LFCS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Task Allocation in Monomorphic Ant Species

se108dg 1uy 21ydIOWOUON Ul UOIEDO|Y %SE |

by
Chris Tofts
LFCS Report Series ECS-LFCS-91-144
LFCS March 1991

Department of Computer Science
University of Edinburgh
The King's Buildings

Edinburgh EH9 3JZ Copyright © 1991, LFCS

Copyright © 1991, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Task Allocation in Monomorphic Ant Species.

Chris Tofts
LFCS, Dept of Computer Science
University of Edinbirgh
Email:cmnt@uk.ac.ed.lfcs.

March 22, 1991

Abstract
The method whereby ant species with no physical differentiation allocate them-
selves to tasks:within a colony is studied. We consider the various tasks as forming
a production line, and demonstrate that various algorithms yield a correct arrange-
ment of the individuals. The various models are expressed in the calculus WSCCS
[Tof90a], to which we give a brief introduction.

1 Introduction.

Ant colony survival depends upon the succesful performance of a number of tasks. These
include the feeding of larval stages, the maintenance of the nest structures, the collection
of food and guarding the nest. Whilst it could be the case that each ant could perform a
part of each of these tasks this is not observed [OW78, WH88, HW90]. Individuals have
long-term preferences for particular tasks. So there is some division of labour within
the nest. In some species this is achieved by physical suitability to a particular task
(morphological polyethism) [HW90] within others the ants are all physically identical and
yet must still manage to distribute themselves amongst the various tasks. The later
form of organisation is usally referred to as temporal polyethism [Cal88,HW90]. Later
we will see that the temporal differences observed do not need any temporal behaviour
dependencies.

More basically we can ask what is a good algorithm for task allocation. We wish to
achieve a situation where:

1. if possible all the required work is done;

2. no individual is overloaded;

thus a task allocation algorithm will be correct if it arranges the objects carrying out
the work in proportion to the amount of work within a task. We will demonstrate that
in many circumstances our method can achieve this result. We will use the calculus
WSCCS to demonstrate these results, thus a brief introduction to that reasoning system
is included. A more extensive introduction to WSCCS can be found in [Tof90a] and an
extended example and its biological consequences can be found in [Tof90b, THF91].

1

2 The Language WSCCS.

Our language WSCCS is an extension of Milner’s SCCS [Mil83] a language for describing

synchronous concurrent systems. To define our language we presuppose an abelian group

Act of atomic action symbols with identity 1 and the inverse of a being @. As in SCCS,

the complements a and @ form the basis of communication. We also take a set of weights-
W, denoted by w;, which are the positive natural numbers P augmented with a set of

infinite objects w”* (with k > 0), with the following multiplication and addition rules .
(assuming k > k'):

! !
k___wk+n wk+wk=wk=wk+wk
’ kkl ! k
n*wk=wk=wk*n wk*wk=w+ =wk*w,

n+wk=w

and a set of process variables Var.

The collection of WSCCS expressions ranged over by E is defined by the following
BNF expression, where a € Act, X € Var, w; € W, S ranging over renaming functions,
those S : Act — Act such that S(1) = 1 and S(a) = S(@), action sets A C Act, with
1 € A, and arbitrary finite indexing sets I:

E:i=X|a.E|S{wkEliel}|ExE|E[A]|O(E)| E[S] | miE.

We let Pr denote the set of closed expressions, and add 0 to our syntax, which is defined

by 0 def Y{w;E;}: € 0}.

The informal interpretation of our operators is as follows:
e 0 a process which cannot proceed;
e X the process bound to the variable X;

e a.F a process which can perform the action a whereby becoming the process
described by E;

e Y {w,E;|i € I} the weighted choice between the processes E;, the weight of the
outcome E; being determined by w;. We think in terms of repeated experiments on
this process and we expect to see over a large number of experiments the process
E; being chosen with a relative frequency of Zz_w—»

e E x F the synchronous parallel composition of the two processes E and F. At
each step each process must perform an action, the composition performing the
composition (in Act) of the individual actions;

e E[A represents a process where we only permit actions in the set A. This operator
is used to enforce communication and bound the scope of actions;

e O(E) represents taking the prioritised parts of the process E only.

e FE[S] represents the process F relabelled by the function S;

o 1;#E represents the solution z; taken from solutions to the mutually recursive
equations ¥ = F.

Often we shall omit the dot when applying prefix operators; also we drop trailing
0, and will use a binary plus instead of the two (or more) element indexed sum, thus
writing 3°{1;a.0, 2,0.0]: € {1,2}} as l.a + 2.b. Finally we allow ourselves to specify .
processes definitionally, by providing recursive definitions of processes. For example, we

write A% a.A rather than pT.az.

2.1 The Semantics of WSCCS.

In this section we define the operational semantics of WSCCS. The semantics is transition
based, structurally presented in the style of [Plo81], defining the actions that a process
can perform and the weight with which a state can be reached. In Figure 1 we present
the operational rules of WSCCS. They are presented in a natural deduction style. The
transitional semantics of WSCCS is given by the least relation —C WSCCS x Act x
WSCCS and the least multi-relation —C bag(WSCCS x W x WSCCS) !, which are
written £ — F and E +% F respectively, satisfying the rules laid out in Figure 1.
These rules respect the informal description of the operators given earlier. The reason
that processes are multi-related by weight is that we may specify more than one way to
choose the same process with the same weight and we have to retain all the copies. For
example, the process

1P+1P +1Q

can evolve to the process P with cummulative weight 2, so that we have to retain both
evolutions.

The predicate does () is well defined since we have only permitted finitely branching
choice expressions. The action of the permission operator is to prune from the choice tree
those processes that can no longer perform any action.

2.1.1 Direct Bisimulation.

Our bisimulations will be based on the accumulation technique of Larsen and Skou [LS89).
We start by defining accumulations of evolutions for both types of transition.

Definition 2.1 Let S be a set of processes then:
o P+ S with w = Y {w;|P v Q for some Q € S}; 2
o P2 S iff there exists Q € S and P - Q.

'Where —C bag(WSCCS x W x WSCCS) is the bag whose elements are those of the set WSCCS x
W x WSCCS, with the usual notion of bag.

2 Remembering this is a multi-relation so some of the Q and w; may be the same process and value.
We take all occurences of processes in S and add together all the weight arrows leading to them.

a.E-%>E

E-%FE FY.p
ExF2, gy !

ESE P F
ExFr2Ex F!

E-SE acA
does 4(F)

E-2FE acA
E[ALE'TA

E2.E

B[R s)

E{p;3.|E/3]}-5F

p;5. B2 F!

E-%F
O(E)-%0(E)

S {w;E;lic I} E;

ESE P F
ExF B < F!

ESE P
ExF-LE < F

ESFE doesy(E)
does 4(F)

EXLE does4(E)
E[A-LETA

ELE
E[S]F-5E![S]

wk ! / wk,
O(E)-0(E")

k
E-SE 3k B4
O(E)-L0(E')

Figure 1: Operational Rules for WSCCS.

We define a form of bisimulation that identifies two processes if the total weight of
evolving into any equivalent states is the same. This is not quite the indentification we
wish to make, but we will make such an identification later.

Definition 2.2 An equivalence relation R C Prx Pr® is a direct bisimulation if (P,Q) €
R implies for all S € Pr/R that: ‘

o forallwe W, P+ S iff Q— S;
o forallae Act, P =+ S iff Q — S.

Two processes are direct bisimulation equivalent, written P L Q, if there exists a direct
bisimulation R between them.

Definition 2.3
L= U{R | R is a direct bisimulation }.
That < is an equivalence follows immediately from it being a union of equivalences.

Lemma 2.4 Let P and Q) be processes such that P £ Q. Then for all action sets A,
does 4(P) iff does4(Q).

Proposition 2.5 Direct equivalence is substitutive for finite processes. Thus, given P &
Q and P; & Q; for all v € I then:

1. a.P g a.Q; 2. Yierw; P L EieIwiQi;
3. PxELQxE; 4 P[ALQ[A;
5. P[S] £ Q[S].

We proceed by the usual technique of pointwise extension to define our equivalence
for finite state processes.

Definition 2.6 Let E and F' be expressions containing variables at most X. Then we
will say E LF if for all process sets P, E{P/X} & F{P/X}.

Proposition 2.7 If E L F then wX.E & p X F.

3We denote the equivalence class of a process P with respect to R by [P]lr. When it is clear from the
contezt to which equivalence we are refering, we will omit the subscript.

2.1.2 Relative Bisimulation.

Unfortunately, the congruence given by direct bisimulation is too strong; it does not
capture our notion of relative frequency, but captures total frequency. Since we would
like to be able to equate processes such as,

2P + 3Q and 4P + 6@,

we need to weaken our notion of equality. The basic idea is that in order to show two .
processes equivalent, for each pair of equivalent states we can choose a constant factor

such that the total weight of equivalent immediate derivatives is related by multiplication

by that factor. If we can do this for all potentially equivalent states then we will say that

the processes are the same in terms of relative frequency. Since the constant factor may

well need to be a rational (and we wish to keep our numbers as simple as possible) we

will actually use two constants in comparing relative frequency. This allows us to use a

symmetrical definition.

Definition 2.8 We say an equivalence relation R C Pr x Pr is a relative bisimulation

if (P,Q) € R implies that:

1. there are ¢;,c; € P such that for all S € Pr/R and for all w,v € W, P+ S iff
Q+—— S and c;w = ¢,v;

2. for all S € Pr/R and for all a € Act, P =+ S iff Q — S.

Two processes are relative bisimulation equivalent, written P ~ Q if there exists a relative
bisimulation R between them.

We have chosen to use multiplication by a constant rather than division as this permits
us to stay within the natural numbers. We could have normalized so that the total weight
actions of any state is 1, and then we would have had an equivalence that is identical to
that of stratified bisimulation [SST89,GSST90].

Definition 2.9

~=|H{R | R is a relative bisimulation}.

Proposition 2.10 Let P and Q) be processes such that P £ Q, then P~ Q.

Definition 2.11 Let E and F be ezpressions containing variables at most X. Then we
will say E X~ F if for all process sets P, E{P/X} ~ F{P/X}.

Proposition 2.12 < is a congruence for finite and finite state processes.

We would like a notion of equivalence that permits us to disregard the structure of
the choices and just look at the total chance of reaching any particular state. This is
known not to produce a congruence [SST89], but is a useful notion of equivalence.

6

Definition 2.13 We define an abstract notion of evolution as follows;
P p i P, o, P owith w = [[w;

In order to define an equivalence which uses such transitions we need a notion of
accumulation.

Definition 2.14 Let S be a set of processes then:
plg if w=Y{w]|P el Q for some Q € S}; *

We can now define an equivalence that ignores the choice structure but not the choice
values.

Definition 2.15 We say an equivalence relation R C Prx Pr is an abstract bisimulation
if (P,Q) € R implies that:

there are ¢y, c; € P such that for all S € Pr/R and for all w,v € W, P ekl g
iff Q L S and W = CyU.

Two processes are abstract bisimulation equivalent, written P ~ Q if there exists a
abstract bisimulation R between them.

2.2 Equational Characterisation of WSCCS.

We present some equational laws over WSCCS processes in Figure 2, these form a sound
and complete equational system over the finite processes in WSCCS. We shall write p = ¢
for p ~ q.

Definition 2.16 Let A be an action set then the predicate, d4(E), expressing the fact
that E can perform an action in A, is defined recursively as follows:

o Ifa€ A then dy(a.E);
o If there exists i € I with d4(E;) then d(X;c;w;E;).

Definition 2.17 Let W be a set of weights {w;} then maz (W) is the mazimum power
of w occuring in W, or 1 if there is no w occurence in W.

The major difference when we extend our weight set to have many infinities is that
the priority operator will now distribute over multiplication. The following equation now

holds:
O(P x Q) = 6(P) x 6(Q)

this permits much greater freedom in the use of priority and ensures that it more closely
matches with our intuitions.

*Remembering this is a multi-relation so some of the Q and w; may be the same process and value.
We take all occurences of processes in S and add together all the weight arrows leading to them.

7

there is a surjection f : I — J with

(21) EieIw,:E,- = EJEJDJEJ 'Uj = Z{w,]z € IA f(Z) =]},
and for all ¢ with f(¢) = j then E; = E;.

(Ezp,) a.E x b.F = ab(Ex F) (Ezp;) a.E X X;cqv;F; =X;cv;(a.E x F;)

(Res,) (a.E)[A= {a-(E[A) ifaecA

0 otherwise.

(Resz) (BierwiEi)[A = Zje w;(E;[A) where J = {1 € I|d4(E;)}
(01) O(a.E)=a.O(FE)

Y;es1.0(E;) where J = {i € Ilw; = wmev ¥} and
(0;) OXicrwiE;) = J # 0,
Vierw;O(E;) if J =0

(Ren) Yicw;E; = X;cnw; E; where n € P

Figure 2: Equational rules for WSCCS.

3 The Basic Model.

In order to realise a task allocation stratagem we consider that our ants are involved in
some form of production line (Figure 3), similar to Milner’s Jobshop [Mil90]. We assume
there are units that are required to be worked on proceeding from one task zone to the

next.

The different tasks are numbered from 1 to ¢. The basic idea is that if an ant finds.

too little work entering into its task zone then it should consider moving up a task and
similarly if too little work is being taken from the zone then it should consider moving .
down a task. In this initial description we are assuming that there is sufficient work for
everyone and that we simply have to achieve an internal balance between the numbers
allocated to each particular task. Later we will examine a situation were the work load
for each task is specified by an external process.

So the basic algorithm that an individual employs is as follows:

we assume that there are t different tasks arranged linearly;
attempt to take a task from the right and give it to the left;
if this succeeds then stay where you are and remember that you did find work;

for each direction that failed to give or take work, increment the number of times
that failure has occured;

if the number failures for either direction exceeds a critical amount then choose to
move in that direction with some probability.

In the following z ranges from 2 up to t. We can formalise the above algorithm for
task allocation by the following process definition:

Tk,(k, k,) = w.task, task,.1.Task,(0,0)+ 1.Tk;(kl, k)
Tk;(k,, k) =(w.(1.task,,,.Downdecide,(k;, k, + 1)+

l.task,.Updecide,(k; + 1,k,))+

1.1.Bothdecide,(k; + 1, k. + 1))
1.Tk, (k;, k,) if k, < k,,
m.1.Tk,,4(0,0) +n.1.Tk,(0,0) otherwise.
1.Tk,(k;, k,) if k; < kg,
m'.1.Tk,_1(0,0) + n'.1.Tk,(k;, k,) otherwise.
mn’.1.Tk,.1(0,0) + m'n.1.Tk,_,(0,0)+
(mm' + nn').1.Tk,(0,0) if k; > k;, and k, > k,,
Updecide,(k;, k,) if k, > k,. and k; < ky,
Downdecide, (ki k,) otherwise.

Updecide,(k;, k,) = {

Downdecide,(k;, k,) = {
Bothdecide,(ky, k,) =

Tky(k;, k,) =w.task,.1.Tk,(0,0)+ 1.1.Updecide, (k;, k,)

1.Tk, (k;, k,) if k, <k,

Updecide, (k. k,) = {m.l.Tkz(O, 0) + n.1.Task,(0,0) otherwise.

Task 1 Task 2 Task 3

$ * i ki

/ /«———/ /«————/ 7

by i

Figure 3: An ant production line.

Tky(k;, k,) =w.task,.1.Tk,(0,0)+ 1.1.Downdecide,(k;, k,)

1.Tk,(k;, k,) if k< K,

Downdecide,(k;, k,) = {m,-l-Tkt—l(Oa 0) + n'.1.Tk,(k;, k,) otherwise.

The constants in the above process description have the following intended meanings:

e k;, and k,, are the number of times we have to fail to find work in the directions
left and right respectively before attempting to change task,

o s the probability of moving up a task given that there has been insufficient

work from that direction,

° m—,”i—m is the probability of moving down a task, note that these probabilities need

not be symmetric’.

Take a vector ; of numbers in the range 1 to ¢ then our system is the following
process:

k
Line = O(([]Tk.,(0,0)[{1}

=1

Lemma 3.1 If k is a multiple of t i.e. k = k't then the following state is stable:

5Indeed since the earlier tasks within a nest are safer from predation we might expect that these
probabilities would be biased in favour of lower numbered tasks.

10

O(((T1T#1(0,0))x (T[Tk2(0,0)) x ... x (J]Tk:(0,0)))[{1})

=1 =1 =1

Proof: We start by calculating the expansion of the processes performing
one of the tasks:

K k'
U 7 _kl
l:IlTkz(O, 0) =w* .task’, ask, .1.(1_11Tkz(0, 0))+
K-1
w* TV ((T] task,41task,.1.Tk,(0,0))x Tk (0,0))+
i=1
ot
1.(J[T(0,0))
=1

Hence we can show that the process:

K K K
((JITk(0,0))x (J[T#5(0,0)) x ... x (I[T*.(0,0)))[{1}

=1 1=1 i=1
is equivalent to:

kl

W11, ((ﬁTkl(o,O))x (TITko(0,0)) x ... x (ﬁTk,(0,0)))[{l}

i=1 . =1 i=1
+ terms of lower order in w.

and hence our original process is equivalent (as required) to:

K k' k'
111.0(((LI74:(0,0))x (LT74:(0,0)) x ... x (LI74(0,0)[{1})

We wish to establish® that any state which is not stable must eventually reach the
stable state.

Lemma 3.2 From an arbitrary set of values 0 < z; < t and v, d; substituted in the
process:

O((IIT ko, (di, wi))[{1})

=1

there exists a finite sequence of probabilistic transistions and 1 transitions leading to the
stable state.

®We use a simplification of the proof technique for synchronisation found in [Tof90b]

11

Proof: We demonstrate that the property holds for some particular state.
This demonstrates how one may construct such a derivation path from an
arbitrary state (we will enumerate each probabilistic transition with its prob-
ability, rather than its relative frequency, and assume that k;, = k,.):

K- K K
9(((HTk1(0 0)) (JIT5(0,0)) x Tk»(0,0) "'(I_IlTkt(O,O)))I-{l})

O ((TT 70,0 x ([TTA0.0) x Tt)5 - x (T80 NI
les
11
J1

O(((TT74(0,0) x ([[TH:(0.0)) x Tha2,2)x ... ([[THO.0)I(2)
ll k;. — 3 times
11

O(((TT Th:(0,0) x (L[TE:(0,0) x Ths(k — 1, —)
< (ITHOON)

e
11

11

y
((HTk1(0 0)) x (HTkz(O 0))x ... x (JITk:(0,0))[{1})

i=1 =1

so with probability (g)(kie=1) (mm) we reach the stable state, on
this transition path. Other examples are more complex versions of the above.
Thus whenever the probability of deciding to move up or down is non-zero (m
and m' non-zero) then we can always reach the stable state in a finite number
of transitions.

Proposition 3.3 Given any process Line with k = k't then that process must eventually
evolve to the process

12

kl
9(((HTk1(0 0))x (HTk2(0 0)) x ... x (J[T#:(0,0)))[{1})
t=1 =1
Proof: From Lemma 3.1 we have a stable state and from Lemma 3.2 we have
a non-zero probability of reaching that state, so we must always eventually
reach such a state.

In order to illustrate the above process ‘homing’ in on the correct solution we include
~ a simulation (Figure 4) of 8 ants trying to allocate themselves to 4 tasks when all 8 start
off working in the first task.
The question arises as to what happens when k is not an exact multiple of ¢, say
k = k't + w with w < k'. Then there will be w processes “wandering around”. In the
case where w = 1 if we repeat the analysis of Lemma 3.1 then we find that (when the
extra Tk process is performing task 2 say):

@(((HTk (0,0))x (I_“i:Tkz(o) x..x (ITHO.0)FL)

the highest prioritised part of the process is the following:

Mt 1.1.(Bothdecide,(1,1)x 1.1.((ﬁTk1(0,0))x (ﬁTkz(0,0))x. .o X (ﬁTkt(0,0))))

i=1 i=1 i=1
given that k;, and k,, are greater than zero we arrive at the state:

¥ K

O((Tky(1,1) x (J]Tk:(0,0))x (J[T#(0,0)) x ... x (HTk (0,0)))[{1})

i=1 i=1
So we have one process that will wander around whilst the others stay fixed in the
correct arrangement.

3.1 Adding Task Difficulty.

So far we have assumed that all tasks have the same difficulty, that is to say we can
achieve the same amount performing each task. If we assume that each task has a degree
of ease e, and redefine our Tk process as follows:

Task,(ki, k) = wtask;] task, task, ~.1.Task(0,0)+ 1.Task(k;, k,)

Task(k, k,) =(w.(1. task:"‘ .Downdecide,(k;, k, + 1)+
1.5:9_Ic:ez.Updecidez(k, +1,k.))+
1.1.Bothdecide,(k; + 1, k. + 1))

1.Task,(k;, k) ifk, <k,

m.1.Task,,;(0,0) + n.1.Task,(0,0) otherwise.

1.Task,(k;, k,) if k; < ky,
m'.1.Task,_(0,0)+n'.1.Task,(k;,k,) otherwise.

Updecide,(k;, k,) = {
Downdecide,(k;, k,) = {

13

| Taska Taskh Taskce Taskd

-.——
|

' Taska Taskh Taskc Taskd

Taska Taskb Jaskc " Taskd
Taska Taskb Taske Taskd
kTaska Taskb Taskc Taskd

Figure 4: Eight ants evenly allocating themselves amongst 4 tasks.

14

mn'.1.Task,.,(0,0) + m'n.1.Task,_,(0,0)+

! ! .
Bothdecide, (k, k,) = 4 (™™ + nn).1.Task,(0,0) if k 2 & and k, > k.

Updecide,(k;, k,) if k, > k,, and k; < ki,
Downdecide,(k;, k,) otherwise.
Task,(k;, k,) =w.task;'.1.Task(0,0)+ 1.1.Updecide,
. _ [1.Task,(k;, k,) itk <k,
Updecides (k. k;) = {m.l.Taskz(0,0) + n.1.Task;(0,0) otherwise.

Task,(k;, k,) =w.task,”.1.Task(0,0)+ 1.1.Downdecide,(k;, k,)

1.Ta.skt(k,, k,.) lf kl < klc

Downdecide,(ki, k;) = {m'.l.Taskt_l(O, 0) +n'.1.Task,(k, k,) otherwise.

Take a vector z; of numbers in the range 1 to ¢t then our system is the following
process:

Line = O(([[Task,,(0,0))[{1})

=1

Proposition 3.4 if k is such that there exists ky, k,, ...k, withk =k, +k,+...+k, and
kies = kyeq = ... = ke, then the following state is stable and moreover it must eventually
be reached independently of starting state:

((HTask (0,0))x (HTask2(0 0)) x...x (f_[Taskt(0,0)))I'{l})

=1 =1

Proof: Proceed as before, the stability is achieved by observing the expan-

sion:
k k2
HTask (0,0) =w® taske‘k’task =" 1.(J[Task,(0,0))+
i=1 1=1
wkl—l.((H ask,y task,.1.Task,(0,0))x Task.(0,0))+
i=1
+.k. +
1.([[Task.(0,0))
i=1
And since kye; = kyey = ... = ke, holds then the highest order term in w is
the following:
k1 k2
w*.1.1. ([T asky(0,0))x (J[Tasky(0,0))x... (HTask,(O 0)))[{1}
1=1 i=1 i=1

as we require.

Moreover from an arbitrary starting state there is a non-zero probability of
reaching the stable state.

15

As an illustration of the system reaching its stable state we have a simulation (Fig-
ure 5) which demonstrates 7 ants allocating themselves to 3 tasks within which an indi-
vidual can perform 1,2 and 4 units of work respectively.

One question that arises is what happens if the degree of difficulty of a task varies with
time. Clearly the system can respond correctly to this consider a system at equilibrium
with relative task eases of ¢, e,,...,€,. So we start a system with the processes arranged-
for these difficulties but the difficulties are actually e'l, 6’2, ..., e, clearly this will arrange
itself correctly, after some period of time. So as long as the variability rate of the task -
difficulties is much lower than the rate at which equilibrium is established our system
can keep assigning the correct number of individuals to each task. This is important in
a biological system as the environment can greatly affect the difficulty of performance of
such tasks as foraging.

4 External Work Levels.

We add a process for each task that will set the amount of work the processes in each
task have to do at each turn. We define the producer process (producing work within a
particular range) as follows:

Prod,(r) = Z:::gl.work:z.l. > icRange Wi- 1.Prod, (1)
and we alter our initial version of the allocation system as follows:

Wrk,(k;, k,) = w.work,.1.1.Wrk,(0,0) + 1.Tsk,(k;, k,)
Tsk,(k;, k,) = w.task,, task,.1.Wrk(0,0)+ l.Tsk;(kl, k.)
Tsk.(k;, k,) =(w.(1.task,,,.Downd, (k;, k, + 1)+
1.7asE,.Upd, (k; + 1, k,))+
1.1.Bothd,(k; + 1,k, + 1))

LWk, (ki k) itk < K,
Upd,(k;, k) = {m.l.Tassz(O, 0) + n.1.Wrk,(0,0) otherwise.

l.WT'kz(kh k,,.) if kl < klc
m' 1.Wrk,_;(0,0) + n'.1.Wrk,(k;, k,) otherwise.

mn' . 1.Wrk,,,(0,0) + m'n.1.Wrk,_,(0,0)+
(mm' 4+ nn").1L.Wrk,(0,0) if k; > k;, and &, > k,,
Updz(kl,k,r) if k,,. 2 k’rc and kl < klc
Downd,(k;, k,) otherwise.

Downd,(k;, k,) = {
Bothd,(k;, k,) =

Wrk,(k;, k,) = w.work,.1.1.Wrk;(0,0) + 1.Tsk;(k;, k,.)
Tski(k;, k,) =w.task,.1.Wrk,(0,0)+ 1.1.Upd,

 [LWrk (K, k,) itk <k,
Upd, (ki k,) = {m.l.erz(O, 0) + n.1.Wrk,(k;, k,) otherwise.

16

'Taska Taskb Taskc
2Taska Taskb Taskc
:Taska Taskb Taskc
‘Taska Taskh Taskc

Figure 5: Seven ants allocating an uneven load amongst themselves.

17

Wrk,(k;, k,) = w.work,.1.1.Wrk,(0,0) + 1.Tsk,(k, k,)
Tsk,(k;, k,) =w.task,.1.Wrk,(0,0)+ 1.1.Downd, (ki k,)

l.ert(kl, k'.,.) lf kl < klc

Downd,(k;, k) = {m'-l-WTkt-1(070) +n' 1. Wrk,(k;, k,) otherwise.

So our description of the task allocation system will be as follows (given a sequence
%; of values in the range 1...%):

Ez = 6(((fIW’"kx.~(0’0)) x Prod, x ... x Prod,) [{1})

=1

4.1 Fixed Work Levels.

If we take in our definition of the work load for each task a fixed amount produced at
each turn; the case when the producer process is of the following form:

Prod,(r) = E:::gl.work;.l.l.Prodz(wz)

then we have stability if the processes can arrange themselves so as to handle all the
work available. Clearly this can only be acheived if the total amount of work is less than
or equal to the number of processes available to handle it.

Proposition 4.1 if k = Y w, then there is a stable arrangement of the processes and
moreover that arrangent must always be reached from any initial state.

Proof: If we have w, process perfoming task z (this is possible within the
context of the total being k then we have the following expansion for process
performing that task:

ﬁerz(O, 0) =w"*.work"” .1.1.(]erkz(0, 0))+

=1 =1
wz—1
w”* L work” . (Task,(0,0) x ([Wrk.(0,0)))
=1
tot
1.(J[Task,(0,0))
=1

That this state can be reached in a finite number of steps follows from the
allocation activities of the underlying T'ask system.

We include two illustrations of this situation. In the first (Figure 6) there are three
tasks with 1, 3 and 3 amounts of work to be done in each repectively. In the second
illustration (Figure 7) there are four tasks with 1, 2, 2 and 3 amounts of work to be
performed in each task respectively.

18

‘ .
i

i

‘ .

' Taska Taskb Taskc
--—
Taska Taskb Taskc
1]
Taska Taskhb Taske
e [
Taska Taskh Taske

Figure 6: Seven ants with an external workload of 1,3,3 respectively.

19

Taska Taskb Taskc Taskd
Hm

Taska Taskhb Taskc Taskd
e [I
Taska Taskb Taskc Taskd
-y]
Taska Taskb Taskc Taskd

Figure 7: Eight ants with an external workload of 1,2,2,3 repectively.

20

4.2 Variable Work Levels.

When the producer does not produce a fixed amount of work but instead produces it
according to some distribution with some expected work level, for example a producer of
the original form:

Prod,(r) = E:::;l.work;.l. Y icRange Wi- 1.Prod,(z)

If we denote the expected amount of work available in task z by E,, then when the. -
total of these expectations is less than or equal to the total number of processes available
to handle the work, we would hope that our system would allocate E, processes to task
z. Whilst this is observed in simulations it is far from easy to prove - there is no strictly
stable state. All we can say is that if the rate at which our processes choose to change
tasks is much slower than the variability in available work then the above state is stable
and it will be eventually reached (but this may take a long time).

It is possible to demonstrate that if you have a cyclical work requirement and there
is some point on the cycle with all the processes occupied, then provided that the cycle
length is shorter than either of the values k. or k,, there is a stable state with the
processes in the arrangement given by relative work levels when all the processes are
occupied.

5 Temporal Polyethism-Emergent Not Causal.

One of the stongest features observed about allocation of tasks within homogeneous ants
is that on average the eldest ants tend to perform the more dangerous (foraging and
guarding) tasks [PJ81}); younger ants working firstly on brood care followed by nest
maintenance. It has been assumed that this task distribution in homogenous ants results
directly from age, impling that individuals know their age and assort accordingly. Indeed
it has been suggested that age stratification in ants is an “adaptive demography” where
the proportion of different age groups is determined by environmental contingencies and
reflects the task requirements of the species [WH88]

It has been pointed out by Calabi [Cal88] that such a mechanism would be too slow to
respond to environmental variability; she presents a model that allows some short-term
flexibility by age-based differential response thresholds to the various tasks. However,
this model still subsumes some “knowledge” of age, and it can be argued that colonies
using this mechanism would still be slow to respond to changes.

We can show that given task allocation methods outlined above then the ants per-
forming the latter tasks will on average be older. Unfortunately we cannot do this entirely
within our process calculus but will use it to justify some simplifying assumptions and to
generate the understanding to produce a simulation.

We start by amending our simple task allocation system to take account of age:

Dead = 1.Dead

21

w.task,, task,.1.Task(0,0,a + 1)+ 1.Task;(k,, k.,a) if
Task,(ki, kyya) = {a < mazage
Dead otherwise.

Task,(k;, k,,a) =(w.(1.task,, . Downdecide, (k;, k, + 1,a)+

l.task,.Updecide,(k; + 1,k,,a))+
1.1.Bothdecide,(k; + 1, k, + 1,a))

1.Task,(k;, k,,a + 1) if k, < k,,
Updecide,(k, k,,a) = {m.l.Taskz_,,l(0,0.a + 1) + n.1.Task,(k;, k.,a + 1)
otherwise.
1.Task,(k;, k.,a+1) if b < kg,
Downdecide,(k;, k,,a) = {m'.l.Taskz_l(0,0,a + 1) + n'.1.Task,(k;,k,,a + 1)
otherwise;

mn'.1.Task,,1(0,0,a + 1) + m'n.1.Task,_;(0,0,a + 1)+
(mm' 4 nn').1.Task,(0,0,a + 1) if k; > k;, and k, > &,
Updecide,(k;, k,,a + 1) if k, > k,. and k; < ky,
Downdecide,(k;, k,,a+ 1) otherwise.

Bothdecide,(k;, k,,a) =

Task,(k;, k,,a) =w.task,.1.Task,(0,0,a + 1)+ 1.1.Updecide,(k;, k., a)

1.Task,(k;, k., a+1) if &, <k,
Updecide,(k;, k,,a) = {m.l.Task2(0,0, a+1)+n.1.Task,(0,0,a+1) oth-

erwise.

Task,(k;, k,,a) =w.task,.1.Task,(0,0,a + 1)+ 1.1.Downdecide,(k;, k,, a)

1.Task,(k;, k,,a+1) if b < ky,
Downdecide,(k;, k,,a) = {m'.l.Taskt_l(0,0,a + 1) + n'1.Task,(k,k,,a + 1)
otherwise.

Note that the process Dead is an identity for the operator x. We need the following
process to produce more ants:

new(n)
Queen(n)= 1...1.([] Task(0,0,0)) x Queen(n + 1)

gen—times i=1

Take a vector z; of numbers in the range 1 to ¢ then our system is the following
process:

k
Nest = O((J[Task,,(0,0) x Queen(1))[{1})

i=1

The property that we wish to establish is that the average ages of the ants performing
each task ascend in the order of the tasks. Unfortunately we can see no way of proving
this directly using the above description. However, we do know that even task allocations
are stable some time after a new influx of young ants at T'ask,, so if we assume that the
generation time is long compared with the time to stability in our allocation algorithm

22

then we can use the following method to approximate the ages of ants performing our
tasks.

For simplicity we only consider two tasks, with m and n ants performing them re-
spectively and initially having average ages A; and A,, furthermore we assume that our
population (in the first task) grows in proportion k and that there is a death rate due of
ageing of e. We obtain the following growth equations for the average ages of our ants. .

! __ on(A141)(1- A)
Al - an(ll—eAl +§c)1
Al _ m{A24+1)(1—ed2)+(1—a)n(1—cA; +k)A;
2 m(l—eAz)+(1-a)n(l—eA; +k)
m(l—eAz)+n(1—eAy +k)
(m+n)(1—ecA1+k)

Q=

In the above « is the proportion in task 1 which have to move to task 2 in order to keep
the number ratio balanced. If we look for a stable solution to the above we discover that
1
A1 = g
and substituting v = 1 — €A, and 8 = (1 — €A, + k) we obtain the following quadratic in
.

(n — (m+n))y° + 2(m+n) —n+en+nB)y+nf— (m+n)(l+¢) —nef

This quadratic always has a root, which gives a positive solution for A,, we take this as
the stable solution for A, moreover the roots are not only stable, but A, is always greater
than A, as required.

We include the results of a ‘C’ simulation of the above system (Figure 8) as it gives
a better idea of scale. This simulation is for a nest with four tasks and taking each task
allocation cycle (3 ticks) as 20 minutes is equivalent to 30 years of ant life (approximately
100 generations).

6 Simple Learning.

We can include a simple notion of learning by allowing ants to become more able at the
tasks they perform.

Lrn,(k, k,, 1) = p.learn,. Tsk,(k;, k., + 1) + p'.Tsk,(k;, k,,)
Tsk,(ki, k,,1) = wtask. Task, .1.Lrn(0,0,0)+ 1.Tsk.(k, k,, 1)
Tsk, (ki k,,1) =(w.(1.task,,.Downd, (k;, k, + 1,1)+

l.task, Upd,(k; + 1,k,, 1))+

1.1.Bothd,(k; +1,k, +1,1))

_ J1.Lrn,(k, k., 1) if k, < k,,
Upd, (ki k. 1) = {m.l.Taskz_I_l(O, 0,1)+n.1.Lrn,(0,0,1) otherwise.
l.Lrnz(kl, kr’ l) if kl < klc
Downd,(k;, k,,1) = { m'.1.Lrn,_4(0,0,1) + n'.1.Lrn,(k;,k,,[) other-
wise.

23

Figure 8: Average age of workers performing 4 different tasks simulated for 30 years.

24

mn'.1.Lrn,(0,0,1) + m'n.1.Lrn,_,(0,0,1)+
(mm' +nn').1.Lrn, if k; > k. and k, > k,,
Updz(kl, kr,l) if k’,,. Z krc and kl < klc
Downd,(k;, k,,1) otherwise.

Bothd,(ky, k,,1) =

Lrn,(k;, k,, 1) = p.learn, Tsky(k, K — r,l+ 1) + p'.Tsk,(k;, k,,1)
Tsky(k;, k., 1) =w.task;.1.Lrn1(O,0, D+ 1.1.Upd,

_ [Y.Lrny(k;, k., 1) if k, < k,,
Updy (ki K, 1) = {m.l.Lrn2(0, 0,1) + n.1.Lrny(k;, k,, 1) otherwise.
Lrng(ky, k., 1) = plearn, Tsk,(k;, k., 1 + 1) + p'.Tsk,(k;, k.,)
Tsk(k, k,,1) =w.tasktl.1.Lrnt(0,0, D+ 1.1.Downd,(k, k,.,1)

l.Lrnt(kl, k,,., l) lf kl < klc
Downd,(k;, k., 1) = {m'.l.Lrnt_l(0,0, 1) + n'.1.Lrn,(k;, k,,1) other-
wise.

We can make learning spontaneous with probability F-TIIF by renanﬁng the learn,

actions to 1, rendering our system thus (with the usual z; constants):

k
Rlearn = @(((HLrnm(O, 0,1))[1/learn])[{1})

=1

alternatively we can include some form of teaching process which outputs learn actions
and make p = p thus rendering our system as,

Learn = O((([[Lrn,,(0,0,1))[1/learn] x Teacher) [{1})

i=1

In either case the stable state is achieved when the effective total of ants (that is
the sum of the individual abilities of the ants in a task) is the same for all tasks, and
subsequent learning is forbidden.

7 Performance with Erroneous Ants.

We examine how our system will perform in the presence of ants that make certain kinds
of mistake. '

7.1 Dead or Lazy Ants.

In either case the best representation for such an ant is the process Dead defined earlier.
That is to say a process that will perform only 1 actions for ever. This is reasonable as a
dead ant will not interfere with the performance of the others and a lazy ant will just sit
there passing the time. Since this process is the unit for multiplication it has no effect
on the outcome of the allocation alogrithm amongst the other ants as we would expect.

25

7.2 Task Fixation.

We can imagine an ant that only wishes to perform a certain task (say number z) and
examine the effect that this will have on our allocation algorithm.

Fized, = w.task]} task, ".1.Fized,+ 1.1.1.Fized,

So if we build our allocation system as before. Take a vector z; of numbers in the
range 1 to ¢ then our system is the following process: '

Fizl = (’*)((fITaskx‘.(O, 0) x Fized,,,){{1})

=1

There will be a stable state if there is a sequence of numbers ky, ks,, k; with ky +
eeot+ by = k and kye; = kye, = ... = (k, + 1)e, = ... = k;e; when our fixed process
performs task z. So the presence of a fixed process merely causes the others to re-arrange
themselves to re-produce a balanced arrangement.

8 Coneclusions.

We have demonstrated a collection of task allocation algorithms that can be considered
very accurate. They have a good tolerance to error and to the general dynamic variation
within an environment. Furthermore we have found indications that the observation of
age stratification in the ants performing particular tasks can result just from a simple
conjunction of the fact that ants are born into one end of the production line (the brood
pile), movement between tasks is ordered and that the movement is controlled randomly.

9 Acknowledgments.

Chris Tofts is supported by a B.P. Venture Research Grant. We would like to thank
Melanie Hatcher, Nigel Franks, Anna Sendova-Franks, Tim Stickland, John-Louis Deneubourg
and Simon Goss for their helpful discussion of the underlying algorithm. This document
would have been much poorer if it had not been for interventions of David Pym and
Matthew Morley. Finally I would like to thank Frantic Monkey for keeping me inter-
ested.

10 Bibliography.

[BBK86] J. Baeten, J. Bergstra and J. Klop, Syntax and defining equations for an interrupt
mechanism in process algebra, Fundamenta Informatica IX, pp 127-168, 1986.

[Cal88] P. Calabi, Behavioural Flexibility in Hymenoptra: A Rexamination of the Concept
of Caste, Advances in Myrmecology, E. J. Brill, Leiden.

26

[GSST90] R. van Glabbek, S. A. Smolka, B. Steffen and C.Tofts, Reactive, Generative and
Stratified Models of Probabilistic Processes, proceedings LICS 1990.

[Kei] J. Keilson, Markov Chain Models - Rarity and exponentiality, Applied Mathemat-
ical Sciences 28, Springer Verlag.

[Hoa85] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall 1985.

[HW90] B. Holldobler and E. O. Wilson, The Ants, Belknap Press of Harvard, University -
Press, 1990.

[LS89] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. proceedings
POPL 1989.

[Mil83] R. Milner, Calculi for Synchrony and Asynchrony, Theoretical Computer Science
25(3), pp 267-310, 1983.

[Mil90] R. Milner, Communication and Concurrency, Prentice Hall, 1990.

[OWT78] G. F. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton
University Press, 1978.

[PJ81] S.D. Porter, C. D. Jorgensen, Foragers of the Harvester Ant, Pogonomyrez owyheei:
a disposable Caste?, Behavioural Ecology and Sociobiology 9, pp247-256, 1981.

[Plo81] G. D. Plotkin, A structured approach to operational semantics. Technical report
Daimi Fn-19, Computer Science Department, Aarhus University. 1981

[SST89] S. Smolka, B. Steffen and C. Tofts, unpublished notes. Working title, Probability
+ Restriction = priority.

[THF91] C. Tofts, M.J.Hatcher, N. Franks, Autosynchronisation in Leptothorax Acervorum;
Theory, Testability and Experiment, In preperation.

[Tof90a] C. Tofts, A Synchronous Calculus of Relative Frequency, CONCUR ’90, Springer
Verlag, LNCS 458

[Tof90b] C. Tofts, The Autosynchronisation of Leptothoraz Acervorum (Fabricius) Described
in WSCCS, LFCS-Report Number 128.

[WHB88] E. O. Wilson and B. Holldobler, Dense Hetarachies and Mass Communication as
the Basis of Organisation in Ant Colonies, T.R.E.E. 3 pp 65-67, 1988.

27

