LFCS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Formal Derivation of a Computer

by

Li-Guo Wang and M P Fourman

Jaindwo) e o uoleALisq [ewio4

LFCS Report Series ECS-LFCS-91-142

LFCS March 1991
Department of Computer Science

University of Edinburgh

The King's Buildings -

Edinburgh EH9 3JZ Copyright © 1991, LFCS

FORMAL DERIVATION OF A COMPUTER

Li-Guo Wang' and M P Fourman

Laboratory for Foundations of Computer Science
Department of Computer Science, University of Edinburgh
JCMB, The King’s Buildings, Edinburgh EH9 3JZ, U.K.
lgw@lfcs.ed.ac.uk

February 1991

Abstract

A synthesis logic and derivation of Mike Gordon’s computer using the logic are presented.
The derivation shows us that it is possible to construct realistic complex hardware using
formal proof. The basic idea of the paper is ‘deriving as design’ and ‘derivation as implemen-
tation’. The main part of the paper describes the process of derivation from specification
to implementation. Other relevant aspects such as axiomatic synthesis logic, specification
and implementation languages are only discussed briefly.

1 Introduction

For today’s formal method for hardware design an important step is to push theory from lab-
oratory research to practical application. To achieve the goal three things should be done 1.
Formal method should be made as easy as possible for users. 2. Believable examples should
be given which are realistic or can match realistic complex hardware. 3. A stronger theoretical
foundation for automatic design should be presented. In order to achieve 1 and 2, we present,
in this paper, an axiomatic synthesis logic and a derivation of Mike Gordon’s computer. (3 will
be dealt with in another paper, “Formal derivation of a class of computers”)

Our work belongs to proof-based synthesis: specification-drived construction of implementa-
tion using formal proof. Our basic idea is ‘deriving as design’ and ‘derivation as implementation’.
The main contribition of the paper is that through the derivation of Mike Gordon’s computer
to show that it is possible to design realistic complex hardware using formal method.

We select Mike Gordon’s computer as an example because it is suitable in degree of com-
plication and in size: it matches realistic computer and its derivation can be contained in a
short paper. Through the well-known computer which has been verified from implementation
to specification we show a proof-based synthesis from specification to implementation (there is
a little differences between our implementation which is for easy to understand synthesis and
Mike Gordon’s implementation) and a methodology of the synthesis. In fact our method can be
used for more realistic application and we have got a stronger general result which is suitable
for deriving a class of computers.

1The research is supported by Siemens.

In the paper we mainly describe the derivation process from the specification of behaviour
level (state transition) to implementation of register-trasfer level for Mike Gordon’s computer.
Other relevant aspects such as axiomatic synthesis logic, specification and implementation lan-
guages are only discussed briefly.

In section 2 a simple Model-like hardware implementation language is discussed. In section 3
axiomatic synthesis logic is presented. In section 4 the specification of Mike Gordon’s computer
is described. In section 5 the implementation is derived from the specification using the logic.
In section 6 conclusions and relevant work are discussed.

2 Hardware Specification and Implementation Languages

2.1 Specification Language

General logics such as Hol [3] and Lambda [1] are selected as specification language. We use
italic font to write abstract or general term and predicate which correspond to the variables of
implementation language below and use roman font to write concrete ones which correspond to
the constant.

2.2 Implementation Language

This is a toy language of structural description style. The language is designed as minimal as
possible for the paper.

2.2.1 Syntax

implementation ::= component | component & implementation
component ::= device (port_list)

port_list ::= port | port, port_list

device ::= variable | constant

port ::= variable | constant

The following font conventions will be used:
o variables will be written in italic font.
o constants will be written in roman font.
o capital letters are for devices and lowercase letters for ports.

2.2.2 Semantics

An implementation is a set of components which are syntactically connected by ‘&’. A component
has device as its name and ports as its external lines. The constant expresses concrete deveice
or port which have been established and variable expresses abstract ones which are taken tem-
porarily and will be established. If two components have common port then it means there is a
connection through the port.

2.2.3 Examples

REGISTER (input, control, output) expresses a component: its name is REGISTER and it has
three ports: two ports: input and output have been established, port control is abstract and

will be established. NAND (a,b,c)& NOT, (d,e) only means that devices NAND and NOT;
are put together. NAND (a,b,c) & NOT, (c,d) expresses a combination of devices NAND and
NOT, connected through their common port c.

3 Synthesis Logic

Synthesis logic (SL) is designed for hardware synthesis. Basic idea of SL is that implementation,
and specification are viewed as two different worlds and their unique connection is through basic
rules of SL. To catch basic relationship between implementation and specification SL unites
general logic (GL, for specification), construction logic (CL, for derivation) and implementation
logic (IL, for implementation) for purpose of proof-based hardware synthesis.

3.1 Basic Conception

When describing SL we are at meta-language level and we will use sans serif letter which express
general case at the level. |, J and K will (sometimes with subscript) be used for implementation
and P, Q and S (sometimes with subscript) for specification. - P / F Q is called as ‘proof’ which
means from P to prove Q. If P is axiom of GL then it is written as - Q. For example, if a is an
arbitrary constant then we have FPa/ FVx.Px and also F P = (Q = P). EI=17 is called
as ‘transform’ which means implementation ‘I’ and ‘J’ are equal and can substitute each other.
I|= S is called as ‘construction’ which means implementation ‘I’ satisfies specification ‘S’.

3.2 General Logic

We will directly use results proved in GL. General form for construction is

IMP (171,372,“ 9 Tms Y15 Yzet s yn)
}:‘_ Vxla Lgy** "y zm°3y17 Y255 Yn- relation (mla Loy s Tms Y15 Y25y yn)-
For short we omit pre-quantification and have below form:

IMP (1:17'772""7zm’y1’y27"'7yn) i: relation ($1,$2,"',$may1,yz,'"ayn)-

3.3 Implementation Logic

In applying IL we use italic capital letters to write abstract implementations which are taken,
in top-down synthesis process, as temporary expressions which will be substituted by concrete
implementations finally. The axioms below describe basic relations about the structure of im-
plementation:

Axioml: El&1=1

Axiom2: El& J=J& .

Axiom3: E(1&))& K=1& (J & K).

3.4 Construction Logic
3.4.1 Basic Rules

Rule; and Rule, describe basic structure of the Construction Logic. Rule;: if implementations
l; and |, satisfy specifications S, and S, respectively then implementation |, & |, satisfies specifi-
cation S; A S,. Rule,: if implementation lp satisfies specification P and impelementation Ip & |,
satisfies specification Q then implementation |, satisfies specification P = Q. Rules describes the
relation between the General Logic and Construction Logic: if in general logic we can derive Q

from P,ie - P / I Q, we take P and Q as specifications and we have implementation | satisfies P
then we can derive that | satisfies Q. Rule, describe the relation between Implementation Logic
and Construction Logic: if implementation | satisfies specification S and in imlementation logic
we have got implementations | and J are equal then we have J satisfies S. We will directly use
the results from GL and IL and omit details about how to get them in GL and IL

Rule,: Rule,: Rulej: Rule,:
LES: b =P FP/FQ IES
L& L ESIAS, LhEP=Q lEQ JES
A special case of Rule; is:
FP=Q
IEP

TEQ
3.4.2 Auxiliary Means

They are for easy of desciption of synthesis process. The Rules is for top-down synthesis and
inference is often used instead of rule.

e Substitution
If “I” expresses abstract implementation at application level of rule then we have Rule;

IES
TES

o Inference
If C; is called as premise which is proof, transform or construction (i € {1,2,---,n}) and C is
called as conclusion which is construction then
1. Rule is inference.

¢, o
G,) 2
2. If C is inference and g‘l is rule then .Cil is inference.
' C'2 Ca
e ;
C

3.5 Goal, Deriving and Derivation
Goal: a construction, | =S, is called goal if its specification, ‘S’, is to be desired.
Deriving;:

1. If conclusion of a inference is goal and all premises of the inference called as known premises
are as following: constructions are given axioms in CL, proofs have been proved from GL and

transforms are axioms from IL then the inference is call as deriving of the goal.

2. If conclusion of a inference is goal and its premises are known premises or can be taken
as sub-goal for which we have had correspoding derivings then all derivings and the inference
together are call deriving of the goal.

Derivation: If a construction, | |= S, as goal has had its deriving then the construction is called
as derivation and its implementation, ‘I’, is called as derived implementation.

i

4 Specification of Mike Gordon’s Computer

Mike Gordon’s computer is a simple general-purpose computer invented for formal specification
and verification. At the target level the computer has a memory, two registers and an idle
light. The memory has a 13-bit address space of 16-bit words. The two registers are the 13-bit
program counter PC and the 16-bit accumulator ACC. The idle light shows run/idle status.
The formal specification of the computer at the target level is assembler language oriented. It
describes semantics of the front panel operation and machine instruction set of the computer.
For the specification its inputs are ‘button’, ‘switches’ and ‘knob’ and its outputs are ‘memory’,
‘pc’, ‘acc’ and ‘idle’. The specification describes the state-transition of 4-tuples: memory, pc,
acc and idle from time t; to t,.

For the specification below types are taken:

Primitive type:

t;,t : num, T, F : bool, word,, words, word, 3, word, s, memory;3_¢.
Derived type:

knob : num — word,

pc : num — word;

switches, acc : num — word;¢

idle, button : num — bool

memory : num — mMemoryis ig

ADDyg, SUB;¢ : word; s — word, s — word ¢

CUT;6.13 : word,g — word;g

INC,3 : word;5 — word,3

OPCODE : word,q — word;

FETCH,3 : memory,3 15 — word;s — word;¢

STORE,; : word;3 — word;¢ — memory,s ;4 — Memory;s ¢

VAL, : word, — num

. . def
specification =

vi,. 3t,.
(memory %5, pc tp, accty, idle t,) =
(id].e t1 =

(button t; =

((VAL, (knob t;) = 0) =
(memory t;, CUT;43 (switches ¢;), acc t;, T) |
((VAL; (knob t;) = 1) =
(memory t;, pc t;, switches t,, T) |

((VALg (knob t;) = 2) =
(STORE, 3 (pc t;) (acc ¢;) (memory t,), pcty, acc iy, T) |
(memory t;, pcty, acc ty, F))
(memory t;, pcty, accty, T))]|
(button t; =
(memory t,, pcty, accty, T)|
EXECUTE (memory t;, pc t, acc t;)))
A
EXECUTE (memory ty1, pc t;, acc ;) =
let op = VAL3; (OPCODE (FETCH,; (memory t,) (pc ¢;))) in
let addr = CUT;6_43(FETCH,3(memory ¢, (pct;))in
((op =0) = (memory ¢, pc t;, accty, T)|
(op =1) = (memory t;, addr, acc t;, F) |
(op=2) =
((VALjgacct; = 0) =
(memory t;, addr, acc t;, F) |
(memory t,, INC,5 (pc t;), acc ty, F)]
(op=3) =
(memory t;, INCy3 (pc ¢;),
ADDy, (acc t;) (FETCH,3 (memory ¢,) addr), F) |
(op=4) =
(memory ¢;, INCy3 (pc ¢,),
SUBy (acc t;) (FETCH;5 (memory t,) addr), F) |

(op=5) =
(memory t,, INC,3 (pc t;), FETCH,3 (memory t,) addr, F) |
(op=6) =

(STORE,;3 addr (acc ¢,)(memory t,), INCy3 (pc t;), acc t;, F) |
(memory t,, INC,5 (pc ty), acc t;, F))

5 Deriving Implementation from Specification

Starting point of the derivation is goal:

COMPUTER (button, knob, switches, memory, pc, acc,idle) = specification

5.1 Refinement of Specification

We use ‘+ imply_and_form / F specification’ to refine the specification then by Rule; our goal
will become ‘COMPUTER |= imply_and_form’. The imply_and form is as following:

imply_and_form = path, A pathy A - -- A path,s
path, = idle t;; A =button t;; =
(memory ty; = memory t1; A pc ty; = pcty; Aacc ty = acc ty; Aidle ty; = T)
path, = idle t;, A button t,;5 A VAL, (knob t,,) =0 =
(memory ty5 = memory ti5 A pc tyy = CUT 643 (switches ty5) A acc tyy = acc tiaA
idle ty, = T)
pathg = idle t;3 A button t;3 A VAL, (knob ty3) = 1 =
(memory ty3 = memory ti3 A pc ty3 = pc t13 A acc ty3 = switches ty3 Aidle ty3 = T)

path, = idle t;4 A button t;4 A VAL, (knob ty4) =2 =
(memory ty4 = STORE;;3 (pc t14) (acc t;) (memory t14) A pc ta4 = pc t14A
acc tgq = acc tyq Alddle toy = T)
pathy = idle t,5 A button t;5 A VAL, (knob t;5) = 3 =
(memory ty5 = memory t;5 A pC tas = pc t15 A acc tys = acce ty5 Alidle to5 = F)
pathg = —idle t, A button t,4 =
(memory tys = memory tyg A pe tag = pc tis A acc tyg = acc tyg Alidle 636 = T)
path; = —idle t;; A ~button t;7 Aop; = 0 =
(memory ty; = memory ty7 A Pc ta7 = pc ty7 A acc tyy = acc tyy Alddle tyy = T)
pathg = —idle t,;3 A =button t;gAopg =1=
(memory t,s = memory t15 A pc tag = addrg A acc tyg = acc tig Aidle tyg = F)
pathy = —idle t,5 A ~buttont;y A ops = 2 A VAL (acc tyo) = 0=
(memory ty9 = memory tio A pc tye = addrg A acc tgg = acc tig Alddle tye = F)
pathyo = —idle t119 A ~button t;0 A opyg = 2 A VALss (acc ty30) # 0=
(memory ty;p = memory ty30 A P ta10 = INCia (PC t110) A acc tyyg = acc tygp Addle tgy0 = F)
path,; = -idle ty,; A —button t,;; Aop;; =3 =
(memory t,;; = memory ty3; A pe tay; = INCyg (pe t111)A
acc tyy; = ADDyg (acc ty3;) (FETCH,3 (memory ty3;) addr;;) Alddle tyy; = F)
path;, = —idle ty;5, A “button t;;, Aop;, = 4 =
(memory tq;; = memory t135 A PC tg12 = INCy3 (pe t112)A
acc ty, = SUBy6 (acc t115) (FETCH,5 (memory t,5) addr;,) Addle tyy, = F)
path;s = —idle t1;3 A “button t;;3 Aopiz =5 =
(memory t4,3 = memory t);3 A pc ta13 = INCy3 (pe tigs) A
acc tyy3 = FETCHy3 (memory ty;3) addr;z Aidle ty3 = F)
path;4 = —idle t1,4 A —button t;,4 Aop;y = 6 =
(memory ty4 = STORE,3 addry4 (acc t114) (memory t114) A pe tas = INCys (pe ty14)A
acc tyyy = acc tyg Alddle tgy4 = F)
path,; = —idle t,,5 A =button t;;5 Aopys =7 =
(memory ty;5 = memory ty;5 A pc tays = INCis (pC t115) A acc ty5 = acc tyy5 Addle tyy5 = F)

Here t,; is an arbitrary constant. ty; is a function of ty;. i€ {1,2,---,15}
op; = VAL; (OPCODE (FETCH,; (memory t;;) (pc ty)) j € {7,8,---,15}
addr, = CUTi4,4s (FETCH,3 (memory tyy) (pc ti)) k € {8,9,11,12,13,14}

Our task has now been reduced to proving:

IMP; |=path; (i € {1,2,+++,15}) (COMPUTER =IMP, & IMP, & --- & IM Pi;).

We will give some details through the derivation of path, for understanding derivation process
and then will give general analysis through the dercibing main steps of the derivation of path;,.
In next section let us first give some axioms which describe basic devices at rtl of implementation.

5.2 Relative Axiqms and Theorems

For succinctness of description we suppose that only at the first appearance of a device we give
its ports and omit the ports in following derivation if they are same. For deriving data part
below additional types and axioms are given to describe basic devices used for data part at rtl:

Primitive types: FLOAT; : tri_word,,
Derived type:

%41, Or1, @ : NUM — Word;s
igz’ Op, i,-,, ir2’ Oz, if7 05, d7 ial’ iaza 04 : DUM — WOI‘dl,s
Cg1y Cg2y Criy Cre, Ty W, inC, add, sub : num — bool
0415 Og2, ipjy Ony : UM — tri_word;s j € {1,2,--+,n}
PAD,3 ;6 : word;3 — word
MK_TRI,¢ : word,s — tri_word;q
DEST_TRI,¢ : tri_word;¢ — word,g
Uy ¢ tri_word,g — tri_word;¢ — tri_word,¢
We have axioms for DEST_TRI, MK_TRI and U,:
F Vw : word,. DEST_TRI, (MK_TRI, w) = w
F Yw : tri_word,,. (FLOAT, U, w = w)A(w U, FLOT, = w)

Axioms:
Gis (ig1y Cg15 041) | V. 041 t = (cgg t = MK_TRI;5 (PADy346 (41 t)) | FLOAT6)
Gig (442, Cga, 0g2) E VE. 049 t = (4o t = MK_TRI;g (450 ¢) | FLOAT)
BUS (ibI, 2y s bons Ob) ’=
Vt. 0, t = DEST_TRIg (45 t Uyg G50 t Uy - +Usg tpn £)
REG 3 (1) Cryy 071) EVE. 0,y (+ 1) = (cpy t = CUTy643 (41 1) | 071 1)
REGlG (ir27 Crz, 0r2) l: vi. Org (t + 1) = (Cr2 t= ir2 t I Org t)
BUF (4,0;) EVt. of (1 4+ 1) =is t
MEM (memory, a,d,r,w,0,,) =
Vt.(0, t = (rt = MK_TRI;s (FETCH,3 (memory t) (a t)) | FLOAT;6)) A
(memory (t+ 1) = (wt = STORE;3 (a t) (d t) (memory t) | memory t))
ALU (4,1, tas, inc, add, sub, 0,) =
Vt. 0, t = (inct = INCyg t4 ¢ | (add t = ADDyg (ias t) (a2 t) |
(sub t = SUByg (ia t) (iaz t) | a2 t)))
Theorem; : (the types of the variables in the theorem will be determined in context of applyca-
tions)
IMP. Ert
IMP, Ewt
GATE (ig,r,0,) =EVE. 7t = (0, t = f (i, 1))
BUS (+++,04,-,0) EVt. oyt =g (---UogtU--")
REG (0y,w,0,) EVt. wt = (0, (t+1)=h (0, 1))
IMP,&IMP, & GATE & BUS & REGEo, (t+1)=hg f (i, 1)

Below additional types and axioms are for control part at rtl:

Primitive types:
control; : wordyg
n; : wordg
tf : bool
address;, addressa;, addressb;q : word;
Derived types:
addrs;, addrs,;, addrs,, addrs,, addrs,, neztaddrs : num — wordsg
control : num — word,
condition, code; : num — bool j € {1,2,---,m}
test : num — word,
Jor + (bool * bool * wordy * words) — words

WORD, : num — word,
We have axiom for the WORD, and VAL,:
F VYw : word,. WORD,(VAL, w) = w

Axioms: (Note: constant ‘address;, control;, n;, addressa;, addressb;,tf, fi,’
will be established in derivation process.)
INSTRUCTION (addrs;, control, test, addrs,, addrsy)
k= instruction, (addrs;, control,test, addrs,, addrs,)A
instruction, (addrs;, control,test, addrs,, addrs;)A

instruction, (addrs;,control,test, addrs,, addrs;)
Faes instruction; (addrs;, control, test, addrs,, addrs,) =
Vt. (addrs; t = address; =
control t = control; A test t = n; A addrs, t = addressa; A addrs, t = addressb;)
DECODE (control, code, , code,, - - -, code,,)
= decode, (control, code, , codes, - - -, code,,) A
decode, (control, code, , code,, - - -, code,,)\

decode, (control, code, ,code,, - - -, code,,)
F ey decode; (control, codey, codey, - - -, code,,) =
Vt. (control t = control; =
-code;t =tf Acodes t =tf A---ANcode, t =1f) i€ {0,1,---,n}
BRANCH (test, condition, addrs, ,addrs,, nextaddrs)
= Vt. nextaddrs t = f, ((test t), (condition t), (addrs, t), (addrs, t))
ADDRS (neztaddrs, addrs,s) |= Vt. addrs,q (t + 1) = nextaddrs ¢
HAND [= Vt. condition t
START [= Vi. addrs, t = address,
Note: HAND is a special device which express operation by our hand for button, knob and
switch. START is too a special device: electric stimulation which, as ‘first push’, start the
running of the microprogram of the computer.

5.3 Deriving Path, as Example
5.3.1 Deriving Data Part

IMPQ_C l= idle t12 A button t12 A VAL2 (knOb tl?) =10
IMP,_, & IMP,
= memory ty, = memory ti3 A pc tys = CUT 13 (switches t;5) Aacctyy = acctip Addle tyy =T

IMP2 l= pathz

IMP,_,, = memory t,, = memory t;,
IMP,_, |= pc tyy = CUTy4 45 (switches t;5)
IMP,_, |= acc tyy = acc ty,

IMPQ_,‘ i= idle t22 = T

IMP, . & IMP,
= memory ty, = memory ty5 A pc tys = CUT 6 15 (switches t1;) Aacctyy = acctipAidlety, =T

IMP., pise |= —Write t15 A —write (t13 + 1) A -+ - A —write (typ — 1)
MEM (memory, a, d, read, write, o)= Vt. ~write t = memory (t 4+ 1) = memory t
IMP. ,i:e & MEM|= memory to; = memory tq,

Here we introduce a special device ‘HAND,,,’ which keeps the value of switch same from time
ty9 10 toy — 1. Intuitively the device is just our hand.

HAND,, |= switches (ty; — 1) = switches t;,

IMP,,,, = rsw (to — 1)

IMP,,p. |= wpc (tay — 1)

GATE,, (switches, rsw,0p)}= Vt. rsw t => (0y t = MK_TRI;¢ (switches t))

BUS (-++,04,**,0p)= Vt. 0, t = DEST_TRI;5 (- -+ Ujs 05t Ugg «+)

REG,. (on, wpc, pe)E V. wpe t = (pe (t+ 1) = CUT 645 (op t))

HAND,, & IMP,,, & IMP,,, & GATE,, & BUS & REG,, [= pc tz; = CUT1g_ss(switches t;,)

IMP., 0 = —Wace ty5 A =wace (g + 1) A -+ - A mwacce (tyy — 1)
REG.cc (face> Wace, ace)l= Vt. mwacc t = acc (t+ 1) = acct
IMP, ... & REG, | acc ty; = acc ty4

IMP. i & MEM = memory ty; = memory t;,

HAND,,, & IMP,,, & IMP,,, & GATE,, & BUS & REG,,
E pc tye = CUT 6 y3(switches (a9 — 1))

IMP. ... & REG,.. [acc ty, = acc tq,

IMP, ; | idle tgy = T

IMP., ;e & MEM & HAND,,, & IMP,,, & IMP,,. & GATE,, & BUS & REG. & IMP_ 4. &
REG,. & IMP, ;
= memory ty; = memory ty A pc tygs = CUT g 13 t12 Aacc tyy = acctip Addel tgp =T

We have derived the implementation of the data part for path,:

HAND,,, & MEM (memory, a, d, read, write, 0) & GATE,,, (swtches,rsw,0,) &

BUS (--+,04,"*,0,) & REGy, (0p, Wpc, pc) & REG .. (44cc, Wacce, acc).
Remain abstract implementations, IM P, ., IM P, ite, IM Pogee, IM Py, IM P, and IM P, 4,
will be derived in control part.

5.3.2 Deriving Control Part

In below derivation the implementations, INSTRUCTION, DECODE and BRANCH’, will be
constructed step by step following the derivation process so they will be variables until whole
implementation of the computer is derived.

START |= addrs t,, = address,
INSTRUCTION,, (addrs, control, test, addrs,, addrs;)

= addrs t;, = addressy = control t,, = control,

DECODE, (control, idel, write, wacc,)

E control t;, = controly = idle t;5 = T A write t;3 = F Awacctip =F
START & INSTRUCTION,, & DECODE,

Eidle tyy = T Awrite tjo = F Awaccty;y = F

10

START |= addrs t,, = address,

INSTRUCTION,, (addrs, control, test, addrs,, addrsy,)

|= addrs t,, = addressy = VAL; (test t;,) = 1 A addrs, t;, = address,
HANDyuston | button ty,

BRANCH, (test,button,addrs,, nextarres)

k= VAL (test t;5) = 1 A button t;, = nextaddrs t;, = addrsy, t4,
ADDRS (nextaddrs, addrs) = addrs (t;; + 1) = nextaddrs ty,

START & HANDyyiton & INSTRUCTION,, & BRANCH, & ADDRS [= addrs (tp+ 1) = address;

START & HAND,s10n & INSTRUCTION,, & BRANCH, & ADDRS [addrs (t;,+1) = address1
INSTRCUCTION,; k= addrs (%15 + 1) = address; = control (t;, + 1) = control,

DECODE, (control, write, wacc) (control, write, wacc)

k= control (t1, + 1) = control; = write (t;5 + 1) = F Awacc (t12+1)=F

START & HAND, yton & INSTRUCTION,, & BRANCH, & ADDRS & INSTRCUCTION,; &
.DECO.DE1 lz Write (tlz + 1) = F A wacc (tIZ + 1) = F

START & HANDyyu0n & INSTRUCTION,, & BRANCH, & ADDRS |= addrs (t;, + 1) = address;
INSTRCUCTION,, (addrs, control, test, addrs,, addrsy,)

l= address (t15 + 1) = address; => VAL3 (test (t;5 + 1)) = 3 A addrs, (t15 + 1) = address,
HAND,,op = VAL, (knob t,5) = 0 A knob t,, = knob (t;5 + 1)

BRANCH, (test,knob,addrs,, nextaddrs)

k= nextaddrs (t;, + 1) = (VAL; (test (t;5+1)) =3

= WORD; (VAL, (knob (t;5 + 1)) + VALs (addrs, (%12 + 1)))

ADDRS [addrs (t;5 + 2) = nextaddrs (ty, + 1)

START & HAND,uiton & INSTRUCTION,, & BRANCH, & ADDRS & INSTRUCTION,, &
HANDy .1, & BRANCH, |= addrs (t15 + 2) = address,

START & HANDy o & INSTRUCTION,, & BRANCH, & ADDRS & INSTRUCTION,, &
HANDyqo, & BRANCH, |= addrs (t,, + 2) = address,
INSTRCUCTION,, |= address (t;, + 2) = address, = control (t;5 + 2) = control,
DECODE, (control, write, wacc, rsw, wpc)
= control (t,, + 2) = control, =
rsw (12 +2) = T A wpc (t12 +2) = T A write (t12 + 2) = FAwacc (t1,+2) = F

START & HANDyyston & INSTRUCTION,, & BRANCH,; & ADDRS & INSTRUCTION,; &
HANDy,o, & BRANCH; & INSTRCUCTION,, & DECODE,
= 15w (t15 + 2) = T A wpc (15 + 2) = T A write (t12 4+ 2) = FAwacc (t12+2)=F

START & HAND, ... & INSTRUCTION,, & BRANCH, & ADDRS & INSTRUCTION,; &
HANDypo» & BRANCH, |= addrs (ty5 + 2) = address,

INSTRCUCTION,,

k= address (t15 + 2) = address, = VAL; (test (t12 + 2)) = 0 A addrs, (t;5 + 2) = address,
BRANCH, (test, addrs,, nextaddrs)

= VAL; (test (ty5 + 2)) = 5 = nextaddrs (t;; + 2) = addrs, (t;2 + 2)
ADDRS [= address (t;2 + 3) = nextaddrs (t;, + 2)

START & HANDyyon & INSTRUCTION,, & BRANCH, & ADDRS & INSTRUCTION,; &
HAND,,., & BRANCH, & INSTRCUCTION,, & BRANCH, |= address (t;5 + 3) = address,

11

START & HAND,uon & INSTRUCTION,, & BRANCH, & ADDRS & INSTRUCTION,; &
HAND, .., & BRANCH, & INSTRCUCTION,, & BRANCH, = address (t;5 + 3) = addressy
INSTRCUCTION,, [= address (t;5 + 3) = address, = control (t;5 + 3) = control,
DECODE,|= control (t15 + 3) = control, = idle (t;2+3)=T

START & HAND,uiton & INSTRUCTION,, & BRANCH, & ADDRS & INSTRUCTION,; &
HAND,,., & BRANCH, & INSTRCUCTION,, & BRANCH, & INSTRCUCTION,, &
DECODE, = idle (t1,+3)=T

Using FVP. (P=T & P)A(P =F & —P) and defining
Edet INSTRUCTION, 4 3 = INSTRUCTION,, & INSTRUCTION,, & INSTRUCTIONa1 &
INSTRUCTION,; & INSTRUCTION,, & INSTRUCTION,,
Est BRANCH, ; = BRANCH, & BRANCH, & BRANCH,
Eqer DECODE, ; , = DECODE, & DECODE, & DECODE,
we get:
START & HANDyyon & HANDy,, & INSTRUCTION,, & DECODE,
k= idle t15 A button t;5 A VAL, (knob t1,) = 0
START & HANDyo, & HAND,.o, & INSTRUCTION,, & DECODE, &
ADDRS & INSTRUCTION, ;,» & BRANCH, ; » & DECODE, , ,
= —write t;5 A “wacc t15A
—write (t;5 + 1) A “wace (t33 + 1)A
tsW (ty15 + 2) A wpc (ty5 + 2) A mwrite (t;5 + 2) A ~wacce (t12 + 2)A
idle (t12 + 3)

5.3.3 Deriving Path,
Let Fger tag = t12 + 3 then we get:

START & HANDypyiton & HANDop, & INSTRUCTION,;, & DECODE,
= idle t;5 A button ty, A VAL, (knob t;5) = 0
START & HAND,iton & HANDop, & INSTRUCTION,, & DECODE, &
INSTRUCTION, ; » & BRANCH, ; » & DECODE, ; » & ADDRS &
HAND,,, & GATE,, & BUS & REG,. & REG,.. & MEM
= memory t,, = memoryt;, A pc toy = CUT ¢ 43 (swetches ty5) A acc tyy = acc typ Addle tyy =T

INSTRUCTION, ; ; & BRANCH, , , & DECODE, ; , & ADDRS & HAND,, & GATE,, &
BUS & REG,; & REG,. & MEM |= path,

Finally let us give detail description with details about ports for our result:
INSTRUCTION, , , (addrs, control, test, addrs,, addrs,,) &
DECODE, ; 5 (control, - - -, idle, write, wacc,rsw, wpc, -+) &
BRANCH, , (test,buton, knob, addrs,, addrs, nextaddrs) &
ADDRS (nextaddrs,addrs) &

HAND,, &
GATE,, (switches,rsw,0,) &
BUS(y g’ . ,Ob)&

REGpc (Oba wp¢, pc) &

REG.cc (%500, Wacc, acc) &

MEM (memory, a, d, read, write, 0)
= path,

12

5.4 General Analysis of Derivation

It is not possible in a short paper to give all details about the derivation of whole computer.
We will analyse, however, through describing the main steps in the derivation of path,, to give
general picture to understand whole derivation of the computer.

5.4.1 Deriving Data Part

For deriving data part main work is to compose basic device along data flow.

) Introducmg Register and Gate

Device is delivery of signal (data) flow. Signal is usually delivered through a series of dev1ces
For bus-based signal delivery the basic structure of implementation is ‘output—bus—input’,
eg the Theorem,; describes signal flow ‘gate—bus—register’ in single bus structure. Additional
registers and gates will be introduced in below cases: 1. device has more than one input and
bus is not enough to deliver all signals. 2. common signal is used many times. 3. time match is
needed. 4. clearer design is prefered. However all these are embodied (hided) in the derivation
process.

For the device MEM (memory, a,d,r,w,0,,) after selecting bus to deliver signal d, REG,,;
is introduced for signal a. Similarly REG,,, for signal 4,; of ALU. The o, of MEM is used more
than one time so REG,, is introduced. For time-match of ALU a delay, BUF, is introduced.

¢ Connecting Ports

For function composition of specification when output of a function is input of another function
a signal delivery will be needed between the output and the input. There are also signal delivery
between input of function and signal feeder, eg in FETCH,3 (memory ty,) (pc t;2) from ‘pc t;,’
to the second input of FETCH,3 through GATE,., BUS and REG,.,. And for the signal delivery
some selected connections among devices will lead to set common ports, like as showing of the
Theorem;.

¢ Main Steps for Deriving Data Part of Path,,

After derivation of path, for deriving path;, REG,,., GATE_,,., REG;, GATE;,, ALU, BUF,
GATEyys, REG,r and GATE,, are introduced. Meanwhile relevant ports are connected in the
derivation for signal deliveries.

Repeating to use the Theorem; below signal deliveries can be obtained:
(1). from pc, the output of REG,., t0 Opar, the output of REGp,,
(2). from oy, the output of BUF, to pc
(3). from oy, the output of REGy;, to o,

(4). from acc, the output of REG,.c, 10 04, output of REGq
(5). from oy, to acc

Usinfg similar inferences below signal deliveries can be obtained:

(6). from memory, 0p,;, the input of MEM, to o;,
(7). from pc to Opys
(8). from memory, 0y, t0 Opyr

13

5.4.2 Deriving Control Part

For deriving control part main work is to construct micro-instruction, devices decode and branch
step by step along control flow. In fact it is to introduce concrete specification instead of ab-
stract specification structure for devices: instruction, decode and branch.

¢ Introducing Device and Connectting Ports

Unfinished constructions in the derivation of data part, whose implementations are variables;
and whose specifications are about control signals of gate, register, mem and alu are taken as
the goals of the derivation of the control part. In the deriving control part INSTRUCTION,
DECODE, BRANCH, ADDRS and START are introduced and their ports are connneted. IN-
STRUCTION, DECODE, BRANCH are introduced step by step following the derivation process
so they keep as variables until the whole implementation is derived. The process of deriving
INSTRUCTION, DECODEis too the process of deriving micro-program. START is introduced
for various possibilities of times and pathes to start running micro-program.

¢ Deriving Microprogram

For deriving micro-program main cases are as following: (1). Based on a single-bus structure
at any time only one signal which is not FLOAT 4 can appear in the bus. This leads to form
a linear sequence of micro-instructions. (2). Following the order of composition of function the
order of the linear sequence of micro-instructions is formed. (3). But for arguments of function,
whose correspoding micro-program can be parallel in essence, so when the micro-program is
arranged as sequence form the order of the micro-program can arbitrarily be selected. (4). For
predicates which connected by ‘A’ their correspoding micro-progarms can be parallel so when
the micro-programs are arranged as sequence form whose order can arbitrarily selected. But
for getting shorter program some common part of microprograms are put the beginning or end
of programs. (5). The ‘let-in’ part of the specification will lead to form a common part of
micro-program, which is put the beginning of the microprogram. (6). The ‘if-then-else’ part of
the specification will lead to form branch-structure of the microprogram.

e Main Steps about Deriving Control Part of Path,,
In the derivation of path,, for ‘FETCH,3 (memory t,) (pc t;2)’, a sequence of micro-instructions
about ‘rpc, wmar — read, wir’ is derived. Similarly for
‘acc ty15 = SUB;; (acc t1y5) (FETCH, 3 (memory ty5) addr;,)’ it is ‘racc, warg — rir, wmar —
read, sub — rbuf, wacc’. For ‘pc ty1, = INCy3 (pc ty32)” it is ‘rpc,inc — rbuf, wpce’

BRANCH, (test,ir,addrs,, nextaddrs)

k= Vt.nextaddrs t = (test t = 4 => WORD; (VAL; (OPCODE (ir t)) + VAL; (addrs, t)))

is introduced for the branch-structure.

5.4.3 Deriving Path and Merging Pathes

When data and control parts of a path have been derived using Rule; the path can be derived.
When all pathes have been derived their constructions are merged to derive whole implementa-
tion of the computer. The device HAND,,, is a part of the implementation. But as tranditional
view it is omitted.

14

5.5 Deriving Whole Implementation

Merging the 15 constructions of the derived pathes whole implementation of the computer is
obtained:

Data Part:
GATE,, (swtiches,rsw,g.,) &
GATEpc (pC, Ipc, gpc) & ?
GATE, (acc, race,g.ec) & '
GATE;, (ir,rir,g;,) &
GATEp, (buf,rbuf, gpy) &
BUS (gsw7 8pcr Baces Biry Bbufr Om: Ob) &
REG,. (op, wpc,pc) &
REG, (op, wacc,acc) &
REGar (0p, wmar, mar) &
REG;; (oy, wir,ir) &
REG,,; (o, warg,arg) &
BUF (o,,buf) &
MEM (memory, mar, oy, read, write,o0,,) &
ALU (arg, oy, inc,add,sub,0,) &
Control Part:
ADDRS (nextaddrs, addrs) &
DECODE (control, rsw, rpc, racc, rir, tbuf, wpc, wacc, wmar, wir, warg, read, write, inc, add, sub, idle) &
BRANCH (test, button, knob, ir, acc, addrs,, addrsy, nextaddrs) &
INSTRUCTION (addrs, control, test, addrs,, addrsy,)?

5.6 Deriving Other Implementations

For same goal selecting different axioms and passing different derivings different implementations
can be derived. In essence verification is on designed implementation but synthesis is to design
using formal method. So synthesis has, in essence, ability to show various different design ways.
For Mike Gordon’s computer, another possible implementation, for example, is that 1. Do not
introduce REG,z, REGy,r but only REG;,. 2. Directly connect the output of REG,.. and the
i,; (the first input of ALU), the output of REG;, and the i, (the second input of ALU), the
output of REG,. and ‘d’ (the second input of MEM). 3. Use multi-bus-gate structure (gates
for every input): (1). BUS;: inputs: the swetches, the output of ALU and the output of REG;,,
output: the input of REG,.. and the input of REG.. (2). BUS,: input: the output of REG,.
and the output of REG;;, output: ‘a’ (the first input of MEM). The implementation has less
registers, more buses, shorter micro-program and faster speed. We will give more detail in other
paper about the problem.

6 Conclusions and Further Work

On the synthesis logic from given formal specification at bl implementation at rtl can be derived.
For the derivation main steps are to compose basic devices along data flow and to construct
micro-program and auxiliary devices, decode and branch, along control flow.

2The details about INSTRUCTION, DECODE and BRANCH will be given in appendix1l

15

The paper show us a way: based on strong general logics a succinct synthesis logic can be
built. The logic catches basic relation between implementation and specification. On the logic
we find a specification-derived design methodology, proof-based synthesis: implementation can
be derived step by step from formal specification using formal proof. We using the example
of synthesis of Mike Gordon’s computer to show that it does be realistic to design complex
hardware using formal method. However we think the more important is not to find a new logic
but is how to use logic for practical design problem. In essence it is problem: ‘how to proof’.
A further problem is to find more general specification scheme to catch broader proof goal. In’
the [5] we will discuss that on an abstract specification scheme how to derive a class of computers.

Slogan, ‘deriving as design’ and ‘derivation as implementation’ brings us both benefit and
trouble: more correctness gurantee and more tedious proof. There is a vast gap between formal
method and informal design and there is not a simple bridge for the gap. But various method-
ologies maybe play some roles for the gap. Problem is often reduced to find better methodology.
Along the direction [5] presents some basic relations about structures among specification, proof
and implementation.

When the first computer in the world was designed people thought that there was only a
step between user’s idea and machine implementation: machine code programming. But with
the lapse of time people understand that there is a vast gap between them. The gap is just a
world of computer science: computer scientists and their causes are contained in the world.

Acknowledgement
Li-Guo Wang sincerely thank to Mr Kayhan Imre, Dr Zhaohui Luo, Mr Jonathan Puddicombe
and Mr Sandy Robertson for beneficial discussions and warmhearted help in logic, hardware
and English.

References

[1] M.P.Fourman,R.L.Harris, Lambda-Logic And Mathematics Behind Design Automation,
26th ACD/IEEE Design Automation Conference, 1988.

[2] Gordon, M. Proving a Computer Correct using the LCF-LSM Hardware verification System,
Report No. 42, Computer laboratory, Cambridge University, 1983.

[3] Gordon, M. HOL: A Proof Generating System for Higher-Order Logic, University of Cam-
bridge, Computer Laboratory, Tech Reprot No. 103, 1987.

[4] J. Joyce, G. Birtwistle and M. Gordon, Proving a Computer Correct in Higher Order Logic,
Report No. 100, Computer laboratory, Cambridge University, 1986.

[5] Li-Guo Wang, Formal Derivation of A Class of Computers, Draft, March 1991.
Appendixl: Microprogram, Decode and Branch
General form are:

INSTRUCTION,; (addrs, control, test, addrs,, addrsy,)
= Vt. addrs t = address; = control t = control;

16

INSTRUCTION,; (addrs, control, test, addrs,, addrsy)

k= Vt. addrs t = address; = test t = n; A addrs, t = addressa; A addrs;, t = addressb;

DECODE; (control, code;, codey, - - -, codey,)

k= Vt. control t = control; = code; t = ft A code; t =ft A--- Acodey, t = ft

If we select the iy, bit of control; from 1 to 16 corresponds to rsw, rpc, racc, rir, rbuf, wpc, wacc,
wmar, wir, warg, read, write, inc, add, sub, idle respectively and assign concrete bits to address,

addressa and addressb then we have:

address
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001

Note: because of START the micro-instractions from address 11010 to 11111 are not necessary.

BRANCH (test, button, knob, ir, acc, addrs,, addrsy, nextaddrs)

control

0000000000000001
0000000000000000
1000010000000000
1000001000000000
0100000100000000
0000000000000000
0100000100000000
0010000000010000
0000000010100000
0000000000000000
0000000000000000
00010100000060000
0000000000000000
0010000001000000
0010000001000000
0001000100000000
0001000100000000
0100000000001000
0000110000000000
0001000100000000
00060000000100100
0000101000000000
0001000100000000
0000000000100010
0000001000100000
0010000000010000

Vt. nextaddrs t =

((VAL; (test t) = 1) A (button t) = addrsy, t |

n

001
011
000
000
000
001
000
000
000
100
000
000
010
000
000
000
000
000
000
000
000
000
000
000
000
000

addressa
00000
00010
00000
00000
00000
00110
01000
00000
01001
01010
00000
00101
10001
10011
10110
11000
11001
10010
00101
10100
10101
10001
10111
10101
10001
10001

((VALj3 (test t) = 2) A (VALy6 (acc t) = 0) = addrs;, t |
((VALjg (test t) = 3) = WORD; (VAL, (knob t) + VAL; (addrs, t) |
((VAL; (test t) = 4) = WORD; (VALs; (OPCODE (ir t)) + VAL (addrs, t)) | (addrs, t)))))

17

addressb
00001
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
01011
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

1

Copyright © 1991, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

