LFCS

“*"lUNJOAIBOY XeIoyloldaT Jo uolesiuoiyouksoiny ay |

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh -

The Autosynchronisation of
Leptothorax Acervorum (Fabricius)
Described in WSCCS

by
Chris Tofts

LFCS Report Series ECS-LFCS-90-128

LFCS December 1990
Department of Computer Science

University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ Copyright © 1990, LFCS

The Autosynchronisation of Leptothorax Acervorum

(Fabricius) Described in WSCCS.

Chris Tofts,

Laboratory for the Foundations of Computer Science,
Department of Computer Science,
University of Edinburgh.
e-mail:cmnt@uk.ac.ed.lfcs

December 13, 1990

Abstract

We present an introduction to the calculus WSCCS. The calculus is then used to
study a probabilistic synchronisation algorithm; which may underly the synchronous
behaviour of a particular species of ant. We demonstrate that the cyclicity is stable
and that the system must eventually synchronise. We present several estimates of
how long it will take such a system to synchronise. The stability of the algorithm
to some forms of error is discussed, and we present a derived algorithm which has
a high tolerance of error. Some experimental results are reported, which show that
our explanation may be a reasonably accurate account of the interactions underlying
the biological phenomena.

1 Introduction.

There are many physical systems, consisting of large numbers of individuals, that ex-
hibit synchronised behaviour without refrence to any external signal or clock. These
include both bio-chemical systems [NP77] and many biological systems [May73, PDG87,
DGPFL87, WHS8S8, See87]. Of particular interest in this paper is the ant species Lep-
tothoraz Acervorum [FB87, FBGH89], which exhibits ‘bursts’ of activity within the nest.
Individual workers spend aprroximately 70% of their time inactive and then are generally
all active together.
This phenomenom is of particular interest owing to the following properties;

e it is unaffected by individuals dying;

e it is highly decentralised, there is no identifiable essential ant;

o it is unaffected by ants leaving the colony and then rejoining.

Whilst some may argue that the queen is an identifiable and unique ant within a colony,
the phenomenom still occurs in her absence[FB87].

Due to the complexity of the system the cycles of activity will not be a simple sine-
wave with a fixed period. They will have a period (hopefully) distributed according to
some simple probabilistic definition given by the interactive behaviour of the individuals.

The main reason for describing such a system within a process algebra [Mil89, BBK86, -
Hoa85], is that we can express precisely the behaviour of an individual and from that
deduce precisely the behaviour of a collection of individuals interacting. The language we
shall be using to describe ants is the calculus WSCCS [Tof90], a probabilistic extension
of Milner’s SCCS [Mil83].

We start be giving a brief description of two other models of this acitivity and then
give an introduction to the language WSCCS. For a fuller comparison of these models
see [THF90]. The rest of the paper consists of the analysis of the behaviour of a simple
system of interacting ants described in WSCCS.

1.1 Simulation Model.

In [GD88] a model of the behaviour of colonies based on autocatalysis is presented. This
model presupposes the following behaviour of an individual;

o once it falls asleep it will stay asleep for some fixed period whence it will become
wakeable;

¢ at each instant a wakeable ant can wake spontaneously with some fixed probability;
e a woken ant will move at random, waking any wakeable ants it ‘runs’ into;
e at each instant an awake ant can fall asleep with some fixed probability.

A collection of ants, obeying the constarints above, were simulated using a small
computer. The simulation has bursts of activity similar to those seen in real nests.

1.2 Energy Model.

In [HBF89] a model based on the amount of energy within a nest is presented. It relies
on describing the amount of energy (E) held within the nest and the number of active
ants (A) as differential equations;

dE

Tl;f—:aA_bE (a,b>0)

dA c

— = h+E(eA2+fNA+N2)(N-A) —gA

where N is the total number of ants within the nest. For particular values of the
constants a, b, c, e, f, g, h these equations show cyclic behaviour of the number of active
ants A.

2 The Language WSCCS.

Our language WSCCS is an extension of Milner’s SCCS [Mil83] a language for describing -
synchronous concurrent systems. To define our language we presuppose an abelian group
Act of atomic action symbols with identity 1 and the inverse of a being @. As in SCCS,
the complements a and @ form the basis of communication. We also take a set of weights
W, denoted by w;, which are the positive natural numbers P augmented with the usual
infinite object w, and a set of process variables Var.

The collection of WSCCS expressions ranged over by E is defined by the following
BNF expression, where a € Act, X € Var, w; € W , S ranging over renaming functions,
those S : Act — Act such that S(1) = 1 and S(a) = S(a@), action sets A C Act, with
1 € A, and arbitrary finite indexing sets I:

Eu=X|a.E|S{wkEliel} | ExE|E[A|O(E)| ES] | wzE.

We let Pr denote the set of closed expressions, and add 0 to our syntax, which is defined

by 0 % S {w,E;|i € 0}.

The informal interpretation of our operators is as follows:
¢ 0 a process which cannot proceed;
e X the process bound to the variable X;

e a.F a process which can perform the action a whereby becoming the process

described by F;

e Y {w;E;|t € I} the weighted choice between the processes F;, the weight of the
outcome E; being determined by w;. We think in terms of repeated experiments on
this process and we expect to see over a large number of experments the process E;
being chosen with a relative frequency of E——“—"—

ieIWi

¢ F x F the synchronous parallel composition of the two processes £ and F. At
each step each process must perform an action, the composition performing the
composition (in Act) of the individual actions;

o F[A represents a process where we only permit actions in the set A. This operator
is used to enforce communication and bound the scope of actions;

e O(FE) represents taking the prioritised parts of the process F only.

e E[S] represents the process FE relabelled by the function S;

o uik represents the solution z; taken from solutions to the mutually recursive
equations ¥ = F.

Often we shall omit the dot when applying prefix operators; also we drop trailing
0, and will use a binary plus instead of the two (or more) element indexed sum, thus
writing 3°{1,a.0, 2,b.0|¢ € {1,2}} as la + 2b. Finally we allow ourselves to specify
processes definitionally, by providing recursive definitions of processes. For example, we

write A 4.4 rather than pz.ax.

2.1 The Semantics of WSCCS.

In this section we define the operational semantics of WSCCS. The semantics is transition
based, structurally presented in the style of [Plo81], defining the actions that a process
can perform and the weight with which a state can be reached. In Figure 1 we present
the operational rules of WSCCS. They are presented in a natural deduction style. The
transitional semantics of WSCCS is given by the least relation —C WSCCS x Act x
WSCCS and the least multi-relation ——C bag(WSCCS x W x WSCCS) !, which are
written E —» F and E + F respectively, satisfying the rules laid out in Figure 1.
These rules tespect the informal description of the operators given earlier. The reason
that processes are multi-related by weight is that we may specify more than one way to
choose the same process with the same weight and we have to retain all the copies. For
example, the process

1P+1P +1Q

can evolve to the process P with commulative weight 2, so that we have to retain both
evolutions.

The predicate does 4(F) is well defined since we have only permitted finitely branching
choice expressions. The action of the permission operator is to prune from the choice tree
those processes that can no longer perform any action.

2.1.1 Direct Bisimulation.

Our bisimulations will be based on the accumulation technique of Larsen and Skou [LS89].
We start by defining accumulations of evolutions for both types of transition.

Definition 2.1 Let S be a set of processes then:
o P+ S with w = Y {w;|P v Q for some Q € S};°
o P25 5 iff there exists Q € S and P == Q).

!Where —C bag(WSCCS x W x WSCCS) is the bag whose elements are those of the set WSCC'S x
W x WSCCS, with the usual notion of bag.

?Remembering this is a multi-relation so some of the Q and w; may be the same process and value.
We take all occurences of processes in S and add together all the weight arrows leading to them.

4

a.E-25E

E-%E b F
ExF-2, 5l F!

E%SE Y F
ExFP-YSExF!

E-%E acA
does 4(E)

E-5F qcA
E[A-SFE'TA

E-XF

B[S YR s

E{pi# [B[5]} - F

S{wi Eiliel}—5 E;

ESE R F
ExF% El B!

ESE PO
ExFSE < F

E-SE does 4(E')
does 5 (FE)

E-SE does 4(E))
E[AXLE'TA

ELE
E[S]FSE'[S)

Ei{pi# [E/F}-E

pig . E-25E' ;3 B E
B E E-%F BSE B
O(E)--0(E") O(E)-=06(E') 0(E)-50(E)

Figure 1: Operational Rules for WSCCS.

We define a form of bisimulation that identifies two processes if the total weight of
evolving into any equivalent states is the same. This is not quite the indentification we
wish to make, but we will make such an identification later.

Definition 2.2 An equivalence relation R C Prx Pr® is a direct bisimulation if (P, Q) €
R implies for all S € Pr/R that:

o forallweW, P+5 S iff Q — S;
o foralla € Act, P — S iff Q — S.

Two processes are direct bisimulation equivalent, written P L Q, if there exists a direct
bistimulation R between them.

Definition 2.3
L= U{R | R is a direct bisimulation }.
That < is an equivalence follows immediately from it being a union of equivalences.

Lemma 2.4 Let P and @) be processes such that P 2 Q. Then for all action sets A,
does 4(P) iff does4(Q).

Proposition 2.5 Direct equivalence is substitutive for finite processes. Thus, given P 2

Q@ and P, L Q; for all 1 € I then:

1. a.P ’é‘ a.Q; 2, Eielwi‘P‘i 'i EiGIwiQi;
3. PxELQxE; 4. P[ALQ[A;
5. P[S] £ QlS].

We proceed by the usual technique of pointwise extension to define our equivalence
for infinite processes.

Definition 2.6 Let £ and F' be expressions containing variables at most X. Then we

will say E & F if for dll process sets P, E{P/X} & F{P/X}.

Proposition 2.7 If E L F then wX.E & uX.F.

3We denote the equivalence class of a process P with respect to R by [P]lg. When it is clear from the
context to which equivalence we are refering, we will omit the subscript.

2.1.2 Relative Bisimulation.

Unfortunately, the congruence given by direct bisimulation is too strong; it does not
capture our notion of relative frequency, but captures total frequency. Since we would
like to be able to equate processes such as,

2P + 3@ and 4P + 6Q,

we need to weaken our notion of equality. The basic idea is that in order to show two -
processes equivalent, for each pair of equivalent states we can choose a constant factor
such that the total weight of equivalent immediate derivatives is related by multiplication
by that factor. If we can do this for all potentially equivalent states then we will say that
the processes are the same in terms of relative frequency. Since the constant factor may
well need to be a rational (and we wish to keep our numbers as simple as possible) we
will actually use two constants in comparing relative frequency. This allows us to use a
symmetrical definition.

Definition 2.8 We say an equivalence relation R C Pr X Pr is a relative bisimulation
if (P,Q) € R implies that:

1. there are ¢;,c, € P such that for all S € Pr/R and for all w,v € W, P+ S iff

Q+= 8§ and cyw = cyv;
2. for all S € Pr/R and for all a € Act, P = S iff @ — S.

Two processes are relative bisimulation equivalent, written P ~ Q if there exists a relative
bisimulation R between them.

We have chosen to use multiplication by a constant rather than division as this permits
us to stay within the natural numbers. We could have normalized so that the total weight
actions of any state is 1, and then we would have had an equivalence that is identical to

that of stratified bisimulation [SST89,GSST90].
Definition 2.9

~= {R | R is a relative bisimulation}.
Proposition 2.10 Let P and @) be processes such that P L Q, then P X Q.

Definition 2.11 Let E and F' be expressions containing variables at most X. Then we

will say E %~ F if for all process sets P, E{P/X} ~ F{P/X}.
Proposition 2.12 < is a congruence for finite and infinite processes.

We would like a notion of equivalence that permits us to disregard the structure of
the choices and just look at the total chance of reaching any particular state. This is
known not to produce a congruence [SST89], but is a useful notion of equivalence.

7

Definition 2.13 We define an abstract notion of evolution as follows;

P PP, S P owithw =y ... w,.

In order to define an equivalence which uses such transitions we need a notion of

accumulation.
Definition 2.14 Let S be a set of processes then:
ptlg iﬁsz{wiiPMQforsomeQES};4

We can now define an equivalence that ignores the choice structure but not the choice
values.

Definition 2.15 We say an equivalence relation R C Pr X Pr is an abstract bisimulation
if (P,Q) € R implies that:

there are ¢;,c, € P such that for all S € Pr/R and for all w,v € W, P okl o
iff Q2 S and cw = epv.

Two processes are abstract bisimulation equivalent, written P ~ Q if there exists a
abstract bisimulation R between them.

2.2 Equational Characterisation of WSCCS.

We present some equational laws over WSCCS processes in Figure 2, these form a sound
and complete equational system over the finite processes in WSCCS. We shall write p = ¢
for p L q.

Definition 2.16 Let A be an action set then the predicate, d,(F), expressing the fact
that E can perform an action in A, is defined recursively as follows:

e Ifac A then dy(a.E);
® If there ezists) € I ’UJZth dA(E,) then dA(EiGIw;E;).

4Remembering this is a multi-relation so some of the Q and w; may be the same process and value.
We take all occurences of processes in S and add together all the weight arrows leading to them.

b

there is a surjection f : I +—— J with

(21) ZielwiE,- = ZjEijEj v; = Z{w,|z elAN f(’L) = _]},
and for all ¢ with f(¢) = j then E; = E;.

(Exp,) a.E xb.F =ab(Ex F) (Ezp;) a.ExX;e;v;F; = E;c;v;(a.E x Fy)

A(Resl) (a.E)[A= {a'(EfA) ifac A

0 otherwise.

(Ress) (Zierwil;)[A = Zjeqw;(E;[A) where J = {i € I|ld,(E;)}
(©;) O(a.F) =a.O(E)
_ [%;e51.0(E;) where J = {i € I|lw; =w} and J # 0,
(62) G(EielwiEi) - {E:elsz(EZ) if J =®
(Ren) E,-eIwiEi = EieITL'IJ)iE{ where n (S P

Figure 2: Equational rules for WSCCS.

3 Ants in WSCCS.

We assume a description of the ant as follows (note this is a simplification of the descrip-
tion given in [GD88]:

It will sleep for a determined period.

It will then become wakeable at which time it may wake up.

If it wakes up it will wake any other wakeful ant.

Having woken up the ant will then fall asleep again.

With this intention we end up with the following process describing an ant.

Sleep(k) = 1.1.5leep(k — 1)

Sleep(0) = m.1.Wakeable + n.1.Woken

Woken(z) = w.@.Sleep(s)+1.(w.@ " .Sleep(s) + - - - 1.(w.@.Sleep(s)+1.1.Sleep(s)))
Wakeable = 1...1.(1.a.Sleep(s) + 1.1.Sleep(0))

z—times

The free parameters in the above set of proceses have the following meaning:
e 2 is the number of ants in the nest.

e s is the sleeping time.

o —I—is the probability of any individual wakeable ant waking,

e and hence -7 is the probability of it staying wakeable.

There are two points of interest in the above process; one is the use of odd and
even time steps together with ticks to stop the bi-conditioning of the wakeup point; the.
multiple 1 guards on the wakeup signal receiver are there for the same purpose.

An ant nest is the following process:

Ant; = Sleep(t)
Nest(z) = O((Ant;; x Anty X --- X Anty,) [{1})

where the i1,---,7z parameters specify how long it will be before a particular ant can
wake up for the first time.

4 Properties of the Colony.

4.1 Synchronisation is stable.

The particular case of a nest which is synchronised is of greatest interest and that is the
process;

Snest(z,8) = O((Ant, X Ant, X --- x Ant,) [{1}).

We will now show that once a nest is synchronised it will stay synchronised.

Snest(z, s)(—)* 74" Snest(0, 5)
Snest(z,0) = O((Sleep(0) X - -- x Sleep(0))[{1})
Snest(z,0) =m”.1.1...1.1.5nest(z,0)+ (i)m(z‘l)n.l.l ...1.1.Snest(z, s)

z—times z—times
Z\ 2
REERRE (Z)n 1.1...1.1.5nest(z,s)
z—times

Equally we could represent the above as a transition matrix with the transitions being
pairs of ticks, and for a colony with 7 sleep states (numbered by the amount of time left
to wake up) we obtain the following.

/0 1000000 0)
0 0100000 0
0 0010000 0
0 00010O00O0 0
0 000O01O00O0 0
0 000O0O0T1TO0 0
0 . 000O0O0T©O0T1 Oz
\ 1- (m"-’:-n)’ 0000000 (mT—n)z }

[y
[

1686

90

80

70

Expected 60

Cycle
Time o8 s
46 :
|
38 | p=ﬂ.95\\\\\5\“___h~
e —
p=8.35
20 | ;
0
| } | ¢ { { } } } —
9 19 15 20 23 38 39 49 45 o8

Number of ants

Figure 3: Expected cycle length against Colony size.

In other words a synchronised nest behaves like a single ant, excepting that the prob-

ability (p) of a nest staying asleep at each turn once it can potentially wake up is (n_’f;),

as we would expect.
The expected cycle time and variance in cycle time, in terms of the probability pofa
nest staying asleep once it is wakeable, are given respectively by the formulae;

1 _p
s+ 15 1-pp

In figure 3 we demonstrate that the precise probability of an invdividual waking has
little effect on the cycle time of resonably sized colonies.

11

4.2 A Colony Always Synchronises.

We have shown that the synchronised state is absorbing. We will now demonstrate that
there are no other absorbing cycles or states establishing that the nest must always
eventually synchronise.

Definition 4.1 The usual monus operator is defined as follows:
. {n —mifm<n
nim = |
0 otherwise

Consider the evolutions of the following process;
O((Ant(0) x ... Ant(0) x Ant(n;) X ... x Ant(ny))[{1})

with 0 < n; < n;. Now this has the following evolution path. We will use relativised
weights in this section to save time (writing the probability of an individual ant staying
asleep as p).

O((Ant(0) x ... Ant(0) x Ant(n) x ... Ant(n,))[{1})

11
11

O((Ant(0) x ... Ant(0) x Ant(n;+1) x ... x Ant(n;:1))[{1})
:(ng:1 times)

O((Ant(0) x ... Ant(0) x Ant(0) x ... x Ant(0))[{1})

Hence we can deduce that the probability of a state with at least one ant wakeable in
it synchronising (without our particular ant waking) is,

p(i-—l)nkp(nk—'ﬂi) . p('"'(k—l)_"‘")

which is non-zero for non-zero sleep probability.
Now consider a more general state,

O((Ant(n,) x Ant(ny) x ... x Ant(ny))[{1})

with 0 < ny < ny--- < ng. This can only evolve through pairs of ticks until the following
state is reached,

O((Ant(0) x ... Ant(0) x Ant(n; — ny) X ... X Ant(n, —ny))[{1})

which is precisely the state we considered above.
In figures 4 5, we-include two simulations of six ants with 10 sleep states with
differing wake up probabilities to demonstrate the eventual synchronisation of the nest.
Whilst the size of a transition matrix for such a system is large, having approximately®
(s + 1)** entries, we include a small example to indicate its structure we will use 3 ants
with two sleep states. Numbering the states of

SWe do not take account of states that are equivalent with respect to associativity and commutivity
of times.

12

Figure 4: Six ants synchronsing I

13

Figure 5: Six ants synchronsing II

14

O((Ant(z) x Ant(y) x Ant(2))[{1})
as (2,2,2),(1,1,1),(0,0,0),(1,2,2),(0,1,1),(1,1,2),(0,0,1),(0,0,2),(0,2,2) and (0,1,2) respectively.

0 10 0 0 O 0 0 0 0)
0 01 0 0 0 0 0 0 0
1-p> 0> 0 0 0 0 0 O 0
0 00 0 1 0 0 0 0 0
0 0 p O 0 0 1-p 0 0 0
0 00 0 0 0 1 0 0 0
0 0p> 0 0 O 0 01-p> 0
0 00 1-p20 0 PP 0 0 0
0 00 0 pl—p 0 0 0 0
0 00 0 0 op 0 0 0 1-p)

Larger versions have a similar structure, with a closed cycle, and other states that
can only evolve towards states that can possibly synchronise. With that in mind we can
consider the reduced matrix were we only look a synchronisation versus non-synchronised,
and do not attempt to keep the transit times between states equal. Thus the above
would only have the following states (0,0,0),(0,1,1),(0,0,1),(0,0,2),(0,2,2) and we obtain
the following transition matrix.

1 0 0 0 0
p 0 0 1—-p 0

p’ 0 0 0 1-p°
Pt (1=p%) 0 0 p(1-p?)
P’ 0 0 1-p° 0

The transition matrices for these systems are very sparse, the language WSCCS gives
us an efficient representation of such as we only give those transistions that exist thus
avoiding all the zero transitions.

4.3 Exact time to Synchronise for 2 ants.

We should like to know how long it takes two of our ants starting an arbitary distance
apart to synchronise. If we consider only those states with at least one zero sleep time
then we obtain the following derivations.

O((Ant(0) x Ant(1))[{1}) O((Ant(0) x Ant(1)){{1})
Ip li-p
l1 L
l1 la
O((Ant(0) x Ant(0))[{1}) O((Ant(0) x Ant(s))[{1})

15

For a more general state (k < s),

O((Ant(0) x Ant(k))[{1})

0((Ant(0) x Ant(k))[{1}) li P
p
1
ﬁ O((Ant(k — 1) x Ant(s))[{1})
O((Ant(0) x Ant(k — 1))[{1}) 1 Ve times

1
O((Ant(0) x Ant(s — k+1))[{1})

Thus writing E(k) as the expected time to synchronise for two ants starting a sleep
time k apart we obtain the following simultaneous equations.

E(0) =0
E(1)=2p+ (1 -p)(E(s) +2)
E(k) = p(2+ E(k— 1)) + (1 — p)(E(s — k + 1) + 2k)

We now present the solutions for when we have 3 and 4 sleep states (writing g =1—p
for brevity).

E(1)=2p+qE(3)+2¢
E(2)=2p+pE(1)+qE(2)+4q
E(3) = 2p + pE(2) + ¢E(1) + 6

E(1)+ E(2)+ E(3)=6p+q¢E(3)+ E(2) + E(1) + 124.
Using the above we obtain,

E(1) =2+ L(q(6p + 129))

E(2) = 1(2+p(2 + 1(q(6p + 129))) + 29)

E(3) = %(Gp + 12¢).
Similarly for 4 sleep states we obtain,

E(1) =2+ 1(q(8p + 20¢))

E(2) = 1(2+ q(8p + 20q) + 4q + 44%)

E(3)=1(2+¢(8p+209) + 49 +4¢") + 2+ 4¢

E(4) = 2(8p + 20q)

the solutions to the above equations are presented in graphical form in figure 6.
In general we cannot solve for all the times but we can solve for the time to synchronise
starting as far apart as possible. Observe that given s sleep states,

16

300

450

400

330

300

230

200

150

100

a0

1 i H | [1 T {
Jd00 200 300 400 oS00 kOO 700 800 800 1000
Time to synchronise with 4 sleep cycles starting 1,2,3,4 apar§

Against probability of .individual waking for Z ants.

Figure 6: Expected time to syncronise given 4 sleep states.

17

E(1)+---+E(s) =2sp+ E(1) + -+ + qE(s) + s(s + 1)q
and thus we obtain,
E(s) = 1(2sp + s(s + 1)q)

- We can examine the ratio between time to synchronise and cycle time with respect
both to the number of sleep states, and the probability of an individual staying asleep.
These results are presented in figures 7 8 respectively.)

4.4 Use of groups.
We will change our defintion of the ant slightly to the following;

Sleep(k) = 1.1.Sleep(k — 1)

Sleep(0) = m.1.Wakeable + n.1.Brd(z)

Brd(j) = w.@.Sleep(s) + 1.Brd(j — 1)
Brd(1) =w.. Sleep(s) + 1.1.5leep(s)
Wakeable =1...1 (1 a.Sleep(s) + 1.1.5leep(0))

Z tzmes

Ant = Sleep()

Also defining an alternative ant as;

Slp(k) = 1.1.5lp(k — 1) .

Sip(0) = m'.1.Wkable + ((n + m) — m').1.Brod(z)
Brod(j) = w.a®.Slp(s) + 1.Brod(j — 1)

Brod(1) = w.a. Slp(s) + 1.1.5Ip(s)

Wkable =1 . ..1,(1.a.5leep(s) +1.1.51p(0))

z—tzmes

Ant' = Slp(s).
Definition 4.2 The i'th power of a process P, written P*, is the process;
PxPx-.--xP

-~
t—times

We would like to establish that the processes, Ant” and Ant’, are essentially the same.
It is clear they they are not immediately equivalent since Ant' can produce the action

whilst the highest power of @ that Ant' can produce is @. If we define the following
set of actions,

A={d,---,a,d",--+,a,1}

and consider the processes Antt [A and Ant'[A. The interesting case to consider is
(Sleep(0)')[A and (SIp(0))[A. Examining the evolution pair

18

900 __

430 |

400 |
350 4
300 L _
230 |
200 |
150 4
100 L

a0 |

l { [1 4 { i P,
0.100 Q200 0300 6400 A500 0600 @700 Q800 6800 1000

Figure 7: Time to synchronise for various numbers of sleep states against probability of
individual sleeping.

19

23 -

22

20

17

15

12

10

Figure 8: Time to synchronise for various sleeping probabilities against number of sleep
states.

20

(Sleep(0)°)[A (Stp(0))[A

ln la
(Wakeable')[A (Wkble)[A

We see that these can only be equivalent if they are in a context, where if a process
can recieve an @ action then we can recieve an @ action. To ensure that subsequently
we evolve to an identifiable state. Similarly if we consider the waking up behaviour we
find a difference in the priority structure that requires certain properties to be true of the
context in which we place the processes Ant'[A and Ant'[A. Accordingly we will try to
establish the equivalence of,

O((Ant’ x Sleep(n,) x --- Sleep(ny))[{1})
and
O((Ant’ x Sleep(n,) x --- Sleep(n;))[{1}).

Since the behaviour in non-zero sleep states is trivial we examine the behaviour at
the wake up point. That is the processes

O((Sleep(0)' x Sleep(ny) x - - - Sleep(ni))[{1})

and

O((SIp(0) x Sleep(ny) x -+ Sleep(ny))[{1}).
There are two cases;

e none of the n;’s are zero. In this case the first process is equivalent to the following;

m'.1.1...1,1.0((Sleep(0)’ x Sleep(n, — 1) x - -- Sleep(ng, — 1))[{1})+

z—times
(ll)m(i_l)n.l.l x5 1.1.0((Sleep(s)’ x Sleep(n; —1) x - - - Sleep(n;, — 1))[{1})
z—limes
I-. .._?_ '
c)n’.l.l ...1.1.0((Sleep(s)" x Sleep(ny —1) x ---Sleep(n;, —1))[{1}),
z—~times

which we can rewrite as;

m'.1.]. 1,1.0((Sleep(0)* x Sleep(ny — 1) x - - Sleep(ny, — 1))[{1})+
((m+n)* N m').1.1...1,1.0((Sleep(s)’ x Sleep(n, —1) x --- Sleep(ny — 1))[{1}),

z—times

21

and the second is the following;

m' 1. L..11 O((SIp(0)’ x Sleep(ny —1) x «+- Sleep(n;, — 1))[{1})+
((m —::STfi m').1. L..L1 O((Slp(s)’ x Sleep(ny — 1) x - -- Sleep(ny, — 1))[{1}).

z2— ttmes

One or more of the ngs are zero, to simplify the expansion we will consider the case .
where only n, is zero and all the other n; are greater than or equal to one. In this
case the first process is;

m 1.1 1,1.0((Sleep(0)° x Sleep(0) x - - Sleep(ni — 1)) [{1})+
z-—tzmes

m'n.1. 1..11. O((Sleep(s)’ x Sleep(s) x -+ Sleep(n), — 1))[{1})+

z—-tzmes

<11)m n.1.L...1,1.0((Sleep(s)’ x Sleep(s) x - - Sleep(n — 1))[{1})+

z—tzmes

(i)m('—l) %1 ... L1 O((Sleep(s)' x Sleep(s) x - - - Sleep(ny, — 1))[{1})+

Ty Z- tzmes
<l)mn 1110 O((Sleep(s)' x Sleep(s) x - - - Sleep(n, —1))[{1})+

1
Z tzmes

(1) @+ y, l...11 O((Sleep(s)’ x Sleep(s) x - - - Sleep(ny, — 1))[{1}),

z—tzmes

which can be simplified to,

mi+Y 1, L., . 1,1.6((Sleep(0)' x Sleep(0) x - - Sleep(ny, — 1))[{1})+
((m+ n)zﬁ?f m) 1.1...1,1.0((Sleep(s)’ x Sleep(s) x - -- Sleep(ny, — 1))[{1}).

z—times

For the second we have,

ml+h 1, 1... 1.1.O((Sip(0)’ x Sleep(0) x --- Sleep(ny, — 1))[{1})+
m'n.1.1. " im;SG((Slp(s) x Sleep(s) x - -- Sleep(n, — 1))[{1})+
((m + n)" = m')m.1. 1...1, 1 1.9((Slp(s)' x Sleep(s) x - -+ Sleep(n;, — 1))[{1})+

((m +n)" — m')n.1. 1 .11 O((Slp(s)' x Sleep(s) x -+ - Sleep(ny — 1))[{1}),

z—-tzme.s

22

Figure 9: Six synchronised groups of sizes 8,5,3,3,1,1 synchronising.

which can in turn be simplified to;

mtt 1. 1,1.6((S1p(0)" x Sleep(n, — 1) x --- Sleep(ny, — 1))[{1})+
z—times
((m +n)+D mt) 11, 1.1.O((SIp(s) x Sleep(s) x - - Sleep(n, — 1))[{1}).

z—times

Whilst the above is not sufficient to demonstrate that the two versions are directly
equivalent, it does suffice to demonstrate that they are abstractly equivalent. So they
cannot be distinguished by just observing them. We used the above property to produce
a simulation of a nest with more than 6 ants by using 6 groups of differing sizes and the
result is presented in figure 9.

4.5 Creep Estimate of Synchronisation time.

When we have ants with differing sleep probabilities then they will have different expected

cycle times. We can use this difference to estimate how long they will take to synchronise.

Letting the expected cycle time be E, and E;, with E, < E;, then in each cycle we would

expect the gap between the process to close by an amount E;, — E,. Since we cannot start -
them more then E, apart we thus get a maximum expected time to synchronisation of

2
__E
(EI_ES)

This is only a first order approximation, and should be an overestimate in general.
This is especially useful after the observation above when we have synchronised groups
with different numbers of ants in them. For instance in estimating the time to synchronise
for the situation in figure 10. We use the above formual to estimate the time taken to
synchronise for groups of identical ants of sizes 2,4,6 with a group of size 20, for various
values of the sleep probability. The result is given in figure 11.

4.6 Approximating Synchronisation Time.

A further method of approximating synchronisation time is to take a distribution of
unsynchronised states. We should like a distribution that is stable over the transisition
matrix; in the sense that we recover the same distribution but with some addition of
the synchronised state. Unfortunately finding such a distribution requires us to find an
eigenvector of a matrix of size (s!/(s:n)!)? (for s sleep states and n ants), which is too
large for any practical example. So instead we have assumed that a linear superposition
of unsynchronised states will be reasonably constant over the transition matrix. It is
relatively easy to calculate the probability of this family of states synchronising and to
calculate the expected number of cycles until synchronisation can be attempted again.
Essentially we are using the final transition matrix given in the example of the 3 ants
synchronising with 2 sleep states.

This method gives a very rough approximation, we have taken estimates for both
the stable superposition and the expected time to next synchronisation attempt, and we
cannot hope to have more than an order of magnitude approximation. This technique has
been used to estimate the time to synchronise for 10 ants with 10 and 20 sleep states, for
sleep probabilities ranging from 0.9 to 0.99 (for an individual). The results are presented
in figure 12. For comparison the expected cycle times for both of these systems are
approximately 10.4 and 20.4 respectively.

5 Coping With Errors.

We consider the performance of our system of ants when individuals can “mis-count” how
long to stay asleep. We add an ant that will sleep for some number of ticks less than its

24

p=8.9

p=0.66

p=8.9

Figure 10: 1 ant synchronising with 10.

100 __

890

80 1

70 L

60

a0

40

30

20

10

Figure 11: Aproximate synchronisation time against sleep probability for 20 ants with
groups of various sizes.

P(Sleep)

10 Sleep states

20 Sleep States

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

36
30

12225
7016
3770
1896

895
397
167
63
25
9

Figure 12: Approximate time to synchronise for 10 ants.

fellows; that is to say an ant described by the same process as before but with a different

value of the sleep parameter s.

Esleep(k) = 1.1.Esleep(k — 1)

Esleep(0) = Edecide

Edecide = m.Ewakeable + n.Ebroad(z)
Ebroad(k) = w.a*.Esleep(s — €) + 1.Ebroad(k — 1)
Ebroad(0) = 1.1.Esleep(s — ¢)
Ewakeable = 1.a.Esleep(s — €) + 1.1.Edecide

So we can describe a nest with one of these error prone ants as follows (where we have

fixed the parameter s).

O((Ssleep(k) x Ant;y X ... x Anty)[{1})

The behaviour of such a nest differs as e is positive or negative. For e positive and
less than s. If the nest starts off synchronised (that is all the ants are in their respective
initial sleep states), we reach the following process after 2(s —) ticks:

O((Edecide x Sleep(e) x ... x Sleep(e))[{1})

We have (essentially) two evolution paths for the above process, given the probability

of an individual sleeping is p, the first is;

O((Edecide x Sleep(e) x ... x Sleep(e))[{1})

lp

27

1
1
O((Edecide x Sleep(e —1) x ... x Sleep(e —1))[{1})

Ip
5! (e — 1) times
11

O((Edecide x Decide X ... x Dectde)[{1})

and the second is;
O((Edectde x Sleep(e) x ... x Sleep(e))[{1})
li-p
11
11
O((Esleep(s — €) x Sleep(e —1) X ... x Sleep(e — 1))[{1})
Which we can see will stay synchronised with the other ants with probability p°.

However in the case of e¢ negative starting with a synchronised nest, we reach a slightly
different state:

O((Ssleep(—e) x Sleep(0) % ... x Sleep(0))[{1})
This again can essentially evolve in two ways, the first being:
O((Ssleep(—e) x Sleep(0) x ... x Sleep(0))[{1})
P z—1)
11
11

O((Ssleep(l — €) x Sleep(0) (>< 4 x Sleep(0))[{1})
p z—1
l] (1 —e) times
1

O((Ssleep(0) x Sleep(0) x ... x Sleep(0))[{1})

or alternatively:

O((Ssleep(—e) x Sleep(0) x ... x Sleep(0))[{1})
1- (")

1
11

O((Ssleep(1 — e) x Sleep(s) x ... x Sleep(s))[{1})

So we see, with a total of z ants, the nest will only stay synchronised with probaility
(z—1)e . . .
P . These two situations can be summarised as follows.

28

e e positive, the local clock is fast, and we have a good chance of staying synchronised.

e ¢ negative, the local clock is slow, and we have a poor chance of staying synchro-
nised.

It should be noted that the ants that do not make a counting error stay synchronised -
(Section 4.4). We now present an slightly more complex ant which can cope with the
problem of a slow clock more effectively. The new description of the ant is as follows.

¢ an ant will sleep for a period;
o it will then become wakeable but will not awake spontaneously;

e it then can either wake spontaneously or be woken, and it chooses to wake with
some fixed probability;

e once it has awoken it will then fall asleep immediately.

This description amounts to the following WSCCS process for each individual.

Dsleep(k) = 1.1.Dsleep(k — 1)

Dsleep(0) = Ddoze(s')

Ddoze(k) = 1.(1.a.Dsleep(s) + 1.1.Ddoze(k — 1)
Ddoze(0) = Ddecide

Ddecide = m.Dwakeable + n.Dbroad(z)
Dbroad(k) = w.a*.Dsleep(s) + 1.Dbroad(k — 1)
Dbroad(0) = w.1.Dsleep(s)

Dwakeable = 1.a.Dsleep(s) + 1.1.Ddecide

The colony is defined as usual by:

Nant(;y = Dsleep(s)
Ncolony = O((Nant,y x ... x Nant(;))[{1})

The process Ncolony has the same synchronisation properties of the earlier colony.
An interesting observation is that if we make the parameter s zero then as soon as one
ant wakes up the whole colony will synchronise. Choosing s zero and letting the ant and
colony definitions be as follows:

Fant;y = Ddoze(z)
Feolony = @((Fant(,-l) X...X Fant(,z))[{l})

29

This process has the following evolution (we order the ants so that the lowest value
of the 3;’s is first):

O((Fantyy x ... x Fant(;,y)[{1})
11
11
@((Fant(,-l_l) X ... X Fant(,-z_l))[{l})
15!
11
O((Ddecide x ... x Fant(,-z_,-l))[{l})
l1-p
11
11
O((Fanty X ... x Fant,)[{1})

(¢, — 1) times

When the first ant wakes up then as all the others are dozing they will wake and thus
on the first waking the colony will become synchronised.

The only reason we should not do this is that in some sense listening for a wake up
signal all the time is not resting. So we can build a colony identical to our earlier one
but that will synchronise on the first ant waking by taking the following description of
an individual.

Hsleep(k,s') = 1.1.Hsleep(k — 1,s)

Hsleep(0,s") = Hdoze(s',s")

Hdoze(k,s') = 1.(1.a.Hsleep(s,0) + 1.1. Hdoze(k — 1, ')
Hdoze(0,s") = Hdecide

Hdecide = m.Hwakeable + n.Hbroad(z)

Hbroad(k) = w.a®* . Hsleep(s,s') + 1.Hbroad(k — 1)
Hbroad(0) = 1.Hsleep(s, s')

Huwakeable = 1.a.Hsleep(s,s') + 1.1.Hdecide

and taking the initial definitions of the individual and nest as

Hant; = Hdoze(3,0)
Hecolonyl = O((Ant(;,y x ... x Ant(;y)[{1})

Unfortunately this has the same error behaviour as before, but if we retain some
dozing period, then we can afford the local clock to run slow by that period and the
system will stay synchronised. Whilst retaining the high probability that if the clock
runs fast we will stay synchronised.

So we define an ant that makes counting errors much as before:

30

Ehsleep(k,s') = 1.1.Ehsleep(k — 1, ')

Ehsleep(0,s") = Ehdoze(s',s")

Ehdoze(k,s') = 1.(1.a.Ehsleep(s,0) + 1.1.Ehdoze(k — 1,')
Ehdoze(0,s') = Ehdecide

Ehdecide = m.Ehwakeable + n.Ehbroad(z)

Ehbroad(k) = w.a* . Ehsleep(s — e,s') + 1.Ehbroad(k — 1)
Ehbroad(0) = 1.Ehsleep(s — e, s')

Ehwakeable = 1.a.Ehsleep(s — e,s') + 1.1.Ehdecide

The definition of a nest is as follows:

Hant; = Hsleep(j,s')
Hcolony = ©((Ehsleep(i;) x Hant(;,y x ... x Hant(; y)[{1})

Once again we consider starting with all the ants in their maximal sleep state. Then

with e positive but less than s’ we arrive in the state below which has the described
derivation: .

O((Ehdecide x Hdoze(s' — e,s') x ... x Hdoze(s' — e,s")[{1})
[1-p
11
11

O((Ehsleep(s — e,8") x Hsleep(s,s') x ... x Hsleep(s,s"))[{1})

or alternatively

O((Ehdecide x Hdoze(s' — e,s') x ... x Hdoze(s' — e, s'))[{1})

|p
11

11

O((Ehdecide x Hdoze(s' —e —1,5") x ... x Hdoze(s' — e —1,5"))[{1})

but in either case the nest will stay synchronised. With e negative but less than s’
then we arrive at the state below which has the desribed subsequent derivations.

O((Ehdoze(s' — e,s") x Hdecide x ... x Hdecide(s' — e,s'))[{1})
ll — pt=1)
1

11
O((Ehsleep(s — e,s') x Hsleep(s,s') x ... x Hsleep(s,s')[{1})

or alternatively

31

O((Ehdoze(s' — e, s x Hdecide x ... x Hdecide[{1})
lp
11
11
O((Ehdoze(s' — e —1,5') x Hdecide X ... x Hdecide)[{1})

Thus as long as the error is less than the dozing period the ants will stay synchronised.
The ratio between the amount the ant sleeps and the amount it dozes can be considered
as a measure of how disturbed a colony is. The lower this ratio the faster the nest can
respond as a whole to the behaviour of others. This ratio could be controlled by some
external action but for simplicity is omitted.

6 Experimental Results.

To test the model Melanie Hatcher® has used activity information gathered using a digi-
tized camera image. Activity levels for two nests have been monitored for periods of 112
hours, and the cycles lengths estimated from that data. Cycles with mean period 1309
and 1307 seconds were found, these estimates being accurate to 34 and 32 seconds with
a confidence of 95%. The cycle lengths are then tested against the prediction that they
should arrise from an exponential decay with mean matched to that given by the model.
Ms Hatcher has found that, when a Chi-squared test for fit is used a ‘best’ values of 11.38
and 8.64 were obtained. Since this system has 10 degrees of freedom this is well within
the 99% confidence limits that the data matches the predictions, at least for cycle length.

7 Conclusions and Further Work.

We have presented a model of autosynchronisation that has the essential property we
should require of always achieving synchronisation. The synchronised state is both simple
and elegant. The predictions about this state have been applied to relatively undisturbed
ant nests and have matched up to the limit of the technology being used to measure the
nests. Moreover we have both exact (for 2 ants) and approximate measures of how long
such a system will take to synchronise.

It is of interest that there is little ‘trade off”’ in accuracy of cycle time versus efficeincy of
synchronisation. The exponential nature of many ants synchronising together allows us to
have a very low probability of an individual waking (and thus a very fast synchronisation
time) whilst having a very high probability of a collection of individuals waking. We have
shown that a derived algorithmn can be highly stable to errors in counting of individuals,
and thus provides a highly error tolerant synchronisation technique.

In biological terms our model is both highly abstract and contains some unphysical
assumptions. We have basically assumed that ants can produce a signal which travels an

6The Department of Animal Physiology and Ecology, School of Biological Sciences, University of Bath

32

infinite distance in a finite time. However this does not seem to lead to any detectably

erroneous deductions. Also the assumption that all ants will stay asleep for the same

amount of time is not true; workers of differing castes appear to sleep for differing times.

Some simulations of this situation were run, having changed the processes appropriately,

they showed some of the ‘messiness’ of the original activity data (see figure 13). One
possible solution to this is to introduce a monitor process with a definition similar to

below,

Mon = w.(lLaw™ . Amon + ... + Law®.Amon) + 1.1.Mon
Amon = awake.l...1..Mon
[ty

n—times

and then consider the process,
O((Mon x Colony)[{1, awake})

taking the cycle length to be the duration between the awake actions. A similar technique
can be used with colonies whose individual ants make mistakes: i.e. do not respond to
wake up signals; or to colonies with only finite transmission ranges of wake up signals.

8 Acknowledgments.

Chris Tofts is supported by a BP Venture Research Grant. We would like to thank
Melanie Hatcher, Nigel Franks, Jean Louis Deneubourg and Simon Goss for discussions
on the biological content of this work, especially Melanie for doing all the experiments.
On the computational side we would like to thank Mathew Morley and Fallen Moronfor
their constructive comments, Glenn Bruns and the other members of the concurrency
club for their useful discussion.

9 Bibliography.

[BBK86] J. Baeten, J. Bergstra and J. Klop, Syntax and defining equations for an interrupt
mechanism in process algebra, Fundamenta Informatica IX, pp 127-168, 1986

[DGPFL87] J.L. Deneubourg, S. Goss, J.M. Pasteels, D. Fresneau, J.P. Lachaud, Self-organisation
mechanisms in Ant Societies (II), In: From Indivivual to Collective Behaviour in
Social Insects, J.M. Pasteels and J.L. Deneubourg eds, pp 177-196, Experienta
Supplementum 54, Birkhauser Verlag, 1987

[FB87] N. Franks, S. Bryant, Rythmical Patterns of Activity within the Nests of Ants,
in Chemistry and Biology of Social Insects, J. Eder, H. Rembold eds, pp 122-123,
Verlag J. Peperny, 1987. '

7Copyrighl; Master David Pym.

33

Figure 13: Ants with Differing Sleep Times.

34

[FBGHS89] N. Franks, S. Bryant, R. Griffiths, L. Hemerik, Synchronisation of the Behaviour
Within Nests of the Ant Leptothoraz Acervorum (Fabricius) I, Discovering the Phe-
nomenon and its Relation to Levels of Starvation, Bulletin of Mathematical Biology,
Vol. 51, 1989.

[GD88] S. Goss, J.L. Deneubourg, Autocatalysis as a Source of Synchronised Rythmical-
Activity in Social Insects, Insectes Sociuax, Paris, Vol. 35, number 3, pp 310-315,
1988.

[GSST90] R. van Glabbek, S. A. Smolka, B. Steffen and C.Tofts, Reactive, Generative and
Stratified Models of Probabilistic Processes