| sodA] juspuada(jo Aiosy] BuiAnun v

LFECS

Laboratory for Foundations of Computer Science
Department of Computer Science - The University of Edinburgh

A Unifying Theory of Dependent Types 1

by

Zhaohui Luo

LFCS Report Series ECS-LFCS-91-154

LFCS May 1991
Department of Computer Science

University of Edinburgh

The King's Buildings .

Edinburgh EH9 3]Z Copyright © 1991, LFCS

Copyright © 1991, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

A Unifying Theory of Dependent Types I

Zhaohui Luo

April 30, 1991

1 Introduction

In these notes,! we present and study a theory of dependent types which unifies co-
herently Martin-L6f’s type theory with universes [ML75, ML84] and Coquand-Huet’s
calculus of constructions [CH88, Coq89]. The theory described here is a direct further
development of the Extended Calculus of Constructions [Luo89, Luo90]. We (partly)
follow Martin-L&f’s intuitionistic philosophy in that the theory is supposed to be open in
the sense that new types and type constructors can be added, although we consider an
impredicative ‘universe’ of logical propositions which provides a higher-order logic em-
bedded in the theory. However, an important philosophical point is worth making clear;
that is, the incorporation of both an impredicative universe (higher-order logic) and pred-
icative type universes enables a conceptual distinction in the theory between the notion
of logical formulas (propositions) and that of sets (types). This should be considered in
contrast with Martin-Lof’s type theory, where types and propositions are identified, and
with the pure calculus of constructions, where data types may be provided by impredica-
tive coding. We also consider well-ordering types (W-types) to provide various inductive
data types, based on an observation that various filling-up equality rules (or 5-rules) are
sufficient and necessary for W-types to represent inductive data types. The inclusion of
the filling-up rules requires a further investigation of the meta-theory (Church-Rosser,
normalization, etc.), which is to be discussed in a supplementary note. An alternative
formulation of the type system by means of Martin-L6f’s logical framework is given in

Appendix A.

2 Judgement Forms and Some Conventions

Terms will be introduced when we proceed to present the inference rules for various type
constructors. Given the notion of terms, we take the notions of context, free/bound

1These are revised notes from a part of the lecture notes for the Theory PG course on Type Theory
in the spring term in LFCS, Edinburgh. I’d like to thank Rod Burstall and Healfdene Goguen for many
interesting discussions and Thierry Coquand, Thorsten Altenkirch and Claudio Hermida, among others,
for their helpful comments on the notes.

variables, etc. as defined in the usual way. We shall write FV(...) for the set of free
variables that occur in Substitution of a term N for the free occurrences of variable
z in any expression M (a term or a context), [N/z]M, is defined as usual with possible
changes of bound variables to avoid variable capturing. a-convertible terms are identified.
We use = for syntactic indentity.

We shall consider five judgement forms:?

e T valid, which means that I is a valid (well-formed) context;

e I' F A type, which means that A is a type under the hypotheses I';

e I' A = B, which means that types A and B are equal under the hypotheses T’;
e I'ta: A, which means that a is of type A under the hypotheses I'; and

e I'ta=0>5: A, which means that ¢ and b are equal objects of type A under the
hypotheses I'.

Derivation and derivability of judgements are defined as usual (but see the convention

in the following section).

2.1 Conventions in the presentation

In order to simplify the presentation of the inference rules for judgements, we make
the following conventions to the formal system we consider below, so that some of the

premises in the inference rules are not explicitly given.
1. To derive I' + A type, T valid must have been derived.
2. To derive 'F A= B, I'+ A type and ' B type must have been derived.
3. Toderive ' Fa: A, T'F A type must have been derived.
4. Toderive 'Fa=b:A4, TFa:Aand '+ b: A must have been derived.
In other words, a sequence of judgements J;, ..., J, is a derivation (of J,,) if and only if

1. it satisfies the above conditions (i.e., for example, if J; = I' + A type, then
Ji =T valid for some k < ¢), and

2. for ¢ = 1,...,n, J; is the conclusion of some instance of an inference rule whose

premises are among {J; | j < i}.

Some other conventions (e.g., abbreviations of terms) are also adopted, which we
shall explain in section 4, where they are used for the first time.

2 Another form of judgements for subtyping will be considered later.

3 General Rules
3.1 Validity of contexts

'+ Atype z ¢ FV(I)
() valid I, z:A valid

3.2 Assumptions

[z:A,T'Fz: A
Note that, according to our conventions in section 2.1, to use this rule to derive I', z: 4, T" -
z : A, we must have derived T, z:4,[" valid and I',z:4,T F A type. We do not com-
ment on such conventions any more below.

3.3 General equality rules

3.3.1 type equality

'rA=1B 'WFA=B TFB=C
''FA=A FrB=A rFA=C

3.3.2 object equality

'Fa=b:4 I'Fra=b:4 T'kb=¢c: A
'tra=a: A 'Fb=a:A T'ta=c: A

3.4 Equality typing

I'ra:ATHA=1B Tta=d :ATHA=1B
T'ta:B I'Fa=a:B

4 An Impredicative Universe: Higher-order Logic

By the proposition-as-types principle, we can introduce a type Prop whose objects are
the logical formulas (called propositions), each of which is the name of the type of its
proofs Prf(P). The impredicativity of the formation of propositions gives us a higher-

order logic embedded in the theory.
The following are the formation and introduction rules for the impredicative universe.

'+ Atype T',z:AF P: Prop A=A T,z:A+P=P :Prop
T'F Prop type I' FVz:A.P: Prop I'FVz:A.P =Vz:A'.P': Prop

. CkP:Prop I'+P=P :Prop
formation T+ Pri(P) type TF Pri(P) = Pri(P)
]) T,z:Ab p: Prf(P) Fz:AFp=p :Pri(P)
introduction Tk AVz:A.Plz.p : Pri(Vz:A.P) Tk Az.p = Az.p' : Prf(Vz:A.P)
L. Prp:Pri(Vz:AP) THa: A I'tp=p :Prf(Va:A.P) Tha=d": 4
elimination I' + App[Vz:A.P}(p,a) : Pri([a/z]P) '+ App(p,a) = App(v’,a’) : Pri(fa/z]P)
. T,z:Abp:Prf(P) Tka: A
computation I F App(Az.p,a) = [a/z]p : Pri([a/z]P)
Al z € FV(p)
ngup I F p = Az.App(p,z) : Pri(Vz:A.P)

Figure 1: Rules for proof types.

Figure 1 lists the rules for the proof types, where the following convention on term
abbreviation are adopted (similar conventions will be tacitly used for the other type

constructors introduced later).

Convention We shall often omit the type information in terms, e.g., to write Az.p
for A[Vz:A.Plz.p. Also, in equality rules, the premises concerning the omitted type
information are also omitted. For example, the introduction equality rule in Figure 1

abbreviates the following one:

FA=A" I,2:A+P= P : Prop T,z:A\ p=p : Pri(P)
[+ AlVz:A.Plz.p = AVz: A" . P']z.p' : Prf(Vz:A.P)

We may write P’ D P for Vz:Prf(P').P, when o ¢ FV(P). P D @ and Vz:A.P stand
for implication and universal quantification, respectively. The other logical constants and

operators can be defined as follows:

true =4 VX:Prop. X DX
false =4 VYX:Prop.X
P& P, =4 VX:Prop.(PLDP,DX)DX
PVP =4 VX:Prop.(PLDX)D(P,DX)DX
P, =4 P, D false
3z € A.P(z) =4 VYX:Prop.(Vz:A.(P(z)D> X))D X
a=4b =4 VP:A— Prop. P(a) D P(b)
where, =, between two objects of a type A is called Leibniz’s equality, which is defined
by quantification over the predicates over A. (the objects of the product type A — Prop,

see section 5.1). Provability of a proposition P is given by the inhabitance of its proof
type Prf(P); that is, a proposition P is provable (in T') if T' - p : Prf(P) for some p.

4

T't+ A type T',z:A+ B type TrFA=A" I'z:A+FB=B'
formation T+ z:A.B type T Iz:AB = lz:A' B’
Iz:Atb: B LzAbb=b:B

introduction TF A\Iz:A.Blz.b: lz:A.B TFAch= b :[zAB

'k f:Nlz:AB T'ta: A FFf=f:Nx:AB 'kFa=d': 4
elimination T+ applliz-A.B](f,0) : [a/2]B TF app(f,0) = app(fa') : [a/]B

TLz:AFb:B I'ta: A
computation T't+ app()z.b,a) = [a/z]b : [a/=]B
Alling. z & FV(f)
g-up T't+ f = Az.app(f,z) : Iz:A.B

Figure 2: Rules for II-types.

5 Type Constructors

5.1 Product types (II-types)

The rules for product types are listed in Figure 2.

Notation We may write A — B for llz:A.B, when = ¢ FV(B). We often write
fay...a, or f(ay,...,a,) for app(app(...app(f,a;),...;6n-1),a,). We may write Az:A.b
to abbreviate A[Ilz:A.B]z.b when hoping to make the domain of a function explicit.

Notation (function composition) We shall use o to denote the following composition
operator of functions: for f of type z,:X;...Iz,:X,,.Y with z; ,...,z;, € FV(Y)and g
of type llz;,:X;,...Ilz; : X; IIy:Y.Z,

go f=a Az1.. A2 g(Ti)5 ooy T3) (f(Z1y 000y 20))
which is of type Hz: X;..Oz,: X,,. [f(z1,...,2,) /Y] Z.

5.2 Strong sum (X-types)

The rules for X-types are listed in Figure 3. We may write A x B for Xz:A.B, when
z ¢ FV(B). The two projection operators can be defined from E as follows:

7(c) =4 E(AzAy.z)(¢) and 7'(c) =4 E(AzAy.y)(c)
With the filling-up rule, we have, for any f of type lIz:(Xz:4.B).C,
f =E(fopair) : Nz:(Zz:A.B).C

where pair =4 AzAy.p(z,y). Also note that the following proposition is provable without
using the filling-up rules:

V2 (Z0iA.B). 2 =pan 5 B(7(2), 7'(2))

5

. T'F A type I',z:At B type TtA=A' I's:A-B=B'
formation T S0:AB type TFZoAB=So:A B
]] 'ta:A TFb:[a/z]B Tra=a':4 TFb=b :[a/z]B
introduction T+ p[Ez:A.B](a,b) : Tz:A.B T+ p(a,b) = p(a’,') : Ta:4.B
L '+ d: Hz:Ally:B.[p(z,y)/2]C I'+d=d :z:Ally:B.[p(z,v)/2]C
elimination T+ E[llz:(Sz:A.B).CI(d) : [1z:(Zx:A.B).C T+ E(d) = E(d') : [1z:(Tx:4.B).0
. I'ta:A TFb:[af7]B T, zZx:A.BF C type [+d: z:Ally:B.[p(z,v)/2]C
computation T+ E(d)(p(a,b)) = d(a,b) : [p(a,b)/2]C
filling-up Tk ¢ = p(BE(Az)ry.z)(c), E(AzAy.9)(c)) : Tz:A.B

Figure 3: Rules for ¥-types.

formation introduction ~ filling-up

Ck1type I'k+:1 F'Fa==x:1

Figure 4: Rules for the unit type.

5.3 The unit type (1)

The rules for the unit type are given in Figure 4.

Notation (elimination operator for 1) We can define the elimination operator for the
unit type as follows: for ¢ of type [*/2]C,

u[llz:1.C)(c) =4 A[l1z:1.Clz.c: 12:1.C

It is easy to verify that u has the following properties (7.e., the following are derivable
rules):

I'z1F C type TtFe:[x/2]C 'k f:z1.C
['Fu(e)(x) =c:[x/2]C I'k f=u(f(x)): Oz1.C

5.4 Disjoint sum
The rules for disjoint sum types are given in Figure 5.
Remark Note that there is no way to express in a pure equational language that any

object of a disjoint sum type is either equal to i(a) for some a or equal to j(b) for some

b. But we have a (weaker) fact that the proposition

Vz: A+ B. (3z:A.z=4,p1(z) VIy:B.2 =2,5 J(¥))

6

] '+ A type I'F B type rrA=A"'+B=H
formation T+ A+ B type F}-A+B=AI+31
)) Tha:A Tha=ad':4
introduction TriA+Bl(a): A+ B TFi(e)=i(a):A+B
'rb:B T+b=0b'":B
I'tjlA+B](®): A+ B T'Fjk)=j):A+B
T'td:z:Alfi(z)/2C I'Fd=d :Mz:Ali(z)/zC
elimination Tt e: My:B.li(y)/z]C T'tke=¢ :My:B.li(y)/z]C
T I case[llz:A + B.C](d,e) : I12:A + B.C '+ case(d, e) = case(d,e') : [1z:4 + B.C
. TrFa:A T,z2A+ BFC type I't+d:MIz:Alli(z)/z]C T\ e:IIy:B.[j(y)/2C
computation T + case(d, ¢)(i(a)) = d(a) : [i(a)/2]C
TFb:B IzA+ BFC type 'k d:z:Alfi(z)/2]C T e :y:B.i(y)/z]C
T+ case(d, e)(§(b)) = e(b) : i(6)/2IC
filling-up TF f = case(re.7(i(2)), \0- 7 ((3))) : 1z:A + B.C
Figure 5: Rules for disjoint sum types.
formation elimination filling-up
I'+0)type [k z:0.C]: Nz:0.C 'k f=¢:0z:0.C

Figure 6: Rules for the empty type.

is provable without using the filling-up rules, where =4, p is the propositional (Leibniz’s)
equality.
5.4.1 finite types

Non-empty finite types can be defined by means of the unit type and the disjoint sum.
The finite types N, (n > 0) can be defined as

Ni=41 Nopr=altN,
with the n canonical objects of N, being defined by means of %, 1 and j.

5.5 The empty type

The rules for the empty type @ are given in Figure 6. Note that there is no introduction
rule for it and the filling-up rule gives the uniqueness of functions with the empty type
as domain.

] T'F A type TI',z:A B type TtrA=A T's::A+B=B'
formation TF WzAB type TF WoAB = Wzid B
'ta:A Tta=da :A
introduction Ftb:[a/z]B — Wz:A.B Trb="b:[afc]B— Wz:A.B
T+ sup[Wz:A.B](a,b) : Wz:A.B I + sup(a,b) = sup(a’,b’) : Wz:4A.B
L 'k e: He:Ally:(B — Waz:A.B). (TTv:B.[yv/z]C) — [sup(z,y)/z]C
elimination T F rec[llz:(Wz:A.B).Cl(e) : [1z:(W=z:A.B).C

TFe=¢ :z:Ally:(B — Wz:A.B). (ITv:B.[yv/2]C) — [sup(z,y)/z]C
'k rec(e) = rec(e’) : lz:(Wz:4.B).C
F'ra:A I'tb:la/c]B— Wz:A.B T',22Wa:A.B + C type
Tk e: Hz:Ally:(B — Wz:A.B). (IIv:B.[yv/2]C) — [sup(z,vy)/z]C
T + rec(e)(sup(a, b)) = e(a, b,rec(e) o b) : [sup(e,b)/=]C

computation

filling-up 't c =sup(s,é) : Wz:A.B

Figure 7: Rules for W-types.

5.6 Well-ordering (W-types)

W-types [ML84] can be used to define many useful inductive data types. The rules for
W -types are given in Figure 7, where, in the filling-up rule,

€ =4 rec(AzAyrz.z)(c) & =4 rec(AzAyArz.y)(c)

Note that, for ¢ = sup(a,b), we have ¢ = a and é = b.
Note that, for any f of type llz:(Wz:A.B).C, we have

f =rec(f o sup)

where sup =4 AzAyAz.sup(z,y). Also note that the following proposition is provable
without using the filling-up rules:

Vz:(Wx:A.B). 2 =wy,.4.p sup(z, %)

Various inductive data types (and parameterized ones) can be defined as W-types,
especially with the help of universes. (See section 7.) A remark is that this is possible
only because we have the filling-up rules for various type constructors.

6 Predicative Universes

A universe is a type each of whose objects is a name of some type. Usually, we intro-
duce a universe to reflect the types which have already been defined, in any stage of
the development of the theory; in other words, the universe contains the names of the

¢ TF0:Type TFTo(®) =0
1 TF1:Typeo TFTo(l) =1
I'ka:Type; T'Fb:Type; F'ta:Type; Tk b:Type;
+ TFa@:b: Type; T F Ti(a @ b) = Te(a) + T:(b)
T'ta:Type; T,z:Ti(a)F b: Type; T'Fa:Type; T,2:Ti(a) Fb: Type;
@ T+ ¢iz:a.b: Type; I' + Ti(¢iz:a.b) = ®z:T;(a).T;(b)
Type: T F type; : Typeit 't Tig1(types) = Type;
I'ta:Type; I'ka:Type;
T L'k tigi(a) : Typeisr Tt Ti1(tig1{a)) = Ti(a)
Prop T b prop : Typeo '+ To(prop) = Prop
'+ P:Prop I'+-P: Prop
Pri T F to(P) : Typeo T F To(bo(P)) = Pri(P)

Figure 8: Universe introduction and reflection rules (®/¢; for I/x;, £/o; and W/w;).

types defined in an earlier stage. Introducing such a universe is predicative in the sense
that only the existing types are reflected, but not types which are introduced after the
universe; in particular, the universe does not reflect itself — it does not contain a name
for itself. After introducing a universe, we can then add another (stronger) universe to
reflect the defined types, including the previous universe. This development can continue
to introduce infinite many universes, as we show below.

We introduce predicative universes T'ype; (i € w), which have the following formation

rules:
't a: Type; I'Fa=d:Type;

't T;(a) type '+ Ti(a) = Ti(a’)

The introduction and reflection rules are given in Figure 8, to which we should also

I' F Type; type

add the following introduction rules for object equality:

F'ta=a :Type; THb=V:Type; IF'Fa=ad:Type; T,2:Ti(a)Fb=1Y :Type;

F'Fad;b=a &; b : Type; Tk ¢;z:0.b = ¢;z:0’.0 : Type;

I'ta=a:Type; 'FP=P:Prop
T'Ftip(a) = tipi(a’) : Typeys I'Fto(P) = to(P") : Typeo
We may also include the following reflection rules which have the effect that type equal-

ities are also reflected by universes (and the names of types are unique):

Cta:Type; TFb:Type;
LFti(a®;b) =t1(a) @i i41(0) : Typesy

T'Fa:Type; T,2:Ti(a)F b:Type;
'+ t,-+1(¢,-:1::a.b) = ¢¢+1x:t;+1(a).t;+1(b) : Type,-ﬂ

Remark The system is supposed to be open (c.f., Martin-Lof’s type theory). That is,
new types (and new type constructors) can be added to the system when it is needed.
This is one of the reasons® that we have not included universe elimination rules which
would impose the principle of primitive recursion on universes and essentially make the
universes closed (e.g., to extend the system, one would have to modify the universe elimi-
nation rules). The reflection principle by predicative universes provides a powerful tool
to do abstract reasoning and program development and is enough in practice, especially
when typical ambiguity is implemented in proof development systems like Lego (c.f.,
[Pol90)).

7 Inductive Data Types via. W-types

W -types in the theory can be used to define various inductive data types. A key obser-
vation is that the filling-up rules are necessary (and sufficient) for W-types to represent
data types faithfully. In other words, it is not necessary to have an extensional proposi-
tional equality (c.f., [ML84]) for W-types to serve as a mechanism for defining inductive
data types. This is the main motivation to introduce filling-up equality rules in the
theory. We give several simple examples to explain this.

Example (the type of natural numbers) The type of natural numbers can be defined
as
N =df W(I::AN.BN
with
Ay=1+1 and By = Ti(case(u(d),u(l))(z))
where) and 1 are the names of the empty type and the unit type, respectively. The
canonical natural numbers are defined as

0 =4 sup(i(*),€) and suce(n) =4 sup(j(*),u(n))

Note that, by the filling-up rules for the unit type and the empty type, any natural
number (an object of type V) of the form sup(i(a), f) is equal to 0.

Now, we use the elimination operator rec for W-types to define an elimination op-
erator recy which should satisfy the following elimination rule:

I,m:NFCtype I'kFec:[0/n]C TF f:On:N. C — [suce(n)/n]C
I'Frecy(e, f) : In:N.C

3 Another reason is more technical, that is, primitive recursion over universes is logically inconsistent
with the rules that reflect type equalities.

10

and the equalities recy(c, f)(0) = ¢ and recy(c, f)(succe(n)) = f(n,recy(c, f)(n)).
recy is defined as follows:

recy(c, f) =4 rec(f’)
where

f' = case(u(Ayrz.c), u(Ayrz. f(y(x), 2(x)))))
Note that, for rec(f’) to have the correct type (that is, IIn:N.C), f' must be of type

Mz:AxIly:By — Nlz:(Ilv: By.[y(v)/n]C). [sup(z, y)/n|C

This is the case because of the filling-up rules for the empty type, the unit type and the
II-types. To see this, we only have to notice that u(AyAz.c) is of type

Mz':10y:) — Nz:(Mv:0.[y(v)/n]C). [0/n]C

Mz'":110y:0 — N z:(IIv:0.[y(v)/n]C). [sup(i(), €)/n]C

= Mz":10y:0 — Nz:(v:0.[y(v)/n]C). [sup(i(z’), y)/n]C

= Iey((+)/2)By) » NLe:(Iox([i(2)/2]Bx).[y(0)/n]C). [sup(i(e'),)/nlC
= Mz':1. [i(z")/z]y:By — Nlz:(Ilv:By.[y(v)/n]C). [sup(z,y)/n]C

and u(AyAz. f(y(*), z(x))) is of type
My":1HMy:1 — Nz:(Iv:1.[y(v)/n]C). [succ(y(*))/n]C
= Iy':1ly:1 — Nz:(Tv:1.[y(v)/=]C). [sup((*), u(y()))/n|C
= Iy':10y:1 — Nlz:(lv:1.[y(v)/n]C). [sup(i(y"), y)/nlC
= Iy"10y:([i(y)/2]Bw) — Nz:(Tv:([i(y')/2]Bw)-[y(v)/n]C). [sup(i(y'), y)/n]C
= My'":1 [j(v")/z]y: By — N z:(Tlv:By.[y(v)/n]C). [sup(z, y)/n]C

It is easy to verify that recy satisfies the required equalities.

Other data types can be defined in a similar way. For example, the type of lists of

natural numbers can be defined as follows:
List(N) =4t W2 Apisen)-BLiss(vy

with Azisuvy = 14 N and Bri,vy = To(case(u(d), u(1))(z)). The ‘canonical’ objects

of List(N) are defined as nil =4 sup(i(*), €) and cons(n,l) =4 sup(j(n),u(l)), and the

elimination operator as, for ¢ : [nil/I]C and f : In:NIl:List(N). C — [cons(n,1)/I]C,
recList(N)(C, f) =a rec(case(u(AyAz.c), AnAyAz. f(n, y(+), 2(*))))

which is of type IIl:List(N).C (we need the same filling-up rules as those used for N to
verify this) and satisfies the equalities recy;,vy(c, f)(nil) = c and recyi, (¢, f)(cons(n, 1)) =

f(na l’ recList(N)(ca f)(l))

11

As another example, the type of binary trees with nodes labeled by natural numbers

can be defined as:

BT(N) =4 Wa:Aprn)-Berv)
with Apr(vy = 1+ N and Bgry) = To(case(u(d), u(1® 1))(z)). The ‘canonical’ ob-
jects of type BT(N) are defined as empty =4 sup(i(), €) and mk(n, t;,t3) =4 sup(j(n),
case(u(t,),u(t;))), and the elimination operator as, for ¢ : [empty/t]C and
f :Mn:NTIty, t: BT(N). [t1/1)C — [t3/1]C — [mk(n,ty,15)/t]C,

recBT(N)(C, f) =4 rec(case(u(AyAz.c), AnAyAz. f(n, y(i(*)), y(3(*)), #(i(+)), 2(3(+)))))

which has type II#:BT(N).C. To verify this last fact, we need thr filling-up rule for
disjoint union types as well as those used for N and List(N). The elimination operator
satisfies the equalities recpyn(c, f)(empty) = ¢ and recprw)(c, f)(mk(n,t1,1,)) =
f(n, 11,12, recgrvy(c, £)(11), recsrny(c, f)(t2))-

Parameterized inductive data types can also be defined by means of universes. For

example, for any universe U, we can define
listy =4 Aa:U. wz:(1 & a).case(u(f),u(1))(z)

Then, we have Ty (listy(a)) = List(Ty(a)), fora: U.

8 Subtyping

There is another relationship between types, called cumulativity or subtyping. For types
A and B, A < B means that every object of type A is also of type B. We consider
subtyping as a partial order between types modulo type equality. Instead of introducing
= directly, we introduce the relation <, the proper subtyping; Intuitively, A < B means
that every object of type A is also of type B, but A and B are not equal. So, we may
consider judgements of the form

'-rA<B

We adopt a similar convention that, to derive the above judgement, I' - A type and
'+ B type must have been derived.

8.1 Subtyping: the general rules

< is transitive modulo to type equality; so we have the following rules.

I'FA=B TI'FB<C I'FC=D r'FA<BTFB=<C
A<D rFA<C

The intuitive semantics of subtyping is reflected by the following rules, which are anal-

ogous to the equality typing rules:

I'+ra:ATHA<B Tta=d:ATHA<B
I'a:B 'tra=a:B

12

TrFA=A T,o:A+B< B’

I T IzAB < HzA B’

FFA<A I'owA+B=8' TFA=A" I'o:A+-B<B'
B Tk Sz:4A.B < Zz:A'.B' T+ Sz:A.B < Sz:A'.B’
r'rA<A '+B=5B 'rA=4A" '+B< B’

+ TFA+B<A +B TFrA+B<A +B
TFA<A T,2:A+rB=B'

w T WoAB < WaiA'.B'

Figure 9: Subtyping rules for type constructors.

With < given, we can introduce < by the following rules.

'-A=B1H 'A< B
'-rA<B 'A<B

Remark One might also postulate an antisymmetry rule saying that A= Bif A< B
and B < A. However, we take the above two rules as the only rules which can derive a
Yudgement’ of the form I' - A < B.

8.2 Subtyping rules for type constructors

We have further formation rules for some of the type constructors which tell us how the
types constructed by the constructor are related by subtyping. The rules for II, X, +
and W are given in Figure 9.
One may also consider to add the following subtyping rules for Il and W, respectively:
'FA' <A T,2:AAFB=FH 'FA=A" I'z:AFB'< B
I'FHz:A.B < llz:A". B’ '-Wz:A.B < Wzx:A'.B'

which makes the subtyping contravariant for II and W.

8.3 Cumulativity induced by universe inclusions

Subtyping is often desirable in practice. They give good intuitions and simpler and
more concise expressions. A good example in this aspect is to use subtyping to consider
universe inclusions. For example, the lifting operators t; can be removed by assuming
that T'ype; is included in T'ype;,; and Prop is included in T'ype,. However, if one simply
removed t; in the rules in the last section, the resulting rules would not capture our
intuition very well; they have a problem that the inclusions between universes do not
propagate properly to the types constructed by some type constructors. For example, it

is easy to show (by induction on derivations) that
f:Typeo — Typey lf f : Typeo — Type,

13

Such a problem disappears if we use subtyping rules to express the universe inclusions,
since the subtyping rules for type constructors play the role of subtyping propagation.
We have the following introduction rules for inclusions between (predicative) universes,
where ¢ € w:
I'ta:Type;
I'+ Type; < Type;q [+ T;yi(a) = Ti(a)

Lifting propositions and reflecting the proof types, we have rules

I'P: Prop
I'F Prop < Type, ['+Ty(P) = Prf(P)

Of course, with these rules, the rules for reflecting T; and Prf should be removed.

References

[CH88] Th. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76(2/3), 1988.

[Coq89] Th. Coquand. Metamathematical investigations of a calculus of constructions.

manuscript, 1989.

[Luo89] Zhaohui Luo. ECC, an extended calculus of constructions. In Proc. of the
Fourth Ann. Symp. on Logic in Computer Science, Asilomar, California, U.S.A.,
June 1989.

[Luo90] Zhaohui Luo. An Eztended Calculus of Constructions. PhD thesis, University of
Edinburgh, 1990. Also as Report CST-65-90/ECS-LFCS-90-118, Department
of Computer Science, University of Edinburgh.

[ML75] Per Martin-L6f. An intuitionistic theory of types: predicative part. In H.Rose
and J.C.Shepherdson, editors, Logic Colloguium’73, 1975.

[ML84] Per Martin-L6f. Intuitionistic Type Theory. Bibliopolis, 1984.

[NPS90] B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-Lof’s Type
Theory: an introduction. Oxford University Press, 1990.

[Pol90] R. Pollack. Implicit syntax. In the preliminary Proceedings of the 1st Workshop
on Logical Frameworks, 1990.

14

A A Formulation in Martin-Lof’s framework

The following gives a formulation of the type system described in section 2 to section 6 in
Martin-L6f’s framework [NPS90]. We shall use Type instead of Set as used in [NPS90].
We also omit the lifting operator El to simply write A for EI(A).

A.1 The impredicative universe

Introduction of constants:

Prop : Type
Prf : (Prop)Type
Y : (A:Type)((A)Prop)Prop
A : (A:Type)(P:(A)Prop)((z:A)Prf(P(z)))Prf(V(A, P))
App : (A:Type)(P:(A)Prop)(Prf(V(A, P)))(a:A)Prf(P(a))

Assertion of equalities:

For A:Type, P:(A)Prop, f:(z:A)Prf(P(z)) and a:A,
App(A, P,A(A, P, f),a) = fla): Prf(P(a))
For A:Type, P:(A)Prop, p:Prf(V(A4, P)),

p=A(A, P,(z)App(A4, P,p,z)) : Prf(V(A, P))

A.2 Product types (II-types)

Introduction of constants:

I : (A:Type)((A)Type)Type
A : (A:Type)(B:(A)Type)((z:4)B(z))(4, B)
app : (A:Type)(B:(4)Type)(1l(A, B))(a:A)B(a)

Assertion of equalities:

15

For A:Type, B:(A)Type, f:(2:A)B(z) and a:4,
app(4, B,A(4, B, f),a) = f(a) : B(a)
For A:Type, B:(A)Type, f:1I(A, B),

f = XMA4, B,(z)app(4, B, f,z)) : I(A, B)

A.3 Strong sum (X-types)

Introduction of constants:

¥ : (A:Type)((A)Type)Type

P : (A:Type)(B:(A)Type)(z:4)(B(z))Z(4, B)

E : (A:Type)(B:(A)Type)(C:(3(4, B))Type)
((z:4)(y:B(2))C(p(4, B, ,y)))(z:X(4, B))C(2)

Assertion of equalities:

For A:Type, B:(A)Type, C:(%(A, B))Type, f:(z:A)(y:B(z))C(p(4, B,z,y)), a:A and
b:B(a),
E(A, B,C, f,p(A, B,a,b)) = f(a,b) : C(p(4, B, a,b))

For A:Type, B:(A)Type and c:X(A, B),
¢ = p(4, B,7(e),(9)) : B(x(c))

where w(c) = E(A, B,(2)A,(z)(y)z,c) and 7'(c) = E(A, B, (z)B(7(c)),(z)(y)y,), for
notational simplicity.

A.4 The unit type

Introduction of constants:

1 : Type

16

Assertion of equalities:

For a:1,

A.5 Disjoint sum

Introduction of constants:

+ : (Type)(Type)Type
i : (A,B:Type)(A)+ (4, B)
Jj : (A,B:Type)(B)+ (4, B)
case : (A,B:Type)(C:(+(A4, B))Type)
(2:A)CG(A, B,2))(5:B)CG(A, B,u))(= + (4, BYC(2)

Assertion of equalities:

For A, B:Type, C:(+(4, B))Type, f:(z:A)C(i(4, B,z)), 9:(y:B)C(3(4, B,y)), a:A and
b:B,
case(A, B,C, f,9,i(A,B,a)) = f(a) : C(i(4, B, a))

case(A, Ba 07 f7 gaj(Aa B, b)) = g(b) : C(j(A) B, b))
For A, B:Type, C:(+(4, B))Type, f:(z + (4, B))C(2),

[= case(Aa B,C, (:l:)f(i(A, B, :B)), (Zl)f(j(A, B, y))) (2 + (4, B))C(Z)

A.6 The empty type

Introduction of constants:

® : Type
e : (C:(0)Type)(2:0)C(2)

17

Assertion of equalities:

For C:(§)Type and f:(z:0)C(z),

F=¢€C): (z0)C(2)

A.7 Well-ordering (W-types)

Introduction of constants:

W : (A:Type)((A)Type)Type
sup : (A:Type)(B:(A)Type)(a::A)((B(x))W(A, B))W(A, B)
rec : (A:Type)(B:(A)Type)(C:(W(A,B))Type)
(@A) (:(B@)W (4, B))((0:B(2))C(y(0)))C(sup(4, B, ,1)))
(W (A, B))C(z)

Assertion of equalities:

For A:Type, B:(A)Type, C:W(A,B))Type, a4, b(B(a))W(A,B), and
fi(2:A)(y:(B(2))W (4, B))((v:B(2))C(y(v)))C(sup(4, B, 2, 9)),

rec(A, B, C, f,sup(4, B, a,b)) = f(a,b,(v)rec(4, B,C, f,b(v))) : C(sup(4, B, a, b))
For A:Type, B:(A)Type and c:W (A4, B),
c=sup(4, B,) : W(A, B)

where ¢ = rec(A, B, (2)A, (z)(y)(v)z,c) and é = rec(A, B, (2)(B(e))W (4, B), (z)(y)(v)y,¢),
for notational simplicity.

A.8 Predicative universes

In the following, ¢ € w and ¢; € {m;, 0;, w;}.

18

Introduction of constants:
Type; : Type
T; : (Type;)Type
0 : Typeg
1 : Typegy
®; : (Type;)(Type:)Type;
¢+ (z:Type;)((Ti(2))Type;)Type;
type; : Typeiy,
tiyr : (Types)Typeiys
prop : Typey
to : (Prop)Typey

Assertion of equalities:

To(@) =0
To(l)=1
For a, b:Type;,
T:(®i(e,)) = +(Ti(a), Ti(b))
For a:Type; and b:(T;(a))Type;,
Ti(¢i(a, b)) = &(T;(a), (2)Ti(b(<)))

where ® = II, X, W for ¢; = 7, 0;, w;, respectively.

T 11 (type;) = Type;
For a:Type;,
Tit1(tis1(a)) = Ti(a)
To(prop) = Prop

For P:Prop,
Ty(to(P)) = Pr(P)
For a, b:Type;,
ti11(8i(a,0)) = Big1(tiya(a), tiya(0) : Type;is
For a:Type; and b:(T;(a))Type;,

tiy1(di(@,0)) = i1 (tiga(a), (2)tiga(6(2))) : Typeiys

19

