LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Deliverables: an approach to program
development in the Calculus of Constructions

by

Rod Burstall and James McKinna

" Juswdojansp weiboud 0} yoreoidde ue :se|qeisaleq

LFCS Report Series ECS-LFCS-91-133
LFCS January 1991

Department of Computer Science
University of Edinburgh
The King's Buildings

Edinburgh EH9 3JZ Copyright © 1991, LFCS

Copyright © 1991, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Deliverables: an approach to program development in
the Calculus of Constructions’

Rod Burstall and James McKinna®
Laboratory for the Foundations of Computer Science
University of Edinburgh3

January 24, 1991

The problem: separating proofs and programs

There are two contrasting approaches to the formal development of correct pro-
grams:

Classical: We can write a program and produce a separate proof of its correctness

Synthetic: We prove the corresponding theorem and extract from it the program
(its algorithmic content)

The classical approach seems unsatisfactory in that the proof is separate from the
program. It is more acceptable in a formalism such as Floyd-Hoare assertions in
which local correctness statements are attached to pieces of program.

The synthetic method is attractive at first sight but there is considerable dif-
ficulty in separating the algorithmic part of the proof from the correctness part.
No automatic method for doing this is known. See for example Constable et al
(1986), Nordstrom, Peterssen and Smith (1990) and Paulin-Mohring (1989).

Extracting programs from proofs

Classically we look for a constructive proof of a statement of the form
Vz.(S(z) — Jy.R(z,v)),
in Constructions notation

{x:1} (S x -> exists [x:i] R x y).

1

Draft
2The authors gratefully acknowledge the support of the EC BRA and the SERC
33.C.M.B,, King’s Buildings, Mayfield Rd., Edinburgh EH9 3JZ, UK;

e-mail rb@lfcs.ed.ac.uk, jhm@lfcs.ed.ac.uk

1

But when we do a constructive proof we wind up with a function which, given
an individual x and a proof of S x, produces a pair consisting of a an individual
y and a proof that it satisfies R x y. In other words we cannot get the result y
without providing the proof of S x. It seems that if we try to develop a substantial
program this way we need to handle proofs all the time as we attempt to calculate
values: the proof and the computation are inextricably mixed.

A better idea is to look for a pair (f,p) where f is a function from individuals
to individuals and p is a proof that

Vz.(S(z) — R(z, f(z))),
in Constructions notation
{x:i} (S x => R x (f x)).

Now this is not much good if we have to revert to the classical method of developing
f, the program, and p, the proof, independently.

We want to take a more categorical view and build up such program-proof
pairs by composition. We will call these pairs “deliverables”; they are what a
Software House should deliver to its customers, a program plus a proof in a box
with the specification printed on the cover. The customer can independently check
the proof and then run the program. The point is that the program part can be
trivially extracted from such a pair by taking the first projection and normalising,.
We have carried this out in Pollack’s LEGO implementation of the Calculus of
Constructions, see Luo, Pollack and Taylor (1989), Coquand and Huet (1988).

Later we will note that a specification given by an input property and an
output property is insufficient, and show how the ideas can be extended to specify
a relation between the input and the output.

The Cartesian Closed Category of Deliverables

We will define a cartesian closed category (ccc) of deliverables. That is it will
have deliverables as morphisms. For an equational definition of a ccc see Lambek
and Scott (1986), Section 1.3; we will follow their treatment. The ccc is built
up in three stages: first a category, then adding a terminal object and binary
products, then adding exponentials. At each stage we will ‘specify the equations
which have to be verified. In order to satisfy these equations we will have to
assume n-conversion and surjective pairing for products (non-dependent X); these
are not in the normalisation algorithm for our LEGO implementation of Calculus
of Constructions, but it is conjectured that they could be added without loss of
consistency.

A category: composition and identity

Objects A type, s, together with a set over s, S:s — Prop.

Morphisms Morphisms from (s, S) to (¢,T), say del,; S T are pairs
o fis—t
e p, a proof that for all z:s, Sz D T'(fz)
Del,; S T fwill be used to abbreviate
Vz:5.5¢ O T(fz).

Thus Del,; S T is a set over s — t. Define del,, S T as the dependent sum type
Yfis—tDel,;, ST

In general we will write types as subscripts and feel free to drop them where
they can be understood from context. We will use F', G, H to denote morphisms
in this category. Sometimes we will write the object (s,.S) just as S, where the s
may be inferred from the definition of S. In the LEGO code we are able to drop
these type parameters, taking advantage of the type inference facility.

We define the composition thus

f’ b
(S,S)in)-’(t,T) (t,T)M(u,U)

(5.5) (fog,p*q) (w,0)

comp,;, ST U

where f o g is the composition and p * ¢ is a proof of (del,, S U)(f o g). In fact
(p* q)z = q(fz)(pz). We will not give such proofs explicitly from now on; they
are easily derived in a top down manner in LEGO, and their explicit form is not
particularly illuminating.

We define the identity thus

) ident, S
(5,8) —2L, (5,5)

where id, is the identity function on s, and p is a (trivial) proof that it is in
Del,, § S . Thus using our convention of omitting types we may say that, given
F:S — T and G: T — U we have defined comp F G:S — U, and we have defined
ident S: 5 — S.

To show that this forms a category, we must check associativity and identity,
and we have done so. Although the equation for associativity holds exactly, those
for the identity arrows only hold up to n-conversion, so strictly speaking, we do
not have a category. We will see later how to deal with this.

Cartesian category: terminal object and product

Our next step is to add the additional structure of a Cartesian category, a terminal
object and binary products. The calculus of constructions provided by the LEGO
system has binary products for types, s#t, but it does not have a terminal type
with exactly one element, although ML for example provides such a type and it
- might reasonably be expected in LEGO. We hope that this minor omission may
be repaired some time. There is also a difficulty with the products as follows. The
pairing operation is written (z,y) and the projections p.1 and p.2; we have (z,y).1
reduces to z and (z,y).2 reduces to y, but not (p.1, p.2) reduces to p. That is, the
pairing is not surjective. |

We introduce a unit type and a void element of it by declaration, rather than
by definition as we would have preferred.

unit:Type
void:unit
Unit [x:unit] = Q@ x void

Here “Q” means the Leibniz equality, defined by Q x y iff any property holding
for x holds for y. We define the unique morphism to the terminal object thus

term, S

(u,p)

(s,8) — (unit, Unit)

where u ¢ = void, and p is the (trivial) proof that Unit(u z). We need to show
that if F:(s,S) — (unit, Unit) then f = (u,p). This is only true if we add the
extensionality axiom: f = g if for all z, f * = ¢ z, where = refers to Leibniz
equality.

We define the product of two objects (s, S) and (¢,T') as (sft,U) where U z =
S(2.1) ANT(2.2). We write prod,, S T. The projections are

m.sT M. ST
(7"1, P1) ot (772a Pz) ot
prod,; § I' ——— § prod,; S T———T

where m; z = 2.1 and p, proves that Del (prod S T') S m;. Similarly for =,.
We define pairing on morphisms

652 0 (6522 @)

(s,S5) M prod;,, T U

STU

Y a’lrs,t,u

where (f,g) ¢ = (f z,g9 =) and r is the associated proof.
We need to show

(al) my(pair ST)=S.
(a2) my(pair ST)=T.
(b) pair (7S, 7S) = S.

Equations (al) and (a2) are easy but (b) does not hold for Leibniz equality (con-
" version) as we have remarked.

Cartesian closed category: exponentials

To form a cartesian closed category we need to add exponential objects, with two
operations apply and curry. (These are respectively the co-unit and the bijection
if we define the ccc by an adjunction). The exponential of (¢,T') with respect to
(s,S), written exp,; S T is (s — t,Del,; S T'). We have

apply, ;S T

PrOdt—-)s,t(eXpt,sT S) (T) M (8’ S)

where fz = (z.1)(2.2) and p is the associated proof.

» P
prod,, U T—(—f—l (s,5)

9,9
(u,U) —(————)-> exp;, T' S

currys;,, S T U

where g z y = f(z,y) and ¢ is the associated proof.
These must satisfy

apply(pair(comp my(curry F))w,) = F forall F:prod ST — U
curry(apply(pair(comp m, G) 1)) =G forall G:U — exp T S
The necessary equations fail to hold for the same reasons as before (failure of
n-conversion and surjective pairing). However we will remedy this below.
Natural number object

We now add a natural number object (indeed we will have to add an object for
each inductively defined data type). This object comes with a family of morphisms
embodying the induction principle for natural numbers.

nat:Type

zero:nat

succ:nat -> nat
Nat:nat -> Prop
Nat [n:nat] = true

. As usual, we write “0” for “zero”, and “+1” (postfix) for “succ”. The natural
number object is (nat, Nat).

We can define a function natrec:t — (¢ — t) — (nat — t) polymorphic for any
type t with axioms

natrec zs0 =z

natrec z s (n + 1) = s(natrec z s n)
(unit, Unit) (z_,p)_) t,T) (t,T) -(f—’—?—)—> t,T)

(natrec z s 1)
(nat, Nat) > (¢, T)

Natrec, T

where r is the appropriate proof. In fact r uses the induction principle for nat to
show that if z takes you into ¢t and s preserves ¢ then for any n, natrec z s n is in

T.

Example: the function double

We need an example to see all this at work. We will define properties Odd and
Even over the natural numbers and a function double; we then show that, for any
natural n, double n is even.

Even:nat -> Prop
0dd [n:nat] = not (Even n)

These will have the axioms (for all n)

Even 0
Even n 5 0dd (n+1)
Odd » D Even (n+ 1)

with proofs ng, n; and n, respectively. We define the deliverables

zE

(Au: unit.0, ng)
(unit, Unit) > (nat, Even)

sEO

(An:nat.n + 1,n,)
(nat, Even) (nat, 0dd)

sOE

(An:nat.n + 1,n,)
(nat, Odd) > (nat, Even)

In terms of these we define a deliverable for successor of successor
ssEE = comp sEQO sOE
and a deliverable for double,

doubleNE = Natrec Even zE ssEE

. Now the typechecker can determine that doubleNE: (nat, Even) — (nat,Even)
as required.

Top down development

In LEGO one normally develops proofs by refinement, starting from the goal,
selecting an inference rule to refine by and so producing subgoals. Although we
have used the bottom-up approach in the last section, it is also possible to use the
top-down refinement approach. We start with the goal

(nat, Even) — (nat, Even)

Then refine by the Natrec rule with the invariant (nat, Even) as parameter, getting
as subgoals

(unit, Unit) — (nat, Even)
(nat, Even) — (nat, Even)

The first of these is solved by refining by zE. The second is refined by comp Even
Odd Even giving as subgoals

(nat, Even) — (nat, Odd)
(nat,0dd) — (ndt, Even)

These are solved by sEO and sOE respectively. Instead of refining by a deliverable
we could just refine by an incomplete deliverable, leaving the proof part out but
giving the function part. The proof part would appear as a pending subgoal. The
LEGO system is quite flexible in the way it allows one to develop a proof, and this
flexibility is also available for program development. It seems much better than
being restricted to a rigid sequence of decisions, whether top down or bottom up.

7

Equivalence for deliverables

The previous account reveals a number of defects in the structure of our puta-
tive category caused by the lack of y-conversion and surjective pairing in LEGO.
However, by explicitly considering types and predicates together with a notion of
equality, we may define product, exponential etc., in such a way as to overcome
- these defects. So we really do have a category, and it is indeed cartesian closed.
To do this, we redefine an object to be a triple (s, S, p), consisting of

s, a type
S, a relation on s

p, a proof that S is a partial equivalence relation (i.e. symmetric and transitive,
but not necessarily reflexive)

(This is the same as considering an equivalence relation = and a distingushed
property P: given such, we may define a per P*zy iff Pz Az = y A Py; conversely,
given a per S we may define a property S tz iff Szz, with the equivalence relation
z =y iff Sy V zQy , where Q is the Leibniz equality, as usual.)

We then say an arrow from (s, S,p) to (t,T,q) is a pair (f,r), with f: s — ¢
and 7 a proof of f = f, where = is the partial equivalence relation defined by

f=giffVa,y:s.25y = (fz)T(fy).

Second order deliverables

The system which we have described above amounts to a functional version of the
well known invariants used in proofs of imperative programs. Unfortunately there
is no connection between the input and the output of the function. All we say is
that if the input is in set S then the output is in set T, but there is no relation
between them. For example we might specify that a sorting function takes lists to
ordered lists, but we cannot specify that the output is a permutation of the input.
The function might always produce the empty list, which is indeed sorted, but
not very interesting. As a matter of fact the classical invariant proofs have the
same weakness, masked by a tacit assumption that some variable which is carried
through the computation does not change its value. To enforce the constraint that
the output list be a permutation of the input list we need to resort to “second
order” deliverables, where the deliverables defined above are “first order” ones.

So let us write Del' for Del above and del' for del. We now define Del® and
del®. Suppose S:s — Prop, P:s — p — Prop and R:s — r — Prop for types s, p
and r. Let

Del. SPRf=Ve.Sz— (Yy.Pzy—Rz(fzy))

that is Vz.Sz — Del'(Pz)(Rz)(f z). deliw S P R is the dependent sum type

YXfip— r.Delz,p’ .5 P R f. There is a category C,S whose objects are (p, P),
(r,R), ... for relations P, R, ... and whose morphisms from (p, P) to (r, R) are
elements of delz,w S PR.

If P,:s — p, — Prop and P,:s — p, — Prop, then they have a product
. Pig:s — (pifips) — Prop given by Py 2 y1p = S . — (P x (71 y12) AP z (73 y12)),
with projections II: P, — P; given by II = y;5 = (7; y43,...) Where ... is the
(trivial) proof that for all z:s, Sz — (Vy19: p1lp2, Pia y12 — P & (7 y10))-

We conjecture that C,S is cartesian closed (modulo the equivalences mentioned
earlier) although we haven’t checked the details.

Given F:del' T S and G:del’> S P R we can define objects (F* P), (F*R)
and substitution F*G:del> T (F*P) (F*R). We conjecture that this substitu-
tion operation defines an indexing of del® over del', similar indeed to the general
categorical framework for dependent types, based on our experience with a set-
theoretic treatment of deliverables, in which we obtained a model of the Calculus of
Constructions from a topos(a proof-irrelevant model of higher-order logic). This
suggests a reflection in which a dependent product type may be used to name
a hom-set of deliverables (compare Martin-L6f’s “subset interpretation” of type
theory). We are currently investigating all this.

One could proceed in analogous manner to third order deliverables and so on,
but it is not clear how useful these are. Since we have X-types we can presumably
code these as second order deliverables (thanks to Gordon Plotkin for this remark).

As an example, we have been experimenting with these second order deliver-
ables for the proof of an insert sort. First we proved an induction principle over
sorted lists, which enables us to establish a relation between an input list and the
result of applying a recursive function to it:

for ¢: (list @) — B — Prop, n:f, ca—(lista)— 88— B

[Sorted (a:xl), ¢1b [a:a, l:list @, b: ,3]]

¢ niln ¢ (axl) . (calbd)

Sorted List Inducti
Vi:list . Sorted [D ¢ (listrec n ¢) orted List nduction

From this principle we obtain the following operation on deliverables, which in-
volves a dependent family, F, of second order deliverables:

N € del' Unit nil*¢ F € Ia: a.del® ((cons a)* Sorted) ¢ (cons a)* ¢
(listrecn¢,...) € del’ Sorted True ¢

where n = N.1 and ¢ = Xa:a.((F a).1). In the proof of insert sort, we have
applied this construction to the invariant ¢ = Al, m:list a.Sorted m A Perm [m.
This enables us to prove that the output of sort is both sorted and a permutation
of the input.

References

[Ben85]

[Bur89]

[BM90]

[Gir86]

[Gol84]

[Hyl182]

[Hyl87]

[HPS6]

[Joh77]
[KWT1]

[LS86]

[Luo90a)

[LPTS89]

[Mog90]

Bénabou, J. Fibred categories and the foundations of naive category
theory, JSL, 1985.

Burstall, R.M. An approach to Program Speciﬁcatioh and Development
in Constructions, Talk given at the Workshop on Programming Logic,
Bastad, Sweden, May 1989.

Burstall, R.M. and McKinna, J.H. A subset model of the theory of
Constructions, Edinburgh, 1990, in preparation.

Girard, J-Y. Linear Logic, in Theoretical Computer Science, Vol 50,
North-Holland, The Netherlands, 1986.

Goldblatt, R. Topoi: the categorical analysis of logic, Studies in Logic
and the Foundations Of Mathematics no. 98, revised 2nd edition,
North-Holland, The Netherlands, 1984.

Hyland, J.M.E. The Effective Topos, in: Proceedings of the Brouwer

" Centenary Symposium, North-Holland, The Netherlands, 1982.

Hyland, J.M.E. A small complete category, in: Proceedings of the Con-
ference on Church’s Thesis: Fifty Years Later, 1987.

Hyland, J.M.E., and Pitts, A.M. Catgeorical Semantics for the the-
ory of Constructions: Topos-theoretic models, in: Proceedings of the
AMS Conference on Categories in Compuetr Science, Boulder, Col-
orado, 1986

Johnstone, P.T. Topos Theory, Academic Press, London, 1977

Kock, A. and Wraith, G. Elementary Toposes, Aarhus Lecture Notes
no. 30, Aarhus Universitet, Denmark 1971.

Lambek, J. and Scott, P.J. An Introduction to Higher-Order Categorical
Logic, Cambridge Studies in Advanced Mathematics no. 7, Cambridge
University Press, Cambridge, England, 1986.

Luo, Z. An Extended Calculus of Constructions, Ph.D. Thesis, Depart-
ment of Computer Science, University of Edinburgh, June 1990.

Luo, Pollack, and Taylor, How To Use LEGO (A Preliminary User’s
Manual) LFCS Technical Note LFCS-TN-27, October 1989.

Moggi, E. A category-theoretic account of program modules, Draft, Ed-
inburgh, August 1990.

10

[NPS90] Nordstrom, B., Peterssen, K. and Smith, J. Programming in Martin-
Lof’s type theory, Oxford University Press, 1990.

[Pit89] Pitts, A.M. Categorical Semantics of Dependent Types, Talk given at
SRI International, Menlo Park, California, June 1989.

- [PMW90] Paulin-Mohring, C. and Werner, B. Eztracting and Ezecuting Programs
developed in the Inductive Constructions System: a Progress Report,
in: Proceedings of the First Annual Workshop on Logical Frameworks,
Antibes, May 1990, eds. Huet, G. and Plotkin, G.

11

