paadg 0] 108dsay yum s8ssa00.d Bunejey

LFCS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Relating Processes with Respect to Speed

by
Faron Moller
Chris Tofts
LFCS Report Series ECS-LFCS-91-143
LFCS March 1991

Department of Computer Science

University of Edinburgh

The King's Buildings .

Edinburgh EH9 3JZ Copyright © 1991, LFCS

Copyright © 1991, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Relating Processes With Respect To Speed

Faron Moller
Chris Tofts

Department of Computer Science

University of Edinburgh

Abstract

In this paper, we consider the problem of defining a preorder on concurrent processes which
will distinguish between functionally behaviourally equivalent processes which operate at different
speeds. As our basic framework, we use a subset of the calculus TCCS of [Mol90], a language for

describing concurrent processes involving timing constraints.

There is an anomaly in timed process calculi such as TCCS which nullifies the possibility of
defining such a preorder which is a precongruence. This anomaly arises due to the nature of the
constructs in the calculus which force events to be executed without delay. To rectify this conflict,
we define and motivate the above mentioned subcalculus, which we call £TCCS (loose TCCS),
and define our relation over this language. {TCCS is precisely TCCS where all events may delay
indefinitely before executing. We demonstrate why this is necessary in order for any sensible faster

than relation to be a precongruence.

Upon providing the semantic definition of our “faster than” relation, we give results on the

precongruicity of the relation and present a set of inequational laws.

1 Introduction

In [Mol90], the authors introduced a language for the expression and analysis of timing constraints
within concurrent processes. The language TCCS, the Temporal Calculus of Communicating Systems,
was founded on Milner’s Calculus of Communicating Systems CCS of [Mil80, Mil89]. The syntax and
operational semantics of the calculus were introduced, and an observational congruence was defined
based on Park’s notion of bisimulation from [Par81]. Equational laws were provided for reas'oning

about the defined semantic congruence, and several examples were provided to illustrate the utility of

the calculus in reasoning about concurrent processes involving timing constraints.

A missing feature in this work was a study on the relative speeds of functionally behaviourally
equivalent processes. Two processes were deemed equivalent roughly when they were identical in both
their functional and their temporal behaviour, as viewed by an external observer. The purpose of the
present paper is to fill in this missing aspect by defining a “faster than” precongruence which will hold
between two process terms if they are functionally behaviourally equivalent, but that the first term can

execute its function faster (ie, sooner) than the second term.

The reason that the study of a faster than precongruence was not addressed in TCCS was that, as
is explained in the next section of this paper, the expressiveness of TCCS is too powerful to admit such
a notion. In order to define a sensible notion of relative speeds, we need to restrict ourselves to a subset

of TCCS.

In the next section of this paper, we outline the theory of TCCS, and explain the problem with
discussing speed in the full calculus. We use this discussion to motivate and define our subcalculus with
which we shall be working. Next, we formally define our semantic precongruence, and relate it to the
equivalence defined in [Mol90] for TCCS. We then go on to present some sound inequational laws for

reasoning algebraically about processes and their relative speeds.

2 The Calculus TCCS

In this section, we give a brief introduction to the calculus TCCS by presenting the syntax and tran-
sitional semantics of the language, along with a behavioural equivalence defined using the semantic
definition of the calculus. The description is self contained; however, the reader is urged to refer to
[Mo190] for the full treatment of the language. We then present the difficulty which arises in trying to

define a sensible faster than relation, and motivate a subcalculus of TCCS to be used for this purpose.

2.1 Syntax

The language TCCS is a timed extension of CCS. To define the syntax of the language, we first presup-
pose a set A of atomic action symbols not containing 7, and we define Act = AU {7}. We assume that
A can be partitioned into two equinumerous sets with a “complementation” bijection * between them.
These complementary actions form the basis of the communication method in our calculus, analogous
to CCS. We also take 7 = {1,2,3,...} to represent divisions in time, and presuppose some set Var of

process variables.

The collection of TCCS expressions, ranged over by P, is then defined by the following BNF ex-
pression where we take a € Act, L C A, X € Var, t € 7, S ranging over relabelling functions, those
S: A — A such that S(a) = S(@) and S(7) = 7, and %, P representing (equal-length) vectors of process

variables (zy,%,,...,z,) and expressions (P, P,, ..., P,) respectively.

Pu=0|X|aprP| @.P]|sP
| per | P+P | PIP | P\L | P[S] | &P

The informal interpretation of these is as follows.

— 0 represents the nil process, which can neither proceed with any action, nor proceed through time.
— X represents the process bound to the variable X.

— a.P represents the process which can perform the action a and evolve into the process P upon so

doing.
— (¢).P represents the process which will evolve into the process P after exactly ¢ units of time.

— 0.P represents the process which behaves as the process P, but is willing to wait any amount of
time before actually proceeding. The understanding of this process is in fact that it is wanting
to synchronise or communicate with its environment, but is willing to wait until such time as the

environment is ready to participate in such a communication.

— P + @ represents a choice between the two processes P and). The process will behave as the
process P or the process (), with the choice being made at the time of the first action. Thus for
instance any initial passage of time must be allowed by both P and . We shall refer to this

operator as strong choice.

— P @ @ represents a slightly different notion of choice between the two processes P and (). The

process will behave as the process P or the process @), with the choice being made at the time of

2

the first action, or else at the occurrence of a passage of time when only one of the operands may
allow the time passage to occur. In this case, the second “stopped” process will be dropped from

the computation. We shall refer to this operator as weak choice.

— P | Q represents the parallel composition of the two processes P and (). Each of the processes
may do any actions independently, or they may synchronise on complementary actions, resulting

in a T action. Any passage of time must be allowed and recorded by each of P and Q.)

- P \L represents the process P with the actions named in L restricted away, that is, not allowed

to occur.
— P[S] represents the process P with its actions relabelled by the relabelling function S.

— u;%.P represents the solution z; taken from the solutions to the mutually recursive definitions of

the processes Z defined as particular solutions to the equations z = P.
Some points worth noting which arise from the above informal description are as follows.

e The process 0 acts as a deadlock process in that it cannot perform any actions, nor witness any
passage of time. Hence, by the descriptions above of the strong and weak choice operators + and
@, and the parallel composition operator |, the constant O acts as an annihilator with respect to
adding or composing with time-guarded processes, and as a unit with respect to the weak choice
operator @. Thus in particular, local temporal deadlock will imply global deadlock — if only
time derivations are possible from each component of a parallel composition involving 0, then the
whole composite process is deadlocked. Hence, of interest is the derived nontemporal deadlock
process 6.0, which will allow any time to pass, but can never perform any actions. This process
thus stands as a unit with respect to the strong choice operator + and the parallel composition

operator |. We shall henceforth abbreviate this process to 0.

e The description given above of the delay prefix 6 is such that it is only meaningful to follow it with
action terms. 4.P represents a process which is delaying the actions of P until the environment
in which the process is executing will allow the actions to proceed. Thus for instance, the process
6.(1).a.0 can never perform its action @, as it can never get past the delaying 6. Hence, this
process will be identified with 0, the nontemporal deadlock. Of importance then is the delayed

action prefix é.a.P, which we henceforth abbreviate to a.P.

We shall occasionally omit the dot symbol when applying the prefix operators, and also drop trailing
0’s, thus for instance rendering 6.a.0 + (¢).6.0 as éa + (t)b (or as a + (¢)b). Finally, we shall allow

ourselves to specify processes definitionally, by providing recursive definitions of processes. For example,

we shall write A % a.A rather than A & pz.0.x.

2.2 Semantics

The semantics of TCCS is transition based, structurally presented in the style of [Plo81], outlining what
actions and time delays a process can witness. In order to define our semantics however, we must
first define a syntactic predicate which will allow us to specify when a process must stop delaying its
computation within a particular amount of time. This is done using the following function on TCCS

terms.

Definition 2.1 The function stop : TCCS — {0,1,2,...,w} defines the mazimum delay which a pro-

cess may allow before forcing a computation (or deadlock) to occur. Formally, this function is defined

as follows:
stop(0) = 0 stop(P ® Q) = max(stop(P), stop(Q))
stop(X) = 0 stop(P + @) = min(stop(P), stop(Q))
stop(a.P) = 0 stop(P | @) = min(stop(P),stop(Q))
stop((s).P) = s+ stop(P) stop(P\L) = stop(P)
stop(6.P) = w stop(P[S]) = stop(P)

stop(ui.P) = stop(P.{FET L))
This definition is well defined as long as all recursive variables are guarded by action or time prefixes.

In Figure 1, we present the operational rules for our language. They are presented in a natural
deduction style, and are to be read as follows: if the transition(s) above the inference line can be
inferred, then we can infer the transition below the line. Qur transitional semantics over TCCS then is
given by the least relations —C TCCS x Act x TCCS and ~+C TCCS x 7 x TCCS (written P — Q
and P-4 Q respectively) satisfying the rules laid out in Figure 1. Notice that these rules respect the

informal description of the constructs given in the previous section.

We can also give operational rules directly for our two derived operators, temporal nil 0 and delayed
action prefix a.P. These are presented in Figure 2. These rules are redundant along with those of

Figure 1; however, they will be needed for the subcalculus with which we work later.

We can now define an equivalence relation ~ on closed terms of TCCS based on Park’s notion of a

bisimulation ([Par8l]) as follows.

R pP -2 P
a.P =2+ P PoQ P
PP Q= Q'
§.P 25 P P@Q_g__)Q/
PP P2 p
P+Q—=7F PIQ S PQ
Q= Q¢
R PLP QLHQ
§.P - &P P+Q5P 1@
P4 P
t t
G+ PS> A).P PoQ-HP (stop(Q) < 1)
— _Q_Q__ ton(P) < t
(t).P % P PoQ-5 ~(stop(P) < t)
PSP P4 P 04 Q)

PP QLQ'

PIQ =P Q
P————)P —
VA VASEEES

PP

P[S]22 P[s]

P,-{#i'ﬁi}—f—)P'

/L,%P —?—+ Pl

PSP, Q50
P1Q~ P'|Qf

PL P
P\L~% P\L

P~ P
P[S] - P'[S]

P{” Pr)

1

~S

|3 /

piZ.P ~ P

Pl

&
"Uz

Figure 1: Operational Rules for TCCS

a.P =5 P

=]

[}

a.P~4a.P

Figure 2: Operational Rules For Derived Operators

Definition 2.2 A binary relation R over terms in TCCS is a 7-bisimulation if and only if for all
(P,Q) € R and for all a € Act and for allt €T,

(i) if P -2 P' then Q - Q' for some Q' with (P',Q") € R;
(i) if Q = Q' then P >+ P' for some P’ with (P',Q") € R;
(i5i) if P~ P then Q% Q' for some Q' with (P',Q") € R;
(iv) if @ % Q' then P~ P' for some P' with (P',Q') € R.

~ ¥ U{R : R is a T-bisimulation} is then the largest T-bisimulation.

In [Mol90], it is shown that this relation defines a congruence over TCCS terms, and we have also
presented there an equational theory which is sound and complete with respect to reasoning about

finite-state processes.

2.3 The Problem With Speed

Within the calculus of TCCS, we can describe different timeout processes which will allow a certain
computation to take place within a given amount of time, but will preempt the computation and proceed
with an alternate computation if that amount of time is allowed to pass without the desired computation
being performed. As an example, the TCCS term P + (2).5.0 will allow the process P to proceed within
2 units of time, but will subsequently perform the action b and evolve into a deadlocked nil process
if the process P does not proceed within the required time. Hence, P + (2).5.0 can be regarded as a
timeout context. If we were to replace P with each of the terms (1).a.0 and (3).a.0 which represent
the processes which will perform an a action after 1 and 3 units of time respectively, then in the first
case, we would result in the process (behaviour) (1).a.0, whereas in the second case we would result
in (2).5.0 due to the different timeout scenarios. Clearly we would want to consider the process term
(1).a.0 to be faster than the procéss term (3).a.0. However, if we further desired that our faster than
preorder be a precongruence (that is, that it be substitutive), then we would be led to deduce that the
process term (1).a.0 is faster than the process term (2).5.0. This is undesirable though, as these two

terms are not even functionally behaviourally equivalent.

The problem arises due to the preemptive nature of passing time in the semantics of the operators —
it is possible to lose the capability of following a particular computation path through idling. In [Tof90],
this problem is challenged by allowing all processes to idle indefinitely without changing state. However,

this approach involves an undesirable weakening of the semantic development of the calculus TCCS.

6

Instead we opt here for a more subtle approach to weakening the expressive power of the calculus. What
we actually do is restrict our language to a subset of TCCS where the above undesirable timeout notions
are no longer definable. We need to insist that, though we can have timeout events made available in
the environment after some amount of time, we can never lose the ability to do some other event due
to the passing of time. This is not an unreasonable restriction, particularly in the design of hardware
circuits, as this is precisely how an implementation behaves — if a port is prepared to communicate,

then this communication capability can only be removed through an actual change in state, and not

through idling.

3 The Language (TCCS

The syntax of the language {TCCS (loose TCCS) is the subset of TCCS given by the following BNF

expression.
Pu:=0|x|aP|@.P|P+P|PIP|PL|PS | usP

Thus we do not have the usual deadlocked nil process 0, nor the usual action prefix operator a.P which
insists on the action a to be performed without allowing the possibility of any time passing first. Instead
we include only the (formerly derived) operators 0 and a.P. Also, due to the idling nature of actions
in £TCCS, we no longer need to include the delay operator . Indeed we would not like to include this
operator in our subcalculus, as a faster than relation could not be substitutive with respect fo it; where
we would clearly have g faster than (1).a, we would not be able to deduce that é.a was faster than
8.(1).a. Finally, in the context of TCCS, the + and @ operators behave exactly the same, so we need

to include only one of these in the subcalculus.

It is clear now that no temporal deadlocking can occur, so the problem of preempting actions through

idling does not arise. This is summarized by the following simple proposition

Proposition 3.1 For all (closed) {TCCS terms P and all t € T, there is a (unique) P’ such that
PLP.

The semantics is defined as before, using the subset of transition rules given in Figure 1 corresponding
to the collection of operators used in the subcalculus, along with the transition rules given in Figure 2
for the temporal nil 0 and delayed action prefix ¢. Note that here now the rules of Figure 2 are no

longer derivable.

Using the transitional semantics defined here, we can define our faster than preorder < using the
following bisimulation-like definition. In this definition, and throughout the sequel, we shall allow
ourselves to write the term (0).P, and to allow the transition P % P; for (0)P we shall read P, and for

P2 Q@ we shall read “Q) is syntactically identical to P”.

Definition 3.2 A binary relation R over terms of £TCCS is a <-bisimulation if and only if for all
(P,Q) € R and for all a € Act and for allt € T, o

| (i) if P -2 P then Q5 Q' = Q" and P' 5 P" for some s, @', Q", P" with (P”, Q") €: R;
(it) if Q = Q' then P > P’ for some P' with (P',Q') € R;

(iii) if P~ P’ then Q ~ Q' for some Q' with (P',Q") € R;

(iv) if @4 Q' then P ~% P’ for some P’ with (P',Q") € R.

<Y U{R : R is a <-bisimulation} is then the largest <-bisimulation.

Thus the only difference between this definition and the definition of the equivalence given above appears
in the first clause: if the first (faster) process term can perform a particular action, then the second
(slower) process term can either perform that action right away and evolve into a new process state
which is slower than that into which the first process evolved, or else it can idle for some amount of
time s and reach a state in which it can perform the action and thus evolve into a state which, while
not necessarily itself slower than that into which the first process evolved, but slower than that state

once the idling time is accounted for. As an example, we would clearly want that
al()d= (L)a|(1)b

Now in the faster term, the action transition
al(1h—=—0](1)b

is matched in the slower term by the sequence of transitions

(Da| (1)t~ alb—~0]b

=
[e=]
o~

and while 0 | (1)b /&0 | b, we only require in the definition that 0|5<0|5, as 0| (1)b
The relation < is a preorder: it is reflexive, as clearly

8

I1d ¥ {(P,P): P € £TCCS}

is a <-bisimulation, and it is transitive, as given <-bisimulations R, and R, we can easily confirm that

def
R3 = R, R, is a <-bisimulation.

We can furthermore show that this relation is a precongruence over £TCCS terms which do not have
any parallel operators within the scope of a recursion. We only demonstrate here the difficult part, of

the proof of substitutivity, that with respect to the parallel operator.

Proposition 3.3 Let #P denote the number of parallel operators in the term P.

(1) Ry = {(Pl | Q1, P | Q) : PSPy, Q15Q,, #(P|Q;) < k} is a S-bisimulation.
(ii) F#P <k, P - P' and P 5 Py, then P' > P" and P, - P! with P"<P..

Proof: By simultaneous induction on k.

(i) The only difficult clause to check in the definition of <-bisimulation is the first, in the case
where the action in question is a synchronization event 7; that is, when P, | @, — Pl' | P2' by
virtue of the fact that P, —%» P/ and Q; = Q). Hence P, % P, %5 Py, Q,~> @), —— @,
Pl' ~& P1" and Q'1 A Q'l' with P1”5P2” and Q'I'S,Q'z' If s =t then the result follows easily,

/ t—s

so we shall assume that s <t. By inductive hypothesis (%), we have that P, ~ 152 - }5;

and Pz" s 2'" with P;"sﬁz’. Furthermore, P1” = 1"' with PI'"SP;", S0 P{"sf’;. Hence
P 1@ 5 By | Q) T P Q) and P{| Q) ~ P | Q] with (P"| Q] P} | Q}) € Ry.

(ii) Proceeding by structural induction on P, we prove again only the difficult case of parallel
composition. Hence assume that P|Q -+ P'|Q~5 P"|Q and P|Q ~ Py| Q' By induc-
tive hypothesis (i), Py — Pé with P"SP(;. Thus Py | Q" 2= P(; | @', and then by inductice

hypothesis (i), P" | Q'SP(; Q. O

The restriction on the parallel operators is there to facilitate our proof; the number of parallel operators
in a term could grow through semantic transitions if there were such operators within the scope of a
recursion. We conjecture that this restriction can be removed, but have failed to provide a proof of this

more general result.

It is clear from the similarities in the definitions of ~ and < that for P and @) being two terms of
LTCCS, if P ~ @ then P<(Q (and Q@=<P). However the reverse implication does not hold; that is, P<@)
and Q<P does not necessarily imply that P ~). A suitable simple counter-example is provided by

the following two process terms:

A E gb+a(1)b+a(2)b B Y ab+a(2)b

These two processes are equally fast by the above definition, yet are not equivalent, as A —= (1)b, but

for no B' ~ (1)b does B —*+ B'. Hence another equivalence of interest is <N =, which we represent by

[ad

We have another general anomaly with this — or indeed any — faster than preorder for nondeter-
ministic processes: we cannot guarantee that if P<Q, then P will necessarily execute faster than @, but
only that it has the capability of so doing. We would for example insist by reflexivity that for the above
process A, A<A; but in executing the two instances of A, the first (supposedly faster) version may
start with an a transition to the state (2)b, whereas the second version may start with an a transition
to the state b. However, this problem only arises in the presence of nondeterminism, and also vanishes
if we assume some form of built-in priority allowing faster computation paths to be followed whenever

possible.

3.1 Example

My sister Velma in Canada subscribes to Maclean’s, “Canada’s weekly newsmagazine”. When she is fin-
ished reading these, she duly sends them to me to keep me informed of the latest developments on the
Canadian scene. In fact, she always sends me 6 issues at a time, so that a new package gets sent approx-
imately every 42 days (it takes that long to amass 6 copies, but my sister sometimes procrastinates and
doesn’t put them into an envelope, or doesn’t go to the post office with them, until some indeterminate

time later).

When she started this practice six years ago, she always sent the magazines by air mail. Canada
Post would receive the package from her, and deliver it about four days later; it always takes at least
four days to deliver an air mail package from Canada to Scotland, but it could take substantially much
longer still. Thus the behaviour exhibited by Canada Post in delivering the i package is represented
by the following equation:

AM; & in;.(4).del;.0.

That is, the post office would receive the i package at some point in time (in;), then not communicate
with the external environment (myself and my sister) for four days, after which (and this means at
some indeterminate time afterwards) it would deliver the package to me (del;). Thus ended the process

of delivering the i*® package.

10

The behaviour of the post office with respect to my magazine packages then was dictated by the

following equation:
RS, & AM; | (42).RS;,..

That is, my Rich Sister RS would be ready to send the i*® package by air mail, while at the same time,

another 42-day period was being counted down before the next package was ready to send. 1
There are interesting properties associated with this process, which are inherent in the loose semantic
notion of timing. Firstly, of course I could not expect to receive the i package of magazines before
42; days had passed; I could not read the news before it was written! But apart from that, I could
not know with any certainty when I would receive my package; I was dependent on the reliability of
my sister and of Canada Post. In fact I could receive the packages in the wrong order (in fact in an

arbitrary order), which on occasion did happen.

Alas, my sister quickly felt the squeeze as the expense of sending regular air mail packages became
too much, and she started sending the packages occasionally by surface mail. Thus her behaviour

started being dictated by the following equation:
MS; & (AM; +SM;) | (42).MS,,,,
where SM; is the behaviour of Canada Post when handling a package being sent by surface mail:
SM; % in;.(4).del;.0 + in;.(60).deL;.0.

Packages sent by surface mail take at least 60 days to be delivered, but on regular occasions a package

which is posted by surface mail is thrown into an airmail bag and is delivered at airmail speed.

Hence my Middle-class Sister MS saved money by occasionally sending me my magazines by surface
mail. The change in the system was clearly noticeable, as I found myself reading even older news.
However, it was still news to me, as I have no other reliable source for Canadian current events. As
I never complained to her, and since she still felt the budget crunch whenever she sent a pakage of
magazines to me by air mail, my sister eventually quit sending packages by air mail altogether. Her

behaviour then became dictated by the following equation:

PS; ¥ SM;|PS;i.

11

Henceforth, my Poor Sister PS sent me all my magazines by surface mail. However, I noticed the change
much less so than with the original change, as I came to expect my magazines to arrive late, and was
only surprised when they arrived early. This situation still remains, as my magazines regularly arrive

by air mail post, though they were intended by my sister to be sent by surface mail.

The differences in the delivery times, and the fact that I only really noticed the effect of the first
change, can be seen from the faster-than relationships exibited in the above processes. Firstly we have

that
AM; s AM; + SM; < SM;,
and in fact more than that we have that
RS; = MS; =< PS,.

Thus I certainly couldn’t expect to notice a speedup in the delivery of my magazines. However, note

also that
SM; < AM,+SM; A AM,
and in fact
PS;, = MS; £ RS,

That is, the magazines sent by my rich sister were delivered as fast as those sent by my middle-class
sister, but not vice-versa; whereas those sent by my middle-class sister were delivered as fast as those
sent by my poor sister, and vice versa. Hence I never noticed this second change the way that I did
the first. If however, Canada Post reliably sent the surface mail packages by surface mail, then I would
never receive any early packages, and the resulting system would not be as fast as AM; + SM;, and the

difference would be noticeable,

4 Inequational Laws

In this section, we develop a set of inequational laws for {TCCS which are sound with respect to
our semantic precongruence <. We shall use < to represent derivability in the theory (along with =

representing < N >), and = to represent syntactic identity.

12

(+1) (z+y)+z=z+(y+2) (+2) z+y =y+z

(+3) z+z ==z (+4) z+0 =2
() (s)t)z = (s+t)x (Tr) ()z+ @)y = ()(=z+y)
(T3) z+(t)z == (T,) (@#o =20

(Ts) z < (t)=

Figure 3: Equational Theory for Sequential £TCCS

4.1 Finite Sequential Terms

We start our analysis by restricting our attention to the finite sequential subcalculus of £TCCS given

by the following BNF equation.
Pu=0]|aP| @)P| P+P

We shall refer to this subcalculus by £TCCS,.

Our inequational theory for £TCCS, is presented in Figure 3. We can straightforwardly demonstrate
that these laws are valid with respect to our semantic precongruence < over the full calculus £TCCS.

Hence we get the following result.
Proposition 4.1 (Soundness) p < ¢ = p=q.

Next we want to show that these laws are complete for reasoning over {TCCS,. We accomplish this

using the following normal form.
Definition 4.2 A term is a NF term (or is in NF) if it is of the form

> (t:)-a.p;

1<i<m

where each p; is itself in NF'.

Our first task in proving completeness is to show that every term in £TCCS can be converted into

NF using these laws.

Proposition 4.3 Every term p € {TCCSy can be equated to a term in NF using the laws of Figure 3.

13

Proof: A straightforward structural induction on p. 0

So for our completeness result, we only need to show that for NF terms P and @, if P<() then

P <qQ.
Proposition 4.4 If P<Q where P = > (s;).a;.p; and Q =) _(t;).b;.q; are in NF, then P < Q.
i 7 :

Proof: Let P and @ be given as above. It suffices to prove the following facts.

(}) Vidj 1 a; = b; A p;<q;;

From the first fact, using structural induction, we can deduce that
(8:)-ai-p; + (¢;)-05-9; < (%;)-b;-9;,

from which we can deduce that P+ Q < @; and from the second fact, again using structural

induction, we can deduce that

(8:)-a:-p; < (85)-55.95,
from which we can deduce that P < P + Q. Putting these together, we get P < Q.
Both these facts follow immediately from the definition of <, noting that

Z(Si‘t)'g.i-pi =< Z(tj*t)-bj-qj‘
i i

where z:y = max(0,z — y). 0

4.2 Adding Concurrency

LTCCS, like CCS, is an interleaving theory of concurrency. That is, we can represent the parallel
functional behaviour of processes in terms of causality and nondeterministic choice. The typical example

is given by the equation

I
o~
I
IS
+
1§

14

This equation is an instance of what is known as the Ezpansion Theorem. A major advantage of
this treatment of concurrency is that the algebraic analysis of concurrent terms can be reduced to the

analysis of sequential terms.

Unfortunately, when we add timing prefixes, our analysis becomes complicated, as the expressive
power of the calculus becomes inadequate to express parallel processes as equivalent sequential terms.
In the calculus TCCS, this problem was successfully overcome by introducing the weak choice operator
®. However, we cannot find such a sensible extension to the calculus £TCCS for which the notion
of faster than remains substitutive, to allow ourselves to express every (finite) term in an equivalent
sequential form. For example, the term a | (1)b has no equivalent sequential form. We would want to be
able to express this term by its expansion, namely as a(1)b+ (1)(a | b) (where we can then recursively
expand the subterm g |). However this term is clearly not equivalent to the original, as the expanded
term can idle one unit of time, then perform an a action and evolve into a state where it must idle
for one more unit of time before being capable of performing the b action, whereas the parallel term
after idling one unit of time and then performing the a action, will always be capable of immediately

performing the b action.

Though the usual expansion of a parallel term is not necessarily equivalent to the term itself, we
do have the result that it is related in one direction to the parallel term in the faster than relation;
the parallel term is guaranteed to be faster than the sequentialised expanded term. These expansion

principles are presented in Figure 4.

Hence, we thus cannot use the usual technique in comparing two terms of expressing the terms as
equivalent sequential terms and then comparing these sequential terms using our complete set of laws
for such terms. However, the expansion of a (parallel) term is so very close to being equivalent to the
term itself, that we conjecture that it is not possible to find a term which falls in the faster than relation

strictly between a term and its expanded version.

In [Mol90], we introduced valid Expansion Theorem laws for the full calculus TCCS which are
equally valid here if we do not use substitutivity as a proof rule. These laws could be used as well in a

proof as long as due care were taken.

5 Related Work

There have been many descriptions of process algebras as the foundation of concurrency theory, but

only recently have any of these models been extended to consider the problem of describing the real-time

15

Let X = Y, amz; and Y = > by;

1<igm 1<5<n

(B) XY = > alw|Y)+ 3 5(X|y) + 3 z(=:]y))

1<i<m 1<j<n s

-t =]

(B) XI(Y+(Wy) < X a(z|+@0u)+ X 5(X|y;)

1<i<m 1<j5<n

+ 2 z(@ily) + X (Y +)

e;=b '

(Bs) (X+(1)2)|Y < <2<j a(z; 1Y) + 1<E~< (X + (V) | y;))
+ 3 oz ly;) + (X +2)|Y)

2;=b;

(By) (X+W2) |V +Dy) £ > sl | (Y + (1))

1<i<m

+ > bi((X+(1)=)[yy))

1<5<n

+ 2 z(wily) + (D= y)

a;=b 5

+(M((X +2) (Y +9))

Figure 4: Expansion Laws

aspects of concurrent systems. Especially recently, there has been a spate of developments involving

each of the main process algebra approaches aimed at incorporating real-time aspects into the theory.

As a sample we refer to [Ree86, Bae89, Gro90, Hen90, Mol90, Nic90, Wan90].

None of these previous attempts have considered the problem of relating process terms with respect
to speed. Most of the approaches cited above allow for actions to be made to occur at specified times
(as with the calculus TCCS described in this report and in [Mol90]), and thus would not allow for
a substitutive notion of a relative speed relation. Others, including [Hen90, Wan90], are similar to
£TCCS in that they only specify the delay before a particular action may occur, allowing the action to
occur any time after that delay; these approaches would then have difficulty with the axiomatization
of concurrency as described above, with the theory of process equality as well as with a faster than
relation. Also, these two particular approaches include a mazimal progression principle which enforces
communications to occur at the time which they may occur without delay, thus returning to the problems

of defining such a desired substitutive relation.

There has been one other approach to describing relative efficiency in process algebras, described in

16

[Aru90]. This relation equates two process terms if they are bisimilar with the proviso that the faster
term need never perform more internal 7 actions than the slower term. This approach does not deal
with real-time issues in process algebra, but does go a long way towards analysing the types of questions
of interest in the notion. A similar relation, coined a contraction by Milner, is presently implemented

in the Edinburgh Concurrency Workbench, and is described in [CWB90].

Bibliography
[Aru90] Arun-Kumar, S., M. Hennessy, An Efficiency Preorder for Processes, University of Sussex
Research Report No. 5/90, 1990.

[Bae89] Baeten, J.C.M., J.A. Bergstra, Real Time Process Algebra, Preliminary Draft, 10/20/89, 1989.

[CWB90] The Edinburgh Concurrency Workbench — Operating Instructions, University of Edinburgh
Technical Report, 1990.

[Gro90] Groote, J F, Specification and Verification of Real Time Systems in ACP, Research Report
No CS-R9015, Centre for Mathematics and Computer Science, Amsterdam, 1990.

[Hen90] Hennessy, M., T. Regan, A Temporal Process Algebra Technical Report No. 2/90, University
of Sussex Computer Science Department, April, 1990.

[Mil80] Milner, R., A Calculus of Communicating Systems, Lecture Notes in Computer Science

92, Springer-Verlag, 1980.

[Mil83] Milner, R., Calculi for Synchrony and Asynchrony, Theoretical Computer Science, Vol 25,
1983.

[Mil89] Milner, R., Communication and Concurrency, Prentice-Hall International, 1989.

[Mol90] Moller, F., C. Tofts, A | Temporal Calculus of Communicating Systems, Proceedings of CON-
CUR’90 (Theories of Concurrency: Unification and Extension), Amsterdam, August 1990.

[Nic90] Nicollin, X., J.L. Richier, J. Sifakis, J.Voiron, ATP: An Algebra for Timed Processes, Proceed-
ings of IFIP Working Conference on Programming Concepts and Methods, North Holland,
1990.

[Par81] Park, D.M.R., Concurrency and Automata on Infinite Sequences, Lecture Notes in Computer
Science 104, Springer—Verlag, 1981.

17

[Plo81]
[Ree86]
[Tof90]

[Wan90]

of Edinburgh, 1990.

Plotkin, G.D., A Structured Approach to Operational Semantics, DAIMI FN-19, Computer

Science Department, Aarhus University, 1981.

Reed, G.M., A. Roscoe, A Timed Model for Communicating Sequential Processes, Proceedings
of ICALP’86, Lecture Notes in Computer Science No 226, Springer Verlag, 1986.

Tofts, C., Proof Systems and Pragmatics for Parallel Programming, PhD Thesis, University

1

Wang Yi, Real-time Behaviour of Asynchronous Agents, Proceedings of CONCUR’90 (Theo-

ries of Concurrency: Unification and Extension), Amsterdam, August 1990.

18

