swiaisAg Bunesunwiwo) Jo sninoje) pawiy v

LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

A Timed Calculus of Communicating Systems

by
Liang Chen

Stuart Anderson

LFCS Report Series

Faron Moller

LFCS

Department of Computer Science
University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ

ECS-LFCS-90-127
December 1990 -

Copyright © 1990, LFCS



A Timed Calculus of Communicating Systems

Liang Chen! Stuart Anderson Faron Moller

Laboratory for the Foundations of Computer Science
Department of Computer Science
University of Edinburgh

Abstract: We introduce a timed calculus of communicating systems, which is an ex-
tension of CCS and allows for the expression and analysis of real-time systems using a
dense time. A semantic theory based on bisimulation is developed for timed CCS. We
present the expansion laws and unique solution result for guarded equations. Also we
discuss a weak bisimulation which is essential for process verification.

1 Introduction

The analysis of real time systems in which interaction with the environment must sat-
isfy some time constraints emphasizes the need to develop formal models for real-time
concurrency. Examples are timeout in fault-tolerant systems and duration control in
safety critical systems. Process algebras, such as CCS [6, 8], CSP [5] and ACP [1, 2], are
good formal models of concurrent systems having a variety of well developed semantic
theories and verification methods, but none consider the real time aspects of concurrent
systems. Instead they usually deal with the quantitative aspects of time of a concurrent
system in a qualitative way and ignore explicit time information. This greatly reduces
the complexity of the theory of process algebras and specifying and verifying systems.
However, it is not always appropriate to deal with quantitative aspects of time in a qual-
itative way. There are many systems and applications, specifically in the area of reactive
systems, for which purely qualitative specification and analysis are inadequate. As an
example, consider the case: it is always the case that after action a happens, action b
must happen within no more than 2 seconds, which mentions time explicitly. It is not
enough to deal with this question in a qualitative way.

Recently there have been several attempts to introduce a concept of time in process
algebras so that temporal properties of concurrent systems can be explicitly formalised.
However, many of them enforce an assumption that agents are synchronous, such as
SCCS which is a timed calculus for synchronous agents in which time is modelled by
internal action based on the assumption that every action takes one unit time. Others
assume a global clock and require actions to happen at precise moments which are mea-
sured by that clock. In [3], times associated to actions are global and absolute and the
resulting theory is far from trivial. To give an operational semantics for AC' P,, one must
suppose the existence of a global clock. Yet others assume a discrete time domain and
some regard the proceeding of 2 unit time as a distinguished action. However, the time

1The author is supported by TC Scholarship. e-mail: cl@lfcs.ed.ac.uk



action is not the same thing as the normal actions, since the normal actions may be pre-
vented from happening by the environment and time can never be blocked. Also parallel
composition is synchronous with respect to time events, however it is asynchronous for
the normal actions except communications between its different components.

For the synchronous system, one may use a discrete time domain (e.g. the integers)
since all the processes refer to the same global clock and events happen at certain points
of time. However, for the asynchronous case, any two processes may perform actions at
times which are not equal but arbitarily close to each other. Hence, we need a dense
time domain for asychronous systems.

The aim of this paper is to explore the possibilities of incorporating real time (dense
time) in a well developed process algebra and develop a formal timed model for asyn-
chronous behaviour and synchronous communication. We provide an extension to Mil-
ner’s CCS and express explicitly the relative time interval in which an action can happen
and allow the time domain to be any arbitrary linearly ordered set. As an example,

a(t) |$ .b(s) |¢° -nil(0)

represents the process which can at first perform the action a at any time ¢, 1 < ¢ < 6,
and after that, i.e. a happens, the process can perform action b immediately, or delay
some time between 0 and 10 before b happens. After b happens, the process cannot
perform any action, nor let time proceed.

We develop our calculus under the following assumptions:

1. The actions take no times.

2. The maximal progress principle, i.e. communications must occur whenever they are
possible. In other words, a process cannot idle if it can perform a communication.

The assumption that actions have no duration just simplifies the calculus. However,
we could model actions taking time by thinking that an action must delay at least the
time it will take. The assumption of maximal progress principle is for the study of the
theory of abstraction in the real time context, which is essential for a process algebra
serving for specification and verification of real time system.

In section 2, we first present the syntax of timed CCS, then we give a timed im-
plementation of the Alternating Bit Protocol to demonstrate the utility of the calculus.
In section 3, we present its formal semantics; the operational semantics of our language
is given by a labelled transition system. In section 4, we define strong bisimulation
between agent expressions and present some properties for strong bisimulation, includ-
ing the unique solution result for certain recursive equations. In section 5, we define
weak bisimulation between agents and present some properties for weak bisimulation.
We develop the theory of weak bisimulation under the assumption of maximal progress
principle.

2 The language of timed CCS

To define our timed CCS, we first introduce some notions and notations. Let A
represent the set of atomic actions not containing action 7. We presuppose a structure

2



on A that it can be divided into two parts which are isomorphic under a bijection com-
plementation:”, with an extension that a = @. We call @ the co-action or complementary
action of a. The simultaneous occurences of a pair of complementary actions represent
a communication which is labelled by the internal action 7. Let Act = AU{r}, which
is ranged over by a, b, u . T represents the time domain which may be any linearly
ordered set. For convenience, we assume 7 represents the set of non-negative real num-
bers, ranged over by d, possibly indexed. We presuppose an infinite set Var, of time
variables, ranged over by r, s,t, possibly indexed. Time expressions, ranged over by e, f,
are just usual arithmetic expressions on 7.

Remark For convenience, we let co € T to represent the infinite time and have the
following properties:

1.Vde T, d< >
2.VdeT,ifd+# oo, then oo —d = co—d = oo.
3.VdeT,o0+d = oo.

Notation In the sequel, free(e) represents the set of all time variables of e.

We also presuppose an infinite set Var = {z,y,%1,...,91,...} of agent variables. The
agent expressions of our timed CCS, ranged over by P, @, possibly indexed, is defined
by the following BNF expression, where a € Act, an arbitrary action, z € Var, an agent
variable, e, €’ time expressions, ¢ a time variable and S : A — A the relabelling function,
which is a bijection and satisfies S(a) = (@), §(7) = T.

P :=nil |z | a(t) | .P|P+@Q|P|Q]|P\a|P[S]|pz.P
The informal interpretation of the language is

1. nil represents the process which can do no action, but let any time proceed.
2. z represents the process bound to the variable z.

3. a(t) |¢ .P represents the process which can perform action a at some time between
e and €', in doing so it will evolve to the process P[d/t], where d is the time at which
action a happens. As usual, we use P[d/t] to represent the process resulting from
the substitution of all free occurrences of time variable ¢ in P by d. Time expressions
e and €' in the prefix represent relative times and are called the lower bound and
upper bound of action a, respectively. The occurrence of time variable ¢ in the
prefix may be regarded as time variable binding occurrence and all occurrences of
time variable ¢ in P are said to be bound by the prefix.

4. P + @) represents the process which may behave like P or (). The choice may
be made at the time of the first action of P or @, or at the moment when one
summand can let time pass while another cannot. In the later case, the stopped
summand will be dropped from the further computation.



5. P || Q represents the parallel composition of the two processes P and (). Each
of them may perform any action independently, or synchronise on complementary
actions which represents a communication. Parallel composition is synchronous
with respect to time events, i.e. any time allowed by parallel composition must be
allowed by all its components

6. P\ a represents the process which will behave as P, but will not allow the action
a and its complementary action @ to appear.

7. P[S] represents the process resulting from P by relabling its actions using relabling
function S.

8. px.P represents the process defined by the recursive equation z = P.

We may formalised the notion of time expressions of a agent expression by the fol-
lowing definition.

Definition 2.1 We define function Esp(P) inductively on P as follows:
1. Exp(nil) = ¢
2. Ezp(z)=¢
3. Exp(a(t) ¢ .P)={e, €} U Ezp(P)
4. Exp(P + Q) = Ezp(P) U Ezp(Q)
5. Bap(P||Q) = Eap(P) U Ecp(Q)
6. Exzp(P\a) = Ezp(P)
7. Ezp(P[S]) = Exp(P)
8. Exp(uz.P) = Ezp(P)

If e € Exzp(P), we say e is a time expression of P.

Definition 2.2 We say t is a time variable of P only if there is a time expression
e € Exp(P) such that t € free(e). Also if t is a time variable of P and there is at least
one occurence of t in P which is not bound by prefiz, then t is a free time variable of P.
If t is bound by some prefiz, then it is a bound time variable of P.

There are two kinds of variables in the definition of our agent expressions, i.e. time
variables and agent variables. We say an agent expression P is closed with respect to
time variables (agent variables) if there is no free time variable (agent variable) in P.
Our agents are just those agent expressions which are closed with respect to time and
agent variables. We use P to denote the set of all agents in our language and £ to denote
the set of all general agent expressions. Agent expressions with free time variables or
free agent variables may be thought of as agent schemas. In the sequel, we first define
an equivalence relation on agents and then extend it to the general agent expressions.

The reason for us to introduce time expressions, not just time constants, as lower and

4



upper bounds of actions is to use an interleaving model for real time concurrent systems
over dense time domain. Since our time interval for every action is relative to the time
of previous event, only the initial prefixes of all summands of a sequential process will
be changed as the result of time events. However, parallel composition is synchronous
with respect to time events and all initial prefixes of two components will change as time
proceeds. Defining parallel composition in terms of prefix and nondeterministic choice
requires the introduction of time variables which refer to the times of action occurences.

For convenience, in the sequel, if P is a closed agent expression with respect to time
variables, we usually write a | .P instead of a(t) |¢ .P.

Example 2.3 We can define in our language the specification of a protocol with trans-
mission time d, as:

def e e
Protocol,,.. = accept |§° .deliver |3, .Protocolp,.

Example 2.4. In this example, we consider a timed implementation of the Alternating
Bit Protocol in [8].

There are four components to our protocol, Sender, Receiver and two unreliable
communication lines: Ack and Trans. We assume that Ack and Trans lines may lose
(but not corrupt) messages. Messages and acknowledgments are sent tagged with bits 0
and 1 alternately.

Notation In the sequel, b =1—b.

Sender, after accepting a message from the environment, sends it with an attached
bit b (=0 or 1) along the line Trans. Then it awaits an appropriate acknowledgement
within some time d,, which is the time that Sender will wait after sending a message
before assuming the message had been lost and retransmitting it. If it gets a correct ac-
knowledgement within time d,, Sender is prepared to accept the next message from the
environment and transmits it with bit 5. If it gets a wrong acknowledgement or doesn’t
get any acknowledgement within time d,, Sender retransmits the message. Sender is
defined as follows:

Sendery &« accept | .send; |§° .Sending,
Sendingy E acky |& .S ender; + ack; |3* .send, | .Sending, + send, |3 .Sending,

Receiver, which we assume starts in a state awaiting a message tagged with 0, is
defined as follows:

. def .
Recetver = transg |§° .Delivery

Deliver, & deliver |° .ack, | .Reply,

Reply, & trans, |d= Jack, | .Reply, + trans; |&* .Deliver; + ack, | .Reply,

Two unreliable communication lines Trans and Ack behave as one cell buffers, ex-
cept that the message on them may be lost. We assume that the transmission time is d,



and define the unreliable communication lines as follows:

def e
Trans = sendy | .Trans + send, | .trans, |§ .Trans + send, |§° Trans
+ send, |§° Jtrans,; |3 Trans

Ack & reply, | .Ack + replyo |6° acky |¥ .Ack + reply; | .Ack
+ reply, |§° .acky |F .Ack

Now we can define our protocol as follows:

Protocol,,,, & (Sender, || Trans || Ack || Receiver)\
{sendy, sendy,transy,trans,, acky, acky,reply,, reply, }

Since the transmission time is d;, the procedure of transmitting a message consists
of two transmmisions, one is for message and one is for acknowledgement. So we must
assume timeout d, > 2d,.

3 The operational semantics of timed CCS

In order to define the meaning for our language, we use the general notion of the
labelled transition system

(S, {=:1el})

where § is the set of states, L the set of transition labels, and a transition relation
LC § xS for each I € L.

In the transition system for timed CCS, let S be the set of all agents, S C P, and
L = Act|JD, where D = {(d) | d € T} represents the set of time behaviours. Our
operational semantics for agents consists of the definition of each transition relation 4
over S. The definition for semantics is in Plotkin’s structured operational semantics style
[13].

To define the operational semantics for our language, we first need to define a syntac-
tic predicate which will tell us the maximum time a process can delay before performing
any action. We define a function | |7: P — 7 inductively as follows:

Definition 3.1

1. | nil |p= o0

2. |a(t) |32 Plr=d; (a#T)

3. | () | .P |r= min(d, dp)

4. | P+ @Q lr=maz(| P |r, | Q |r)
5 | P Qlr=min(| Plr, | Q |r)
6. | P\a|r=| P |z



7. | P[S]|r=| P |z
8. | pz.P |p=| Plpz.P/z] |r

Note that this definition is well defined for recursive case when all recursive variables
are guarded by some prefix.

Intuitively, if | P |p= d, then ~3d3P". (& > dAP &3 P'), where P {2 P/ will be
defined later.

Notation [d;, dy] ™ {d | d, < d < dp}
Definition 3.2 We define the operators /d on 27 %7, for each d € T, as follows:

S/d={[dy, d3] | [dr, dy] € SNy < d} | {[ds, d] | [, da] € SN\ dy < d < dy}

To guarantee that communications must occur whenever they are possible. We need to
define the function C : P x Act—27*7 inductively as follows

Definition 3.3
1. C(nil, a) = ¢
2. C(a(t) 132 P, @) = {[d1, do]} (a#T A di<dy)
C(r@) | P, 1) ={[d1, di]} (d1 < do)
C) |2 .P,a)=¢ (a#bVdi>dy)
C(P+Q, a)=C(P, a) U C(Q, a)
C(P || Q, a) = C(P, a)/min(|P|r, |QIr) U C(Q, a)/min(|Plr, IQlz) (a # 7)

C(P || @, 7) =C(P, 7)/min(|P|r, |Qlr) U C(Q, T)/min(|Plr, |Qlr)
U {ld, d]| 3a € ActI[dy, ds] € C(P, a)3[d1, ] € C(Q, a).
(([d1, d2] N [d1, d2]) # ¢ A d =maz(dy, d1))}

8. C(P\b, a)=¢ (b=a\b=a)
9. C(P\b, a) =C(P, a) (b#aAb#a)
10. C(P[S), a) = {[di, d,]|3b € Act.5(b) = a A [dy, ds] € C(P, b)}
11. C(pz.P, a) = C(P[uz.P/z], a)

N e

Intuitively, C( P, a) represents the set of time intervals in which agent P may perform
action a as its first action.

The semantics of our language is the least transition relation defined by the following
operational rules.

1.ail Dnil  (d>0) 2.a(t) |3 .P -2 P[0/1] (d > 0)



3.a(t) | .P <D a(t) |922 Plt+d/f] (0<d<dyNa#T)

4.7(t) |2 P2 r(8) |89 Pt+d/t] (0 < d < min(dy, dy))
¥

P = P QY PP oly¢g
PrQ P PHQS P+Q @ Py
P p
8 (1 Q lr<d) \-3[d', d]€C(Q, 7).d < d)

P+Q D p

(4
0.9 —9  (1Pl<q A-3d, d]ec(P, r).d < d)

P+Q 2 ¢
W P2P R q  (wdacaddd, dlecp, A, 4l eC(@, a)
Ple @ pg (s, da] N [di, ) # ¢ A mas(dy, ) < d)
) P P 1o Q-5 qQ PP Q-5¢Q
" PlQ = P|Q " PllQ = PllQf - PR D Pl
u ’ @) "
g L— P (u#a\u#a) 15.—11—@5—
P\a — P'\a P\a - P'\a
P p P-4 P
16¢ —'_—(:1)—‘— ].7. _—T
P[S] = P18] P[S] = P'[S]
18 Pluz.P/[z] 9, pr 19 Pluz.P/z] = P!
ﬂx.P _(‘.il) Pl /LZ‘.P —t-‘—) P,

The Operational Semantics of Timed CCS

In the above, we assume that communications should occur if they are possible, that
is to say a process cannot let time proceed if it can perform a communication. So
action should happen whenever it is ready to be performed. In this sense, we have
7(t) [5° -nil(0) = (¢) [3 .ndl(0) and agent a(t) |5 .P+b(z') |1° .P’ | a(s) 1§ .Q cannot idle,
but perform a communication via the simultaneous occurences of the complementary
actions a and a.

Notation nil(e) % (b ]G .P)\b. Clearly nil(e) can do no action, but let time e proceed.

Proposition 3.4 For any agent P, if P D, prand p P" for somed, d € T and
agents P’ and P”, then P @) pr,

Proof It directly follows by the definition of semantics.



4 Strong bisimulation and its properties

We do not wish to distinguish agents which, in some sense, have the same behaviour.
The notion of bisimulation between agents captures the idea of having the same be-
haviour.

Definition 4.1 A binary relation R C P X P is a strong bisimulation if it satisfies that
for any agents P, . PRQ, if and only if
for allu € Act and for alld € T

(i) if P> P', then 3Q' such that Q@ - Q' and P'RQ’.
(i1) if Q — @', then IP' such that P - P’ and P'RQ’.
(¢53) i P Q, P, then 3Q' such that Q @), Q' and P'RQ'.
(iv) if QD @, then IP' such that P 2 P’ and P'RQ'.

For any R C P x P, we can define F(R) ( F : P x P — P x P) to be the set of pairs
(P, Q), where (P, Q) € R, which satisfies the above clauses (¢) to (iv). Clearly, for any
binary relation R over P, R is a strong bisimulation if and only if R C F(R).

Proposition 4.2 F is monotonic over the lattice of binary relations under inclusion.

We say two agents P and @ are strong bisimulation, denoted by P ~ @), if thereis a
strong bisimulation R such that P R Q.

Definition 4.3 ~= |J{R|R C F(R)}

It is clear that ~ is a strong bisimulation. In fact ~ is the maximum fixed-point of
F. Furthermore, ~ is also an equivalent relation.

Proposition 4.4
1. ~ is the largest strong bisimulation.
2. ~ 1is an equivalent relation.

Proof (1) follows directly from the definition of ~ and the fact that the union of strong
bisimulations is still a strong bisimulation . For (2), note that the identity Idp is a
bisimulation and the composition and converse of bisimulations are still bisimulations.

Proposition 4.5
.P+@Q~Q+P
2. P+(Q+R)~(P+@Q)+R
3. P+nil(dy~P (| Plr>d)
4. nil ~ nil(oo)
5. P+ P~ P



6. a(t)|§ .P ~a(s)|d .P[s/t] (sis free fort in P)
7. at)|% P+a(®) |l P~a®) |l P (d<d <d)
8. a(t) |3 .P ~nil(d) (d>d)
9. 7(t) ]St P ~r(d)|3.P (d >0)

10. 7(t) |3 .P +a(s) [far Q@ ~ (@) [P (d">0)

Proof All these laws may be proved by exhibiting appropriate strong bisimulations.
As an example, in the case (7), we only need to show that § is a strong bisimulation,
where

S = {(a(t) |52 P+a(t) |52%, P, a(t) |44 P)|0<d" <d \d<d <d} | Idp

is a strong bisimulation. a.

From (1)-(3), it is obvious that (P, +, ndl(0)) is a monoid. (6) shows that a-
conversion preserves strong bisimulation ~. (7) shows that if an action a may happen
within the internal [d, d'], then this interval may be divided into two continues intervals
[d, d,] and [dy, d'], d < d; < d', and action a may happen within either of these two
continues intervals. (9) and (10) reflect the applications of maximum progress principle,
which says that whenever the process may perform a internal 7 action, it cannot delay
further.

Proposition 4.6 Ifforanyd e T, d, < d < d,, Pld/t] ~ Q[d/s], then
a(t) |&2 P~ a(s) |22 Q
Proof It only needs to show that
§ ={(a(t) 1323 -Pa(s) 1373 Q) 10<d< dy \Pld/1] ~ Q[d/s]
foralldi~d<d <d,—d} |J ~
is a bisimulation. o

Recall that the occurrences of time variables in the prefix are regarded as time variable
binding occurrences. Proposition 4.6 shows that prefix preserves the strong bisimulation
provided that whenever the prefix action happens at any moment within its interval, the
evolved agents must be bisimilar.

Proposition 4.7
LPIQ~Q|P

2.Pl(QIR ~(PIQIR
3. Pllnil ~ P

10



4. (P+Q)\a ~ P\a+Q\a

5. (u(t)|§ .P\a ~ u(t)|§ (P\a) (u#aAu#a)
6. (u(®) |4 .P)\a~nil(d) (v=aVu=a)

7. nil(e)\a ~ nil(e)

8. (P +Q)[S]~ P[S]+QIS]

9.

(@) 1§ -P)IS]~ S(u)(t) 1§ (PIS])
10. nil(e)[S] ~ nil(e)

11. AnP  (A¥P)

12. pe.P ~ Pluz.P/z]

It is clear that (P, ||, nil) is a monoid. (4)-(6) show that restrict operators are
distributed over prefix and nondeterministic choice. (8) and (9) show that relabelling
operators are also distributed over prefix and nondeterministic choice.

Proof All these laws can be proved by exhibiting appropriate strong bisimulations. O

Up to now, we have only defined the strong bisimulation over agents, i.e. expressions
with no free time variables or free agent variables. However we may first extend natu-
rally the definition of strong bisimulation to agent expressions which have no free agent

variable, but may have free time variables.

Definition 4.8 Let P and Q be ezxpressions with no agent variable. P and @ contain
time variables T at most. We say that P ~ Q, if for all time instances d, P[d/t] ~ Q[d/1].

The strong bisimulation is substitutive under all combinators.

Proposition 4.9 If P ~ @, then for any agent expression R, which is closed with
respect to agent variables,

1. a(s)|g .P ~ a(s)]¢ .Q
2P+ R~ Q + R
3. P|R ~ Q|R

4. P\a ~ Q\a.

5. P[S] ~ Q[S].

Proof All these properties can be showed by exhibiting appropriate strong bisimulation.
For (1), suppose e and €' contain time variables f at most, P and @ contain at most time
variables £ |J{s}, we can show that

11



{(a(s) 15554 PLA/E], a(s) |5t s QL) | P~

Q& d are any set of time instances & 0< d' < e[d/f]} U ~

is a strong bisimulation. For (3), suppose P, @ and R contain the time variables i at
most, we can show that

{((P|R)[d/R), (QIR)[d/T)|P ~ Q and d are any set of time instances} |J ~

is a strong bisimulation. The other cases are similar. O
Propositon 4.10 (Expansion Theorem)

Sier () 15 P || Tyesbi(sy) 17} Qs

~ Yierajersa=t; T(Tij) Irmr;:;((iﬁ)) (Blrii /6] || Qjlrii/s5])

b Tiera(t) 15D (BRG] Sierbi(s) 1270 Qjls; +8/5)

o Tiesbi(s) [P (Tieraalt) 1325 Bl + /0] 1| Qsls}/s)
where € = maz{e} | i € I}, f = maz{f] | j € J}. vy, 1, s are fresh variables for P; and
Qj, foranyiel , jel.

The proof of expansion theorem is in appendix.

We can now extend the definition of ~ further to the agent expressions with agent
variables.

Definition 4.11 Let E and F contain agent variables Z at most. We say E ~ F, if
E[P/%] ~ F[P/#] for all agent expressions P with no free agent variable.

We will also use E ~ F to represent component-wise bisimulation between E and F.

The above proposition 4.9 for agent expression with no agent variables also holds for
agent expressions with agent variables. The following proposition shows that ~ is also
preserved by recursion.

Pro~positi01~1 4.12 Let E and F' contain agent variables & at most. If E ~ F, then
p. B~ pz F.

Proof We will only deal with the case of a single recursion equation. Also we assume

that the agent expressions are closed with respect to time variables. Therefore, E ~ F

and F, F contain at most agent variable z and are closed with respect to time variables.
It will be enough to show that (by taking G = z)

S = {(G[pz.E/z], G[pz.F/z]) |G contains at most the variable z}

12



is a strong bisimulation up to ~.
To show this, it is enough to prove that (by the symmetric arguments)

1. If G[pz.E/z] @ P’, then for some @' and Q", G[uz.F/x] @ Q" with @" ~ Q' and

(P, @) €eS.
2. If Gluz.E/z] = P', then for some Q' and Q", G[uz.F/z] = Q", with Q" ~ @’ and
(P, @)eS.
which may be proved by transition induction on the depth of the inference. a

We now consider the solution of equations # = E, which under certain conditions,
have unique solutions up to bisimulation.

Definition 4.13 We say that z is guarded in E, if each occurrence of x is within some
subezpression a(t) |; .F of E, where a € Act.

Definition 4.14 We say equations # = E are guarded, if all # are guarded in E.

Clearly, for any expression E, in which z is guarded, the first action (time action or
function action) is independent of the agent substituted for z.

Lemma 4.15 For any expression E, which is closed with respect to time variables, and

any agents P, if the variables & are guarded in E and E[P/3] -2 P’ (or E[P/:v] ~(d) P’),
then P’ has the form E’[P/a:] for some E'. Furthermore, for any agents Q, E[Q/3] =

E'1G/3) (or EIG/3] <2 E'1G/7)

We may prove the lamma by using transition induction on the depth of the inference
of E[P/3] & P', or E[P/3] - P'.

The following proposition shows that under suitable conditions, if the equations
# = E have solutions which are agents, then they have unique solutions up to strong
bisimulation.

Proposition 4,16 Let the ezpressions E;(i € I), which are closed with respect to time
variables, contain at most the agent variables x;(i € I) and all z; (5 € I) are guarded in
E(iel), If P~ E[P/%], § ~ E[Q/3] and P, Q are agents, then P ~ Q

Proof We need to prove P; ~ @Q;(i € I), and this follows by taking F = z;, if we can
show that

§ = {(F[P/#], [ 3/3)) | F contains at most agent variables &

A Pand Q are agents} U Idp

is a bisimulation up to ~, which may be showed by transition induction on the depth of
the inference.

13



The next proposition shows that every guarded equation set & = E, where E are
closed with respect to time variables and contain at most free agent variables Z, has at
least one solution P.

Proposition 4.17  For equations & = E, where E are closed with respect to time
variables and contain at most free agent variables Z, if all & are guarded in E, then there
are some agents P such that

P ~ E[P/7]

Proof By induction on the number m of equations in & = E .

Case 1 m=1, then there is a single equation ¢ = E, where E contains at most free
agent variable z and z is guarded in E. Recalled that E is closed with respect to time
variables. Clearly, agent uz.E is a solution of z = E.

Case 2 For m+1 equations & = E’, Tmy1 = Epqr. We have
z= E[l“”m+1-Em+1/$m+1]
By induction, there are m agents P such that
P~ E~[,ua:m+1.Em+1/:vm+1][13/:i]
Also, equation Z,,., = E,.,[P/%] has a solution
Propi= N$m+1-Em+1[P/5]

Obviousely, agents P, P, is the solution we are looking for. a

Therefore, the guarded equations = E, where E are closed with respect to time
variables and contain at most free agent variables #, have unique solutions up to strong
bisimulation.

Proposition 4.18 (Unique Solution of Equations) For guarded equations ¥ = E, where
E are closed with respect to time variables and contain at most free agent variables Z,
there are unique agents P (up to strong bisimulation) such that

P ~ E[P/7]
Proof The proof follows by propositions 4.16 and 4.17 a

5 Weak bisimulation and its properties

The equivalence discussed above does not consider the problem of abstraction, i.e.
every action a (including internal action 7) of one agent must be matched by an a action
of the other. In the following, we define a weaker equivalence, i.e. weak bisimulation,
and only require each 7 action be matched by zero or more T actions.

Definition 5.1 We say E A g if

14



B(S)y @ (L) (D) &Ly E
for some dy, ..., d,, such thatd =d, + ... +d,.
Definition 5.2 We say E == FE', if E(5)* = (—Tyj*E’
Note that E == E’ means that E(Z)"E’ for some n > 0.
Notation For any a € Act,ifa# 7,thend=a ,and 7 =¢.

Definition 5.3 A binary relation R C P x P over agents is a weak bisimulation if
(P, Q) € R, then for anya € Act andd € T

(i). whenever P =+ P', @} =2 Q' and (P',Q") € R for some Q'.
(it) whenever P 9, P, Q 4 Q' and (P',Q") € R for some Q'.
(iii) whenever @ ~— @', P =2 P’ and (P',Q') € R for some P'.
(iv) whenever Q @, Q, P A proand (P',Q") € R for some P'.

Definition 5.4 For any P, Q € P, we say P and Q are weakly bisimilar, denoted by
P = Q, if there is a weak bisimulation R such that (P,Q) € R, i.e.

~ = {R: R is weak bisimulation }

Proposition 5.5

(4)
(i0)

Proof Similar to the cases of strong bisimulation.

is the largest weak bisimulation.
s an equivalence relation.

o~

~
o~
~

Proposition 5.6 P ~ @ implies P =~ Q).
Proof The proof directly follows the definitions of strong and weak bisimulations.

Thus all the equational laws for ~ also hold for weak bisimulation ~. But the con-
verse is not generally true. Note that = is not a congruence relation. Clearly, we have
7(t) [ .a(s) |3 nil(0) =~ a(s) | .nil(0), but 7(t) |3 .a(s) |5 .nil(0) + b(r) |3 .nal(0) #
a(s) | .nil(0) + b(r) |5 .nil(0).

We define a set Py of agents, P, C P, as follows:

def

Definition 5.7 P, = {P| P € P AVe € Exp(P)Vt € Var,.(t € free(e) —

3e'. t & free(e)Ne=¢ —t\Ve=¢€-1))}

The following two propositions show that for some agents of P, it allows T action to
be ingnored, to some extent, in the sense of weak bisimulation. With the assumption of

15



maximum progress principle, the timed CCS may also serve for process verification.

Proposition 5.8 Given the agent expressions P, where P € Py and a(t) ]f' .P contains
at most free time variable s, if for any time expression e of P, s is a time variable of e
if and only if t is a time variable of e, then

(s) |3 .a(t) 1§ P~ a(t) PEI Pl0/s]  (£1d/s] > 0)

Proof It only needs to show that

§={(r(s) 1gz8 @) I} P, o) LS50y Plo/shlo< ' <dy |J Idp

is a weak bisimulation.

With the help of expansion law and distributed laws for restrict operator and re-
labelling operator, any finite agent can be bisimilar to one which contains no parallel
composition, restriction or relabelling. The following proposition generalized the above
T law to the agents which are in summation forms.

Proposition 5.9 Given agent expressions P;, where P; € Py and a;(t;) |}ef .P; contains
at most free time variable t for all i € I, if for any P; and its any time expression e, t is
a time variable of e if and only if t; is a time variable of e, then

@) awt) 1F P ~ e [l Plojt]  (fld/t] >0 for all i € 1)
iel iel

Proof It only need to show that

§ = {(r(®) 1% (Caslts) 19 By Taults) HET4ME ploj) [0 < d < d)

iel i€l

U Ids

is a weak bisimulation. a

Like strong bisimulation ~, weak bisimulation = may also be extended to agent ex-
pressions.
Proposition 5.10 If P 9D prando< d < d, then

30. P 4 g =D pr

The proof follows directly from the definition of operational semantics.

Proposition 5.11
1. If Q == @', then for any P € P, P||Q = P||Q’.

16



2. 1Q & @, P D P/ and ~3a € Act3[d}, dy) € C(P, a)3[dY, d3] € C(Q, @). ([ds, db)]
N[, di]) # ¢ Amaz(di, d) < d, then P || @ <2 P' || @".

The proofs directly follow from the definitions of =, =(—Q> and operational semantics,
and also proposition 5.10.
Weak bisimulation is preserved by every combinator, except summation.

Proposition 5.12 If P = @Q, then
1. a(t)|¢ .Pra(t) |’ .Q
2. foral REE. PR ~ Q| R
3. P\e¢ = Q\a
4. P[S] = Q[S]

Note that 7 action can neither be restricted nor relabelled.
The proposition may be proved by exhibiting appropriate weak bisimulation.

6 Related work

In [4], [7] and [11], time event, or the progress of time, is modelled by a distinguished
action and time is discret. However, the idea that proceeding of time is modeled by an
action is not natural in an operational sense. The time event is not the same thing as
the normal actions, since the normal actions may be prevented from happening by the
environment and time cannot be blocked. Also parallel composition is synchronous with
respect to time events, but it is asynchronous for the normal actions, except the required
communication between its different components.

Baeten and Bergstra define a real time process algebra AC P, [3] which is a extension
of ACP. In ACP,, time is dense and all actions have no duration. However, times asso-
ciated to actions are global and absolute. To give an operational semantics for ACP,,
one must suppose the existence of a global clock. Also, they don’t discuss the theory of
abstraction which is essential for a process algebra serving for specification and verifica-
tion of concurrent systems. In [16], Wang represents a calculus for real-time behaviour
of asynchronous agents which is an extension of CCS and used dense time domain. All
actions take no time and any process may idle arbitary times before willing to perform
its actions. Wang develop his theory under assumption of maximal progress principle.

Acknowledgements: We would like to thank Robin Milner for many helpful com-
ments and suggestions.

17



Appendix

(Proof of the Expansion Theorem) We can show that

§ = (T ai() 1525 P Il Lobi(s) 1724 Qs

i€l jeJ

min(e},f])—-d
S ) le S (Bl /6] 1] Qjlrii/53))

a=b&icI&jed

+ 3 ai(th) (7D (Bl ] Yobi(s) [P Qils; + 8/s))

iel jed
+J§E;b( ) [ind e z (1) 220 Bilts + 83/t 1) Qslsi /D) |

Viel,j € J0<d< min(e, f]) \é=maz{ei | i€ I} \ f = maz{fj | j € J}}
U Id

is a strong bisimulation.

Case 1 feg @
> a(ts) le'"d Bl bi(s5) 1725 Q5 — P
iel jeJ
for some d' and P’. Then
0 < d' < min(maz{e; —d|i€I'}, maz{f, —d|jeJ})
and P’ has the form

{—(d+d fj—(d+d)
3 aut) |20k P+ [ Y bi(si) [ e -Qilsi + ds5]
iel’ jeJ!

where

I'={iliecI\d <ei—d} and J'={j|jeJ\d < fj—d}
Clearly,
min(e;,fi)—d
Za;:b}&iEI&jEJ T(Ir‘]) lmam(en_fJ)-d '(R[’rzj/tl] ” Q] [”‘3]/3]])
mm e;, ’ _f;... ti4d
+ Tier as(th) (TN (BRI Syes bi(s5) 1] rrg) -Qilsy +1/53))
sy (min(fle)-d e;=(s5+d) '
+ jes bi(s7) |fj:_,§ " (Sierats) | (i) Dilts + 55 /6] || Qsls3/531)
= (i f5)—(d+d")
min(e},f})—(d+d’ ’
Lai=fuiersicr T(Ti) ‘mag(ei,fj);(d+dl) (Bilrj [t]lri; + d' /7]
I Qjlri/sllrs; +d'[ri;])

min(el, f)—(d+d’
+ Tier a:(th) (TG (P /[t + d /4]

18



Fi=(eh+d)
I Syesbisi) [ Gevey -Qslss +8i/slls; +d'/s])
min(f;,8)~(d+d") ei—(s3+d)
+ e bi(55) [pmiaray ) (Sier aslts) 50T e -Blts + sj/4llts + &' /4]

| Qjlsi/s;llsi + d'/s5])

Since
Pyfri; [t:][rs; + d'[7;5] Pjlt; + d'[t][r;; /]
Qjlrii/sills; +d'[s;] = Qjls; + d'/s;][ri; /s;]
Plti/t)t: + d'/ti] = Bt +d'/4][t/t]
Qjls; +ti/s;lls; +d'[s;] = Qjls; +d'/s;]ls; +ti/s]
Plt; + sj/tllts + d /] = Bt +d'[t][t: + s;/t]
Q;lsi/sills; +d'[s5] = Qjls; +d'/s]ls5/s4]
we have

(Cier, a(t:) 15859 Pt + d/ /8] | Sies bi(s;) 17-G0e) Qsls; + /5],
. Za,:b“j&iep&jew 7'(7' ij) In"',f,’;((iﬁ);({f,ﬁ?) (B ij/ ti][ﬁj +d[r ij]
| Q;lri;/s;llrs; + d'[ri;])
+ Tier a(th) [5G (Rt /it + @ /4]
I Syea by(s;) 1 teirey Qils; +8i/s]ls; +d'/s;))
+ jes bi(s5) |;"_"§:,’+;? D (Trer aalts) [y -Pilts + s3/tllts + & /1]

I @ilsi/sills; +d'/si])) €5

Case 2 Yier ai(t:) 570 P || Tyesbisy) 1775 Q5 - R for some u and R,

Case 2.1

Sat) (525 B5 PL Y obi(s) e Q2 @

iel jeJ
@ =b, u=71 and R=P | Q = P[0/t] | Q;[0/s;]
Since e;—d = fj;d = 0, we have
Yoai=b;uietaies T(Tij) l::;((ii))__i (Bilri (6] || Qslris/4])

min(e} ti—(ti+d
+ Sier a(th) [P (B || Syes bs(s;) 1 iriney -Qslss +/53])

T ies b)) [T (Cier ) 1o rg Bilts + 3/8 | Qslsi/s30)

r
—

19



F[0/4:] || @;(0/s5]

and
(Bi0/t] || @;0/s;1, Bio/t] || Q;0/s;]) € S
Case 2.2
Za(t)| =4 P, u=gq; and R = P[0/t; IIZb( )| 20.Q;

Since e;—d = 0, we have
min(eﬁ,_f})—d

Yai=biaicrzies T(Tij) |ma,,-(e,.,fj);d (Piri; [1:)11@5(r5 /1)

min(el,f)—d fi=(ti+d)
+ Tier aith) [Tg D™ (PLR || Tyer b5(5) 17 ot vay -Qilss + ti/53])

b Sresbis) [0 (el [isirg Bilts + i/t ) Qslsi/s30)

ai

O/t] I E]er (51)| ; 4 QJ

and

Blo/t] | 3 b (8;)! Z2 @5 PIO/E] 1 Dbi(ss )I ;@) €5

jeJ jEJ

f—d b; el—
Case 2.3 Y ;7 bi(s;) I;;;d Q; = Q' u=b; and R =Y ;cra;(t;) |} ¢ P Q;[0/s;].

e,—d
samilar to case 2.2.

The other conditions are similar and the case for (P, P) € S is trivial. O

References

[1] J.A. Bergstra and J.W. Klop(1984), Process Algebra for Synchronous Communica-
tion, Information and Control 60(1-3), pp. 109-137

[2] J.A. Bergstra and J.W. Klop(1985), Algebra of Communicating Processes with Ab-
straction, Theoretical Computer Science, 37, pp. 77-121

[3] J.C.M. Baeten and J.A. Bergstra(1989), Real Time Process Algebra, Preliminary
Version, draft 10/20/89

[4] M. Hennessy and T. Regan(1990), A Temporal Process Algebra, Technical Report
2/90 University of Sussex

[6] C.A.R. Hoare(1978), Communicating Sequential Processes, Communications of
ACM, vol. 21, no. 8, pp. 666-677

20



[6] R. Milner(1980), A Calculus of Communicating systems, Lecture Notes in Computer
Science 92, Springer-verlag

[7] R. Milner(1983), Calculi for Synchrony and Asynchrony, Theoretical Computer Sci-
ence, 25, pp. 267-310

[8] R. Milner(1989), Communication and Concurrency, Prentice-Hall international

[9] R. Milner(1989), A Complete Axiomatisation for Observational Congruence of
Finite-State Behaviours, Information and Computation 81, pp. 227-247

[10] F. Moller and C. Tofts(1989), A Temporal Calculus of Communicating System,
Technical Report LFCS-89-104, University of Edinburgh

[11] X. Nicollin, J.L. Richier, J. Sifakis, J. Voiron(1989), ATP: an Algebra for Timed
Processes, Technical Report, Grenoble

[12] D.M.R. Park(1981), Concurrency and Automata on Infinite Sequences, Lecture
Notes in Computer Science 104, Springer-Verlag

[13] G.D. Plotkin(1981), A Structured Approach to Operational Semantics, DAIMI FN-
19, Qomputer Science Department, Arhus University, Denmark

[14] C. Tofts(1988), Temporal Ordering for Concurrency, Technical Report LFCS-88-49,
University of Edinburgh

[15] C. Tofts(1989), Timing Concurrent Processes, Technical Report LFCS-89-103, Uni-
versity of Edinburgh

[16] Y. Wang(1990), Real-time Behaviour of Asynchronous Agents, draft, Dept. of Com-
puter Science, Chalmers University of Technology and the University of Gotebory,
Sweden

21



Copyright © 1990, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.



