, called the strict initial
segment determined by f in Pre. Tle definitions of the function V, substitution, a-
conversion, and unification generalises to the strict initial segment of a formula in a set
of formulae by considering its effect in each formula in the segment.

The partial ordering C is the one in which a proof search strategy should try the
premisses in order to guarantee that instantiations of variables in the premisses are done in
an appropriate sequence. If produced variables are defined as those variables that appear
in some result term of some formula in Pre, the argument for using this particular partial
order is that whenever any premiss is about to be tried, all its produced variables are
instantiated. Moreover, no further instantiation of variables will invalidate the previous
instantiations because C is a partial order, and therefore Pre is cycle free.

Although it is possible to define a partial order on sets of premisses as discussed above,
an actual implementation of an evaluation model would have to chose a particular total
order in which to carry on the proofs. Nevertheless, this total order only need to be
consistent with T, which gives a great deal of flexibility in the definition of the evaluation
model. However, in this presentation this flexibility is not exploited any further, which
is a topic for future work.

Hereafter, we assume that all sets of premisses are totally ordered by an ordering
relation that is consistent with C. Whenever, a rule had its premisses ordered by a total
order as discussed above, it is called an C-ordered rule, and is written as follows:

™ (tPh tRl) s Wn(th tRn)
7(tp,tr)

where the indexing of the formulae indicates the total ordering.

4.2 Deterministic Semantic Specifications

A set of well formed inductive rules ¢ is defined to be deterministic if there is no pair of
rules (Pre,c) and (Pre’,c') in ¢, such that whenever ¢ = n(tp,tg) and ¢’ = m(tp,tg), tp
and t;, unify.

Well formed deterministic sets of inductive rules form a class of semantics specification,
which is a subset of all possible specification in the theory defined earlier. In the next
section an eflicient evaluation model is defined for this class of specifications. In the

17

next few paragraphs yet another subset of semantic specifications, called determinate
specifications, is defined and compared with the deterministic ones The definition of
determinate specification is an extension to the definition given in [Ber90], where a more
restricted form of rules is used.

A set of inductive rules ¢ is determinate iff for each pair of rules (Pre,c) and (Pre/,c’)
in ¢, whenever the conclusions are such that ¢ = 7 (tp,tg) and ¢’ = W(t;, t;%), either:

o lp # t;, i.e. the phrases of both conclusions do not unify, or

° tp =, t;,, and there exits ;(tp;, tg;) € Pre ar’ld wi(t;,i,t;,d) € Pre', such that tp; =,
t;:p tRi # t;{p and s(wi(tPi,tRi)) =a S(Wi(t;:mtm))'
where the pair of premisses m;(tp;, 1g;) in Pre, and m;(t,,, t5,,) in Pré, is called a distinction
pair. When n rules clash as defined above, the concept of distinction pair generalises to
distinction n-tuple in the trivial way.

Determinate sets of inductive rules only allow deterministic programming languages
to have their operational semantics specified. This can be seen informally by considering
that whenever two rules have conclusions which unify with a given formula, at most
one will be used in the proof of the formula, for at most one of the components of the
distinction pair can be proved.

The subset of determinate specifications is not more powerful than the subset of de-
terministic specifications, in the sense of the class of semantics that can be expressed
in them. However, determinate specifications allow more flexibility in writing the se-
mantics, leading to more readable and concise sets of rules. Moreover, there exists an
algorithm that converts determinate specifications into deterministic ones. This is desir-
able since semantic specifications can be written in the more flexible form of determinate
specifications, converted into deterministic equivalent specifications, and the resulting
specifications can be evaluated in the evaluation model define in section 5. This issue is
further discussed in section 6.

5 An Evaluation Model

The objective is to define an evaluation model for the class of deterministic semantic
specifications defined in the previous section. This is done by defining another terminal
transition system which uses the fact that premisses in the inductive rules are ordered.
This allows the new transition system to treat the sets ® in a state (8 : ®) of PSS, as
sequences of formulae. Therefore, we must define operations to manipulate sequences,
like insertion and deletion of elements.

At this stage we are faced with various options on how to define the operations to
manipulate sequences of formulae. The only requirement for these operations is that the
insertion and deletion on sequences must be somehow consistent with the partial order C.
Intuitively, this means that the insertion of two formulae f and f’, such that f C f' but
f' Z £, in any sequence must be done such that f is always deleted from the sequence

18

before f'. Each of the possible options for the definition of the operations somehow
characterises how the evaluation model will work. For instance, treating sequences as
queues results in a search strategy that works breadth-first, whereas treating sequences
as stacks would make the strategy to work depth-first.

It is not obvious which particular implementation to chose for an evaluation model,
mainly because these choices somehow depend on how and why the evaluation model
will be used in practice. In the process of defining our evaluation model various factors
were taken into account, but a deep discussion on those factors is out of the scope of this -
paper. A depth-first search strategy was chosen, with the order in which premisses are
tried given by a total order consistent with C, as discussed in section 4.1. The transition
system PSSy is redefined to make explicit use of sequences, and treat them as stacks of
formulae with the left-most element of the sequence being the top of the stack. The new
transition systems is called EMy for evaluation model of ¢. The transition relation is
defined below, where f,6 denotes a stack of formulae with top f:

(0 :faa) =>¢ (Ext(aol) : p(ﬂ'l(tPlatRl)% v ,p("rn(thtRn))’J)

where: T2 l’tf;rl()t;'xgt""’t*‘") € @, 0 is the most general unifier of 6(f) and 0(p(x(tp,tr))),
and p is a renaming for variables in the formulae to new variables not appearing in the left
side of the arrow. The operation Ezt is the same extension on the substitutions defined
in section 3.

Therefore, a deterministic acceptor for EM, can be used to evaluate deterministic
semantics specifications. This deterministic acceptor can be easily implemented in much
the same way as a Prolog interpreter, but without the need for any backtracking mech-
anism. At this point we already have defined a formal framework in which (1) a large
class of semantic specifications can be written in a form that is suitable for formal rea-
soning and manipulation, (2) within the whole class of semantic specifications expressible
in the formalism, a subclass of deterministic well formed specifications can be efficiently
evaluated.

6 Evaluating Determinate Semantics

Although the definition of a framework for evaluation of operational semantics was com-
pleted in the last section, to work in the class of deterministic semantics is sometimes very
tedious. Nevertheless we do not want to change the evaluation model, in order to cope
with a wider class of semantics specifications. Therefore, we investigated how another
class of specifications, namely that of determinate specifications, could be converted into
deterministic ones.

This investigation turned out to be very useful for two reason: (1) we proved that
determinate specifications and deterministic specifications express the same class of se-
mantics; (2) we designed an algorithm to convert from determinate specifications to
deterministic ones, which allows the use of EM; with determinate specifications.

19

Regarding (1), the way the proof was carried out gave us confidence that the formal
framework of sections 2 and 3 actually provides the level of formality required for the
semantics specifications. As far as (2) is concerned, semantics specification can now be
written in the more concise and easier to write form of determinate specification, while
the transformed deterministic specification is evaluated in EM,.

In what follow we comment on how the transformation algorithm was designed. But:
before some new definitions used below are given. An inductive rule (Pre,c) is candidate
for f in a state (6 : f,6) if 6(f) and 0(c) unify. A candidate rule (Pre,c) is applicable for -
fin (6 : f,8) if the transition sequence starting at this state and using the rule (Pre, c) to
try the proof for f eventually reaches a state (6 : €) (where € denotes the empty sequence
of formulae). We say informally that two inductive rules clash in a state (6 : f, 6) if both
rules are candidates for f in this state.

Then, notice that, whenever determinate specification are being considered, there is at
most one applicable rule at each state of EM,, but there may be more than one candidate.
The problem is that to find the applicable rule in any state is not in general possible
without trying at least some premisses of each candidate rule, in order to discharge the
non applicable rules. However, from the definition of determinate rules, whenever two
rules R and R’ are candidates for a formula f in a state (8 : f,§), these rules have a very
special form: ‘

R T1(tp1,tR1)s - « > Ti(tPis tRi)s < « « » T (tPrs TR)
m(tp, tr)

o T1(tpys tay)y - - s Tiltpir tp)y - o T (B, tg,)
' T(th, tp)

!

R"k), 1 <k<i, tp; =, tp,, and tg; # tg,.

This looks very similar to the case for context free grammars, when two productions
for the same non-terminal symbol have a common initial segment. For this case there
exists an algorithm which factorises the common segment, such that the productions in
the factorised grammar can be chosen by looking only at the first symbol (see [ASU86]).
Moreover, this factorisation preserves the meaning of the original grammar, in the sense
that the original and the factorised grammars generate the same language.

The way the transformation algorithm works is by factoring clashing rules in a similar
way as grammars are factorised. Therefore, no alteration must be done on the evaluation
model for it to be applied to a wider class of specifications

In the next section, we exemplify the factorisation of sets of rules as discussed above.
We give the first example in full, explaining it step by step in order to illustrate the
algorithm for the factorisation, which is presented in section 7. In the examples we write
tp = 1ty instead of = (ip,tg), and use concrete syntax instead of the less readable abstract
syntax of terms.

such that: my(lp,, R,) = Te(tp, 1t

20

6.1 Conditional Expressions

The rules R and R’ given below are part of a dynamic semantics for a simple expression
language, in which the binary relation = intuitively means: e = r iff r is the result
of the evaluation of the expression e. R and R' define the meaning of the conditional
expression, and are written as follows:

e, = true e =T
"if ¢, then ¢, else e = 1

, e = false e3=> T
"if ¢, then ¢, else ¢ = r

Clearly, the set ¢ = {R,R'} is determinate, since the formulae ¢, = true and e, =
false form a distinction pair, which means that in a state (0 : if e, then e, else e; =
r,a), of EMy, R or R’ are candidate but at most one is applicable. We will show how to
factorise ¢ into another set ¢, such that ¢’ has only one candidate at each state in EM,.

Step 1: Find a substitution S which a-converts the phrase of the conclusion of R’ (in this
case, if ¢, then ¢, else e;) into the phrase of the conclusion of R (if e, then e, else e;3).
Apply S to R’ obtaining a rule R”. This step is necessary in order to get the same
name for corresponding variables in both rules. In this case, § is the identity mapping,
therefore R” = R'. Here it is assumed that a-conversion does not alter the meaning of a
rule. This is valid since variables are bound to the rules they appear in.

Step 2: Substitute the result, r, of the conclusion of R for a fresh variable. In this case,
change r to ', getting if ¢, then e, else e; = 1’

Step 3: From one of the elements of the distinction pair (say, e; = true), substitutes
the result by fresh variables, creating a formula e; = " (where r” is new).

Step 4: Create a new formula K(r”, e;, €5, '), where K is a fresh relation’s name, and the
phrase of K is r”, e,, e; and the result of K is ' . Combine the three formulae constructed
before into a new rule:

1 " !
e =>r K(r", ey, €3, 1)

if e, then e, else e; = 7/

Rl:

The intuition behind the new relation K is that it is postponing the decision between
the rules R and R’, by “getting” the result ", which was “calculated” by the first premiss,
and “passing” its value together with the variables e,, and €3, to some other rules, while
it is also “receiving” the result ' from these rules. The variables e;, and e; are those
necessary in the phrases of the remaining premisses e, = r of R, and e; => r of R'.

21

Step 5: Build two new formulae K(true, e,, 5, 7) and K(false, e,, €5, r), and with them
construct the two new rules below:
. €9 =T
2" K(true, e;, 5, 1)

R - €3 =>r
" K(false, e,, €5, 1)
And here, the intuition is that R, and R3 will receive the result from the distinction

pair, “calculate” in rule R,, and since both conclusions do not unify, at most one rule
can be candidate at any state in a transition of EM,.

Step 6: The set ¢' = {R;, Ry, Rs} is the factorised set of rules from 4. Since there is no
clashing in ¢’ we can stop applying the factorisation.

It is not difficult to show that ¢ and ¢’ are equivalent in the sense that a formula has
a ¢-proof iff it has a ¢'-proof. Moreover, ¢’ is trivially deterministics, and therefore our
goal was achieved.

6.2 Function Application

Consider now a fragment of a semantics for a simple functional programming language.
The rules of the specification describe a ternary relation =, with the intuitive meaning
that: (E,e,r) € b= iff ris the result of evaluating e in the environment E. The rules R
and R’ describe a usual semantics for function application:

EF e = [z,e,E ErFe=r
E+{z—r}Fe=1r

R:
Etee=r

Ele = const Ete=r APPLY (const,r) = r'

R,
EFee=r!

where ((E,¢,) = [z,¢,E'],(E,¢,) = const) is a distinction pair, and s((E,¢) =
[z,e,E") = (E,e;) = r and s((E, ¢;) = const) = (E, ;) = r are trivially a-convertible.
We will not go through all the steps of the factorisation, but only show the final factorised
set of rules ¢’ below:

ElFe=r Ele =" IC(r'”, r,r’
Ry:
ElF ee=r"

.E'+{x|——>'r}|‘e=>r'

Ra: K([z,e, ET,r,7)
~APLLY(const,r) = r’
3 K(const,r,r")

22

6.3 Operator Overloading

The last example is a fragment of a static semantics for an expression language in
which the operator + is overloaded. The relation F: should be understood as follows:
(TE, e,7) € I-: iff € has type 7 in the type environment TE(which maps variables to their
types).The rules R and R’ describe how to type +:

R_TEI—elzint TE I- e, : int
) TEF e, + e, :int

R - TElF e :real TEF e, :real
| TEF e, + e, : real

where (TE & ¢, : int, TE ¢, : real) is a distinction pair (not unique in this case). The
factorisation of the set ¢ = {R, R’} produce the following three rules:
R . TEF e : 7 K(r,TE, e, ')

v TEF e +e: 7

~ TEF e :int
2" K(int, TE, e,, int)

R TE | e, : real
%" K(real, TE, e,, real)

7 The Factorisation Algorithm

Initially, we state the problem we want to solve by factorisation of rules, and then present a
factorisation algorithm called FAIR, for Factorisation Algorithm for Inductive Rules. For
an operational semantics definition D = (Q,0) where @ = (S,%,1I) and O = (|A|, 2, 8),
the factorisation problem is to transform ¢ into another set ¢, possibly adding new
relation names in II making it into II’, such that

1. ¢'is deterministic, and
2. for all formulae f € WFFx(Q), fhas a ¢-proof iff fhas a ¢'-proof.

In order to make the presentation of the algorithm clearer, we define the candidate
class of an inductive definition ¢ as a partition CC4 of ¢ such that two rules (Pre,c)
and (Pre/,c’) belong to the same element of CC, iff c = w(tp,tg) and ¢ = r(t;,,t'R), and
tp =, tp, i.e. the rules clash. Therefore, for any formula f € WFFx(Q) each candidate
rule of f is in at most one set in CCy.

We present the algorithm FAIR for the special case when the candidate class CC4 has
each element with at most two rules in it. The generalisation is straightforward and we
omit it here for clarity.

23

FAIR:
Given (|A|,@,¢) , and ¥ € CC, such that 3 = {R,R'}:

Wl(tPlv tRl)a ey Wn(tPna tRn)

R:
W(tPatR)
T).t ()
w(th, ;)

where: (1) tp =, t5; (2) 7;(tpistr;i), and =, (tPJ, RJ) form a distinction pair; (3) and

s(m;(tpsy tri)) =a s(7r (¢, pj» RJ)) Factorise % using the steps below:

Step 1: Determine one substitution 6, from V(i) to V(tp), such that 8(¢,) = tp. Apply
0 to R’ to get a rule R" = S(R'). This step is necessary to ensure that corresponding
variables in R and R” are the same. And it is valid since variables are bound to the rule
they appear in.

Step 2: Generate a new formula 7(tp, vg), vg = S'(tg), where S’ is a mapping replacing
the term ¢, by a fresh variable v, for each term in tg, such that S’ preserves the sorts of
the terms in the new variables.

Step 3: From 7;(tp;, tr;), build a new formula 7;(tp;,vg;), Vr; = S" (tg;), where §" is
mapping replacing the term ¢;, by a fresh variable v;, for each term in tg;, such that "
preserves the sorts of the terms in the new variables.

Step 4: Create a new formula K(vg;,Z,vg), where K is a new relation’s name, vg was
defined in Step 2, vg; was defined in step 3, and Z is a sequence of variables obtained
from a set of variables given by the formulae:

— ((U V(tre) UV(tp)) n 0 V(tpk)) u (1)

k=1 k=t+1

((U V(tg,) UV(E,)n U V(tpk)) (2)

k=j+1

(Dl V(i (tpx, tre)) N V(tR)) U (3)

k=1
j-1
n
U V(s tre) N V() (4)
k=1
such that Z = v,,...,v,,, whenever V = {v,,...,v,,}. Then the direction of K is
obtained by getting the terms in vy, and Z as the phrases, and the ones in vy as the

results of K.

24

Step 5: Create two new formulae:

K(tgi,Z,1tg)
K(tg; Z,t)

Step 6: Build ¢’ = {R,,R;, R3} in the following way:

B(7(trirtes)) milteivri) K(vmirZ,vR)

R
! 7(tp, vR)
R Tit1(tPit1,tRi41)s - - - » Tn(tPns tRn)
2 K:(tRh Z7tR)
" n n n n 1/
Ry : Tit1 (tPj+1’tRj+1) oo (o tRn)
,C(tirlgj) Z’ tﬁ)

The factorised set of rules is given by: ¢' = (¢ \ ¥) U1)’, with the appropriated extension
to II to introduce the new relation K.

Step 7: Reapply FAIR to ¢’ until CC4 has only singleton elements.

8 The Correctness Proof of FAIR

In this section we present a proof that FAIR is correct according to its specification, given
in Section 7. We assume that FAIR only produces sets of well formed rules, which can
be easily checked from the form of the generated rules, and will not be proved here.

It is necessary to show that for a semantics specification D = (2, 0), where Q =

(S,%,10) and O = (|A|, @, ¢), FAIR applied to ¢ produces a ¢’ such that:

1. ¢ is deterministic, and

2. for all formulae f € WFFx(Q), fhas a ¢-proof iff fhas a ¢'-proof.

The proof is given for the case where each element of CC, has at most two elements.
We assume that a generic element ¢ € CC; is ¥ = {R, R}, as in section 7, and that
FAIR applied to ¢ produces ¥' = {R;, R, R3} (also as in section 7). The proof is split
in two cases regarding the items 1 and 2 above.

25

Case 1: ¢ is deterministic

To show that ¢’ is deterministic is equivalent, by the definition of candidate class, as to
show that the candidate class CC, has only singleton elements. Suppose ¢' = (¢\9)U Y
is the result of the first step of the application of FAIR on ¢, as described above. We first
show that CCy4 has exactly one non-singleton element less than CCy. This is the same.
as to show that the factorisation gets rid of one non-singleton set ¢ € CC, and does not
introduce any other new non-singleton set in CC, by adding the set of rules Y.)

The first argument is trivial since ¢ € ¢'. For the second argument suppose that
there exists a new ¢” non-singleton set in CCy, after applying FAIR. For this to be the
case at least one rule in ¥” has to be one of the rules in 3', otherwise 3" & CCy and
therefore would not be new in CCy.

Suppose that the rule R, € ¢’ is one rule in 4", then any other rule in %" has to be
of the form 7(t,, 1) such that tp =, t,. Suppose there exists such a rule, and call it R".
But R” cannot be neither R, nor Rs, since 7 # K. If R” is in ¢’ then it has to be in
#\ ¥, but then it should be in % in the first place and therefore cannot be in ¢', therefore
R" does not exist and 1" is singleton.

Suppose that R, is one rule in %", then any other rule in %" has to be R for the
relation K is different from any other relation in ¢'. But tg; # t;’u therefore R4 cannot

be in 9", therefore 1" is singleton.

The same argument applies if R, is one element of 3”. Therefore FAIR does not
introduce any new non-singleton set of rules in CCy.

To complete the proof, it is easy to see that if we iterate FAIR on the set ¢ it will
eventually stops and the resulting set of rules will be such that its candidate class has
only singleton elements.

Case 2: Semantic Equivalence between ¢ and ¢’

Intuitively, two inductive definitions ¢ and ¢’ are equivalent w.r.t. the set of sentences
Sen(f}) iff they prove exactly the same subset of Sen(f2) . This definition of semantic
equivalence in rather different from the one that imposes that I(¢) = I(¢'), this one being
too restrictive for the case of the factorisation algorithm.

This is so because when factoring ¢ producing ¢', the algorithm introduces new rela-
tions and formulae making the above equality false in general, although proofs of objects
in Sen(f2) are still preserved.

Therefore, we want to prove that for all sentences f € Sen(Q), f has a ¢-proof iff K
has a ¢'-proof. Since a formula f € WFFy () is an abbreviation for a set of sentences in
Sen(Q) , this would in turn give a proof that for all f, f has a ¢-proof iff f has a ¢'-proof.

Soundness: If f has a ¢'-proof then f has a ¢-proof.

We want to assure that ¢’ cannot prove more (}-sentences than ¢ can do. The proof
is by induction on the length of the ¢'-proof for f.

26

Base case: A proof of length 1 for f must be of the form of an instance (), c) for some
substitution 6, and rule (§,c) € ¢'. But FAIR does not introduce any new rule of the form
(@,c) in ¢’ that was not already in ¢. Therefore, ¢'-proofs of length 1 are also ¢-proofs
of length 1.

Induction step: Suppose fg,..., fx is a ¢'-proof of length N for f , such that fy =
and each f; ,0 < I < N, is a sentence in Sen(Q2) . We want to show that Foreoos I is
also a ¢-proof for f .

From the definition of ¢-proofs we must show that:

o fy = f, but this is trivial because it is the initial assumption.

o for each f; , there exists an X; C {fx|K < I} such that (X;, f7) is an instance of
some rule in ¢.

We first show how to obtain (X, fx), and then apply the induction hypothesis to get
the remaining instances. The only case that (Xy, fy) is not an instance of some rule in
¢ is when it is an instance of R;, for this rule is not in ¢. Moreover, (Xy, fy) cannot be
an instance of R, or R3 because instantiations of the conclusions of those rules are not

in Sen(Q) (remember that K /II). But if (Xy, fy) is an instance of R, then Xy must
be:

{0(71(tp1rtR))s - - - » O(mi(tpi vRi))s (K (vRis Zy vR))}

and fy = (w(tp,vg)) for some instantiation §. From the definition of ¢'-proofs there
exists a set X C {fx|K < N — 1}, such that (X,0(K(vg;,Z,vRr))) is an instance of either
rule R, or R5 in ¢'. Suppose it is rule R,, then:

X = {0'(mip1(tpig1strign))s - 0 (7o (tpps tra)) }

and 8(K(v;,Z,vg)) = 0'(K(tg;,Z,tg)) for some substitution §’. This last condition be-
comes f(vg;) = 0'(tg;), 0(Z) = 0'(Z), and O(vg) = 0'(tg). But then the rule (X', fy),
where:

X' = {0(s(mi(tpi, tri))), 00" (mi(tpis tri))s 0 (Wi (Ppias trig1))s - - > 0 (Tn(tpny tRa))}

is an instance of R in ¢. Moreover, because of the condition that 8(vg;) = #'(tg;), we have
that 80'(m;(tpi,tr;)) = O(mi(tpi,vr;)). The only problem is that § and §' may map the
same variable to different terms, and therefore the composition #6’ may not be consistent.
But when a variable v is in dom @ and also in dom ' it is in Z, as can be easily checked
from equations 1 to 4 in section 7. Therefore, the condition that 6(Z) = 6'(Z) assures
that (v) = 8'(v), for each v € Z.

Now, each element f’ € X’ is some sentence in fy, ..., fy. Therefore, there exists an
instance (X", f7) of some rule in ¢, and a ¢'-proof for ' of length less then N. By the
induction hypothesis there exists a ¢-proof for each ', therefore, there exists an instance

27

(X" ") of a rule in ¢ for each f' . These ¢-proofs together with the instance X', Fx)
makes f,...,fy also a ¢-proof for f , since the condition that 8(vg) = 6'(tg) makes
0(n(tp,vr)) = f

The same argument applies when we chose rule R; instead of R,. Therefore, sound-
ness holds.

Completeness: If f has a ¢-proof then f has a ¢'-proof.
This proof is by induction on the length of a ¢-proof for f .

Base case: The proofs of length 1 are not changed under the application of FAIR by a
similar argument to that used in the proof of soundness.

Induction step: Suppose fy,..., fx is a ¢-proof of length N for f , such that fN =7
and each f;, 0 < I < N is a sentence in Sen(€)) . We want to show that fg,..., fy is
also a ¢'-proof for f .

Basically, we must do the same steps as in the proof of the soundness. First, we will
obtain an instance (X, fn), of some rule in ¢' and then apply the induction hypothesis
to get a ¢'-proof for f . The only case that (Xy, fi), for Xy C {fK|K < N}, is not an
instance of some rule in ¢’ is when it is an instance of either R or R, for these rules are
not in ¢'. Suppose it is of R, then:

Xy = {0(m1(tp1,tR))s - - - » O(Tr(tpns tra)) }

and fy = 0(w(tp,t)) for some instantiation §. But now we can get an instantiation

(X, fy) of Ry and (X', ') of R, where:

X= {H(S(Wi(tpi,tm))),al(Wi(tPh vRi)),ol(’C(vRi’ Z,vg))}

X, = {0(7‘-{+1 (tPi+l’ tRi+1))’ sy o(wn(th tRn))}
and f' = 0(K(tg;,Z,tg)), with the condition that 8'(vg;) = 6(tg;), 0'(Z) = 0(Z), and
9 (vn) = O(tn).

The only remaining task is to find a proper instantiation #’. But this is easily done
by first composing 8 with [S'(tg)/tg], where S’ is the mapping defined in step 3 of FAIR.
Then compose 0[S’ (tg)/ tR] with [S8"(¢g;)/tr;], where 8" is the mapping defined in step 4
of FAIR, getting 0" = 0[S'(tr)/tr][S" (tri) /tri]-

Building ¢’ in this way also assures that fy = 6'(7(tp,vg)) which is a condition for
(X, fy) to be an instance of R,. Moreover, because of the condition that 8'(vg;) = 8(tg;),
it is trivial that @'(m;(tp;, R;)) = 0(m; (tp,,tR,)) holds.

Therefore, each sentence f” in X or in X', that is not the sentence (K (vg;,Z, vg)), is
some sentence in X, therefore is also in fo, ., fn. Therefore, there exists an instance
(X", ™) of some rule in ¢, and a ¢-proof for 7’—’ of length less then N. By the induction
hypothesis there exists a ¢'-proof for f7 , therefore there exists an instance (X", f7) of a
rule in ¢'. Therefore, f, ..., fx is also a ¢'-proof for f .

28

The same argument is valid when the rule R’ is chosen. Therefore, completeness holds,
finishing the proof of the semantic equivalence between ¢ and ¢'. Which also finishes the

proof that FAIR is correct.
O

9 Conclusions

In this work a characterisation of operational semantics was presented as inductive defi-
nitions of sets of relations. For this characterisation a notion of finite length proof can be
used to check whether objects are in some relation. Therefore, the same notion of proofs
can be used to check the meaning of objects according to the semantics. In order to com-
plete what is called the meta-semantics of the characterisation of operational semantics,
a proof search strategy for inductive definitions, called PSS;, was defined. This search
strategy can be proved sound and complete according to the definition of ¢-proofs.

The next step in the definition of a framework for evaluation of operational semantics,
was the definition of an evaluation model EM, for a particular sub-class of deterministic
semantics specifications. The objective was that EM, could then be given an efficient
implementation. In order to formalise the notion of deterministic specifications a specifi-
cation meta-language was designed. At this stage we faced various design options, which
were pointed out explicitly for two main reasons: first, it makes other possibilities explicit,
creating space for further investigations on the discharged options. Second, it emphasizes
that such decisions are not inherent from the semantics formalism, but are done only to
achieve a more efficient evaluation.

For a particular set of design choices, the evaluation model EM, exploits a depth-first
search strategy, with the order of the premisses given by a total order which is consistent
with the partial order C of section 4.1. The use of the partial order has similar effect as
to use delays in Prolog programs [Nai85]. One difference being that the partial order is
statically determined whereas the delaying mechanism is done at run time. On the other
hand, some delays can be automatically generated. Although the partial order can be
automatically determined we did not investigate the possibility of automatically defining
the directions on the relations. It would be interesting to do some investigation on this
problem, and it is being considered for future extensions on the evaluation model.

The last work that has been done on the evaluation model is the definition of an
algorithm to convert from determinate specifications into deterministic ones. This work
is important for three main reasons: (1) it shows that determinate specifications are not
more general than deterministic ones w.r.t the class of semantics that can be expressed in
them, (2) it demonstrates the suitability of the theoretical framework in the formal ma-
nipulation of semantic specifications, and (3) it extends the applicability of the evaluation
model.

A possible improvement on the evaluation model is to further exploit the use of the
partial order on the proofs of premisses. This would involve to define a search strategy
similar to that used in parallel logic programming languages. The basic idea is that if two

29

formulae f and f’ are such that f C f' and f' C f, then they can be tried in parallel, or
rather, in any order among themselves. The partial order has two advantages when using
the evaluation model in a real programming tool. First, a more efficient evaluation could
be achieved if the parallelism was actually implemented. Second, for tools like debuggers,
the partial order could be used to allow more flexible and powerful debugging functions.

Although some work on EM, has still to be done, it already provides a good frame-
work for reasoning about semantics based evaluation of programs. The evaluation model
together with the formal characterisation of operational semantics of section 2, and with -
the meta-language, form a complete framework in which semantics can be written, exe-
cuted, and formally reason about.

Acknowledgements

The author would like to thanks his supervisor at Edinburgh, Kevin Mitchell, for many
discussions on various topics of this work and for many suggestions on this paper. Thanks
to Ed Kazmierczak for helpful discussions on first order structures and free algebras,
and Michael Mendler for proof reading a previous version of this paper. Thanks also
to Roberto Hexsel and Dave Berry for helpful comments on a previous version of the

factorisation algorithm. The author is supported by a Brazilian government scholarship,
CNPq process number 20.0459/88.0/CC.

References

[Acz77] Peter Aczel. An introduction to inductive definitions. In J. Barwise, editor,
Handbook of Mathematical Logic, chapter C.7, pages 739-782. North-Holland
Publishing Company, 1977.

[Ast89] Egidio Astesiano. Inductive semantics. In Lecture Notes of the State of the Art
Seminar on Formal Description of Programming Concepts, Petropolis, Brazil.

IFIP TC2 WG 2.2, 1989.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,
techniques, and tools. Addison-Wesley Publishing Company, 1986.

[BCD*87] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. CENTAUR: The system. Technical Report 777, INRIA, Rocquen-

court, France, December 1987.

[Ber90] Dave Berry. Generating Program Animators from Programming Language
Semantics. PhD thesis, LFCS, Department of Computer Science, University
of Edinburgh, Edinburgh, EH9 3JZ, Scotland, 1990.

[Chi89] C. Chin. A support tool for operational semantics. Undergraduate Project
Report, Department of Computer Science, University of Edinburgh, May 1989.

30

[Des88]

[GB90]

[HMTS9]

[Kah87]
[Nai83]
[Nai85]
[Plo81]

[TWW78]

T. Despeyroux. TYPOL: a formalism to implement Natural Semantics. Tech-
nical Report 94, INRIA, Sophia-Antipolis, France, March 1988.

Joseph A. Goguen and Rod Burstall. Institutions: abstract model theory for
specification and programming. Technical Report ECS-LFCS-90-106, LFCS,
Department of Computer Science, University of Edinburgh, January 1990.

Robert Harper, Robin Milner, and Mads Tofte. The definition of Standard
ML (version 3). Technical Report ECS-LFCS-89-81, LFCS, Department of
Computer Science, University of Edinburgh, May 1989.

G. Kahn. Natural Semantics. Gipe project second annual review report,
INRIA, Sophia- Antipolis, France, January 1987.

Lee Naish. Mu-prolog 3.0 reference manual. Technical report, Department of
Computer Science, Melbourne University, July 1983.

Lee Naish. Negation and Control in Prolog, volume 238 of Lecture Notes in
Computer Science. Springer Verlag, 1985.

G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Aarhus, Denmark, September 1981.

James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. Notes on algebraic
fundamentals for theoretical computer science. In FAICS 78, pages 22-28,
May 1978.

31

Copyright © 1990, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

