LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

| Computer Assisted Proof for Mathematics:
an Introduction Using the LEGO Proof System

by
Rod Burstall

:SOIBWaYIR\ 10} JO0id palsissy Jeindwo)

LFCS Report Series ECS-LFCS-91-132

LFCS January 1991
Department of Computer Science
University of Edinburgh

The King's Buildings]
Edinburgh EH9 3JZ Copyright © 1991, LFCS

Copyright © 1991, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

The Mathematical Revolution Inspired by Computing. J H Johnson & M J Loomes (eds) 101
1991 The Institute of Mathematics and its Applications. Oxford University Press
‘To appear.

Computer Assisted Proof for Mathematics: an
Introduction Using the LEGO Proof System

Rod Burstall,
Laboratory for Foundations of Computer Science,
King’s Building, Edinburgh University, Edinburgh, EH9 3JZ

Abstract

We give brief account of the use of computers to help us develop mathe-
matical proofs, acting as a clerical assistant with knowledge of logical rules.
The paper then focusses on one such system, Pollack’s LEGO, based on the
Calculus of Constructions, and it shows how this may be used to define math-
ematical concepts and express proofs. We aim at a gentle introductior, rather
than a technical exposition.

1 Automatic Proof and Proof Checking

Attempts to use computers to produce mathematical proofs have followed two main
paradigms. In the first, “automatic theorem proving”, the machine searches for a
proof of a theorem given some premises [4]. Although a considerable amount of
work has been done on formulating proof systems which reduce the search space as
far as possible, mainly using Robinson’s resolution method [13], it is still hard to do
interesting proofs. Steady progress has been made but the limitations of machine
search are quite severe, and the technology has not been adopted by mathemati-
cians. In the second approach the proof is invented by the human user and the
machine is used to check that it has no incorrect or missing steps. This greatly
reduces the demand on the machine, but transfers it to the user who has to provide
a proof in a notation sufficiently formal to be understood by the machine and suf-
ficiently detailed for each step to be recognised as correct. This is very much more
burdensome than the level of proof required for normal communication between
mathematicians.

Consider the analogy between formal proofs and programs. A major difference
is that we can mechanically recognise the correctness of a proof, but for a program
we can only recognise syntactic and type correctness and there is no algorithm
for checking that it fulfils its intended purpose. There was a time in the sixties
when the term “Automatic Programming” was in vogue, but it proved chimerical
and the term has more or less dropped out of the technical vocabulary. However,
non-automatic programming is very much with us, a major industry, even though
programs are formal objects which people find difficult to produce. People do not
write correct programs, but they get rapid feedback from the machine when they

102 R. M. Burstall

make mistakes. In a slow process over the last thirty years the level of languages
used in programming has been raised, and the speed of machine response has been
reduced from hours to seconds. It seems that there is a similar development for -
proofs; the logical languages in which we can express proofs to the machine have
become more pithy and expressive, and the machine can notify us of mistakes very
fast, so that without any change in principle the process of developing a machine
checked proof has speeded up by a couple of orders of magnitude. A traditional
proof is a series of statements starting with the premises and finishing with the
theorem, each statement justified as obtained by the application of some logical
rule to some previous ones. For example, if we use “...” to represent various
mathematical formulas, then

Premise 1 Do

Premise 2 D

Step 1 Do by ruleA from premise 1

Step 2 P by ruleB from premise 2

Step 3 I by ruleC from step 1 and step 2
Theorem Do by rule C from premise 1 and step 3

When typing a proof into the machine the most tedious part is typing in the formulas
represented above by “....”. Of course we must put in the premises, but the step
formulas and the theorem can then be computed from these if we say which rules are
to be use on which arguments. Given the two premises we can write the remainder
of the proof as follows

step ! = A(premise 1)

step 2 = B(premise 2)

step 3 = C(step 1, step 2)
theorem = C(premise 1, step 3)

In fact all we really need to write down is the following expression which gives the
proof of the theorem from the premises

C(premise 1, C(A(premise 1), B(premise 2)))

We can think of such expressions as being proofs; a proof expression is either
the name of a premise or the name of a proof rule applied to some proof expression.
From the proof expression and the premise formulas we can calculate the formula
which we have proved (the theorem) by applying the inference rules in the manner
indicated by the proof expression. Of course proof expressions are rather hard to
write down if one does not write out the intermediate formulas, but this is a task
which is mechanical and easily accomplished by the computer. So the technique is
to interact with the machine as follows, where everything is typed in by the user
except the underlined formulas which are typed out by the machine:

Computer Assisted Proof for Mathematics 103

premise 1 =

premise 2 =

step 1 = A(premise 1)
step 2 = ﬁa;remise 2)
step3 = é—(—step 1,step 2)

With a graphical interface one can do a little better: the machine displays a
menu of proof rules and the user simply points to the rule she wants to use and the
formulas it is to be applied to; the names “step 17, “step 2” etc. can be dispensed
with. In fact, once the premises have been typed in the user does not have to type
anything else, just point. This is altogether a more relaxed way of doing business
with the computer.

In practice it is helpful to work back from the theorem as well as forward from
the premises, a method often called Proof by Refinement. It is also helpful to use the
Natural Deduction style of proof system in which trying to prove a fact “if P then
Q” we can add P temporarily to our list of premises and just try to prove Q. The
proof expressions in a natural deduction system have a somewhat more elaborate
structure than those indicated in the example above. They involve expressions for
functions, and they use local variables standing for the (as yet unknown) proofs of
the assumptions; in fact these expressions are what logicians call “lambda expres-
sions” .

It turns out that the problem solved by the machine aboveis “What formula does
the following proof expression prove?”, that is filling in the underlined dots above,
is a well known one. In fact it is just the same as finding the fype of an expression
in programming languages, provided that we adopt a sufficiently rich notion of
type. This idea goes back to Curry and Howard, and it is often referred to as
Propositions as Types. It forms the basis for the proof systems currently popular in
Computer Science, known as Type Theory [10] or Calculus of Constructions [5][12].
In this paper we will give an overview of one implementation of the Calculus of
Constructions, namely the “LEGO” system developed at Edinburgh by Pollack
[7,9]; for the pioneering implementation of Type Theory see [6]. A recent tutorial
on Type Theory is given in [1] , and a more extensive treatment is given in [1 1].

Having distinguished the automatic proof approach from the proof checking
approach, my own preference is for the latter, rather following the story of Achilles
and the tortoise. Automatic proof can accomplish some proofs very quickly, but
when the search fails to find a proof, the user is left at the point of failure in a
machine oriented world and may find it difficult to know what the difficulty was
and how to proceed further. In the proof checking paradigm we can work with
a more human-understandable representation, and although progress may be slow
one is less likely to come up against major barriers. In practice a combination of

104 R. M. Bursiall

these two approaches is used. The automatic proof systems are steered through a
sequence of theorems chosen by the user, using earlier theorems as stepping stones
to later ones. The proof checkers perform some symbolic computation and often
use search strategies programmed by the user to fill in automatically some of the
more routine steps.

2 Why Work on Computer Proof?

The main motivation for work on computer assisted proof has been the desire to
prove that programs do what is intended. This means giving some formal speci-
fication of the task to be accomplished, using some logical language adequate to
express the mathematical concepts involved, then proving that the result computed
by the program is in accord with this specification, for any input. The usual method
of convincing ourselves that a program is correct, debugging it by trying it on a
selection of inputs, can only show this for the finite collection of inputs . Extrap-
olation to other inputs is the act of faith on which the software industry is built.
The mediaeval scholastics might have been pleased to see this demonstration of the
inadequacy of reason without faith.

In practice debugging works surprisingly well, but for programs where the cost of
error in money or human lives is large one would like to do better. Also in concurrent
programs where parts of the program run on different processors proceeding at
somewhat unpredictable speed it may not be possible to re-run inputs which gave
rise to an error and check that the bug has been corrected, timing differences may
give different results even for the same inputs; experiments are not repeatable so
empirical testing fails.

However I would like to put forward somewhat speculatively another motiva-
tion for working on computer proof systems. The number of mathematicians has
not greatly increased since 1950, whilst the number of programmers has increased
explosively, many of them largely self taught. To learn to develop mathematical
proofs one has to acquire some feeling for what a proof is and when the level of
rigour is adequate, otherwise one may be just handwaving. Basically you have to
show it to someone who is mathematically skilled and they have to spend an appre-
ciable amount of time looking at it critically. In programming on the other hand
the machine, through syntax analysis and debugging, is able to give us a lot of
feedback. We still need models to imitate and some advice from our betters, but
the computer can point out when we have made a mistake, and provide us with
some assurance that we have got something right. This feedback loop is crucial in
learning to program. Suppose we had to teach people to program without access to
computers, How many programmers would there be in the world, even if we had a
real need for programs? Programming would be an arcane speciality.

So it seems to me that it is worth trying to get the same kind of feedback for
the activity of producing mathematical proofs. You may say that mathematics is
a highly intellectual activity, requiring sophisticated intuitions. But it would be a
mistake to dismiss programming as a low level symbol manipulation; it too requires

Computer Assisted Proof for Mathematics 105

a high level of skill and intuition. Because a program can be executed mechanically
we should not be misled into thinking that there is anything mechanical about
the process of inventing programs. My contention is that many people, not at the
genius level, can exhibit a high level of intuitive skill because the concrete feedback
from the computer gives them criticism when they are wrong and confidence when
they are right. Our intuition always rests on experience. Maybe if the same level
of feedback could be given for mathematical proofs the number of people capable
of producing proofs would increase markedly. This might not contribute directly
to the discovery of more advanced pieces of mathematics, but if many more people
could climb the foothills of mathematics then surely some of them might scale the
peaks. If I am right about the possibility of a major scaling up in the number
of people able to construct mathematical proofs, then this would surely have an
impact on our ability to tackle the program correctness problem in practice.

3 A Formal Language for Constructive
Mathematics

We now describe the Calculus of Constructions, a logical language with proof
rules suitable for formulating constructive mathematics. Intuitionist (constructive)
logic, disallowing the law of excluded middle P or not-P, seems well adapted to
formal proof development on computers, and it has been shown that a considerable
portion of mathematics can be expressed constructively [2][3][14]. In particular the
parts of mathematics used in computing may be expected to be largely constructive.
We will use for our notation that of the LEGO implementation of the calculus.

3.1 Type construction operations

The Calculus of Constructions uses the type consiruction operators {.}. and
< . > _ which are generalisations of the familiar — and x. Let us explain them
as generalisations of corresponding operations on sets. Suppose S and T are sets.
fes—-T means fzeTforallze S
(z,y) €S xT means zeSandyeT.
We write fz for the more usual f(z), meaning the value of f for argument z. We
write (z,y) for an ordered pair. Now instead of the set T consider a family of sets

over S, say F, that is for each z € S, Fz is a set (note that we write Fz rather
than Fg).

fe{z: S} Fz) ' means feeFeforallze S

(z,9) €<z:5>(Fe) means z€Sandye€ Fa.

106 R. M. Burstall

In other words, {z : S}(Fe) = {f |fe € Fzforallz € S}, and < 2 : 5 > (Fz) =
{(z,y)| V= € S, Vy € Fa}. Notice that if Fz is a constant set T then these reduce
to § — T and S x T respectively. {z : S} Fz) is often written [], ¢ F=z, and
< z:8 > (Fz) is often written 3_,.s F'z, and they are called the product and sum
respectively.

Example for {_}.

Let N be the natural numbers with zero, N = {0, 1, ...}, and R" be the n-dimensional
space of reals. Then a member of {n :N}(R" — R) gives a function from R™ to R
for each n, that is it is a function which given a number n produces a particular
function from R™ to R. For example modulus m is a member of this set, where
mi(2y,...,2;) = (/3 + ...+ 27) (such functions are often called polymorphic in
computer language theory because they work for a whole family of types, here R™
for any n).

Example for < _ > _

Let String n be the set of strings of n characters. Then < n :N> (String n) is the
set of pairs (n, s) such that n is a number and s is a string of length n.

Other examples:

A matrix transpose function for m by n matrices, any m, n:
Transpose € {m :N}Hn N} Matriz(m, n) — Matriz(n,m)).

A finite state automaton, a tuple of three sets and two functions over them:

Automaton € < In : Set >< Out : Set >< State : Set >
((In x State — State) x (State — Out) x State)

(a transition function, an output function and a start state)

Now the Calculus of Constructions is a formal calculus in which these two op-
erators are used to build types, reading S and T as types and F as a type valued
function. In examples like Automaton we can replace Set by Type, the type of all
types. This of course produces difficulties over paradoxes, so we introduce a hier-
archy as follows, T'ypeo, T'ypey,... . For example, N, N — String and N x N
are in T'ypeo. (In fact we can declare basic types like N and Siring in T'ypeo with
some axioms (see below); then combining them with — or x keeps us in Typeo.)
Typeo and Typeo x Typeo — Typeo, for example, are in Type; and so on. This
enables the calculus to be given a model theoretic semantics. In practice it is rather
irritating to have to write the subscripts on the types; LEGO is able to deduce the
subscripts, thus relieving the user of the obligation to write them.

In the LEGO notation we use —> for — and # for X, since these characters
are not available in the standard computer character set. We will also use nat for
N, for the same reason.

Computer Assisted Proof for Mathematics 107

3.2 Expressions and Functions

Expressions are formed from constants, variables and the application of functions
to arguments, as we have seen in the examples above. We need some notation for
functions and adopt the A notation of Church (see Hyland’s paper in this volume
[8]) with a different syntax. If F is an expression involving = we write

[z:S)E

for “E as a function of z, where = is a variable of type S” (Church wrote Az : S.E).

Example

[n :naif](plus(times n n) one) - the function f defined by f(n) =n?+1
for all n in nat

(The LEGO computer input notation currently does not allow infixes like +,
an infelicity which will be rectified sometime - so I am being honest in the examples
in case you want to use the LEGO program). We can then regard a definition like

f[n :nat] = plus(times n n) one
as a syntactic alternative to the basic form
f = [n nai](plus(times n n) one)

There are two ways of defining two argument functions. We can define the func-

tion to take a pair as argument (pairs are written using a comma and parentheses),

or we can define it to take an argument and produce as a result a function which can
be applied to the second argument. We use these as follows, assuming = : s andy:¢t,

f(z,y) o function applied to a pair, f : st —> u
fzy f applied successivelytoz andy, f:s—> t —> u

The second is syntactically simpler and we tend to prefer it. (We used it implicitly
for plus and times above). To define such a function we write

flm :naf][n nat] = ...
or more briefly

flm,n nat] = ...

108 R. M. Burstall

We can define functions to take a type argument (polymorphic functions)
id[t : Typellz : t] = = the polymorphic identity funciion Az.z

It is often convenient o omit this type argument when using the function, and there
is a special notation for this:

id[t|Type][z:t] = 2 the same function but you do not have to give
the type argument explicitly (| replaces :)

With the former definition we would have to write id nat 3, with the latter we may
write simply id 3

3.3 Definitions and Declarations

We have seen how to define functions using the equality sign, = . We can define
constants similarly. But we can also introduce names of any type by declaration
without giving a definition; for this we use [...:...]. For example to declare n as
a natural number and f as a function from natural numbers to natural numbers

[n :nat];

[f nat ~> nai];

Notice that we use a semicolon after a declaration or definition.

3.4 Propositions and proofs

We wish to develop some logic in our language, in fact a higher order intuitionist
logic; for this we will need propositions. We have a type Prop of propositions. In
fact just as

Typeo : Typey

we have
Prop: Typeo

Suppose we bdecl'a.re A and B to be propositions, that is values of type Prop
[A, B : Prop];
then we can define further propositions using and and or, written A and V respec-

tively, thus
AV (BAA)

Compuier Assisted Proof for Mathematics 109

We use —> for implication
A—>(BAA)

and absurd for the proposition which has no proof, that is false. Negation is de-
fined by

not[A : Prop] = A—> absurd

As a matter of fact and, or and absurd are not primitive notions in our lan-
guage but can themselves be defined, similarly for an equality @ [9]. This shows
the power of the basic formalism, but is of less importance to the user who wishes
to deal with portions of mathematics, so we omit the definitions here. The use of
—> for implication is not a notational trick; it really is the same operation as the
one used for forming function types. It turns out that the universal quantifier, “for
all”, is expressed by the dependent function type operation. Thus if we declare
predicates P and R over natural numbers and pairs of natural numbers respectively

[P :nat —> Prop); [R :nat # nat —> Prop];
we can form quantified formulas
{z :nat}(Pz) that is Vz :nat.P(z)
{z,y :nat}(Pz —> R(fz,y)) that is Ve, y :net.Pz D R(fz,y)

The existential quantifier, exists, can be defined. It takes a function as argument,
e.g.

ezists ([z :nat](R(z, z)) that is 3z :net.R(z,z) .

Here the argument of existsis R(z,) as a function of z. Propositions are themselves
types and have proofs as their elements.

We can use declarations to introduce assumptions, just as we used them to in-
troduce constants. In fact an assumption is just a declaration of a constant which
denotes a proof of the fact being assumed

[aziom 1 : {z,y :nat}(Pz —> R(fz,y))]

It is possible in LEGO to write expressions for proofs, indeed they are formed
in just the same way as expressions for other values, but the normal way to create
proofs in LEGO is by “refinement” (described below), so we will not discuss proof
expressions here. It is an important property of the Calculus of Constructions that
proofs are values and can be manipulated just like other values, for example they
can be arguments and results of functions and elements of pairs.

110 R. M. Burstail

3.5 Discharging assumptions and declarations

We can discharge an assumption A. In this case any theorem B that we had proved
in the context containing the assumption becomes A —> B in a new context
without the assumption A. In discharging a declaration of a variable z any previous
function definitions take as an extra parameter. (These are really particular cases
of the same operation.)

4 An Example: Complete Partial Orders

To see how this logical language can be used to describe mathematical systems we
consider the definition of a complete partial order. This is an ordering for which
every ascending sequence has a least upper bound. For ease of reading I have omit-
ted some brackets and parentheses which LEGO requires.

t|T'ype; assume ¢ is a type (an inferred type
since we use vertical bar)

le:t—> t —> Prop; assume le is a function from ¢ and ¢ to
Prop, a binary relation - less than or
equal

Refl = {z : t}(le = z); naming a fact about le - reflexivity

Trans = {z,y,2: t}(lezy —> leyz —> lez z); transitivity

Antisym = {z,y:t}(lezy —> leyz —> Qzy); antisymmetry

POrd = Refl A Trans A Antisym, Define Partial Order

seq = nat —~> new type sequence - function from nat to ¢

Chainls : seq] = {n :nat}(le(s n)(s (succ n))); s is a chain iff 8, < 8n41

for all n

Ub[s : seq][z : t] = {n :nat}(le(s n) z); # is upper bound of sequence s iff s, < 2

for all n

Lub[s : seqlz :t] =Ubsae A{e' : t}({Ubsz' —> lez 2'); z is least upper
bound of sequence s iff it is an upper
bound and less than or equal to all
other upper bounds

Compuier Assisted Proof for Mathematics 111

We have a predicate Chain, but we would like to have a type chain. This is the
type of all sequences satisfying the predicate Chain. We define the type chain to
be the type of ordered pairs consisting of a sequence and a proof that the sequence
satisfies the predicate Chain. We are making use of the fact that proofs are values
and can be components of pairs.

chain =< s : seq > Chain s; Type chain is pairs consisting of
(i) a sequence s
(ii) a proof that the sequence s
is a Chain.

lub: chain —> t; Least upper bound function.

Complete = {c : chain}(Lub c.1(lubc)); Complete means the function lub gives
the least upper bound (Lub) for each chain.
c.l is ¢ considered as a sequence
(first component of ¢).

CPOrd = POrd A Complete; Complete Partial Order - a property
of relation le.

Discharge t; Discharge all assumptions back as far
as t. If a definition depends on a
discharged variable make it a parameter
e.g. t and le are parameters of Lub
(¢ is inferred).

epord[t : Type] =< le:t —> t —> Prop>< lub:chaint —> t > (CPOrdlit lub);

Complete Partial Order s over ¢ - a new
type, whose elements are triples

(i) a less than or equal function

(ii) a least upper bound function

(iii) a proof that these form a partial order.

s,t|Type;

continuous[C : cpord s][D : cpord t] = ...; The type of continuous functions
from C to D. These are defined as pairs
(i) function from s to ¢, and
(ii) a proof that it is continuous
We omit the details.

In this example we have made some simplifying assumptions, for example in
using a standard equality, @, instead of an arbitrary ome, but it illustrates the
general approach. A convenient representation of set theory in the Calculus of
Constructions is still a topic of current research.

112 R. M. Burstall

5 A Sample Proof

We will illustrate a simple refinement proof in the LEGO system (again omitting
some brackets and parentheses). We make two assumptions, that the relation R
is symmetric and transitive, then show that Rzy implies Rza. Proof commands
typed by the user are in bold. The text on the right is commentary. 7n is a subgoal
derived by machine in response to a proof command. We will explain briefly the two
proof commands needed for our example. There are several others not described
here.

The Intros command can be used in two ways. Applied to a goal with a universal
quantifier “for all : ¢”, written {z : t} it strips off the quantifier to produce a
simpler subgoal, and it adds = : ¢ to the context in which later steps are carried
out, as a temporary premise. Applied to an implication, P ~> @, it produces a
simpler subgoal @ and adds P as a temporary premise.

The Refine command uses an assumption to simplify a goal. If the goal is @
and the assumption is P —> @ then it produces the subgoal P. If the goal is Q@ a
and the assumption is {z : t}(Pz ~> Qgz) then it produces the subgoal P a. If
the goal is ?n then Refine a replaces 7n by the term a. Refine also deals with
more general cases involving several premises and several variables, but we need not
discuss the general case here. (Technically speaking the Refine command performs
first order unification.)

These commands work on the current top subgoal.

t : Type; - assumption
Sym : {z,y:t}(Rzy—> Ry=z); - assumption
Trans : {z,y,2:t}(Rey—> Ryz—> Rzz); - assumption

Goal {z,y: t}(Rzy—-> Rz a); - to be proved

Intros z y; - strip quantifier off goal
z:t
y:t

1:Rzy—> Rzz - new (sub)goal

Intros hl; - strip premise off goal?l

hl:Rzy
72:Rzw

Refine Trans; - use fact Trans for goal?2

Computer Assisted Proof for Mathematics 113

73:t
4:Rax 73
75: Rz
Refine y; -instantiate 73 to y
76:Rzy
:Ryz
Refine hl; - use assumption hl for goal 76
Refine Sym; - use fact Sym for goal 77
8:Rzy
Refine hl; - use assumption hl for goal 78
QED - LEGO says that the proof is
complete.

It only remains to save the resulting proof under an appropriate name for use in
proving later theorems.

Acknowledgements

I am very grateful to Randy Pollack for the opportunity of using his LEGO proof
system and to various other users of the system who have helped me to understand
it, notably to Paul Taylor and to Claire Jones. The LEGO users manual, largely
written by Zhaohui Luo, has been very helpful. I am grateful to the Science and
Engineering Research Council and the European Community BRA for supporting
our research in this area. I would like to thank the referees and editors for their
helpful comments.

References

[1] Backhouse R., Chisholm P., Grant M. and Saaman E., ‘Do-it-Yourself Type
Theory’, Formal Aspects of Computing, 1,1, Springer International ,1989.

[2] Beeson, M. J., Foundations of Constructive Mathematics, Springer, 1989.
[3] Bishop, E., Foundations of Constructive Analysis, McGraw Hill, 1967.

[4] Bundy, A., The Computer Modelling of Mathematical Reasoning, Academic
. Press, 1983.

[6] Coquand Th. and Huet G., “The Calculus of Constructions.” Information and
Control, 76, 1988,

114 R. M. Burstall

[6] Constable R.L. et al. Implementing Mathematics in the NuPrl Proof System,
Prentice Hall, 1986.

[7] Harper R. and Pollack R., ‘Typechecking, Universe Polymorphism and Typi-
cal Ambiguity in the Calculus of Constructions’, Proc TAPS OFT Conference,
Barcelona, Springer LNCS 352, 1989.

[8] Hyland, J. M. E., ‘Computing and Foundations’, in The Mathematical Rev-
olution Inspired by Computing, J H Johnson & M J Loomes (eds), Oxford
University Press, 1991.

[9] Luo Z., Pollack R. and Taylor P., ‘How to use LEGO’ (A preliminary Users’
Manual), unpublished draft, LFCS, Dept of Computer Science, Edinburgh Uni-
versity, 1989.

[10] Martin-Lof P., Intustionistic Type Theory, Bibliopolis, Naples, 1984.

[11] Nordstrom B., Peterson K., and Smith J., Programming in Martin-Lof’s Type
Theory, Clarendon Press (Oxford), 1990.

[12] Projet Formel, ‘The Calculus of Constructions: Documentation and User’s
Guide’, INRIA, Rocquencourt BP105, France, Technical Report 110, 1989.

[13] Robinson, J. A., ‘A machine oriented language based on the Resolution Prin-
ciple’, Journal of the ACM, 23-41, 1965.

[14] Troelstra, A. S., van Dalen, D., Constructivism in Mathematics: An Introduc-
tion (Vols 1 & 2), North Holland, 1988.

