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1 Introduction

A systolic array is a specification of a multi-processor network suitable for the execution of a
certain class of algorithms. Roughly speaking, this class corresponds to nested-loop programs,
a common component of many compute-bound programs. Due to technological constraints,
systolic arrays have traditionally been implemented in hardware. Advances in programmable
processor networks offer the possibility of implementing them in software. To do so requires,
the construction of programs whose execution emulates that of a systolic array. Our work
centers on the problem of mechanically creating such systolic programs for asynchronous
distributed-memory processor networks. The programming of such networks by hand is
difficult and error-prone. Formal methods for systolic array synthesis can automatically
generate optimal parallelism. We exploit this technology for the generation of distributed
programs.

One part of a systolic array is the specification of a processor layout. For an implemen-
tation in hardware, one specifies the requirements for each processor, often called a cell, in
terms of registers, buffers, control lines, and logic components. The operation of the cells
and the flow of data through the systolic array are controlled by a global clock. The number
of cells is fixed, since they must be fabricated as a chip. Systolic programs specify a set of
asynchronously composed processes, each one an ordinary sequential process; the number of
processes depends on the problem size.

Systolic arrays must also provide for the movement of data through the network and to
or from the external environment, called the host. Traditional systolic arrays allow external
i/o only at their boundaries — a restriction that we will adhere to. The relaxation of this
constraint is left to later research. In hardware, the data movement is provided for by
connecting the host to the boundaries of the array and constructing hard links between
neighbouring cells. A systolic program must include code for the injection and extraction of
data to and from the host, as well as for the internal data communication.

We are working on a prototype systolizing compiler. Our compiler accepts nested-loop
programs. If the source program meets a set of restrictions, then a linear systolic array
— one described by a set of linear functions specifying its time and space behaviour — is
assured. This specification, and the source program from which it is derived, are the starting
point for the automatic generation of the systolic program. There are several implemented
methods for the systematic derivation of systolic arrays [5, 10, 11, 22]. They differ mainly
in whether their input — a source program - is imperative (i.e., contains re-assignments) or
functional (i.e., a set of uniform recurrence equations). We assume the imperative style, but
our definitions are easily adapted to the functional style; there is a correspondence between
imperative and functional source programs [2]. Thus, our compiliation scheme applies to
systolic arrays derived by any of these methods.

Our systolic programs are expressed in an abstract syntax that is easily translated to
any distributed target language; they can then be mapped onto the processors of a par-
ticular machine. We have used the programming languages W2 [19] and occam [18, 20] in
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experiments.

The parallelization of loops has received a lot of attention in the past. Most has focused
exclusively on process definition, i.e., concurrency. Less attention has been given to the
channel communications required for systolic programs. Our work addresses both aspects,
concurrency and communication, with equal rigour (although this presentation provides more
detail on concurrency than on communication).

Certain restrictions and assumptions are introduced in the text; for reference they have;
been collected in Appendix A. The theorems cited in the text have been collected in Ap-
péndix B.

2 Notation

The application of a function f to an argument z is denoted by f.z. Function application is
left associative and has higher binding power than any other operator. A function of multiple
arguments may be written in a curried form, e.g., for a function f with two arguments: f.z.y.
We will occasionally use the lambda notation for functions. A linear function is uniquely
represented by a matrix [16]. We shall attribute the properties of the matrix to the function.
For instance, the set of points that a linear function f maps to zero will be called the null
space of f and denoted null.f. Other properties include the dimensionality and rank.

We identify n-tuples with points in n-space; primarily we will be concerned with points
whose coordinates are all integer. .7 denotes the i-th coordinate of point z. O is the origin
(the point whose coordinates are all zero). zey denotes the inner product of two points, =
and y, in n-space:

zoy = (sum: : 0<i<n : z.i%y.q)

Integers are denoted by the letters ¢ through n, real numbers by greek letters, and points
by the letters w through z. Thus m x n is the product of two scalar quantities, while mx*z is
the multiplication of a point by a scalar; it represents the component-wise multiplication by
m. The symbol / is used for division; it may appear in two different contexts. m/n denotes
the ordinary division of two numbers. z/m represents the division of each component of =
by the number m, i.e., (1/m) * z. We denote the integer m such that m xy = z by z//y. It
is only well-defined, if = is a multiple of y. The notation (z;7 : €) refers to a point equal to
z, except that the :-th component is expression e.

Quantification over a dummy variable, z, is written as (Q z : R.z : P.z), following [6].
Q is the quantifier, R is a function of z representing the range, and P is a term that
depends on . When context makes the range clear, it will be omitted. The symbol A
is used for universal quaﬁtiﬁcation, E for existential quantification. (set z : R.z : P.z) is
equivalent to the more traditional {P.z | R.z}. We will use (N z : R.z : P.z) to stand for
the number of values of z for which P.z holds when R.z holds. Formally, it is a shorthand for
(sumz : Rz A Pz : 1), where sum is the summation quantifier, generalizing addition.
In general, any binary, commutative, associative operator that has an identity element may



-3 THE STARTING POINT 3

be used as a quantifier; quantification makes it an operator of arbitrary arity. For instance,
the functions min and max will be used as quantifiers.

N, Z, Q, and R represent the set of natural numbers, the set of integers, the set of rational
numbers, and the set of real numbers respectively. A function defined on the elements of
a set may also be applied to a subset; in this case, the value is the set of values obtained

by the pointwise application of the function to the subset. For example, given a function,
f i A— B, and a subset C of A:

fC=(setz :z€C : fux)
The sign function has the definition:

sgnnm = if m<0 — -1
0 m=0 — 0
0 m>0 — +1
fi

A line is an infinite set of points. Given two points, z and z, z # 0, it is defined as:
linex.z=(seta:acR:z+ax*z)

A point may indicate a direction; then we think of it as a vector whose source is the origin
and whose target is the point; a line is defined by the point z and the direction of the
vector z. We also may regard a point as defining a finite line segment — we call it a chord —
consisting of the points between 0 and the point. A point w lies on the chord defined by z
if(Et:0<¢t<1:w=txz). We denote this by (w on z).

3 The Starting Point

We begin with the source program and a systolic array that has been derived from the
program. The systolic array is assumed to be correct with respect to the source program.

3.1 The Source Program

The source program is a set of r nested loops:

for zq = lby «— sty — b,
for ¢, = lby « st; — rh;

forz,_;=1b,_y — st,_y —rb._,

(3:07:1"17 L 7'737'—1)
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with a loop body, called the basic statement, of the form:

(Tgy TyyevesTpy) I Byo@y.o Ty — S
I] Bl.xo.xl. LIRS ) - Sl
0 Byzozyo Ty — St
fi

Let the range of 7 be 0<i¢<r, and the range of j be 0<j<t. The bounds Ib; (left bound)
and rb; (right bound) are linear expressions in a set of variables called the problem size; the
steps st; are either —1 or +1; the guards B; are boolean functions; the computations S; may
contain composition, alternation, or iteration but with no non-local references other than to
a set of global variables indexed by the loop indices. The set of names of these variables will
be denoted V. We look at the loop body as a procedure parameterized solely by the loop
indices. Neither the values of the loop indices nor the values of the problem size variables
may be changed by any statement in the loop body. The left bound and right bound of each
loop are related by:
(Af:0<i<r : b <rb)

Interpreted as a sequential program, if the step is positive, the loop is executed from the
left bound to the right bound; if the step is negative, it is executed from the right bound to
the left bound. This implicit case distinction at this point is unorthodox, but it simplifies
later notation. An instantiation of the basic statement with values for the loop indices, each
within its bounds, will also be called a basic statement when no confusion should arise. If
the difference is important, we will refer to the former as an instance of the basic statement.

An indezed variable is a mapping from a finite subset of N" to a set of elements, for some
n € N; n is the dimension of the indexed variable. The domain of the mapping is not any
arbitrary subset of N; in each dimension, it is a non-empty sequence of consecutive natural
numbers. The elements of the range are called the elements of the indexed variable. If there
are multiple references to the same indexed variable in a program, certain criteria must be
met; these are found in [2].

A stream is a pair: a name of an indexed variable and an index vector. An index vector
is an (r—1)-tuple; each component is a linear expression of the loop indices (but with no
constants in the expression). It will be represented by a linear function called the index
map. For instance, if the indexed variable A is written in a source program (with three
loops whose indices are ¢, j, and k) as A[i+k,j-k] then the index map is the function
(A (4,4, k).(++k, j—k)). The index map has dimensionality (r—1)xr and must have rank r—1.

Note: These restrictions are a result of the limitations of systolic arrays. As we shall see,
streams are sets of variable elements that travel through a systolic array with a common
(constant) direction and speed, being read and written by the processors they encounter.
Streams whose index maps in the source program have less than r—1 dimensions in their
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range are given extra indices during the derivation of the systolic array, which enforce the
required pipelining of their accesses. A stream whose rank is less than r—1 will be split into
several streams (for example, see LDU-decomposition in [2]). Our approach permits neither
r-dimensional variables, nor constants in the expressions that make up the components of

the index vector. We will extend our format to allow for such variables in the future.
(End of Note)

It is assumed that each basic statement refers to some element of each stream [2, 26] and
that each element of a stream is accessed by some basic statement.

3.2 The Systolic Array

Two distribution functions completely determine a systolic array; they are called step and
place. An additional useful function that is defined in terms of step and place is flow. We
restrict ourselves to linear systolic arrays; that is, we assume place and step to be linear
functions. Several automatic systems for deriving systolic arrays guarantee the optimality
of step. Let S be the set of streams and Op the set of instances of the basic statement.

step :: Op — Z specifies the temporal distribution. Basic statements that are mapped to
the same step number are performed in parallel. step defines a partial order that
respects the data dependences in the source program.

place :: Op — Z"™! specifies the spatial distribution. The range of place, called the com-
putation space, has one dimension less than the number of arguments of the basic
statement (i.e., the number of nested loops). The rank of place is r—1.

flow :: S — Q"' specifies the direction and distance that stream elements travel at each
step. It is defined as follows: pick an arbitrary element of stream s; if it is accessed by
distinct instances of the basic statement op, and op, then

place.op, —place.op,
flow.s =

step.op; —step.opg

flow is only well-defined if the choice of the pair {(opg, op;) and of the element of stream
s is immaterial.

step is the primary function that determines a systolic array. Once it has been derived, many
different place functions are possible; each must be compatible with the partial order defined
by the step. This is formally stated as follows:

(A 0Py, 0Py + OPg, 0Py € Op : (1)
place.opy = place.op, = (step.op, # step.op; V op, = op;))
That is, two distinct statements projected onto the same point must not be assigned the

same step number: processes are sequential. Rather than phrasing our definitions in terms
of an abstract unit distance, we assume that adjacent steps differ by 1.
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Systolic arrays are not allowed shared access to a variable, neither in reading nor in
writing. If two basic statements refer to the same element of a variable, that element must
move in accordance with the way the place function projects those basic statements. Function
flow describes this movement. It follows from the regularity of the source program and the
linearity of step and place that the movement of a stream element must be in a constant
direction and at a constant speed; i.e., flow is well-defined (Theorem 10 of Appendix B
and Theorem 2 of [11]). At present, our compilation scheme is restricted to systolic arrays:
with neighbouring connections only. Predicate nb is defined on Z", and when applied to the
difference of two points, identifies whether they are neighbours:

nbae = (Ad:0<i<n-1:|zi| < 1)

We restrict the connectivity to constrain the range of flow. We want to ensure that two
processes, which access a stream element that is not accessed by any processes in between,
are neighbours in the process space. We will permit fractional flows: a stream element may
take several steps to reach a neighbouring process; the respective communication channel
must have buffers to hold these elements on their journey. Our formal requirement on flow
is:

(As:seS8:(En:n>0: nb(nx*flow.s)))

Systolic design methods do work without this requirement; it will be relaxed in subsequent
work.

4 The Systolic Program: Representation

The process and communication structure of the systolic program mirrors that of the systolic
array; each process is identified with a point in (r—1)-dimensional Euclidean space and may
have communication channels only to its immediate neighbours. Unlike the systolic array,
which is synchronous, the processes are composed by an asynchronous parallel operator.
Communication, however, is synchronous: both the sender and receiver are blocked from
further execution until the communication has taken place. We assume that multiple com-
munications may be performed concurrently, i.e., the channels are mutually independent.
The behaviour that is imposed by the synchrony of the systolic array is governed by the
flow of data in the asynchronous program. We must ensure that the relaxation of the lock-
step behaviour does not change the behaviour of the computation. A theorem to this effect
is proved in [20]. Our programs are related to wave-front arrays, which are asynchronous
hardware data-flow architectures [15].

The systolic programs that we derive can be implemented in any distributed programming
language that has the following constructs:

e a construct for the creation of parallel processes indexed over a linear dimension, i.e.,
arrays of processes;
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e a construct for the creation of communication channels indexed over a linear dimension,
i.e., arrays of channels;

o the ability to enforce synchronous communication, e.g. by rendezvous primitives;

o standard constructs and combinators of general-purpose imperative programming lan-
guages.

Examples are W2 [1], occam [12, 13], and C enhanced with communication directives [7]:

4.1 The Computation Processes

We shall call the smallest rectangular space (to be defined formally later) enclosing the
computation space the process space. A process is created for each point in the process
space. Using an enclosing rectangular space allows both for its specification with only two
points and for ease of translation to a target language. The empty program will be associated
with points in the process space to which no basic statements are mapped: these are referred
to as null processes.

Each process is represented by a language-independent for loop, called a repeater, which
enumerates a sequence of computations. A repeater is a triple:

{first last increment}

where first and last are the first and last element of the sequence, and increment specifies
how the next element is derived from its predecessor. We will show that first and last are
parameterized over the process space, i.e., they are expressions in the coordinates of the
process space; increment is a constant expression independent of the process space. The
concept of a repeater was first introduced with a slightly different but equivalent definition
in [18].

4.2 The I/O Processes

Within the layout, the data on which a systolic program operates is organized in streams.
In the host, it is organized as indexed variables (as declared in the source program). The
input and output processes act as an interface. The identity of an element of an indexed
variable is not available inside the systolic array; a stream element consists only of its value.
Each stream has its own input and output processes. At a later stage, these may be merged
into fewer processes; our systolic program is still somewhat abstract.

Following a corresponding restriction on systolic arrays, input from and output to the
host is only allowed at the boundaries of the computation space. In fact, we will only allow
i/o at the boundaries of the process space. Each i/o process communicates with a single
process on the boundary.
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Each computation process needs support for the movement of data. The connection with
the host is provided by i/o processes; the kind of support depends on the type of the stream.
There are two types: stationary and moving.

Stationary streams do not move between processes during the execution. Consider an
element of a stationary stream. All the statements that access it are mapped to the same
point by the place function. We must load the element at that point before the computation
(mapped to that point) and recover the element from that point after the computation.

Of a moving stream, each computation process requires the propagation of a set of ele-
ments, not all of which need to be used in the statements that the process executes. Elements
that arrive before or after the computation must also be passed on. The propagation phase
beforehand is called soaking, the phase afterwards, draining.

The only difference between loading and soaking is that, on loading, the computation
process retains the first element that it receives instead of passing it on; the only difference
between recovery and draining is that, on recovery, the computation process ejects its local
stream element after passing on others. This protocol is only one of many possible choices,
but it has the advantage of maintaining the same order in the loading and recovery of
stationary streams as is used in the propagation of moving streams. This order — “first-
in-first-out” — means that the same loop specifications are used for both input and output
processes. Loading and recovery may be performed at any boundary of the process space; it
is not specified by the systolic array. A loading & recovery vector must be supplied as part
of the compilation process; it specifies the direction (and as we shall show, the definition) of
the input and output of a stationary stream. Whenever a reference is made to the flow of a
stationary stream, it will mean the loading & recovery vector.

Given that each i/o process is for a particular stream, that it performs exclusively input
or exclusively output, and that the process with which it communicates is fixed, a commu-
nication is completely specified by the identity of the element. A repeater for an i/o process
for stream s represents a sequence of communications and is written:

{first, last, increment,}

We stress again, that we see our repeater specifications of systolic programs still as
abstract. Optimizations need to be performed to arrive at efficient concrete descriptions.
We shall deal with this subject in our work, but not in this paper.

5 The Model

Not surprisingly, given the geometric nature of systolic arrays, our analysis uses a geometric
model. Each instantiation of the loop body (i.e., each instance of the basic statement)
corresponds to a point in Euclidean r-dimensional space with integer coordinates. The set
of these points is called the indez space, denoted ZS. We shall denote its elements z, 2, etc.
Each axis of ZS corresponds to a loop index of the source program. There is a one-to-one
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correspondence between ZS and Op. The correspondence will be stressed by applying the
function place, e.g., to arguments in Op and to points in ZS.

Given the restrictions on the bounds of the loops in the source program, the boundaries
of any dimension are orthogonal to the axis of that dimension; we say that the index space
is rectangular. The range of the place function, i.e. the computation space, will be denoted
CS. We shall denote its elements y, y’, etc. The coordinates of CS are distinct from those
of ZS. ot

Each indexed variable, v, is represented by an (r—1)-dimensional set of points, denoted
VS.v, which is also a rectangular space. Each point corresponds to an element of the variable.
If v and v are distinct variables, then VS.v N VS.v' = §.

6 The Systolic Program: Specification

6.1 The Process Space Basis

The extent of the process space can be characterized by two points: we call them PS,,;, and
PSpmax- These two points define a rectangular region in Z"~': the smallest region enclosing
the computation space. They are specified as follows:

(A7 :0<i<r=1: PSSt =(minz : z € IS : place.z.1))
(A7 :0<i<r—1: PSS i=(maxz : z €IS : place.z.i))

(2)

These two points will be referred to as the process space basis. The process space can be
specified in terms of PS,;, and PS, ..

PS = (sety . yezr_l A (Az :0<e<r—1 : PSpin-t Sy-iSPSmax-i) : y)

The points in PS\CS will not execute any basic statements but, as we have already pointed
out, they will be involved in the movement of data.

6.2 The Computation Processes — Basic Statements

This section is concerned only with the definition of the computations at the points in CS.
Each process is also involved in the movement of data inside the processor network. Because
the movement of data is independent of the computation code, it is discussed in a later
section.

Each basic statement corresponds to a point in ZS. The sequence of basic statements
that a process y in CS executes corresponds to the set of points:

chordy = (setz : z€ZS A placez=y : z)

The linearity of place ensures that chord.y is a straight line segment (Theorem 4). The
repeater component first is, for a process y, the point z in chord.y which has the minimum
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step value of all points in chord.y:

firsty = =z
where step.z = (minz’ : 2’ € chord.y : step.z’) A z € chord.y

Note that first depends on y. The component last is specified similarly, except it is the point
with the maximum step value:

!

last.y = =z
where step.z = (max 2’ : 2’ € chord.y : step.z’) A z € chord.y

Since a chord is a convex domain, and the step function is a linear function, the value of the
step function reaches a minimum at one end of the chord and a maximum at the other end.
Under certain conditions, these two points will lie on a boundary of the index space. Given
the restrictions on flow and the fact that the index space is rectangular, these points will be
on a boundary if the components of increment are from the set {—1,0,+1}.

Note: When these restrictions are not met, the two points will be the ones “closest” to the
boundaries of the index space. To calculate them, the intersections of the line extending
chord.y with the boundaries of the index space are computed and then perturbed to the
nearest integer-valued point along the line towards the interior of ZS. Although our cur-
rent method is incomplete, it covers all systolic arrays (derived from programs satisfying
the source requirements of Sect. 3.1) known to us. We are working on the general case.

(End of Note)

We note that the intersections of a chord.y with the boundaries of the index space are at
points which lie on boundaries to which chord.y is not parallel. (The points may also be on
other boundaries to which it is parallel, if chord.y lies entirely on such a boundary.)

The regularity of ZS (namely that every point with integer coordinates within the given
bounds is in ZS) and the linearity of place mean that there is a well-defined “unit” distance,
a vector in Z”, between any two adjacent points along any chord.y (Theorem 7 and the
following corollary). We call this distance increment. In order to specify it, we define a
precedence relation over the points that lie on chord.y:

t<z = :v,a:' € chord.y A step.x < step.:c'

Since the lines of all y in PS are parallel, increment is well-defined, that is, it does not depend
on y. increment must meet the specification:

(Aw,z:w=<z A =(Ez::w=<z A z<2z): w+increment = z) (3)

w and z are adjacent points on chord.y. From the specification of increment we prove that
increment € null.place (Theorem 5) and step.increment > 0 (Theorem 6).
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6.3 The I/O Processes — Layout

Only a subset of the boundary points of PS is needed for the injection and extraction of a
stream. Picture a stream as a wave approaching the process space; only those boundaries
which the wave encounters are needed for injection. The boundaries on the opposite side
of the process space are needed for the extraction of the stream. More precisely, given a
stream, s, there must be a process at each point on the process space boundary which lies
on a boundary which is not parallel to flow.s. The input processes are located along the
boundaries on one side of PS (the “upstream” side), the output processes are located on
the other side (the “downstream” side). Each i/o process has the same coordinates as the
process in PS with which it communicates.

6.4 The I/O Processes — Communications

Consider a stream, s, of indexed variable v. Each input process reads a partition of v’s
elements and provides it as a pipeline to a chord of processes. The chord is defined by
the location of the input process at one end and by the stream’s flow. At the other end,
an output process extracts each element from the pipeline and restores it to the indexed
variable. The partition corresponds to a chord of points in VS.v and is the set of elements of
the indexed variable used in any basic statement executed by any process along the pipeline.

Remember that the components of the i/o repeater first, and last, are points in AR
their components are expressions in the coordinates of PS. We claim that increment, is a
constant in Z"'; it defines a total order on the identities of the elements in each partition.

Let y be an i/o process for stream s and M be the index map for s. The set of processes
that access elements that y injects or extracts is:

pipe.y = (set z : z€ PS A z € line.y.(flow.s) : z)
The set of basic statements that are executed by processes in pipe.y is:
comps.y =(setz : (Ez : z€ pipey A 2€CS : z € chord.z) : z)

Let M be the index map for s. For any basic statement, z, the identity of the element of s
that it uses is given by M.z. So the elements that y must access is the set:

elems.y = (set z : & € comps.y : M.z)
With these definitions, first, and last, can be specified:

first,y = w
where increment,ew = (min w' : w' € elems.y : increment,ow’)
A
w € elems.y
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last,.y = w
where increment,ew = (max w' : w' € elems.y : increment,ew’)
A
w € elems.y

6.5 The Computation Processes — Data Propagation

Computation processes must cooperate with the movement of the stream elements. As well
as accepting and passing on the elements that it uses, each process may need to help in the
propagation of other elements. Using the notation of the previous section, let y be an i/o
process and z be a computation process in pipe.y. The number of elements of stream s that
z soaks is:

(Nw : w € elems.y : increment,ew < increment,e(M.(first.z)))
The number of elements of stream s that are drained is:
(Nw : w € elems.y : increment,ew > increment,e(M.(last.2)))

This also covers the loading and recovery of stationary streams, once an increment has
been derived from the provided loading & recovery vector. The number of elements that
are passed on during loading is the same as the number to be drained if the stream was a
moving stream, similarly recovery is equivalent to soaking.

6.6 The Buffer Processes

Two types of buffer processes may be needed: buffers inside and buffers outside the com-
putation space. If the process space is not the same as the computation space, then buffer
processes are needed to transport stream elements between the i/o processes on the bound-
ary of the process space and the processes that are on the boundary of the computation
space. The set of buffer processes is PS\CS.

In a systolic array, a stream’s flow may mean that the elements travel too slowly to
encounter a processor at each time step in the synchronous execution; extra latches are
added in a hardware refinement to accommodate these elements. Qur programs will create
buffer processes which are inserted in between computation processes. These buffers may be
realized as separate processes or may be incorporated into the computation processes in a
later compilation step.

7 The Systolic Program: Derivation

This section presents the method of deriving the systolic program from the source program
and the systolic array. The computation code for the processes in S is derived first, followed
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by the code necessary to support the injection and extraction of data to and from the
processor network. Example derivations are found in Appendix D (polynomial product) and
Appendix E (matrix multiplication). Each Appendix presents the derivation of two different
programs, corresponding to two different place functions.

7.1 The Process Space Basis

Each coordinate of a point in the computation space is the value of a linear function which
is defined by the corresponding component of place. Because the index space is a convex
domain, each component achieves minimal (and maximal) values at the extreme points of
the domain [16]. That is, each coordinate of PS,;, is the value of place.z for some vertex
z of the index space. The vertex for the i-th coordinate is determined by the signs of the
coefficients of the ¢-th component of the ranges of place; thus, to completely determine PS_;,,
at most r—1 calculations are needed. The value of z.j is Ib; if the coefficient of the j-th
argument in the domain of place is greater than zero and rb; if it is less than zero. When the
coeflicient is zero, then it does not matter which bound is used; both yield the same value.
For the computation of PS the roles of the left bound and right bound are reversed.
This construction meets specification (2).

max?

An analysis of place determines whether the same vertex can be used in the derivation
of all coordinates at the same time. If, for each argument to place, the signs of the non-zero
coefficients in the range of agree, then a single vertex can be used and only two calculations
are needed to compute the process space basis.

7.2 The Computation Processes — Basic Statements

Two aspects need to be determined: the boundaries of CS in PS, and the sequences of basic
statements that make up a process. Both will be defined hand-in-hand.

7.2.1 increment

The null space of place has rank 1 (Theorem 1): it is the span of a single vector. We
begin the derivation of increment by picking an arbitrary element, w, of null.place. Let
k=(ged:: 0<i<r : w.i), then:

increment = sgn.(step.w) * (1/k) * w
The sign ensures that increment points in the right direction relative to the step function

(Theorem 6). step.w = 0 is not possible: step and place would be inconsistent, contrary to
our assumption that the systolic array is correct (Theorem 3).

7.2.2 first and last

We present only the derivation of first. The derivation of last proceeds identically with the
roles of the left bound and right bound interchanged in the outlined process.
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The restrictions on the index space mean that from an analysis of the slope of a chord.y,
we can determine which boundaries of the index space contain the points first and last.
The slope of chord.y is the same for all y and is represented by increment. A component
of increment is zero if and only if chord.y is parallel to the boundaries of that dimension.
As noted in Section 6.2, first and last lie on boundaries that are not parallel to chord.y.
Therefore, we are interested in the dimensions (and their boundaries) that correspond to
non-zero elements of increment. We call these boundaries faces. For each 7, 0<i<r:

i

face.i = (set z : z.t = bound; : x)

where bound; is the left bound of the i-th loop if the i-th component of increment is greater
than zero, and the right bound if it is less than zero. When increment.z is equal to zero,
face.i is not defined. There are at most r faces.

In general, when z ranges over ZS, the set of equations place.z = y has r—1 equations and
r unknowns; the set may always be solved for z, but there are infinitely many solutions [16].
However, for the boundary points in ZS, one component is known, leaving r —1 unknowns,
and the system of equations may be solved for the unique point which is the value of first.
(An alternative proof is that of Theorem 9.)

Therefore, in general, our expression for first is a case distinction with an alternative for
each face (i.e., the number of alternatives is equal to the number of non-zero components
of increment). Each alternative consists of a guard expressing the fact that y lies in the
“shadow” of that face (i.e., the projection of that face) and of an expression for first:

first = if y € place.(face.0) —  solution of place.(z;0: boundy) =y
n - N
l yeplace.(face.(r—1)) — solution of place.(z;r—1: bound,_;) =y
fi

Each set of equations is solved symbolically, yielding both an expression for the correspond-
ing alternative of first and a closed form for the associated guard. The closed form is a
conjunction of inequalities. Each inequality represents a boundary line in the process space,
which is the projection of a boundary line of the corresponding face of the index space.
The linearity of place guarantees that the boundaries of the face of the index space are the
boundaries of the projection of the face in the process space. The resulting closed form for
the guard corresponding to face.: is:

where e; is the solution derived for z.j. There are r—1 conjuncts, one for each of the r—1
components for which expressions have been derived.

Some distributed languages, such as occam [12], specify a loop not by a lower and upper
bound, but by a lower bound and the number of loop steps to be performed. Once first and
last have been derived, this number is defined by:

((last — first) //increment) + 1 (4)
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In general, the boundaries of place.(face.i) may be different for first and last. Consequently,
the previous calculation is defined piece-wise.

7.2.3 A Special Case

If all but one of the components of increment are zero, then the place function is a projection
along a single axis of the index space. Such a place function, which we call simple [20],
collapses a single dimension of the index space, and there is one linear expression for the
entire computation space. Providing a simple place function amounts to parallelizing one of
the loops in the source program, as is done in parallelizing compilers [3]. This occurs often
enough to merit consideration. The collapsed dimension of the index space corresponds to
the non-zero component of increment.
Deriving first and last in these circumstances is trivial:

(Ay:yePS: (Ai:0<i<r:firstys = if sgn.(incrementi)=0 — y.
0 sgn.(incrementz) >0 — b
[ sgn.(incrementi) <0 — rb;

fi )

In last, b, and rb; are interchanged. Since y does not appear in any of the guards, one
expression for first covers all processes in the computation space. Also, with a simple place
function, CS = PS, so there are no null processes. As a result, the expression for first does
not need any guards. The number of loop steps is also easy to compute: if increment.z is the
single non-zero component, then the number is (rb; — b;) + 1.

7.3 The I/O Processes — Layout

We have chosen one way of deriving the layout of the i/o processes; other possibilities will
be explored in future work. Our current method has the advantage of simplicity, if not
efficiency or elegance. Just as the non-zero components of increment reveal the dimensions
of the index space to which it is not parallel, the non-zero components of flow.s, for each
stream s, determine the dimensions in which i/o processes are created. For each non-zero
component of flow.s, ¢, the following set of processes is created:

I0,i=(sety : y€ PS A (y.t =PSpint V yi=PSnax?) : Y) (5)

T0,.: lies along the boundaries in the i-th dimension of PS. If flow.s.i > 0, then the points
whose i-th component is PS;,.¢ are input processes, and those whose i-th component is
PSmax-t are output processes. If flow.s.i < 0, then the two are reversed. Depending on
the bounds of the indexed variable, some of the processes in each set may perform null
communications, analogous to the processes that are in PS, but not in CS. Whenever there
is more than one non-zero component of flow.s (yielding more than one set of i/o processes),
there will be points in the process space which are in more than one set. Sets that are not
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disjoint must be made so: we derive the process definitions in order of increasing dimension
number, from 0 to r—2. In each dimension, duplicate processes are omitted. For an example,
see Section E.2.3.

7.4 The I/O Processes — Communications

The restriction to neighbouring communication means that the increment between stream,
elements is directly related to the increment between consecutive basic statements (i.e.,
increment): if a process performs two consecutive statements, the stream elements that are
used must be neighbours in the pipeline. Let M be the index map for stream s, and v its
indexed variable. Then increment, is M.increment (Theorem 11); increment, is a constant,
because increment is. This means that the elements accessed by an i/o process lie on a line in
VS.v; the vector defining the line is increment,. In analogy with the computation processes,
the slope of increment, determines which faces of VS.v contain the intersection points of this
line with the boundaries.

The elements accessed first and last are first, and last,. Every element of v is used by
some statement. Therefore, first, is the point at the intersection of a boundary of VS.v
with a line; the line is defined by the vector increment, and a point in VS.v. We know
increment,; we need to determine the point in VS.v. Since we have assumed that every
basic statement accesses an element of s, any statement can be used to calculate this point.
Taking an arbitrary basic statement, =, expressed in the coordinates of CS, e.g., from any
of the alternatives for first or last, the point is M.z. For each face, ¢, of VS.v, the following
expression defines the intersection point, first,, in VS.v:

M.z — (M.z.7 — first,.t) /increment,.7) * increment, (6)
Symmetrically, to calculate the intersection point, last,:
M.z + ((last,.t — M.z.i)/increment,.i) * increment, (7)

These are not circular definitions. The values of first,.; and last,.i are known; the remaining
components are derived from these equations.

7.5 The Computation Processes — Data Propagation

The definition of the i/o processes is used to derive the code for soaking and draining. Again,
let M be the index map for stream s. Consider a pipeline of s; first; defines the first element
of the stream along the pipeline. All of the elements in the pipeline that arrive at a process
before the first element to be used are soaked:

soak, = (M first—first,)//increment, (8)
Symmetrically, all of the elements that arrive after the last element used must be drained:

drain, = (last,— M.last)//increment, (9)
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As stated previously, for stationary streams the number of elements of stream s that a process
passes on during loading is the same as drain,, the number during recovery, soak,.

7.6 The Buffer Processes

To define the buffers external to the computation space, the points that are in the process
space, but not in the computation space must be identified. The boundaries of the computa-,
tion space are defined by the guards in the expression for first (or last— both are defined only
for all points in the computation space). A point is outside the computation space when
the disjunction of the guards fails to hold. Each buffer passes along all of the elements of a
stream that it receives. For stream s, this is calculated as:

((last, — first,)//increment,) + 1 (10)

Of course, when any of these are defined piece-wise, the calculation is done piece-wise.

Internal buffers are created for each stream with a fractional flow. Recall that we require
flow.s to be of the form y/n for some n > 0, where nb.y holds. As the synchronous com-
munication provides a buffer of size 1, n — 1 buffer processes are created in between each
computation process. Examples of both kinds of buffers are found in the Appendices. They
have been defined as separate processes, interposed on the channels between computation
processes.

8 Conclusions and Related Work

A range of methods for the generation of systolic programs can be envisioned. They form a
spectrum depending on the proportion of generation that is performed at run time. Genera-
tion at run time has each process determine the identity and ordering of its statements from
the loop bounds specified in the source program and its coordinates in the process space.
This is done either as a separate phase before execution or interleaved with it [3, 25]. At
the other end of the spectrum is our approach. We aim at code that represents all and only
those statements each processor is to execute. The code is parameterized by the coordinates
of the process space, in addition to the parameters of the source program.

In previous work, we have used a different, less formal systolizing compilation scheme
[20]. The main drawback of that method is that it requires an instantiation and subse-
quent generalization of the problem size. As a result, non-simple place functions made the
automatic generation of code cumbersome, and the code inelegant.

To our knowledge, the first system generating systolic code was SDEF [7]. SDEF fills
the basic statements of the source program into a predefined distributed program skeleton.
Recently, Ribas [24] has succeeded in generating efficient systolic programs for the processor
network WARP [1]. His work is specifically targeted for WARP, a one-dimensional array,
and imposes even more restrictions on the source programs than we do. Fencl and Huang
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[8] also begin with a source program and a derived systolic array and produce code for
parallel machines. Their work seeks to produce programs for both shared-memory and
distributed-memory architectures, and for both synchronous and asynchronous execution:
they claim their method may be mechanizable. Other work on writing systolic programs
has concentrated on demonstrating hand-written hand-optimized programs for particular
machines, e.g., [9].

Others working on the automatic production of code for distributed-memory machines’
do not use a systolic array as their starting point [3]. They take a general set of nested loops
and, using data dependence analysis, transform them in order to parallelize one or several
loops. On the one hand, these methods are more general: they accept more general source
programs. On the other hand, they are more restrictive: they require place functions to be
simple, i.e., projections along one axis of the index space.

There are many directions in which our work can be extended. A first priority is to lift
at least some of the restrictions currently imposed, both on the source programs and on the
distribution functions. We would like to allow:

¢ non-rectangular index spaces [24];

e non-integer solutions to the linear equations [26];
o unrestricted flow functions [21];

¢ non-linear distribution functions [4].

The idealized programs that our method constructs will require optimization before and
after translation to the target language. We intend to address this issue in future work. Also,
either before or after translation, our programs must be refined to meet the restrictions that
actual machines impose:

e not enough processors, either in dimension or number, or
e not enough channels.

Such limitations can be imposed with techniques of partitioning [23], re-routing [7], and
projection [17, 26].

We have hand-translated our example programs for execution on several parallel com-
puters:

e translations of all programs into occam on a 4-node transputer network and on a larger
simulated transputer network,

¢ translations of the programs in Appendix D into C augmented with communication
directives on a 24-node Symult Systems s2010.

In all cases, the only errors were mistakes made in the hand translation.
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A Requirements & Restrictions

A.1 Requirements

These are either required by the nature of a systolic array, or are generally agreed upon in
the literature.

¢ There are at least two loops: r>0.
o The step values of the loops are restricted: (A ¢ : 0<i<r : st; =1 V st; = —1)

e The matrix associated with the index map of each variable must have a rank of r—1,
thus enforcing the full pipelining.

e All communication is between neighbouring processes, i.e., for each stream, s, each
component of flow.s is a rational number and there exists an n, n > 0, such that
nb.(n * flow.s).

A.2 Restrictions

These are additional restrictions imposed by our method.

e All loop bounds are linear expressions involving only a set of extra variables called the
problem size and integer constants.

Increment is restricted: (A7 : 0<i<r : increment.; € {—1,0,+1})

Each indexed variable is (r—1)-dimensional.

Each stream cannot have any constants in its index vector.

Each basic statement accesses all of the streams, i.e., an element of each stream.

o Each element of an indexed variable is accessed by some basic statement.
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B Theorems

This appendix lists the proofs of all claims cited in the text. In the text, they are referred
to by number.

1. Theorem: dim.(null.place)=1
Proof:

true
=  { linear algebra }
dim.(null.place)+rank.place = r
=  { rank.place=r-1}
dim.(null.place)=1

(End of Proof)

2. The null space of place is the span of a single element, call it null,. Note that null, # 0.
This means that (A = : z € null.place : (Ea : a € R : z = axnull))). null, can be
any element in the null space; it is not unique. Without loss of generality, let null, € Z'.
Note that, for any z € Z", « is a rational number.

3. Theorem: step.null, # 0
Proof:

step.null, =0

= { let null, = a(z — '), for some z,z’ s.t. place.z = place.z’ A z#z',and a €R }
step.(a(z — z')) =0

= { linear algebra }
ax*step.(z—z') =0

=  {null,#0 = a#0, algebra }
step.(z —2') =0

= { linear algebra }
step.z — step.z’ = 0

=  { algebra }
step.z = step.a:'

=  { Equation 1 }
false :

(End of Proof)
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4. Theorem: (All of the points projected by place onto any y lie on a straight line)

(Ay :: (Eline:: (Az :: placex=y = =z € line)))

Proof: Given an arbitrary y € Z™™', we need to show the existence of a line. This
requires a point and a vector. Given the dimensions of place, there always exists a
non-trivial solution to place.z = y [16]; let zy be such a solution. Then let z, be the
point and null, the vector. Obviously z, lies on this line. So it suffices to show that
for any other z, place.x =y = z € line.

place.z =y
= { placezg=y }
place.(z — zy) =0
= { def. of null.place }
x — zy € null.place
= { Theorem 2: null.place = span.null, }
(Em:meQ: z—z=m=xnull)
=  { algebra }
(Em :: x=gz0+mx*null)
= { def. of line }

z € line

(End of Proof)

5. Theorem: increment € null.place
Proof:

increment € null.place

= { definition of the null space of a matrix }
place.increment = 0

= { Specification 3: place.w = place.z A step.w < step.z }
place.(z —w) =0

= { linear algebra }
place.z = place.w

= { place.w = place.z }
true

(End of Proof)
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6. Theorem: step.increment > 0
Proof:

step.increment > 0
=  { Specification 3: step.w < step.z }
step.(z —w) > 0
= { linear algebra }
step.z — step.w > 0
=  { step.w < step.z }
true

(End of Proof)

7. Theorem (The number of points in Z" that lie on a vector z € Z7, £#0, is k+1, where
k= (gedi: 0<i<r : z.t). Each point can be written as (m/k)*z where 0<m<k)

(Em:meZ A 0<m<k:p=(m/k)xz) = peZ A (ponaz)

Proof:
=: m=0: Trivially since (A z :: (0 on z)).

m=1: (1/k)*xzonz) A (1/k)xzel’
=  { definition of on }
(Et:0<t<1:(1/k)*xz=txz) A (1/k)*xz €l
= {z#0Ak=(gedi::zi)=> k>0 A 0<1/k<]1,
lett =1/k }
true A (1/k)xz€Z"
= { linear algebra }
(Ai:0<i<r:(1/k)*xzie€l)
= {k=(gedi::zi) => (Ait::k|zi)}
true

1<m<k: ((m/k)*zonz) A (m/k)xzel"

= { linear algebra }
((m/k)*xzonz) AN mx((1/k)*xz)eZ

=  { previous case: (1/k)xz € Z" }
((m/k)*z on z) A true

=  { predicate calculus }
((m/k)*z on )

= { definition of on }
(Et:0<t<1l : (m/k)xz=1t*x)

= {l<m<k = 0<m/k<L]l,lett=m/k}
true
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& pel A (ponz)
= { definition of on, algebra, pred. calc. }
(Et:t€Q A 0<t<l:p=txz A pel)
= { definition of @, let ¢t = u/v, without loss of generality u and v are
relatively prime, i.e., ged.(u,w) =1 }
(Eu,v:u,v€Z A 0<(u/v)<1 :p=(ufv)*xz A pel)
= { linear algebra } .
(Bu,v:u<v Av#0:(Ai:0<i<r: pi=(u/v)*z.i) A pi€l))
= {pi€eZ A ged(u,w)=1 = (Ai::v]|zi) = v]k, therefore »
(Ec::vxc=k). solet m=uxc, then m/k = (u*c)/(cxv) =u/fv,
andu<v = uxc<v*c = uxc<k}
(Em:melZ A 0Sm<k :p=(m/k)*z)

(End of Proof)

Corollary: Given a vector, z,in Z", we can calculate a “unit” distance along that vector
as 1/k * z. This unit is a constant vector in Z" and has the property that for any line
defined with that vector, any two adjacent points are 1 unit apart. We also conclude:

(A z,z’ : place.z = place.z’ : (Em : m € Z : z — 2’ = m*increment))

8. Theorem: (a relationship between increment and step)

(Ai,z,z' : 0<i<r A place.z = place.z’ :

sgn.(z.i—z'5) = sgn.(step.z—step.z’)*sgn.(increment.;))
Proof:

sgn.(z.1 — z'.4)
= { linear algebra }
sgn.((z — z').7)
= { place.z = place.z’ = (Em : me€Z : z— 2z =mxincrement) }
sgn.((m * increment).7)
= { linear algebra }
sgn.(m * increment.7)
= { sgn.(m*n) = sgn.m * sgn.n }
sgn.m * sgn.(increment.7)

=  { algebra }
sgn.m * +1 * sgn.(increment.z)
=  { step.increment > 0 = sgn.(step.increment) = +1 }

sgn.m * sgn.(step.increment) * sgn.(increment.7)
= { sgn.(m xn) = sgn.m *sgn.n }
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sgn.(m * (step.increment)) * sgn.(increment.:)
= { linear algebra }

sgn.(step.(m * increment)) * sgn.(increment.z)
= { z—2z' = mxincrement }

sgn.(step.(z — z')) * sgn.(increment.7)
= { linear algebra }

sgn.(step.z — step.z’) x sgn.(increment.:)

(End of Proof)

9. Theorem: (circumstances under which place is injective)

(Ai,z,z’ : 0<i<r A incrementi#0 A zi=2z.i A z# ' : place.z # place.z’)

Proof: For an arbitrary 4, 0<i<r, and z,z’, such that increment.i # 0, z # z’ and
. 7.
r.4 =20

true
= { contrapositive of Theorem 8, 0<:i<r }

sgn.(z.i — ') # sgn.(step.z — step.z’) * sgn.(increment.;) = place.z # place.z’
= {zi=21 = sgn.(zi—-2'4)=0}

0 # sgn.(step.z — step.z’) » sgn.(increment.i) = place.z # place.z’
= { incrementi#0 = sgn.(increment.s) # 0 }

sgn.(step.z — step.z’) # 0 = place.z # place.z’
=  { sgn.(step.z —step.z’) #£ 0 = step.z —step.z’ #0 }

step.z — step.z’ # 0 = place.z # place.z’
= { algebra }

step.z # step.z’ = place.z # place.z’
= { contrapositive of Equation 1, z # z', pred. calc. }

place.z # place.z’

(End of Proof)

10. Theorem: (flow is single-valued)
(Aw,z : w,z€Z" AN Mvw=0 A Mv.z=0 : place.v/step.v = place.w/place.w)

Proof:

place.w/step.w = place.z/step.z
= {(Az:2€Z" AN Mvz=0: (Ea::z=a%*n)), where span.n = null.(M.v) }
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place.(a * n)/step.(a * n) = place.(B * n)/step.(8 * n)
=  { algebra }

place.(c * n) * step.(B * n) = place.(B * n) = step.(a * n)
=  { linear algebra }

a* 3 = place.n * step.n = a *  * place.n x step.n
=  { algebra }

true

(End of Proof)

11. Theorem: Let M be the index map for the stream s. Then the increment between
consecutive stream elements is M.increment.
Proof: Consecutive stream elements are used by consecutive statements. If z is a basic
statement, z + increment is the next statement.

M.(z + increment) — M.z

= { M is a linear mapping }
M .(z + increment — z)

= { algebra }
M.increment

(End of Proof)

C Program Notation

In the final programs, the construct parfor expresses the parallel composition of a set of
indexed processes and par expresses the parallel composition of arbitrary processes. Se-
quential composition is indicated by horizontal alignment. Each stream s has its own set
of channels. Channels are distributed shared data structures indexed as arrays: for process
y, channel s_chan[y] connects to process y — flow.s, channel s_chanly + flow.s] connects to
process y + flow.s. The notation pass s, n stands for the program:

for counter from 1 to n do
receive foo from s_chan[y]
send foo from s_chan[y+flow.s]

The scope of the variables counter and foo are local to the program. The notation load s, n
stands for the program:
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receive s from s_chan[y]
pass s, n

The notation recover s, n stands for the program:

pass s, n
send s to s_chan[y + flow.s]

D Example: Polynomial Product

The problem is to multiply two polynomials f(z) and g(z) of degree n. Let the two polyno-
mials be:

f(z) = (sumk : 0<k<n : apxz*) and g(z) = (sumk : 0<k<n : byxz")
and the output polynomial h(z) of degree 2xn be:

hMz) = f(z)xg(z) = (sumk : 0<k<2%n : ¢ *z)
The following program computes the coefficients ¢, if they are initialized to zero:

int a[0..n], b[0..n], c[0..2xn]
fori=0~1->n
forj=01—n

(i,4)
where the basic statement (z, j), is refined to:
cli+s] = cli+s]+ aft] * B[]

The step function is:

step.(,5) = 2%t + §
For brevity we will refer in the remainder of this appendix to stream a[z] as a, b[j] as b, and
c[i+7] as ¢. The index maps of streams a, b, and ¢ are M.a = (A (Z,5).7), M.b = (A (4,7).7),
and M.c = (A (i,j).2 + j). Elements of the null spaces of these maps are (0,1), (1,0), and
(1,-1), respectively. (Null spaces contain more than one element. Any element may be
used.)

We derive two programs: one for place.(Z,7) = ¢, and the other for place.(z,5) = ¢+7.
The former place function is simple, the latter is not. (Traditional work in parallelizing
compilation deals only with simple place functions.)

The process space, PS, is one dimensional; we call its coordinate col (for “column” — we
picture a horizontal array of processes). |
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D.1 The First Design: place.(3,7) =1
D.1.1 The Process Space Basis

Since the range of place has only one component, the signs of all coefficients of each compo-
nent agree trivially; as a result PS,,;, and PS,,,, are each the projection of one vertex. The
coefficient of the first argument to place is greater than zero; thus, the left bound of the first
loop is used for PS,;, and the right bound for PS,,,,. Since the coefficient of the second:
argument (that of j) is zero, it does not matter which bounds of the second loop are used.
The process space is one-dimensional; the boundaries of the process space are the same as
those of the computation space (PS = CS); there are no null processes.

PS in PS max

= {1=0,16=01} = {rbp=mn,lb;=01}
place.(0, 0) place.(n,0)

= { place.(4,j) =1 } = { place.(¢,j) =1}
0 n

D.1.2 The Computation Processes — Basic Statements
increment:

Use (0, —8) as an arbitrary element of the null space of place; gcd .(0, —8) = 8, so increment=
(0,1).

first:

In general, first is derived by solving systems of equations. The use of a simple place function
for this design allows first to be derived directly as explained in Section 7.2.3. Only the second
component of increment is not zero, and since it is positive, the left bound of the second loop

is the second component of first. The first component of first is the first (and only) coordinate
of the computation space, col. Altogether: first = (col,0).

last:

Exchanging the roles of the left and right bound in the derivation of first, last = (col,rb,) =
(col,n).

count:

While in general count = ((last — first)//increment)+1, the use of a simple place function
allows a simplification: count = (rb; — Ib)+1 = (n—0)+1 =n+1.



recovery code for ¢

= { recovery = soaking }
soak,

=  { Equation 8 }
(M .cfirst — first,) /increment,

=  { preceding derivations }
(M.c.(0,col) — 0)/1

=  { simplification }
(col—0)/1

=  { simplification }

recovery code for ¢

= { recovery = soaking }
soak,

=  { Equation 8 }
(M.cfirst — first,)/increment,

=  { preceding derivations }
(M.c.(col—n,n) —n)/1

=  { simplification }
((col—n)+n)/1

=  { simplification }
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Loading:
loading code for ¢ loading code for ¢
=  { loading = draining } = { loading = draining }
drain, drain,
=  { Equation 9 } =  { Equation 9 }
(last, — M.c.last)/increment, (last, — M.c.last)/increment,
=  { preceding derivations } =  { preceding derivations }
((2¥n)—M.c.(col,0))/1 ((2%n)—M.c.(n,col—n))/1
=  { simplification } =  { simplification }
((2%n)—col)/1 ((2%n) — (n+col—n))/1
=  { simplification } =  { simplification }
(2%n)—col (2%n)—col
Recovery:

col col

D.2.6 The Buffer Processes

Stream b again has a fractional flow. Just as in the first design, buffers must be provided
between neighbouring processes. Since the denominator of flow.b is 2, a buffer of size 2 must
be inserted. The synchronous communication already provides a buffer of size 1, so the
added buffers are of size 1. The other two streams do not have a fractional flow and need
no extra buffering. Again, for the sake of regularity, a buffer has been inserted between the
input process for stream b and the first computation process (located at column 0). The
computation space equals the process space, so no buffer processes are needed outside of the
computation space.
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i.e., load a from the left boundary (column 0) and recover it from the right boundary (column
n). This completely determines the ordering of the elements accessed by the i/o processes
(only because of the restrictions on index vectors). In this case, loading a from the left means
that the i/o processes access a in order of increasing index. Altogether, the i/o repeater for
streamais {0 n 1}.

D.1.5 The Computation Processes — Data Propagation

Soaking and draining code is derived for the two moving streams, while loading and recov-
ery code is derived for the one stationary stream. From Equation 8, the number of stream
elements that each process, col, soaks is (M.s.first — first,)//increment,. For draining, Equa-
tion 9 is used: (last, — M.s.last)//increment,. Note that since increment, € Z', integer division
replaces “//”.

Stream a:
loading code for a recovery code for a
=  { loading = draining } = { recovery = soaking }
drain, soak,
= ' { Equation 9 } =  { Equation 8 }
(last, — M.a.last)/increment, (M.a first — first,)/increment,
= { previous derivations } =  { previous derivations }
(n — M.a.(col,n))/1 (M.a.(col,0) - 0)/1
= { simplification } =  { simplification }
(n—col)/1 (col—0)/1
=  { simplification } =  { simplification }
n—col col/1
=  { simplification }
) col
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Stream b:

soak,, drain,

=  { Equation 8 } =  { Equation 9 }
(M.b.first — first,) /increment, (last, — M.b.last)/increment,

=  { preceding derivations } =  { preceding derivations }
(M.b.(col,0) — 0)/1 (n — M.b.(col,n))/1

=  { simplification } =  { simplification }
(0-0)/1 (n—n)/1

=  { simplification } =  { simplification }
0/1 0/1

= { simplification } =  { simplification }
0 0

Stream c:

soak, drain,

=  { Equation 8 } =  { Equation 9 }
(M.cfirst — first,)/increment, (last, — M.c.last)/increment,

=  { preceding derivations } =  { preceding derivations }
(M.c.(col,0) —0)/1 (2xn — M.c.(col,n))/1

=  { simplification } = { simplification }
(col—0)/1 (2%n — (col+n))/1

=  { simplification } =  { simplification }
col/1 (n—col)/1

= { simplification } =  { simplification }
col n—col

D.1.6 The Buffer Processes

Stream b has a fractional flow. Buffers must be provided between neighbouring processes
to pass on the elements that, in a systolic array, travel too slowly to reach a processor on
each time step. Since the denominator of flow.b is 2, a buffer of size 2 must be inserted. The
synchronous communication already provides a buffer of size 1, so the added buffers are of
size 1. The other two streams do not have a fractional flow; they do not need any extra
buffering. Note that, for the sake of regularity, a buffer has been inserted between the input
process for stream b and the first computation process (at column 0). The computation
space equals the process space; no buffer processes are needed outside of the computation
space.
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D.1.7 The Final Program

chan a_chan[0..n+1},b_chan[0..n+1], c_chan[0..n+1]
chan b_buff[0..n]
par
[RHRRRRRRERAE Tnout Processes *HHRRRIRR |
send a {0 n 1} to a_chan[0]
send b {0 n 1} to b_chan|0]
send ¢ {0 2xn 1} to c.chan[0]
[rrsssrnkk Buffer Processes **kHksknn |
parfor col from 0 to n do
int foo
for counter from 0 to n do
receive foo from b_chan{col]
send foo to b_buff[col]
end parfor
/********** Computation Processes **********/
parfor col from 0 to n do
int a,b,c
load a, n—col
pass c, col
{(col,0) (coly) (0,1)}
pass ¢, n—col
recover a, col
end parfor
/********** Output Processes **********/
receivea {0 n 1} from a_chan[n+1]
receive b {0 n 1} from b_chan[n+1]
receive ¢ {0 2xn 1} from c_chan[n+1]
end par
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The basic statement receives an element from each moving stream, computes, and sends
the moving elements; the channels used in the communications are selected by the process
coordinates to which the statement is mapped:

(¢,7) : par
receive b from b_buff]col]
receive c from c_chan[col]
end par
c:=c+axb
par
send b to b_chan[col+1]
send ¢ to c_chan[col+1]
end par

The statement’s computation does not depend on any indices; while the stream elements are
indexed in the source program, they are scalars in the target program.

D.2 The Second Design: place.(3,j) = i+J
D.2.1 The Process Space Basis

As in the first design, the process space is one-dimensional, so PS,;, and PS,,,, may be
derived using one vertex each. The coefficients of both arguments to place are positive; the
left bounds of the loops are used for PS,,;, and the right bounds for PS, ... Since the
process space is one-dimensional, it also coincides with the computation space: there are no
null processes.

PS min PS max

= {1=0,l0=0} = {rbg=n,rb=n}
place.(0,0) place.(n,n)

= { simplification } = { simplification }
0 2xn

D.2.2 The Computation Processes — Basic Statements

increment;:

Use (2,—2) as an element of null.place; ged .(2, —2) = 2, so increment = (1, —1).
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first:

Since both components of increment are non-zero, first consists of two cases: one for the
projection of each face. Since the first component of increment is greater than zero, we use
the left bound of the first loop. That is, the first face is (set 7 : 0<j<n : (0,5)). The
second component of increment is less than zero, so the right bound of the second loop is
used; the second face is (set ¢ : 0<i<n : (i,n)). The derivation on the left is of the first,
face, that on the right of the second face: '

place.(0, ) = col place.(z,n) = col
=  { simplification } =  { simplification }
J = col 1+n = col
=  { simplification }
1= col—n

The expression for the first case of first is (0, col); the second case is (col—n,n). The
guard for each case represents the points in the process space for which the expression is
valid. Since place is a linear function, the guards are derived from the bounds of each
face. Comnsider the first case. The bounds of the first face are the bounds of the second
loop: 0<j<n. In the projection of this face j = col, which makes the guard 0<col <n.
Likewise, in the second case, the bounds of the second face are 0 <7 <n, and since : = col-n,
0<col—n<n = n<col<2+n is the guard. Altogether:

if 0<col<n — (0, col)
I n<ecl<2«n — (col—n,n)

fi

Note that the two guards overlap at col = n, but in this case, the two expressions are equal.
This always happens at the projection of any point which lies on more than one face in the
index space.

last;:

After a similar derivation, we arrive at:

if 0<col<n —  (col,0)
I n<col<2xn — (n,col—n)

fi
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count:

If an explicit expression for count is desired, it must be defined piecewise, since first and last
are defined by alternatives. Since the guards match in the expressions for first and last, the
expression for count is:

if 0<col<n —  col+1
I n<eco<2xn — 2xn—col+1
fi

In general, the guards in the expressions for first and last do not match, and the number of
alternatives in the expression for count is equal to the product of the number of alternatives
in first and last.

D.2.3 The I/O Processes — Layout

As in the last design, the i/o processes are located at the ends of the array: at col = 0 and
col = 2+n. The flows are:

flow.a flow.b flow.c
=  { Theorem 10 } =  { Theorem 10 } =  { Theorem 10 }
place.(0,1)/step.(0,1) place.(1,0)/step.(1,0) place.(1,—1)/step.(1,—1)
= { simplification } =  { simplification } = { simplification }
1/1 1/2 0/1
= { simplification } =  { simplification }
1 0

The flows of the moving streams are all positive. Let the loading & recovery vector for ¢ be
1. Then, as in the last design, the input processes are located at column 0, and the output
processes at column 2+n. Note that, for another place function, place.(z, j) = i—j, flow.c = 2,
which violates the restriction on neighbouring communication.

D.2.4 The I/O Processes — Communication

Applying their index maps to increment yields increment, = 1, increment, = —1, and
increment, = 0. In this design, stream c is stationary. For s = a and s = b, the sign of
increment, determines the components first, and last, for each repeater: first, = 0, first, = n,
last, = n, and last, = 0. Thus, the repeaters are {0 n 1} fora and {n 0 -1} for b.
Choosing to load ¢ from the left means that elements are accessed in increasing order; then,
the i/o repeater for cis {0 2xn 1}.
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D.2.5 The Computation Processes — Data Propagation

There is more than one expression for first, so the derivation of the soaking and draining code
is per alternative. For each stream, the derivation on the left is for the guard 0<col <n,
and the one on the right for the guard n<col <2*n. In each derivation first and last stand
for the alternative corresponding to the guard. As in the first design, since increment, € 7',
integer division replaces “//”.

k

Soaking:
soak, soak,
=  { Equation 8 } =  { Equation 8 }
(M.a first — first,) /increment, (M.a.first — first,)/increment,
=  { preceding derivations } =  { preceding derivations }
(M.a.(0,col)—0)/1 (M.a.(col—n,n)—0)/1
= { simplification } = { simplification }
(0-0)/1 ((col—n)—0)/1
= { simplification } = { simplification }
0/1 (col—n)/1
= { simplification } = { simplification }
0 col—n
soak; soak,
=  { Equation 8 } =  { Equation 8 }
(M.b.first — first,) /increment, (M.b.first — first,) /increment,
=  { preceding derivations } =  { preceding derivations }
(M.b.(0,col)—n)/ —1 (M.b.(col—n,n)—n)/ —1
=  { simplification } =  { simplification }
(col—n)/ —1 (n—-n)/ -1
= { simplification } = { simplification }
n—col 0/ -1
= { simplification }
0
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Draining:

drain, drain,

= { Equation 9 } = { Equation 9 }
(last, — M.a.last) /increment, (last, — M.a.last)/increment,

=  { preceding derivations } =  { preceding derivations }
(n—M.a.(col,0))/1 (n—M.a.(n,col—n))/1

=  { simplification } =  { simplification }
(n—col)/1 (n—n)/1

=  { simplification } =  { simplification }
n—col 0
drain, drain,

=  { Equation 9 } =  { Equation 9 }

(last, — M.b.last)/increment, (last, — M.b.last)/increment,
=  { preceding derivations } =  { preceding derivations }
(0-— M.b.(col,0))/ -1 (0 — M.b.(n,col—n))/ -1
= { simplification } =  { simplification }
(0-0)/ -1 (0—(col—n))/ =1
= { simplification } =  { simplification }

0 col—n

For loading and recovery, each alternative of first and last are used, even though that
is not strictly necessary. Since each process holds an element of a stationary stream, the
loading and recovery code is the same for all processes.
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D.1.3 The I/O Processes — Layout

Since the layout is one-dimensional, the i/o processes are located in zero-dimensional space,
i.e., they are points at the ends of the linear array of processes: col = 0 and col = n. There
is one input process and one output process for each stream. Formally, for each stream s:

70,.1
=  { Equation 5 }

(sety : y € PS A (yi=PSpint V yi=PSpat) : ¥)
=  { the process space is one-dimensional }

(sety : y€PS A (y=PSmin V ¥=PSmax) : ¥)
=  { previous derivations }

(sety :y=0V y=n_:y)

The flow for each stream is:

flow.a flow.b flow.c
= { Theorem 10 } =  { Theorem 10 } =  { Theorem 10 }
place.(0,1)/step.(0,1) place.(1,0)/step.(1,0) place.(1,—1)/step.(1,—1)
= { simplification } =  { simplification } | = { simplification }
0/1 1/2 1/1
= { simplification } =  { simplification }
0 1

The flows of the moving streams are all positive. Let the loading & recovery vector for
a be 1. Then the input processes for all the streams are located at column 0; the output
processes are at column n.

D.1.4 The I/O Processes — Communication

Applying each stream’s index map to increment yields increment, = 0, increment, = 1, and
increment, = 1. Let us consider stream a later. The increments for streams b and ¢ are both
positive. Because each array variable is one-dimensional, first, may be computed using only
increment, (in contrast, for example, to Appendix E where first, must be derived using both
increment, and a basic statement). Because increment, is positive for both s = b and s = ¢,
first, is the lower bound of the corresponding array variable, in this case 0, for each stream.
Likewise, the upper bound, last,, is n for s = b and 2xn for s = ¢. This yields the repeaters
{0 n 1} for stream b and {0 2xn 1} for stream c.

Stream a is stationary; it must be loaded before execution begins and recovered after it
completes. The direction in which @ is loaded is arbitrary. A loading & recovery vector is
provided during compilation and plays the réle of increment,. Let us choose increment, = 1,
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D.2.7 The Final Program

chan a_chan[0..(2+n)+1], b_chan[0..(2%n)+1], c_chan[0..(2xn)+1]
chan b_buff[0..2xn)]
par

Rk Tnput Processes *RFHRRRRIRK |

send a {0 n 1} to a.chan|0]

send b{n 0 -1} to b_chan[0]

send ¢ {0 2xn 1} to c.chan|0]

[rrsksnrikk Buffer Processes *FFRRRKKRA |

parfor col from 0 to 2+n do

int foo
for bar from 0 to n do
receive foo from b_chan[col]
send foo to b_buff[col]

end parfor

< computation process code>

Rtk Quiput Processes FHksHksRsk

receivea {0 n 1} from a_chan[(2*n)+1]

receive b {n 0 —1} from b_chan[(2%n)+1]

receive ¢ {0 2xn 1} from c.chan[(2xn)+1]
end par

In the computation process code, the guards in first are the same as in last; an optimization
could combine them, but this is not done here. The computation process code is:

parfor col from 0 to 2xn do

int a,b,c

(int,int) first,last

first == if 0<col<n — (0, col)
Il n<col<2xn — (col—n,n)
fi

last := if 0<col<n - (col,0)
I n<col<2+n — (m,col—n)
fi

load ¢, (2*n)—col
<soaking code>
{first last (1,-1)}
<draining code>
recover c, col

end parfor
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Note that the soaking and draining code can be simplified, since one alternative in each
guarded command performs zero communications. The soaking code is:

if 0<col<n — passa,(
I n<col<2¥n — passa,col—n

if 0<col<n — pass b, n—col
] n<col<2xn — passbd,0
fi

The draining code is:
if 0<col<n — pass a, n—col
I n<col<2xn — passa,0
fi
if 0<col<n — passb, 0
I n<col<2xn — passb, col-n
fi

The basic statement is:

t (t,7) : par

receive a from a_chan[col]
receive b from b_buff[col]
end par
c:=c+axb
par
send a to a_chan[col+1]
send b to b_chan.[col+1]
end par

E Program Example: Matrix-Matrix Multiplication

The problem is to multiply two (n + 1) X (n + 1) matrices, a and b. The result matrix, c, is
specified as:

(Ad,j : 0<i<n A O0<j<n :¢;=(sumk : 0<k<n : a;;*b;;))

The following program computes the product, assuming that each element ¢, j] is initialized
to zero:
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int a[0..n,0..n}, b[0..n,0..n], ¢[0..n,0..n]
fori=0«1—n
for j=0—~1—n
fork=0«1—n

(1,4, k)
where the basic statement (z, j, k), is refined to:

cli,j] = cli,j]+ als, k] * B[k, j]

The step function is:
step.(3,7,k) =t + 7+ k

As in Appendix D, each stream will be referred to by just its name. The index maps
of streams a, b, and ¢ are M.a = (A (3,4,k).(3,k)), M.b = (A(¢,5,k).(k, 7)), and M.c =
(A (2,7,k).(¢,7)). Elements of the null spaces of these maps are (0, 1,0), (1,0,0), and (0,0,1),
respectively.

We derive again two programs; one with a simple place function, the other with a non-
simple place.function. The former corresponds to collapsing the inner loop of the program,
a technique used by parallelizing compilers. The latter corresponds to the Kung-Leiserson
array [14]. The process space is two-dimensional; its coordinates are (col,row). We envision
the horizontal axis as being labeled by col, the vertical axis by row.

E.1 The First Design: place.(z, 7, k) = (¢, 7)

E.1.1 The Process Space Basis

The process space is two-dimensional, but because we use a simple place function, a single
vertex suffices for the derivation of PS,,;,. We choose to project (0,0,0); the other candidate

is (0,0,n). Likewise, PS, .. is the projection of (n,n,0) or, alternatively, (n,n,n). The
boundaries of the computation space are those of the process space.

PSain PS max

= {1b;,1b;, b, =0} = {rb,rbj=n—-1,1b,=0}
place.(0,0,0) place.(n,n,0)

= { simplification } =  { simplification }

(0,0) o (n,n)
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E.1.2 The Computation Processes — Basic Statements
increment:

Use (0,0,—6) as an arbitrary element of null.place; ged.(0,0,—6) = 6, thus, increment =
(0,0,1).

first:

Because the place function is simple, the special case for the derivation of first applies. The
only non-zero component of increment is the third component; since it is positive, the left
bound of the third loop is the third component of first. The first component of first is the
first coordinate, col, of the computation space. Likewise, the second component is row.
Altogether: first = (col, row, 0).

last:

The derivation of last is as of first, except that the right bound of the third loop is used;
last = (col, row, n).

count:

Since there is only one expression for each of first and last, count is not defined piece-wise.

count
=  { Equation 4 }
((last — first)//increment) + 1.
=  { preceding calculations }
(((col,row,n) — (col,row,0))//(0,0,1)) + 1
=  { simplification }
((0,0,7)//(0,0,1)) + 1
=  { simplification }
n-+1

E.1.3 The I/O Processes — Layout

First, the flow of the three streams:

flow.a flow.b flow.c

=  { Theorem 10 } =  { Theorem 10 } =  { Theorem 10 }
place.(0,1,0)/step.(0,1,0) place.(1,0,0)/step.(1,0,0) place.(0,0,1)/step.(0,0,1)

=  { simplification } = { simplification } =  { simplification }
0,1)/1 1,0 (0,0)/1

=  { simplification } = { simplification } = { simplification }
0,1) (1,0 (0,0)

i
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Since there is only one non-zero component in flow.a and flow.b, one set of i/o processes is
generated for each stream. For stream a:

10,.1
= { flow,.0=0 A flow,.1#0 = ¢=1}

710,.1
=  { Equation 5 }

(sety : y€PS A (y.1=PSpin-l V y.1=PS01) 1 ¥)
= { previous derivations }

(sety : y € PS A (y.1=(0,0).1 V y.1=(n,n).1) : y)
= { simplification }

(sety:yePS A (y1=0V yl=n):y)
=  { simplification }

(seti,j : 0<i<n A (=0 V j=n): (7))

That is, the i/o processes for stream a lie along the horizontal boundaries of the process
space. The input processes are on the bottom side, and the output processes are on the top
side. For stream b:

10,.i
= {flow,.0£0 A flow,.1=0 = :=0}

70,.0
=  { Equation 5 }

(sety : y € PS A (y.0=PSpin0 V 4.0 =PS.x-0) : ¥)
=  { previous derivations }

(sety : y € PS A (y.0=(0,0).0 V 3.0 =(n,n).0) : y)
= { simplification }

(sety : yePS A (y0=0V y0=n):y)
= { simplification }

(seti,j : 0<j<n A (i=0 V i=n): (4,)))

Therefore the i/o processes for b lie along the vertical boundaries of the process space. The
input processes are on the left side, and the output processes are on the right side. Stream
c is stationary; let its loading & recovery vector be (1,0). Then, the i/o processes for ¢ are
located at the same points as for b.

E.1.4 The I/O Processes — Communication

Take any stream s with index map M. The equation for computing first,, Equation 6, is:
M.z — (M.z.i — first,.c) * increment,

The equation for last,, Equation 7, is:

M.z + (last,.i — M.z.7) * increment,
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In order to evaluate these formulas, increment, must be known. Applying the index matrices
of @ and b to increment yields increment, = (0,1) and increment, = (1,0). The direction
vector provided for stream ¢, (1,0), is used as increment,. Note that, for each stream, s, only
one component of increment, is non-zero: the points of first, belong to only one face of the
variable space (similarly for last,). As a result, there is only one expression each for first,
and last,.

first:

first,
=  { Equation 6 }
M.a.z — (M.a.z.t — first,.7) * increment,
= { let z = first }
M.a.(col,row,0) — (M.a.(col, row,0).c — first,.7) * increment,
= { M.a = (A(3,5,k).(3,k)) }
(col,0) — ({col,0).t — first,.7) * increment,
= { increment, = (0,1) }
(col,0) — ((col,0).i — first,.i) * (0,1)
= {7 =1 since the second component of increment, is non-zero }
“(col,0) — ((col,0).1 — first,.1) * (0,1)
= { (eol,0).1 =0, increment,.1 >0 = first,.1 =0 }
(col,0) — (0 —0) % (0,1)
=  { simplification }
(col,0)

first,
=  { Equation 6 }
M.b.z — (M.b.z.t — firsty.7) * increment,
= {let z =first }
M.b.(col,row,0) — (M.b.(col,row,0).i — first,.7) * increment,
= Mb = (A, k)-(k ) }
(0, row) — ((0, row).i — firsty.2) * increment,
= { increment, = (1,0) }
(0, row) — ((0, row).i — first,.i) * (1,0)
= { 7 = 0 since the first component of increment, is non-zero }
(0, row) — ((0, row).0 — first,.0) * (1, 0)
= { (0,row).0 =0, increment,.0 >0 = first,.0=10 }
(0, row) — (0 — 0) * (1,0)
= { simplification }
(0, row)
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first,
= { Equation 6 }
M.c.x — (M.c.z.i — first..c) * increment,
= {let z =first } |
- M.c.(col,row,0) — (M.c.(col,row, 0).i — first,.7) x increment,
= { Mc = (A(3,5,5)-(5,7)) }
(col,row) — ((col, row).i — first,.7) * increment,
= { increment, = (1,0) }
(col,row) — ((col, row).i — first,.7) * (1,0)
= { 7 =0 since the first component of increment, is non-zero }
(col,row) — ((col, row).0 — first,.0) * (1, 0)
= { (col,row).0 = col, increment,.0 > 0 = first,.0=0 }
(col, row) — (col — 0) * (1,0)
= { simplification }
(col,row) — col * (1,0)
=  { simplification }
(col, row) — (col,0)
= { simplification }
(0, row)

last,:

last,
=  { Equation 7 }
M.a.xz + (last,.: — M.a.z.t) * increment,
= { let o =first }
M.a.(col,row,0) + (last,.: — M.a.(col,row,0).7) * increment,
= (Mo = (\Gi,k).GR) )
(col,0) + (last,.z — (col, 0).7) * increment,
= { increment, = (0,1) }
(col,0) + (last,.z — (col,0).7) * (0,1)
= {1 =1 since the second component of increment, is non-zero }
(col,0) + (last,.1 — (col,0).1) % (0,1)
= { increment,.1 >0 = last,.1 =0, (col,0).1 =0 }
(col,0) + (0 —0) % (0,1)
=  { simplification }
(col,0)

46
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last,

= { Equation 7 }
M.b.z + (lasty.i — M.b.z.7) * increment,

= { let z =first }
M.b.(col,row,0) + (last,.i — M.b.(col, row,0).7) * increment,
(0, row) + (lasty.z — (0, row).z) * increment,

= { increment, = (1,0) }
(0, row) + (lasty.z — (0, row).7) % (1,0)

=  { ¢ =0 since the first component of increment, is non-zero }
(0, row) + (lasty.0 — (0, row).0) * (1,0)

= { increment,.0 >0 = last,.0 =0, (0,row).0 =0 }
(0,row) + (0 — 0) = (1,0)

=  { simplification }
(0, row)

last,
= { Equation 7 }
M.c.z + (last,.i — M.c.z.7) * increment,
= { let o =first }
M.c.(col,row,0) + (last,.c — M.c.(col,row,0).7) * increment,
= { Me = (AGik)6hd) }
(col, row) + (last,.t — (col, row).7) * increment,
= { increment, = (1,0) }
(col, row) + (last,.t — (col, row).7) * (1, 0)
= { ¢ =0 since the first component of increment, is non-zero }
(col,row) + (last,.0 — (col, row).0) * (1,0)
= { increment,.0 > 0 = last,.0 =0, (col,row).0 = col }
(col, row) + (0 — col) * (1,0)
= { simplification }
(col, row) + —col * (1,0)
= { simplification }
(col, row) + (—col, 0)
=  { simplification }
(0, row)

The reader may verify that the same answers are obtained if last is used for z; actually any
basic statement could be used.

The following table summarizes the preceding derivations. Note that, for s = a and
3 = b, M.s.first.i — first,.i = 0; therefore M.s.first = first,.
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e M.s M.sfirst | ¢ | increment, | first, last,

a | (A@E,5,k).(5,k)) | (e0l,0) |1 (0,1) (col,0) | (eol,n)
b (A, J,k).(k, 7)) | (O,row) |0 (1,0) (0, row) | (n,row)
c || (A(,5,k)-(3,5)) | (col,row) | O (1,0) (0, row) | (n,row)

E.1.5 The Computation Processes — Data Propagation

!

Since, for s = @ and s = b, M.s.first = first,, no soaking or draining code is required for the
computation processes. FEach computation process does need to participate in the loading

- and recovery of stream ¢, though.

loading code for ¢
=  { loading = draining }
drain,
=  { Equation 9 }
(last, — M.c.last)//increment,
= { last = (col,row,0) }
((last, — M.c.(col,row,0)))//increment,
= {Mc=(A05k).,9)}
(last, — (col, row))//increment,
= { last, = (n,row) }
((n,row) — (col, row))//increment,
=  { simplification }
(n — col,0)//increment,
= { increment, = (1,0) }
(n —col,0)//(1,0)
=  { simplification }
n — col

E.1.6 The Buffer Processes

recovery code for ¢

{ recovery = soaking }
soak,

{ Equation 8 }
(M.cfirst — first,)//increment,

{ first = (col,row,0) }
((M.c.(col,row,0) — first,))//increment,

{ Mc = (A(55,k).(7)) }
((col, row) — first,//increment,

{ first, = (0, row) }
((col,row) — (0, row))//increment,

{ simplification }
(col,0)//increment,

{ increment, = (1,0) }
(col,0)//(1,0)

{ simplification }
col

Since none of the streams have a fractional flow, only buffers of size 1 are needed between any
two processes. The synchronous communication already provides such a buffer: no explicit

buffer processes are needed in the computation space. The computation space is equal to

the process space: no buffer processes are needed outside of the computation space.
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E.1.7 The Final Program

chan a_chan[0..n,0..n+1], b_chan[0..n+1,0..n], c_chan[0..n+1,0..n)
par
sk Tnout Processes **HRkRkkkk |
parfor col from 0 to n do
send a {(col,0) (col,n) (0,1)} to a_chan|col,0]
end parfor
parfor row from 0 to n do
send b {(0,row) (n,row) (1,0)} to b_chan|0,row]
end parfor
parfor row from 0 to n do
send ¢ {(0,row) (n,row) (1,0)} to c_chan[0,row]
end parfor
JrssskiRk Computation Processes **¥xsnsssk |
parfor col from 0 to n do
parfor row from 0 to n do
int a, b, ¢
load ¢, n—col
{(col,row,0) (col,row,n) (0,0,1)}
recover c, col
end parfor
end parfor
JHEreRsik Qutput Processes ¥HHskikis |
parfor col from 0 to n do
receive a {(col,0) (col,n) (0,1)} from a_chan[col,n+1]
end parfor
parfor row from 0 to n do
receive b {(0,row) (n,row) (1,0)} from b_chan[n+1,row]
end parfor
parfor row from 0 to n do
receive ¢ {(0,row) (n,row) (1,0)} from c_chan[n+1,row]
end parfor
end par

49
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The basic statement is:

(¢,7,k) : par
receive a from a_chan[col, row]
receive b from b_chan|col, row)
end par
c:=c+axb
par
send a to a_chan[col,row+1]
send b to b_chan[col+1, row)
end par

E.2 The Second Design: place.(i,7,k) = (i—k,j—k)
E.2.1 The Process Space Basis

For each argument of place, the signs of the non-zero coeflicients in each component of the
range agree; thus, a single calculation suffices for each point of the basis. The first two
arguments, 7 and 7 have only one non-zero coefficient each. Both elements are positive; thus,
the left bourd of the first and second loop are used for the derivation of PS,;,, the right
bounds for the derivation of PS,,,,. Both coefficients for k¥ are non-zero: since they are
negative, the right bound of the third loop defines PS,,;,, the left bound PS,,.,. Had the
signs not agreed, a separate calculation using a distinct vertex would be required for each
component. In this example, the boundaries of the computation space are not those of the

process space. The consequence is the creation of buffer processes (Section E.2.6).

Psmin P‘Smax

= {lb=0,lb,=0,rby =n } = {rbg=n,rby=mn,lb,=0}
place.(0,0,n) place.(n,n,0)

= { simplification } =  { simplification }

('—n’ ""n) (n7n)

E.2.2 The Computation Processes — Basic Statements

increment:

Use (3,3,3) as an arbitrary element of null.place; then gcd.(3,3,3) = 3, and increment =
(1,1,1).
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first:

Each of the three components of increment is non-zero: there are three alternatives in the
definition of first.
face.0 is the set of points (set j,k : 0<j,k<n : (0,7,k)):

P.(0,34,k) = (col, row)
=  { simplification }

—k=col A j—k =row
= { algebra }

k= —col N j=row—col
face.1 is the set of points (set i,k : 0<7,k<n : (¢,0,k)):

P.(3,0,k) = (col, row)
= { simplification }
t—k=col N —k=row
= { algebra }
k= —row A t= col-row

face.2 is the set of points (set ¢,7 : 0<z,7<n : (¢,7,0)):

P.(z,7,0) = (col, row)
=  { simplification }
t=col A j=row

Putting together the expressions derived previously with the bounds from the source
program, we obtain:

if 0<row—col<n A 0<—col<n — (0,row—col,—col)
I 0<col—row<n A 0<—row<n — (col—row,0,—row)
I 0<col<n A 0<row<n —  (col,row,0)

fi

Note that the expression for first in the first design corresponds to the last case in this
expression for first. That is because the same face is used in both. A guard is not needed in
the first design, since the computation space is equal to the process space, and there is only
one clause.
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last;

The derivation for last is as of first except that the roles of the left bound and the right
bound are exchanged in the definition of the faces. Without presenting the derivation:

if 0<col-row<n A 0<col<n — (n,row--col+n,—col+n)
I 0<row—col<n A 0<row<n — (col-row+n,n,—row+n)
I -n<ecol<0 A —n<row<0 —  (eol+n,row+n,n)

fi

Notice that, unlike in the second design of Appendix D, the guards of first and last do not
match. As a result, an explicit expression for count must have more than three alternatives.
In this case, the interactions of the guards produce six alternatives.

E.2.3 The I/O Processes — Layout

The flow of the three streams:

flow.a flow.b flow.c

=  { Theorem 10 } =  { Theorem 10 } =  { Theorem 10 }
place.(0,1,0)/place.(0,1,0)| place.(1,0,0)/step.(1,0,0) place.(0,0,1)/step.(0,0,1)

= { simplification } =  { simplification } = | = { simplification }
(0,1)/1 * (1,0)/1 | (-1,-1)/1

= { simplification } = { simplification } = { simplification }
(0’1) (170) (“la"l)

There is only one non-zero component in flow.a and flow.b; one set of i/o processes is created
for each stream. Their flows are the same as in the first design; the derivation of their i/o
processes is not repeated here. The i/o processes for a are on the horizontal boundaries
of the process space, while the ones for b are on the vertical boundaries. Stream c is the
interesting case. Because both components of flow.c are non-zero, two sets of i/o processes
are created.

Case 1 = 0: 10..0
=  { Equation 5 }
(sety : y € PS A (y.0=PSp;n0 V y.0 =PS..0) : ¥)
=  { above derivations }
(sety : y € PS A (y.0=(-n,~-n).0 V y.0=(n,n).0) : y)
=  { simplification }
(sety : yePS A (y0=-n V y0=n):y)
= { simplification }
(seti,j : 0<j<n A (i=-n V i=n): (1,7))
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Case 1 =1: 70,1
=  { Equation 5 }
(sety : y € PS A (y.1=PSpn-l V 4.1 =PSaxl) 1 ¥)
=  { above derivations }
(sety : ye PS A (y.1=(-n,—-n)l V y.l=(n,n).l): y)
= { simplification }
(sety : yePS A (y1l=-n V yl=n):y)
=  { simplification }
(seti,j : 0<i<n A (j=-n V j=n): (3,71)) _
Both components are negative, so the input processes are on the top and right sides of the
process space, while the output processes are on the bottom and left sides.
This is the first time there is more than one non-zero component in a stream’s flow. As
a result, there are duplicate input processes and output processes: in this case sending to
the process (n,n), and receiving from process (—n,—n). According to the process outlined
in Section 7.3, the duplicates are removed from ZQO,.1

E.2.4 The I/O Processes — Communication

Applying their index matrices to increment yields (1,1) for all three streams. Since both
components -are non-zero, the expressions for first, and last,, for each stream, have two
alternatives. Each alternative represents a face of the variable space containing first, (last,).

first:

first,
=  { Equation 6 }
M.a.x — (M.a.z.1 —first,.i) * increment,
= { let = be the second clause of first: (col—row,0, —row) }
M.a.(col—row,0, —row) — (M.a.(col —row, 0, —row).; — first,.1) * increment,
= { Ma = (A (’L,j,k)(z,k)) }
(col —row, —row) — ((col —row, —row).; — first,.7) * increment,
= { increment, = (1,1) }
(col —row, —row) — ((col —row, —row).; — first,.1) * (1,1)
= { since both components are non-zero, a case is needed for each component }

Case : = 0: (col —row, —row) — ((col —row, —row).0 — first,.0) = (1,1)
= { (eol=row,—row).0 = col —row, increment,.0 > 0 = first,.0 =0 }
(col—row, —row) — (col—row — 0) * (1,1)
= { simplification }
(col —row, —row) — (col —row, col -~ row)
= { simplification }
(0, —col)
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Case 1 = 1: (col —row, —row) — ((col —row, —row).1 — first,.1) * (1,1)
= { (eol=row,—row).1 = —row, increment,.1 >0 = first,.1 =0 }
(col —row, —row) — (—row—0) x (1,1)
=  { simplification }
(col—row, —row) — (—row, —row)
=  { simplification }
(col,0)

In the alternative for a face, say, i, the expression derived for all but the i-th component are
substituted into the bounds of the variable space — just as is done for the guards in each
alternative of first and last. For example, in the first alternative of first,, (0, —col), the guard
is derived by taking the bounds of the second component in the variable space of a: 0<j<n
and substituting the expression —col for j. The result is:

first, = if 0<—col<n — (0,—col)
I 0<col<n —  (col,0)
fi

first,
=  { Equation 6 }
M.b.x — (M.b.z.t — first,.t) * increment,,
= { let z be the second clause of first: (col—row,0,—row) }
M.b.(col—row, 0, —row) — (M.b.(col —row, 0, —row).i — first,.7) * increment,
= { Mb= (A(55,k)(k)) }
(—row,0) — ((—row,0).7 — first,.7) * increment,
= { increment, = (1,1) }
(—row,0) — ((—row,0).i — first,.7) * (1,1)
= { since both components are non-zero, a case is needed for each component }

Case ¢ = 0: (—row,0) — ((—row,0).0 — first,.0) * (1,1)
= { (-row,0).0 = —row, increment,.0 > 0 = first,.0 =10 }
(—=row,0) — (—row — 0) * (1,1)
=  { simplification }
(—row,0) — (—row, —row)
=  { simplification }
(0, row)
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Case ¢ = 1: (=row,0) — ((—row,0).1 — first,.1) * (1,1)
= { (-row,0).1 =0, increment,.1 >0 = first,.1 =0 }
(—=row,0) — (0 —0) = (1,1)
=  { simplification }
(—row,0) — (0,0)
{ simplification }
(—row,0)

I

As for a, after the substitutions:

firsty= if 0<—-row<n — (—row,0)
I 0<row<n — (0,row)
fi

first,
=  { Equation 6 }
M.c.x — (M.c.x.i —first..7) * increment,
= { let z be the second clause of first: (col —row,0, —row) }
M.c.(col—row, 0, —row) — (M.c.(col—row,0, —row).i — first..t) * increment,
= { Mc=(A(5k).69) }
(col —row,0) — ((col—row,0).i — first,.) * increment,
= { increment, = (1,1) }
(col —row,0) — ((col —row, 0).7 — first,.i) * (1,1)
= { both components are non-zero, so a case is needed for each component }

Case : = 0: (col —row,0) — ((col —row, 0).0 — first,.0) * (1,1)
= { (col—row,0).0 = col — row, increment,.0 > 0 = first,.0 =0 }
(col—row,0) — (col —row — 0) * (1,1)
= { simplification }
(col —row, 0) — (col —row, col —row)
= { simplification }
(0, row—col)

Case i = 1: (col—row,0) — ((col—row,0).1 — first,.1) * (1,1)
= { (col—row,0).1 =0, increment,.1 >0 = first,.1=0 }
(col—row,0) — (0—0) = (1,1)
=  { simplification }
(col —row,0) — (0,0)
= { simplification }
(col—row,0)
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Finally:
first, = if 0<row —col<n — (0,row — col)
I 0<col—row<n — (col—row,0)
fi
last,:
. last,

=  { Equation 6 }
M.a.z + (last,.i — M.a.z.1) * increment,
= { let = be the first clause of first: (0, row—col, —col) }
M.a.(0,row—~col, —col) + (last,:i — M.a.(0, row—col, —col).i) * increment,
= { Ma = (A(2,5,k).(,k)) }
(0, —col) + (last,.z — (0, —col).7) * increment,
= { increment, = (1,1) }
(0, —col) + (last,.c — (0, —col).z) * (1,1)
= { both components are non-zero, so a case is needed for each component }

Case 1 =0: . (0, —col) + (last,.0 — (0, —col).0) = (1,1)
= {(0,—col).0 =0, increment,.0 >0 = last,.0=n }
(0, —col) + (n—0) = (1,1)
= { simplification }
(0, —col) + (n,n)
=  { simplification }
(n,n—col)

Case 1 = 1: (0, —col) + (last,.1 — (0, —col).1) * (1,1)
= {(0,=col).l = —col, increment,.1 >0 = last,.1 =n }
(0, —col) + (n—(—col)) * (1,1)
=  { simplification }
(0, —col) + (n+-col,n+col)
= { simplification }
(n+col,n)

Finally:

last, = if 0<n—col<n — (n,n—col)
I 0<n+col<n — (n+col,n)
fi

56



- E  PROGRAM EXAMPLE: MATRIX-MATRIX MULTIPLICATION

last,
=  { Equation 6 }
M.b.z + (last,.i — M.b.2.7) * increment,
= { let z be the first clause of first: (0, row—col, —col) }
M.b.(0,row—col, —col) + (lasty.i — M.b.(0, row—col, —col).t) * increment,
= {(Mb = (O\Gi k(1) )
(—col, row—col) + (last.t — (—col, row—col).i) * increment,
= { increment, = (1,1) }
(—col, row—col) + (lasty.t — (—col, row—col).t) * (1,1)
= { both components are non-zero, so a case is needed for each component }

Case 1 = 0: (—col,row—col) + (last;.0 — (—col, row—col).0) * (1,1)
= { (~col,row—col).0 = —col, increment,.0 >0 = last,.0=n }
(—col,row—col) + (n+-col) * (1,1)
=  { simplification }
(—col, row—col) 4+ (n+col,n+col)
= { simplification }
(n,n+row)

Case 1 = 1: (—col, row—col) + (lasty.1 — (—col, row—col).1) % (1,1)
= { (~col,row—col).l1 = row—col, increment,.1 >0 = last,.1 =n }
(—col,row—col) + (n—(row—-col)) = (1,1)
= { simplification }
(=col,row—col) + (n—row+col,n—row+-col)
= { simplification }
(n—row,n)

Finally:
last, = if 0<n—row<n — (n—row,n)
I 0<n+row<n — (n,n+row)
fi
last,

= { Equation 6 }
M.c.x + (last,.t — M.c.z.7) * increment,
= { let = be the first- clause of first: (0,row—-col, —col) }
M.c.(0,row~col, —col) + (last.. — M.c.(0, row—col, —col).t} * increment,
= { Mc = (A(5,8).(,9)) }
(0,row — col) + (last,.i — (0, row — col).t) * increment,
= { increment, = (1,1) }
(0, row—col) + (last..; — (0, row—col).1) * (1,1)
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=  { both components are non-zero, so a case is needed for each component }

Case ¢ = 0: (0, row—col) + (last.0 — (0, row—col).0) % (1,1)
= { (0,row—col).0 =0, increment,.0 >0 = last,.0=n }
(0,row—col) + (n—0) * (1,1)
= { simplification }
(0,row—col) + (n,n)
= { simplification }
(n,n+row—col)

Case i = 1: (0, row—col) + (last,.1 — (0, row—col).1) x (1,1)
= { (0,row—col).1 = row—col, increment,.1 >0 = last,.1 =n }
(0,row—col) 4+ (n—(row—col)) * (1,1)
=  { simplification }
(0, row—col) + (n—row+col,n—row+-col)
=  { simplification }
(n—row+col,n)

Finally:

last, = if 0<n+row—col<n — (n,n+row—col)
I 0<n+col-row<n — (n+col—row,n)

fi

E.2.5 The Computation Processes — Data Propagation

All three streams require soaking and draining. Each clause of first corresponds to a subset
of the computation space. An expression for the amount to be soaked of stream s is derived
for each subset. Since each stream has two expressions for first,, and there are three clauses
for first, there are six expressions for the soaking code. The same is true for the draining
code, because last also has three clauses.

soak, { first clause of first }

= { Equation 8, first = (0, row—col, —col) }
(M.a.(0,row—col, —col) — first,) //increment,

= { Ma = (A(5,4,k).(4,k)), increment, = (1,1) }
((0, —col) — first,)//(1,1)

= { case split: first, = (0, —col) V first, = (col,0) }
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((0, —col) — (0, —col)) //(1,1) ((0, —col) — (col, 0))//(1,1)
=  { simplification } = { simplification }
(0,0)//(1,1) (—col, ~col)//(1,1)
= { simplification } =  { simplification }
0 ~col

' soak, { second clause of first }

= { Equation 8, first = (col—row,0, —row) }
(M.a.(col—row, 0, —row) — first,) //increment,

= { Ma = (A(,7,k).(¢,k)), increment, = (1,1) }
((col —row, —row) — first,)//(1,1)

= { case split: first, = (0, —col) V first, = (col,0) }

((col=row, —row) — (0, —col))//(1,1) ((col—row, —row) — (col,0))//(1,1)
= { simplification } =  { simplification }

(col—row, col —row) //(1,1) (—row, —row)//(1,1)
= { simplification } =  { simplification }

col—row" —Trow

soak, { third clause of first }

=  { Equation 8, first = (col, row,0) }
(M.a.(col,row,0) — first,) //increment,

= { M.a = (A(4,4,k).(3,k)), increment, = (1,1) }
((col,0) —first,)//(1,1)

= { case split: first, = (0, —col) V first, = (col,0) }

((eol,0) — (0, —col)//(1,1) ((eol,0) — (col,0)//(1,1)
= { simplification } =  { simplification }
(col, col) //(1,1) (0,0)//(1,1)
= { simplification } = { simplification }

col 0
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Finally:

if 0<row—col<n A 0<—col<n — Iif 0<-—col<n — 0
I 0<col<n — —col
fi

I 0<col-row<n A 0<—row<n — 1Iif 0<—col<n — col—row
0 0<col<n — —row
fi

I 0<col<n A 0<L<row<n —  if 0<—~col<n — ecol
I 0<ecol<n — 0
fi

fi

For the first and third alternatives, only one of the sub-alternatives has a guard that is
consistent with that of its alternative.

soak;, { first clause of first }
=  { Equation 8 }
(M.bAfirst — first) //ing,
= { first = (0, row—col, —col) }
(M.b.(0, row—col, —col) — first,) //increment,
= { Mb= (A(],k).(kJ)), increment, = (1,1) }
((—col, row—col) — firsty) //(1,1)
= { case split: first, = (~row,0) V first, = (0,row) }

((—col,row—col) — (—row,0))//(1,1) ((—col,row—col) — (0,row))//(1,1)
=  { simplification } = { simplification }
(row—col,row—col)//(1,1) (—col,—col)/(1,1)
=  { simplification } =  { simplification }
row —col —col

soaky { second clause of first }
=  { Equation 8 }
(M.b.first — first,) //ing,
= { first = (col~row;0, —row) }
(M.b.(col—row, 0, —row) — first,) //increment,
= { Mb= (\(,7j,k).(kJ)), increment, = (1,1) }
((—row,0) —first,)//(1,1)
= { case split: first, = (—row,0) V first, = (0,row) }
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((=row,0) — (—row,0))//(1,1) ((=row,0) — (0,row))//(1,1)
= { simplification } =  { simplification }
(0,0)//(1,1) (—row, —row)//(1,1)
= {0//z=0} =  { simplification }
0 —Trow

" soak, { third clause of first }

=  { Equation 8 }
(M.bAfirst — firsty) //inc,

= { first = (col,row,0) }
(M.b.(col,row,0) — firsty) //increment,

= { Mb= (A(i,7,k).(k, 7)), increment, = (1,1) }
((0, row) — first,) //(1,1)

= { case split: first, = (—row,0) V first, = (0,row) }

((0,row) — (—row,0)//(1,1) ((0, row) — (0, row)//(1,1)
= { simplification } =  { simplification }
(row; row)//(1,1) (0,0)//(1,1)
= { simplification } = {0/fz=0}
row 0
Finally:
if 0<row—col<n A 0<—col<n — if 0<-—row<n — row-—col
I 0<row<n — —col
fi
I 0<col—row<n A 0<—-row<n — if 0<—row<n — 0
I 0<row<n —  —row
fi
I 0<col<n A 0<row<n — if 0<-row<n — row
I 0<row<n — 0
fi

fi

For the second and third alternatives, only one of the sub-alternatives has a guard that is
consistent with that of its alternative.
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soak, { first clause of first }
=  { Equation 8 }
(M.cfirst — first,) //inc,
= { first = (0,row—col,—col) }
(M.c.(0,row—col, —col) — first,) //increment,
= { Mc = (A(s,4,k).(2,7)), increment, = (1,1) }
((0, row—col) — first,)//(1,1)
= { case split: first, = (0,row—col) V first, = (col—row,0) }

((0,row—col) — (0, row—col))//(1,1) ((0, row—ecol) — (col —row, 0))//(1,1)

=  { simplification } =  { simplification }
(0,0)//(1,1) (row—col, row—col)/(1,1)
= {0//z=0} =  { simplification }
0 row —col

soak, { second clause of first }
=  { Equation 8 }
(M.cfirst — first,) //inc,
= { first = (col—row,0, —row) }
(M.c.(col—row,0, —row) — first,) //increment,
= { Mc= (A(,],k).(¢,7)), increment, = (1,1) }
((col =row,0) — first,) //(1,1)
= { case split: first, = (0,row—col) V first, = (col—row,0) }

((col—row,0) — (0,row—col))//(1,1) ((col —row,0) — (col —row,0))//(1,1)
=  { simplification } =  { simplification }

(col —row, col —row)//(1,1) (0,0)//(1,1)
= { simplification } = {0//z=0}

col—row 0

soak, { third clause of first }
=  { Equation 8 }
(M.cfirst — first,) //inc,
= { first = (col,row,0) }
(M.c.(col,row,0) — first,)//increment,
= { Mc= (A7,k).(¢,7)), increment, = (1,1) }
((col, row) — first,) //(1,1)
= { case split: first, = (0,row—col) V first, = (col—row,0) }
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((col,row) — (0, row—col)//(1,1) ((col, row) — (col —row,0)//(1,1)
=  { simplification } =  { simplification }
(col,eol)[/(1,1) (row,row)//(1,1)
=  { simplification } =  { simplification }
col row
Finally:
if 0<row—col<n A 0<—~col<n — if 0<row—col<n — 0
I 0<Lcol-—row<n — row-—col
fi
I 0<col-row<n A 0<—row<n — if 0<row—col<n — col—row
I 0<col—row<n — 0
fi
I 0<col<n A 0<row<n — if 0<row—col<n — col
I 0<col—row<n — row
fi

fi

For the first and second alternatives, only one of the sub-alternatives has a guard that is
consistent with that of its alternative.
The derivation of the draining code is not shown, the result is in Section E.2.7.

E.2.6 The Buffer Processes

As in the first design, none of the streams have a fractional flow. Thus, only buffers of size 1
are needed between any two processes; no explicit buffer processes in the computation space
are needed.

Since the computation space does not equal the process space, buffers outside the com-
putation space are needed. The first three guards in the expression for first (or last) define
the computation space; the negation of their disjunction yields a predicate that defines the
buffers. Within the bounds of the process space, the buffers are located at points where
—(—n<col — row<n) holds. An analysis of the definition of each stream reveals that the
buffers need only pass along elements of streams a and b.

amount of stream « to pass along
=  { Equation 10 }
((last, — first,)//increment,) + 1
= { (first, = (0,—col) A last, = (n+col,n))
V (first, = (col,0) A last, = (n,n—col)) }
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(((n+col,n) = (0, —col))//(1,1)) +1 (((n,n—col) — (c0l,0))//(1,1)) + 1

=  { simplification } =  { simplification }
((n+col,n+col)//(1,1)) + 1 ((n—col,n—col)//(1,1)) +1

=  { simplification } =  { simplification }
n+col+1 n—col+1

amount of stream b to pass along
=  { Equation 10 }
((last, — first,)//increment;) + 1
= { (firsty = (—row,0) A last, = (n,n+row))
V (firsty = (0,row) A last, = (n—row,n)) }

(((n, n+row) — (—row,0))//(1,1)) + 1 (((n=row,n) — (0,row))//(1,1)) +1
= { simplification } =  { simplification } .
((n+row,n+row)//(1,1)) +1 ((n—row,n—row)//(1,1)) + 1
= { simplification } =  { simplification }
n+row+1 n—row-+1

E.2.7 The Final Program

As noted previously, the computation space does not equal the process space. The conse-
quence is that the expressions in the computation processes for first and last have an extra
alternative that assigns the null value. Also, the i/o processes for stream ¢ have had an
extra alternative added, since there are processes created that do not access any elements of
¢. Any repeater with a null value for first and last acts as a null process. Note that one of
the alternatives in each set of i/o processes for stream c¢ is not needed.

chan a_chan[—n..n,—n..n+1], b_chan[—n..n+1, —n..n}, c_.chan[—(n+1)..n, —(n+1)..n]
par

<Input Processes>

<Buffer Processes>

<Computation Processes>

<Output Processes>
end par
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/********** Input Processes *********************************/

parfor col from —n to n do
(int,int) first_a, last.a

first_a, last.a := if 0<—col<n — (0,—col), (n+col,n)
I 0<col<n — (col,0), (n,n—col)
fi

~send a {first.a last.a (1,1)} to a_chan|col, —n]
end parfor

parfor row from —n to n do
(int,int) first_b, last.b

first b, last b := if 0<—-row<n — (—row,0), (n,n+row)
I 0<row<n —  (0,row), (n—row,n)
fi

send b {first.b lastb (1,1)} to b_chan[—n,row]
end parfor
/* The expressions for first, and last, have been simplified after */
/* substituting the appropriate values for row and col. */
parfor col from —n to n do
(int,int) first_c, last_c
[* row=n*/

firstc, lastc := if 0<n—col<n — (0,n—col), (col,n)
I 0<col—n<n — (col—n,0), (n,(2%n)—col)
[ else —  null
fi

send ¢ {first.c last.c (1,1)} to c_chan|col,n]
end parfor
parfor row from —n ton — 1 do

(int,int) first_c, last_c

/¥ col =n */

first_e,lastc := if 0<row—n<n — (0,row—n),((2%n)—row,n)
I 0<n—row<n — (n—row,0),(n,row)
[ else — null
fi

send ¢ {first.c last.c (1,1)} to c_chan|[n,row)
end parfor
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/************* Buffer Processes **************************************/

/* Note that this could be merged with the Computation Processes. */
/* The code has been hand optimized. Given the loop bounds, the */
/* condition for a process being in PS — CS has been simplified. */
parfor col from —n to n do
parfor row from —n to n do
int pass_a, pass_b

passa := if —(—-n<col-row<n) — if 0<-col<n — n+col+l
I 0<col<n — n—col+1
fi
l else — 0
fi
pass b := if —(-n<col-row<n) — if 0<—row<n — n+row+l
I 0<row<n — n—row+1
fi
[ else — 0
fi
par

pass a, pass_a
pass b, pass_b
end par
end parfor
end parfor
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/************* Computation Processes ************************/

parfor col from —n to n do
parfor row from —n to n do
(int,int,int) first, last

int drain
int soak
first ;= if 0<row—col<n A 0<—col<n — (0,row—-col,—col)
I 0<col-row<n A 0<—-row<n — (col—row,0,—row)
I 0<ecol<n A 0<row<n —  (col,row,0)
I else — null
fi
last ;== if 0<col-row<n A 0<col<n — (n,row—col+n,—col+n)
I 0<row—col<n A 0<row<n — (col—row+n,n,—row+n)
I —-n<ecol<n A —n<row<0 —  (col+n,row+n,n)
I else —  null
fi

<soaking code>
{first last (1,1,1)}
<draining code>
end parfor
end parfor

[RRRRRR Rk ook Basic Statement *********************/
(4,5,k) : par

receive g from a_chan{col, row]

receive b from b_chan|col, row)

receive ¢ from c_chan|col, row)

end par
c:= c+axb
par

send a to a.chan|col, row+1]

send b to b_chan[col+1, row]

send c to c_chan[col—1,row—1]
end par
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/********************** SO&kiIlg Code ************************/

soak :=
if 0<row—col<n A 0<-—col<n

I 0<col—row<n A 0<—row<n

I 0<col<n A 0<row<n

I else
fi
pass a, soak
soak :=

if 0<row—col<n A 0<—col<n

I 0<col—row<n A 0<—row<n

I 0<col<n A 0<row<n

[ else
fi
pass b, soak
soak =

if 0<row—col<n A 0<~col<n
I 0<col-row<n A 0<—-row<n
I 0<col<n A 0<row<n

[ else
fi

pass ¢, soak

if

=

if

if

e

if

if

f

if

o |

0<—col<n —
0<col<n —

0<—col<n —
0<col<n —

0<—col<n —
0<col<n —

0<—row<n
0<row<n

1

1

0<~row<n —
0<row<n —

0<—row<n —
0<row<n -

0<row—col<n
0<col—row<n

0<row—col<n
0<col—row<n

0<row-—col<n
0<col—row<n

0

—col

col —row
—row

col

0

row — col
—col

—Trow

row

0

row — col

1

!

col —row

0

!

!

col

!

1

row
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/********************** Draining Code ************************/

drain =
if 0<col-row<n A 0<col<n

I 0<row—col<n A 0<row<n

[ —n<col<0 A —n<row<0

[ else
fi
pass a, drain
drain :=
if 0<col—row<n A 0<col<n

I 0<rew—col<n A 0<row<n

I —n<ecol<0 A —n<row<0

[ else

fi
pass b, drain
drain :=

if 0<col—row<n A 0<col<n
I 0<row—col<n A 0<row<n
I —mn<cod<0 AN —n<row<0

[ else
fi

pass ¢, drain

—

if
I
fi

if

if

T

if

if

—/

0<n-—col<n
0<n+col<n

!

!

0<n—col<n
0<n+col<n

!

!

0<n—col<n
0<n+col<n

!

!

!

0<n—-row<n
0<n+4+row<n

!

!

0<n—row<n
0<n+row<n

!

!

0<n—-row<n
0<n+row<n

i

0<n+4row—col<n
0<n+col—row<n

0<n+row—col<n
0<n+col—row<n

0<n+row—col<n
0<n+col—row<n

0

col

row—col
row

—col

col —row
col

row

—-row

— 0

—  col—row

—  row—col
— 0

— —col

-  —row
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/********** Output Processes ********************************/

parfor col from —n to n do
(int,int) first_a, last.a

first_a, last.a := if 0<—col<n — (0,—col), (n+col,n)
] 0<col<n — (col,0), (n,n—col)
fi

receive a {first_.a last.a (1,1)} from a_chan|col,n]
end parfor

parfor row from —n to n do
(int,int) first_b, last_b

firstb, last b := if 0<—-row<n — (—row,0), (n,n+row)
I 0<row<n — (0,row), (n—row,n)
fi

receive b {first_b last.b (1,1)} from b_chan|n,row)
end parfor
/* The expressions for first, and last, have been simplified after */
/* substituting the appropriate values for row and col. */
parfor col from —n to n do
(int,int) first_c, last_c

[* row = —n */

first_e, last.c := if 0<-n—col<n — (0,—n—col), ((2*n+-col),n)
0 0<col+n<n —  (eol+n,0), (n,—col)
[ else — null
fi

receive ¢ {first_c last.c (1,1)} from c_chan[col,—n]
end parfor
parfor row from —n+1 to n do

(int,int) firsi_c, last_c

/* col = —n */

first_c,lastc :== if 0<row+n<n — (0,row+n),(—row,n)
I 0L—n—-row<n — (—n-row,0),(n,row)
| else —  null
fi

receive c {first_c lastc (1,1)} from c_chan[—n,row]
end parfor
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