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Abstract

This paper extends the theory of proof nets from Multiplicative Linear Logic to Multiplica-
tive and Additive Linear Logic, by removing the additive boxes. This yields uniqueness
of normal form for that fragment and a classification of permutability of inferences in the
calculus of sequents for classical Linear Logic. '



2

0. Introduction.

‘A mathematical proof must be perspicuous’. Only a structure whose reproduction
15 an easy task is called a ‘proof’. (Wittgenstein) )

This paper studies the general proof theory of linear logic and direct logic, resource-
aware systems that restrict the iterated use of assumptions in proofs.! More specifically,
it contributes to the theory of proof nets, developed by J-Y. Girard, and offers a solution
to the technical problem of additive bozes. More generally, it aims at the following goals:

(I) a simple and convincing ezplanation of proof nets, as a multiple conclusion natural
deduction system for linear logic;

(I) @ formalism for linear logic enjoying uniqueness of the normal form.

Historical remark. The study of proof nets for classical linear logic is rooted in the tradi-
tion of Gentzen and Prawitz in an obvious and important way. Prawitz [1965] provides a
definitive treatment of Gentzen’s natural deduction systems, at least for intuitionistic logic.
Prawitz [1971] gives a strong normalization theorem for second order logic and highlights
the significance of normalization theorems by presenting the following conjecture:

Two formal derivations represent the same proof if and only if they reduce to the same
normal form.

Gentzen and Prawitz’s natural deduction for intuitionistic logic enjoys uniqueness of the
normal form, modulo permutations of the V- and 3-eliminations with other inferences. A
many-one map from sequent calculus derivations to natural deduction derivations is defined
in the fragment without V and 3 and several efforts have been made to generalize such
results (e.g., Zucker [1974], Pottinger [1977], Ungar [1987]). It appears that a multiple
conclusion natural deduction system is needed in classical logic, where a deduction A - B
is regarded as essentially the same as a deduction of =B F —~A. Now proof nets appear as
a significant breakthrough in the definition of such systems.

Less well known are the connections between proof nets and proof-search algorithms
in the matriz-methods, which have been pursued D. Prawitz [1970], Bibel [1981] , P. An-
drews [1981], Ketonen and Weyhrauch [1984], L. A. Wallen [1989]. In particular,
Ketonen and Weyhrauch introduced direct logic, a Contraction-free system in which Weak-
ening is unrestricted, i.e., deductive resourced can be wasted but never reused. The logical
connectives have an intensional interpretation, according to the terminology of relevance
logic. A decision procedure for direct logic is described in Ketonen and Weyhrauch [1984]
and implemented in the proof-checker EKL at the Stanford Artificial Intelligence Labora-
tory; the notion of a proof net is implicitly contained in that procedure (for corrections,
comments and descriptions of the implementation see Bellin and Ketonen [19897] ).

! I wish to express my gratitude to my teachers S. Feferman, J. Ketonen and G. Kreisel.
Thanks also to J-Y. Girard for interesting and challenging conversations.
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The beginning and first development of linear logic is documented in the fundamental
paper Girard [1987]. The distinction is made between multiplicative and additive con-
nectives (corresponding to the intensional and eztensional connectives of relevance logic)
and the ezponential operators, the main innovation of the system, are introduced. For
a broad explanation of the meaning and the purpose of linear logic, see Girard [1989].
In Girard [1987] a concise language is introduced, and an efficient calculus of sequents’
for linear logic 15 presented. Also the notion of a proof net is introduced (section 1, pp.
28-47) for the multiplicative fragment (without propositional constants) of linear logic and
extended to the whole system by the device bozes. A map is given from sequent calculus
derivations to proof nets, which is proved to be onto (sequentialization theorem). A strong

normalization theorem is proved for proof nets and the notion of a slicing of the bozes is
described, which is Church-Rosser.

A proof structure is a set of formula occurrences connected by certain relations (links).
Proof nets are the proof structures that represent correct linear proofs: they are charac-
terized by certain consistency conditions on the structure as a whole. In Ketonen and
Weyhrauch [1984] the global condition is acyclicity, where a cycle is defined as a chain of
conjunctive subformulas satisfying certain properties. In Girard [1987] an interesting kind
of algebraic invariant is introduced for the multiplicative fragment without propositional
constants, the no short trip restriction (ibid., pp.30-41). The condition presented in Danos
and Regnier [1989] appears to be related to that of Ketonen and Weyhrauch. Ketonen
and Weyhrauch’s condition appears also in Abramsky [1991], where an interesting type-
theoretic interpretation is given, essentially focused on the dynamics of computation, i.e.,
on cut elimination. Boxes are retained in Abramsky [1991] as appropriate to characterize
lazy evaluations.

In Girard [1987] boxes are introduced in correspondence with the propositional con-
stants L and T, the additive conjunction N, the universal quantifier V, with the exponential
! and the (restricted) weakening rule. Then the task is set of removing these boxes (see
especially op.cit. section 7, pp. 93-97). A method is outlined for the solution of the prob-
lem by slicing boxes; the contraction steps for the normalization of slices are given. Thus
the problem is whether slices are a viable representation of linear derivations: ‘Each slice
is in itself logically incorrect, but it is expected that the total family of slices has a logical
meaning. However, there is no characterization of sets of slices which are the slices of a
proof-net.” ibidem, p. 95.

Carrying this program on, Girard [1987a] and [1991] achieve the elimination of ¥
boxes.

Remarks. (¢) The global verification of consistency conditions is a feature of natural
deduction systems, in contrast with sequent calculi, where correctness of local links and
global consistency are verified locally. The restriction on eigenvariables is an example in
Gentzen and Prawitz’s natural deduction. In our presentation we will make the global
constraints explicit as much as possible.

(21) Systems of sequent calculi and of natural deduction can be regarded as formalisms
in their own right. In this case it is debatable whether the calculus of proof nets is a
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perspicuous method of proof, if the verification of any of the present consistency conditions
is part of the formal representation of the deductive process (it would seem that the ‘no
short trip’ condition is less perspicuous than the acyclicity condition). Alternatively, a
proof net can be regarded as the result of an inductive inferential process, as formalized
in a sequent calculus derivation. Hence a proof net would always be given together with
some derivation in the calculis of sequents (or other global inductive process). This view
is indeed suggested by Girard’s remark that the soundness condition is only ‘an abstract
notion (just like, say, semantical soundness), whose importance lies in its relation to linear
sequent calculus’ (Girard [1987], p.33).

(222) It is possible to abstract from Girard’s proofs some consistency conditions in terms of
properties of the subnets (or empires) in a proof net. The justification of such conditions
is particularly natural, as they correspond to elementary properties of inductively defined
structures, and the presentation of the Sequentialization Theorem is improved. Still, it is
convenient to use other conditions in the proof of the Cut Elimination Theorem.

A consistency condition defining proof nets must highlight some interesting feature of
inductively generated structures, and in particular, of their behavior under cut elimination.
The proposal of alternative conditions should therefore be welcome.

(2v) A proof structure with boxes represents a logical deduction as a collection of separate
structures, in a certain ordering. On the other hand, the fact that the computation of
correctness of a multiplicative structure can be done with large degree of parallelism has
been regarded as very promising and significant feature of the new calculus (cf. Girard
[1986]). It would seem interesting from the point of view of parallelism to eliminate
boxes and to replace them with more flexible forms of synchronization between different
processes of computation.

(v) The elimination of boxes is also a main step towards a representation of deductions
where normal forms are unigue. To this purpose, we must eliminate commutative reduc-
tions (familiar in connection with the V- and J-elimination rules in natural deduction).
More generally, we must find a representation of proofs such that two derivations that
differ only in the following sequence of inferences are mapped to the same structure:

FC,T A +HC,T,B

FA,D FC,IANB
FAD®C,T,ANB (N/®)

FADFCT, A FADFC,T,B
FA,DRC,T,A FA,DRC,T',B
FA,DQC,I'ANB (®/M)

(vi) In a M box the conclusions of two structures S’ and S” are ‘identified’ in some sense;
because of commutative reductions, several choices may be possible for such an identifica-
tion. When slicing a ' box we must retain the identifications within the resulting family of
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slices in some form. Now it seems that the most elegant solution is a representation where
all correct choices are open, and only the possibility of some identification is required for
logical correctness.

(viz) The L boxes confront us with the ‘disturbances’ caused by irrelevance on the geo-
metric symmetries of proof structures. A L symbol introduced by the L rule

3

A
FD,L

bears no relevant connection to the occurrences in T’ (or to the axioms above them in the
derivation). A box for L should be sliced into a disconnected configuration of the form

S

1
r

However, the presence of a L symbol in a proof structure is justified by its ‘attachement’
to some subtructure which contains proper axioms among its topmost formulas. Unlike
in direct logic, (cf. Ketonen and Weyhrauch [1984], Bellin and Ketonen [19897] ), such
attachments create new connections that must be compatible with the global consistency
conditions of multiplicative proof nets. To represent such attachments as ordinary links
is unsatisfactory, since such links represent an undesirable modification of meaning: they
exhibit a ‘relevant connection’ where there is none. The most satisfactory solution would
be to use slices, and leave all correct attachments open, but also to make the computation
of slices as multiplicative structures possible, by representing attachments is some way.
(An alternative approach has been considered in Solitro {1990], that reduces the L boxes
to the ! boxes and the T axiom.)

(viiz) A similar discussion applies to T axiom
FT, X, X
The T box is sliced as a disconnected configuration
T X;...X,.

The main difference is due to the meaning of T (expressed in the property of its dual:
0 ~o A, ez falso quodlibet). Indeed T acts like an ‘eraser’: a derivation of the form

FT,T,C D, A
FT,I,C®D,A

reduces to

FT,I,CQ® D, A.
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The above property represents garbage collection (cf. section 3.5.). It can also be described
as propagation of irrelevance: if one (multiplicative) conjunct is irrelevant in a proof then
the other also may be regarded as irrelevant. When a T box is sliced into a disconnected
set of occurrences, a formula occurrence in a slice is said to be irrelevant if there is no axiom
above it. Propagation of irrelevance is implicit in the definition of path by Ketonen and
Weyhrauch [1984] in the context of a search procedure for cut-free proofs in direct logié
(cf. remark (ii) in section 2.3.); it is used to improve the efficiency of the Proof Checker
EKL, based on direct logic. The issue becomes more problematic in linear logic (‘we are
forced to make bricolage on such details’, Girard [1987], p. 95), where the distinction
between | and O is introduced and propagation of irrelevance is considered an explicit
rule of contraction (zero commutation).

(iz) We will not consider the problem of eliminating ! boxes.

(z) We propose to slice an additive proof structure into parts (guasi structures) such that
the multiplicative conditions can still be tested within each of them.

Linear logic is mostly concerned with the computational aspects of reasoning, but is
also of significance to the study of parallelism (cf. Girard [1986], Asperti [1987], Marti-
Oliet and Meseguer [1989], Brown [1989], Gehlot and Gunter [1990]). A motivation for
our work is to extend some syntactical features of the multiplicative fragment that seem
relevant for. parallelism to the additive fragment as far as possible.

A strong normalization result for first order linear logic, with some form of Church-
Rosser property, could be transfered to classical logic; this may improve our understanding
of a well-known problem of general proof theory (cf. Gandy [1980]).

In this paper we will not consider applications of the theory of proof nets as such. In
Bellin [1990] and [1990a] proof nets are used for proof-transformations — applied there
to the Infinite Ramsey Theorem.

1. Preliminaries.

We refer the reader to Girard [1989] for a broad explanation of the meaning and the
purpose of linear logic. In particular, the motivations of the syntax and the terminology
are presented there.

1.1. Language.

The following fragments of classical linear logic LL are considered:
MLL™: multiplicative linear logic without rules for propositional constants;
MLL: multiplicative linear logic with rules for propositional constants;
MALL™: multiplicative and additive linear logic without rules for propositional constants;

MALL: multiplicative and additive linear logic with rules for propositional constants.
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The above system are considered in the propositional and first order cases. NCMLL ™,
NCMLL, NCMALL™, NCMALL are the (cyclic) noncommutative corresponding sys-
tems, also considered in the propositional and first order cases.

The language for the propositional systems MLL and NCMLL of Commutative and
Noncommutative Multiplicative Linear Logic contain the propositional constants 1, L, the,
unary connective ( ) (linear negation), the binary connectives @ (times) and Ul (par). The
following axioms hold in both logics:

Att =4, 1t=1, 1t =1
In MLL we have
(A@ By =AtuB* (AuB)t=4'gB*
and in NCMLL we have
(A®@B)Y* =B+*u4t (AuB)*=Btg4at

The systems MALL and NCMALL extend the previous fragments to Additive linear
logic: there are new logical constants T and 0, new connectives M (with) and @ (plus),
satisfying

and moreover

(ANBY*=4AteB* (AeB)=4'nBt.
The fragments MLL™ and MALL™ have the same language as MLL and MALL, re-

spectively, but no axioms or rules for the propositional constants 1, 1, T and O.
The languages for the first order systems MLL, NCMLL, MALL, NCMALL are
defined as expected, using the quantifiers A (every) and \/ (some). We have the axioms

Az =Vzah) (24t = \z(ab).

The above axioms allow us to reduce the scope of linear negation: henceforth in our syntax
linear negation will be applied only to atomic formulas.

The language for the full system LL of (classical) linear logic contains in addition
the propositional operators ! (of course/) and ? (why not?), called ezponentials (or
modalities).

1.2. Sequent Calculus.

We list the rules of inference of the calculus of sequents for linear logic (Girard [1987])
and for direct logic (Ketonen and Weyhrauch [1984]), for convenience of the reader.
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Sequent Calculus for LL.

Logical Azioms: F AJ‘,A

FT,A FAL A

‘C'u,t Rule: FT.A
Exchange Rules:
Non Commautative Commutative
FBT,A FT,B,AA
A BT FT,A,B,A
. FT
1 A:z:wm. I‘ 1 iR Rule FTI
FT,A FB,A ) FT,A,B
T Azioms: FT, X, X forp>0
FT A FT,B FT,A;
: 2 ’ : —" _ fori= 1
M Rule FTANB @ Rule FT.4, 6 4, or 2 =0 or
. FT,A . FT, L . FI,7A,7A
Dereliction: FT.74 Weakening: FT.74 Contraction.: m——
F?LA
! R'LLZC.' '*:‘?m‘

where ?I" consists only of formulas of the form ?C or L.

Sequent Calculi for Direct Logic: The system of sequent calculus for the logic DL
consists of the rules for MLL ™, namely Logical Axioms and rules for multiplicative con-
Junction and disjunction, and also on the rule of Mingle; the calculus of sequents for DL
has the rules for MLL ™, and in addition unrestricted Weakening.

Mingle Weakening
FT A FT

FT.A FT,A



1.3. Links and Proof Structures.

A link is a m + n-ary relation between formula occurrences. For each link if X Toe - o
Xn+n are in the link, then X3, ..., X,, are called the premises and Xm+1y - -+, Xmtn are
called the conclusions of the link. If m = 0, the link is an aziom link. Links are graphically,
represented as follows. The logical azioms and the 1 azioms are

P, pPL 1.
The Cut, ®-, U- @-, A- and \/-links are

x xt X Y XY X Y X(a) X(t)
XY XuYy XY XY Nz.X Vz.X

respectively. A variable a occurring in the premise of a A link is called eigenvariable, or
parameter, with the convention that each eigenvariable is associated with one and only one
A link. Logical and 1 axioms, Cut, ®- and U- links are multiplicative links; the T axiom
and the @-link are additive. The first order links A and \/ should also be regarded as
additive (but we will not consider here the issue of multiplicative quantifiers).

When considering the exponentials, we add the links for ?, i.e., Dereliction, Weakening
and Contraction:

A L 7TA 74
A 74 74
A proof structure S for [first order] MLL™ consists of

(i) a nonempty set of formula-occurrences (i.e., a multiset of formulas) together with

(ii) a set of logical azioms and multiplicative links [and first order links], satisfying the
properties

(1) every formula-occurrence in S is the conclusion of one and only one link;

(2) every formula-occurrence in S is the premise of at most one link;

(3) an axiom link X,,..., X, is identified with Xo(1)s-++>Xo(n), Where o is any cyclic
permutation, and a Cut link X X is identified with X+ X.

}\Totice that a link )gco}}/ is different from Y;,O /\f" . For example, a proof structure in MLL ™
is

A At A At
A At A® At
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We write X < VY if the formula occurrence X occurs above the formula occurrence Y in S
(with the obvious meaning of above).

It is convenient to put a marker for the missing conclusion of a Cut link: Girard
[1987] introduces the special symbol CUT. Such a symbol is not a formula occurrence;
we will call it a ghost (to reduce the number of different uses of the word ‘cut’). The
premises of a Cut are called cut formulas, as usual. The formula occurrences of S which
are not premises of any link are called the conclusions of S.

A proof structure S for NCMLL ™ is defined like a proof structure for MLL™, with
in addition
(iil) a cyclic order < of the conclusions and of the cut formulas.

The ordering < is extended to all the formulas in S by letting X <Y if and only if for
some U and V such that X < U, Y <V, either (i) U o V is a formula occurrence in S or
(ii) U and V are conclusions or cut formulas and U < V.

Remark. The above syntax follows Girard [1987a], but with the technical modification
of the Weakening link. The following syntax for the propositional constants is a minor
departure from the tradition (see Remark (v), section 1.5):

A proof structure for MLL or NCMLL is defined as for MLL™ or NCMLL™ , Te-
spectively, allowing also 1 axioms and of L links of the form

A, L,
where A # 1.
It is convenient to introduce proof structures with non-logical arioms, written as

X1,....X%.

for n > 0. These correspond to sequent azioms or initial sequents in sequent calculus.

Let m : § — &' be any injective map of proof structures (regarded as sets of formula
occurrences). We say that m preserves the links

_ A A B
Xi,..., X0 — —_—
I B C
if we have (A) (A) (B)
m m m
X1),... Xa

Finally, let Cy, ..., C, the set of conclusions of S. We say that m preserves the conclusions
if m(C1), ..., m(C,) are all the conclusions of §'.

An injective map ¢ : § — S' is an embedding if it preserves links and, moreover, X
and ¢(X) are occurrences of the same formula, for every X in S. A subset S’ of S is a
substructure if the identity is an embedding.



11

1.4. Inductive Proof Structures.

A sequent derivation is inductively built from axioms by applications of the rules
of inference. In a similar way, we can inductively generate the proof structures that
correspond to linear derivations. More precisely, a proof structure for MLL ™ is said
inductively generated (an IPS) if it results from a finite number of applications of ‘the
following steps:

(0) An axiom

A AL

is an IPS;

(1) If S and S’ are IPS’s with the multisets I', 4 and A, A, respectively, as conclusions,
and moreover SN S’ = @, then
S S’
I, 4 At A

is an IPS with the multiset I, A as conclusions;

(2) If S and S’ are IPS’s with the multisets I', 4 and B, A, respectively, as conclusions,
and moreover SN S’ = §, then

A®B

is an IPS with the multiset I', A ® B, A as conclusions;
(3) If S is an IPS with the multiset ', A, B as conclusions, then

)
', A B
AUB

is an IPS with the multiset I, A U B as conclusions.

(4) If S is an IPS with the multiset T, A(a) as conclusions, and a does not occur in T, then
S
T, Aa)

Nz.A

is an IPS with the multiset I', A .4 as conclusions.

(5) If S is an IPS with the multiset I, A(t) as conclusions, then
S
I, A()

Vz.A

is an IPS with the multiset T',\/ 7.4 as conclusions.
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The above definition is extended to the noncommutative case NCMLL ™ by consid-
ering the conclusions and the cut formulas of an IPS as a set with ciclic ordering, defined
arbitrarily at steps (1) and in the obvious way at each step (2) - (5). For instance, in
case (2) let I', A = Ay, ..., An_1, be the conclusions and the cut formulas of S; let B, A =
Bo,...,Bm-1 be the conclusions and the cut formulas of S', where the indices represent
the ordering of the conclusions mod n and mod m, respectively; then the conclusions and
the cut formulas ', A® B, A of the resulting IPS are Cy, ..., Cr_1,.-.., Cr+m—2, where the
indices represent the order mod n +m — 1.

Remarks. (i) The following is clear (by a glance at section 1.2). There is an obvious map
()* that transforms any sequent derivation D in (first order) MLL or NCMLL into a
proof structure S for the same fragment. If S is an IPS, then from the inductive generation
of § we immediately obtain a derivation D such that § = (D)*.

(12) We refer the reader to Girard [1989] for explanations of the meaning of logical symbols
in relation to their introduction rules. To motivate the formal choices it is important to
keep in mind the following slogans. In step (0) the axiom A AL asserts the existence of a
relevant connection (a “wire”) between the occurrences A and A™. In step (3) the Ul link
can be regarded as an introduction of a linear implication with conclusion At —o B or
A o— B*. Step (1) and (2) connect two separate structures in different ways: in step (2),
the connective ® joins the occurrences A and B as separate non-communicating entities; in
step (1) the linkage of the cut formulas A and A* creates the possibility of communication
(a “plug” between wires). Similarly, thinking in terms of “formulas-as-types”, step (3) is
a “symmetric lambda abstraction” and step (1) is lambda application.

(24¢) A Cut link may be regarded as a ®-link

x xt
XX+

with the understanding that X ® X* is not a formula occurrence but rather a ghost. It will
be shown that from a geometric point of view, and statically (i.e., without consideration
of cut elimination) Cut and ® links are basically the same. In other words, the expression
X ® X+ can be regarded either as one of the conclusions of the deductive process or as a
temporary inconsistency to be removed. More precisely, in a propositional multiplicative
proof structure, with respect to its internal connections, there is no difference between a
ghost and a real formula occurrrence. The difference matters (i) when we add quantifiers
and additives or (ii) in the noncommutative case or (iii) when we ask, from the outside,
what are the conclusions of (the deductive process represented by) a given structure.

1.5. The notion of a box.

In Girard [1987] there are bozes in correspondence with following axioms and infer-
ence rules of sequent calculus for linear logic: (1) the T-axiom

T, Xy, X,



13

(2) the one-premise rule

_FT _FL,A@ , F?Ci,...,7C.,A
CFT,L "FL,LVz.A  F2Ci,..,7Cq 1A

(as usual, in the case of the V rule a does not occur in I') and (3) the two-premise rule

FT,A FI,B

N T AnB

In correspondence with each one-premise rule there is a box of the form
l Sl l
rvy
SO

and in correspondence with the M rule we have

s

'  AnB
80

where the indicated multisets of formulas belong to a ‘new kind of link’: we may regard
IY [or T', AN B] as non-logical azioms of §° and we write sometimes T, Y [or T, A 1 B].

We have the following global restriction:

(8) In all the above boxes, the lowermost formula occurrencess of S’ [and of S"] must
correspond to the non-logical axiom as follows (cf. the related inference of the calculus of
sequents):

Sl Sl SII
A: Vi ! n 1=z I, A o,T,B
T, L T, Ve.A 1A T ANB

Here = and © are multisets of ghosts.”

? To test condition (§) we need maps between the occurrences of T in the conclusions of
§', 8" and in the non-logical axiom. There may be lots of such maps. A ‘non-constructive’
operation is implicit here (which would be obvious if we considered infinitary multisets).
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The additional global restrictions hold:
(88) In the V box, a does not occur in T (but it may occur in =).
(888) In the ! box, I has the form ?Cy,.. ., ?C,, for some n.
Finally, there is an obvious global restriction implicit in the above notation:
(8888) In all the above boxes, §', S" and §° are pairwise disjoint sets.

A proof structure with bozes is defined like a proof structure, with the addition the
new kind of link represented by the box. We may assume that the conditions (8)-(88%)
are checked by a flagging function o, leaving the details to the reader. We will refer to
Conditions (§)-(§§§8) as the Boz Condition, version 1.

Also, Inductive Proof Structures with Bozes (IPSB) for the full system of linear logic
can be defined by adding to the clauses for IPS the clause

(6) If S' is an IPSB [if S’ and §" are IPSBs and $'NS" = 0], then so is the configuration
S consisting of S’ [of §' and S"] inside a box and of a new non-logical axiom outside the
box, provided that the conclusions of &' [of S’ and §"] and the non-logical axiom satisfy
conditions (§), (§§) and (§§§); the conclusions of S are the occurrences of the non-logical
axiom.

A proof structure S with boxes and with conclusion I’ satisfying the box condition can
also be regarded as a collection C of proof structures with non-logical axioms and without
boxes (i.e., proof structures for MLL with @ and ? links with non-logical axioms), with
the following properties:

(i) There is an Sp in C having I as conclusions.

(ii) There is a function ¢ (flagging function) with the following property: if §' in C is
different from Sy then ¢ associates to the multiset of conclusions of S’ with one non-
logical axiom occurring in some §”, in accordance with (§)-(§§§). Every non-logical axiom
occurring in some &' € C is associated by ¢ to the multisets of conclusions of one or two
structures in C.

Let S; <° S; be the relation defined on C which holds if and only if the conclusions of
81 correspond to a non-logical axiom of Sy by ¢; let <; be the transitive closure <°. The
following is a global restriction equivalent to the box condition, version 1:

Boz condition, version 2: C satisfies (i) and (ii), the structures in C are pairwise disjoint
and < is a strict order.

We can define proof structures for NCMALL by using the box condition, version 2:
we require that each proof structure in C has a cyclic ordering < (defined as in section
1.3) and that if S; <° Sz, then the orderings of §; be compatible with that of Sy in an
obvious sense. We leave it to the reader to fill in the details.
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2. Part L. Proof Nets for Multiplicative Linear Logic.

In this section we extract from Girard [1987] and [1987a] some conditions that
characterize multiplicative proof nets in terms of their subnets (or empires), pointing at
the connections with Ketonen and Weyhrauch [1984] (cf. also Danos and Regnier [1989]).
Workmg with the notion of empire makes the generalization to the additives easier.

2.1. Empires.

Given a Proof-Structure § for MLL ™ and NCMLL ™ and a formula occurrence 4 € S,
we define e(A), the empire of A in S, as the smallest set of formula occurrences closed
under the following conditions. (Remember that X; # A means that X; and A are different
formula occurrences.)

(i) A € e(A);

(i) if -—1———2 [resp. 2] is alink in S and ¥ € e(A4), then X, X, € e(A), [Xo € e(4)]
(T-step);

(iii) if Xi,...,X, is an axiom in S and X; € e(A) for some i, then for all j, X; € e(A)
(—- Step);

(iv) if Z1_2G 3 ®X isalinkin S, andfori =1or 2 X; # A and X; € e(4), then X; ® X» € e(4)
[resp. if X 1s a unary link in §, X # A and X € ¢(A4), then Y € e(A4)] ({-step);

(v) if Z_Xa X uX isalinkin S, X; # A # X3 and X, € e(A), X2 € e(A4), then X;UX, € e(4)
({-step).

A ghost or formula occurrence D € e(A) which is not a premise of a link with conclu-
sion in e(A) is called a door of e(A). It is clear that such a D which is not a ghost must
be one of the following:

o A itself (main door);

¢ A conclusion of S (open door);

¢ A premise of a link Cul? or El))ug (closed door).

Remark. We choose the terminology ‘open’, ‘closed’ doors since there is an analogy (to
be justified below) between a closed door in a proof structure and the conclusion of an
implication introduction in Gentzen-Prawitz’s natural deduction system; similarly, there
is a correspondence between an open door and an open assumption.

A computation verifying that B € e(A4) in S consists of sequences of steps (ii)-(v),
starting from 4 and reaching B. We can represent a computation as a tree 7 : [A] — B,
with root in B and leaves in A, where a branching occurs only in correspondence with a
step ({}). A tree 7 : [A] — B is said normal if no sequence in it reaches twice the same
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formula occurrence. Every (finite) tree 7 : [A] — B is reduced to anormal tree 7' : [A] — B
in finitely many steps.?

We write
X0Y for X € e(Y) and Y ¢ e(X); ‘
XCY for X € e(Y) and Y ¢ e(X); o
XQY for X € ¢(Y) and Y € e(X).
Let —/%i% be any link in § and let b be any eigenvariable. We write

a <° bif b occurs both inside and outside e(X(a))

and we let <, be the transitive closure of the relation <° (over the eigenvariables of S).

2.2. Proof Nets.

Let S be a proof structure for MLL™ or NCMLL™. We consider the following
requirements on S.

(0) (Noncommutative case only) If X,..., X" and Y,...,Y" are any pair of distinct axiom
links,or X . X'andY Y’ are any pair of disjoint Cut hnks, then in the induced ordering
we cannot have X <Y < X'<Y' or X <Y' < X' <Y (the planarity condition);

in &, X0Y (the [no] vicious circle condition);

(1) For every link X ®Y

(2) For every link u}" in §, and for every X,Y that are conclusions of S or ghosts, X Y
(the connectedness condltlon)
(3) The ordering < is strict (the parameters condition).

A proof structure in [first order] MLL ™ is a proof net if it satisfies the vicious circle
and connectedness [and parameters] conditions. A proof net for NCMLL™ must also
satisfy the planarity condition.

Remarks. (i) In linear logic the wvicious circle condition is the main requirement of
propositional consistency and the connectedness condition is the requirement of relevance.

(ii) The ‘naturality’ of the above conditions, as well as the connection between the param-
eters condition and the usual restrictions on the eigenvariables, can be evaluated as soon
as the role of empires is understood. The main fact about empires to keep in mind is the
following Theorem, whose proof can be obtained using the techniques below.

2.2.1. Subnet Theorem. Let S be a proof net for MLL™ or NCMLL™ and let A be

any formula occurrence in S. Then e(A) is a substructure of S which is a proof net.

2.2.2. Theorem. Every IPS in MLL™ or NCMLL™ is a proof net.

3 Such trees are particularly simple instances of inductively presented systems consid-
ered in Feferman [1982].
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The proof is by induction on the definition of IPS. For the vicious circle condition see
the Remark below. The parameters condition is immediate if we make sure that different
eigenvariables are used at each application of (4) (pure parameters property). The details
are left to the reader. B

Remark. Consider step (2) in the definition of IPS, section 1.4. Clearly, the requirement
that S NS’ = @ implies e(A4) N e(B) = 0 in the resulting IPS, thus A}B. Conversely, in a
proof net A0B implies e(4) Ne(B) = @, by the Tiling Lemma below (section 2.5). By the
Subnet Theorem, e(A) and e(B) are IPS. :

Moreover, Step (2) corresponds to the operation of substitution of a derivation for an
open assumption in natural deduction. If ¢(X) has no open door in S’ then e(X) remains
unchanged after an application of (2). Hence consideration of the doors of an empire
provides adequate information about dependencies in a subderivation, in particular about
the effects of the process of substitution on a subderivation.

2.3. Chains; Properties of Empires.

Let S be a proof structure for MLL™ or NCMLL™. Suppose X, Y and A ® B are
formula occurrences in S, such that X £ A and Y £ B. We write X — (A® B) — Y if
axioms connect X with 4 and B with Y, i.e., if there are axioms P/,...,P and Q,...,Q’
such that P! < X, P <A, Q< B, Q' <Y. A chainisa configuration of the form

X — (Ao ®Bo) = (A1 @ By) — ... — (4n ® B,) - Y.

A chain is pure if A; ® B; is a different formula occurrence from A;®Bj, for i # j. A pure
chain where Y is Ag ® By is called a cycle (this include the case of a conjunction Ag ® By,
where Ay and By are connected by an axiom). We say that a proof structure satisfies the
acyclity condition if it contains no cycle.

2.3.1. Quasi-Transitivity Lemma. Assume A € e(B) and B € ¢(C), and moreover
suppose that 7 : [B] — A is a computation tree in which no sequence contains a step of the
form | % or | % for any X. Then A€ e(C). n

2.3.2. Corollary. If BCC, then e(B) C e(C). Hence T is a strict partial order. ®
2.3.3. Proposition. Suppose B A A and let a be any sequence in a normal 7 : [A] — B;

(1) if the last step in « has the form (1), then there ezists Co ® Cy such that o ends with

C; , Ci-i
Co®C1' Co®Cy’

! only (T) steps;

(2) if the last step of a has the form (|) or ({}), then there ezists an aziom Xq,...,X,
such that o ends with

T %, only (|) or ({) steps. N
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2.3.4. Corollary. (i) Every a in 7 : [A] — B is a chain.
(i1) The acyclicity condition implies the vicious circle condition. ®

Remarks. (i) The converse is not true, i.e., a chain need not belong to the empire of
its first member. However, if the connectedness condition holds, then for every chain
C there is an element A; @ B; such that for every A; ® B; € C with j # i, we have
Aj ® Bj € e(A;i) U e(B;). Using the Tiling Lemma below, we can show that if C is cyclic,
then the vicious circle fails for A; ® B;. That is, the vicious circle and connectedness
condition imply the acyclicicty condition. ’
(ii) In general, absence of cycles is a stronger condition, of conceptual interest since it
guarantees consistency for systems in which the connectedness condition is not required in
general. Such systems are variants of direct logic. Consider the language of multiplicative
linear logic without the constants 1 and 1 and let DL, DL be the logics formalized by the
extension of sequent calculus for MLL with the rule of Mingle or Weakening, respectively
(see section 1.2). We have the following result below, * which provides an alternative proof
of the sequentialization theorem for MLL.

Call a non-empty set P of axiom links in a proof structure with conclusions T a path for
I' if it satisfies the following relevance condition on conjunctions. We write P +— X if for
some P,PL € P, we have P < X or P1 < X; then the relevance condition on A o B
requires that P + A if and only if P — B.

A path P for T' is minimal if no proper subset is a path for I. It is easy to show that
minimality of P is equivalent to the connectedness condition (for those disjunctions and
pairs of conclusions for which the relevance condition holds).

Theorem. F T’ is provable without Cut in the calculus of sequents for DL [DL'*'] if and
only if there is a proof structure S with conclusions I' such that the aziom links are a
[minimal] path for T and no chain is a cycle in S.

2.4. Properties of consistent Proof Structures.

2.4.1. Proposition. Let § be a proof structure for MLL™ or NCMLL™ satisfying the
vicious circle condition and let 7 : [A] — B be normal.

(i) f B is Co® Cy and no a € 7: [A] = B ends with a step | 5%5?, then C;C A;
(ii) If B < A, then BC A.
(iii) if all a € 7 : [A] — B end with a step of the form (1), then BC A.

Proof. (i) Clearly C; € e(A). Also, Ci_; € ¢(A) and by the assumption of the case
from 7 : [A] — B we can build a normal tree 7 : [A] — C;_; which does not contain any

* Bellin and Ketonen [19897] present a proof of the sequentialization theorem for
DL™. Proofs of the sequentialization theorem for DL and DL™ can be found in Bellin
[1990].



19

step | E"E%LC'T Now if A € ¢(C;) then Ci_; € e(C;), by the Quasi-Transitivity Lemma
(2.3.1.),and this is a ‘vicious circle’. (ii) We assume that A € e(B), in order to find a
contradiction. We claim that there is a conjunction Dy ® D; € e(B) and a normal tree
7 : [B] = Do ® Dy with the property that B < D; and every 8 in r : [B] — Do ® D,
ends with the step | l—)lz—“g;‘-i;—l. It follows from our claim that | E%D% never occurs in
7 :[B] = Do ® D. Consider the subtree 7 : [B] — D;_;; since obviously B € e(D;), we
can apply the Quasi-Transitivity Lemma to obtain D;_; € D j, which is a ‘vicious circle’.

To prove the claim, let 7 : [B] — A be normal. If some o € 7 : [B] — A ends with
a step (T), then the desired Dy ® D; is given by Proposition 2.3.3. in the last section.
Otherwise, starting from the root A of 7 : [B] — A proceed as follows. If A is Xo U X,
then a branching {§ %D—)%{ll occurs, and we choose the subtree 7' : [B] — X; such that
B < X;. Otherwise, A is Xy ® X; and every sequence in the tree under consideration
ends with a step | E%kX_l If B £ Xy, then we must have B < X;_;, and we are done.
If B < Xk, then consider the subtree 7' : [B] — X}. Since there are only finitely many YV
such that B <Y in 8, failure to encounter the desired Dy ® D; would mean that we end
with a step | —% or | X&&UY}I’L where Y; is B itself. But this is absurd, since such a step is
not admissible in a computation of e(B).

Part (iii) easily follows from (i), (ii) and proposition 2.3.3. ®

2.5. Properties of Proof Nets.

2.5.1. Proposition. Let S be a proof net for MLL™ or NCMLL ™. The following are

equivalent:

(i) BC 4;

(ii) for some door D of e(B), there is a normal T : [A] — D such that every a € 7 [A] —» D
ends with a step (1);

(iii) there is a normal 7 : [A] — B such that every o € 7 : [A] — B ends with a step (T).
Proof. (iii) = (¢) is part (iii) of the proposition in the last section and (i) = (¢) is trivial.
(¢2) = (¢ii). If D is the main door of e(B), then we are finished. Otherwise, the last step
in every sequence in 7 : [A] — D crosses a link &2 by a step (T). By changing the last

CcubD
step of every sequence we obtain a tree 7 : [A] — C. By part (iii) in Proposition 2.4.1.

¢(C) C e(A). By the connectedness condition C{D.

Next consider a normal tree 7 : [C] — D and a € 7 : [C] — D. Since D € ¢(C)Ne(B)
and C ¢ e(B), a € 7 : [C] — D must enter e(B) through some door D' by a step (7). If
D' is the main door, i.e., D is B, then the subtree 7 : [C] — B cannot contain steps | —?—
or | 4, since e(C) C e(A); combining with r : [A] = C we obtain a tree 7 : [4] — B.
(Notice that the computation represented by 7 : [A] — B takes place outside e(B), except
for the last step. If 7 : [A] — C is not normal, simplification certainly yields a normal

1

7 : [A] — C with the desired property.) Otherwise, D' is a closed door of e(B) and the

last step of a has the form 1 'CT%' We obtain trees 7 : [C] — C' and 7 : [4] — C'; the
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computations they represent take place entirely outside e(B). Again we have C'OD’, by
connectedness.
Proceeding in this way, we obtain a sequences of doors D, D', D",... and a sequence

C, C', C".... such that
... Ce(C")Ce(CHSe(C)Ce(A) C S. o

This implies that C , C', C", are distinct formula occurrences in S; thus C U D, C'u _D',
C"UuD".... are also distinct. But S is finite, thus we cannot have an infinite discending
sequence of proper inclusions. Therefore we eventually reach a D* which is the main door
of ¢(B), by a computation taking place outside e(B), as required. ®

2.5.2. Tiling Lemma. (cf. Girard [1987a], II.1, Proposition 3) Let S be a proof net for
MLL™ or NCMLL™. Let A, B € S be such that ADB. Then e(A) Ne(B) = 0.

Proof. Suppose X € e(A4) N e(B). We show that A ¢ e(B) implies B € e(4). Consider
any sequence in a normal 7 : [A] — X: since A ¢ e(B), a must enter e(B) through some
door D by a step (7). Consider the subtree 7 : [A] — D and apply proposition 2.5.1. in
the direction (i) = (7). o

2.5.3. Sequentialization Theorem. (cf. Girard [1987a], II.1, Remark 2.) Every proof
net in MLL™ and in NCMLL™ s an IPS.

Proof. (MLL™) By induction on the number of formulas in S. If S is an axiom there is
nothing to prove, and if the conclusions of S contain a disjunction A U B, then the result
is immediate from the inductive hypothesis. Let I" be the set of conclusions and of ghosts
of § and suppose every formula occurrence in T' is the conclusion of a ® link. We need to
find a link AA® g with the property that if S’ results from S by removing only the link in
question, then S is partitioned in two subnets S; = e(A4) and S, = e(B).

Suppose for some A® B € T all the doors of e(A) and of e(B) are open or ghosts.
Then for every C € T'\ {A ® B}, either C € e(A) or C € ¢(B). To see this, let C € T be
outside e(A) U e(B). There cannot be any axiom connecting C with any formula in e(A)
or of e(B), since otherwise some D < C would be a door of either e(A) or of e(B). This
implies that A ® B and C belong to substructures of S which are disconnected, i.e., we
cannot have A ® BOC, a contradiction.

We show that it is enough to find an element A ® B of I' such that e(A) or e(B) is
maximal with respect to inclusion. If 4y ® By € T is such that B, has a side door D, then
D <A, ®B, €T,say D < A;. Since D € ¢(By) N e(A1) and Ay ¢ e(By), the Tiling
Lemma yields Bo € e(A;); hence e(By) C e(A;). We also obtain e(4g) C e(A;) as follows.
By € e(A;) implies 49 ® By € e(A;), hence 4, € e(A;1). Now A; € e(Ap) would imply
D € e(Ao)Ue(By), thus by the Tiling Lemma Ay € ¢(By) or By € e(Ay), a ‘vicious circle’.
Hence e(Ao) U e(Bo)Se(Ay) i.e., neither e(Ag) nor e(By) can be maximal with respect to
inclusion.

To extend the above argument to the case of NCMLL ™, we also need to show that in
the non-trivial case there are cyclic orderings <; and <, with the following property. Let
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A, A and B, A be the lowermost formula occurrences in e(4) and e(B), ordered according
to <; and <3, respectively: then A,4® B, A is I in the given ordering <.

By applying a cyclic permutation to I, if necessary, we may assume that I’ in the
given ordering is

Ci,...,Ci—1,AQ B,Cit1,....Cy

where Cj is in e(A), and Ay = Ciy1,...,Cp are in ¢(B). Let Ag be the set of C; such
that C; is in e(B) and j < 1; suppose Ao is non-empty. By connectedness there must be
an axiom P,..., P’ that connects some formula in Ag with a formula in Ay, say P < A\o.
Therefore we can partition A into Ag and A;, according to their position relatively to P
in the given ordering <, say C; € Ag and A € A;. Again by connectedness we must have
an axiom @, ---, Q)" connecting Ag and Ay, say Q < Ag. Hence

Q<P<Q <P

violates the planarity condition. Hence A is empty, and the ordering <, and <, are
easily obtained. ®

By applying the Tiling Lemma and similar techniques we can prove the following
useful facts.

2.5.2. Door Lemma. Let S be a proof net for MLL™ or NCMLL™, let A occur in S
and let D, D' be any two doors of e(A). Then e(A) C (D) and D(}D'

2.5.3. Shared Empires Lemma. (cf. Girard [1987a], I1.2) Let S be a proof net for
MLL™ or NCMLL™ and let AOB in S. e(A)Ne(B) is the set of all formula occurrences
X in § such that X € e(A) and X € e(B) can be computed without eziting e(A) Ne(B). u

The Subnet Lemma (section 5) is an immediate consequence of the Shared Empires
Lemma.

2.6. Extension to First Order Proof Nets.

The notions of proof structure with non-logical axioms and of substructure are defined
in section 1.3.

Let S’ be a proper substructure of S, where the inclusion map strongly preserves the
axioms, and let A be the conclusions of §'. The complementary substructure 8 of S' in S
is the set S\ §', satisfying the same links as S (relatively to S \' §') and in addition the
axiom link A. (Notlce that strictly speaking S is not a substructure of S.)

'To sequent derivations with non-logical axioms there correspond the notions of IPS
with non-logical azioms and of proof net with non-logical azioms. The results in the last
sections, in particular the Tiling Lemma and Sequentialization Theorem, still hold for
proof nets with non-logical axioms. Moreover we have the following

2.6.1. Lemma. If A and B both belong to S' [to S], then B € e(A) in S' [in S| if and
only if B € e(A) in S
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Proof. Use the Shared Empires Lemma in _the case of 8', and direct consideration of a
computation tree 7 : [A] — B in the case of S. B

It follows that S is a proof net if and only if S' [and S| are proof nets [with non-logical
aziom A.]

To prove the Sequentialization Theorem in the first order case, we reduce to the,
propositional case by induction on the number of eigenvariables as follows. Let S be a
proof net for first order MLL™ with conclusions I', where all formulas in T" are closed.
Notice that eigenvariables may still occur in the ghosts of S, although no eigenvariable
occurs in the conclusions of S. Choose an eigenvariable a maximal with respect to the
ordering <;, and let S4 be e(A(a)), where a corresponds to a link KA&. Let &' be

z. A
e( A =.A), which coincides with
Sa
A(a)

NAz.A

Let S be the complementary substructure of S’ in S. In S 4 the eigenvariable a can be
regarded as a constant without affecting correctness and no eigenvariable occurs in any
conclusion, apart from the occurrences of a in A(a), since a is maximal w.r.t. <. Finally,
a does not occur in S.

We want to apply the induction hypothesis to S4 and to S. We claim that the
ordering <t is strict in S4 and in S is strict since it is strict in S. In fact, the impossiblity
of b <¢; ¢ <®bin S follows from Lemma 2.6.1. and in S4 from the followmg

2.6.2. Proposition. Let S be a proof net for first order MLL™ and let a, b be eigen-

variables, where a is associated with 2. Ifb = a or b <t a, then b occurs only inside
/\:v.A ’

e(A(a)). =

2.7. Extension to the full Multiplicative Fragment.

To extend the above results to the fragments MLL or NCMLL containing axioms
and rules for 1 and L, we use the extended definition of proof structure with 1 axioms and
1 links, as in section 1.3. We extend the definition of empire by adding to conditions (iii)
and (1v) the cases

(iii) if 5 X1 isa L-linkin S and X; € e(4). X1_; € e(A) (—-step);
(vi)if X+ isa L linkinS X # A and X € e(A), then Y € e(A) ({-step).
All the previous results still hold in this context.

Remarks. (i) Given a L box




SI
r
r 1
we must choose one formula in I' to create the L link, performing a non-deterministic
operation.

(ii) In sequent calculus an application of the L rule can always be permuted with the
inference immediately above it.° Similarly, in a proof net we can ‘move L links upwards’
and still obtain a proof net. Hence we could also generalize the definition of proof structure
by introducing axiom links of the form

PPL 1, .. .1,

as well as 1.
3. Part II. Proof Networks for Multiplicative and Additive Linear Logic.

We consider now the elimination of the M boxes. Our solution will be in two steps: first, we
extend the characterization of proof nets in terms of empires to proof structures for MALL
(or NCMALL); second, we develop Girard’s notion of slicing of ¢ boz, we introduce the
notion of a quasi structure and define a generalized notion of empire over families of quasi
structures. A family representing a correct proof (proof metwork) is one in which the
multiplicative conditions (vicious circle and connectedness conditions) are satisfied by each
quasi structure and the additive conditions (box and parameters conditions) are satisfied
by the whole family according to the generalized notion of empire.

3.1. Empires in Proof Structures for MALL and NCMALL.

We define proof structures for MALL as for MLL, with in addition the T axioms

T,X1,...,Xn
for any X; and n, and the following M and Contraction links

A B c' c"
AMB c

® Notice that if the latter is an ® application, there is a non-deterministic choice of one
branch (unless we decide that the ® rule behaves ‘additively’ with respect all the formulas
of the form ?A4; but this may be regarded as a rather inelegant trick).
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where C, C' and C" are occurrences of the same formula. The Contraction links are to be
restricted as follows. Consider a proof structure with a M box

SI SII

STA OrB I
I ANB )

satisfying condition (§) of section 1.5, i.e., such that T', I and I'" are the same multiset.
In the case of NCMALL, we are given orderings S, S"” and of T', A N B that preserve the
correspondence (§). In the case of MALL there may be many ways of establishing the
correspondence (§): we choose one. Let I be Cy,.. ., C,,. Now we can regard the structure
in () as consisting of S’ | JS" YT |J{A N B} with the same links and in addition and of a
configuration of the form () (a sequence of Contraction links and precisely one M link)

Cy Cf Cry C_, A B
Co Crn-1 AMNB

: 11

The Contraction links in ({{) are justified by their association with the M link. We define
a flagging function ¢ that associates each Contraction link with a 1 links and marks some
ghosts and some premises of Contraction or M links as belonging to the ‘left’ or to the
‘right’ proof structure in the box. We may simply say that ¢ flags Ci,..., Cl, A and the
ghosts in = with A and it flags Cy, ..., C!, B and the ghosts in © with B. Of course, if
C; is flagged with A, then C¥ will be flagged with B, and viceversa. A ghost is ezternal if
it is not flagged with any formula occurrence.

We assume that every proof structure S in notation (99) is given together with a
flagging function ¢. Clearly the difference between notations (1) and (99) is inessential.

Next we extend the definition of empire (section 2.1) to proof structures in notation

(19) by letting clause (v) be
(v) if 2582 [or B2 or a Contraction X1 %2]isalink in S, X; # A # X3, X; € e(A)
and X € e(A), then X; U X5 [or X7 M X, or X, respectively] is in e(A) (4 - step).

We define a proof net for first order MALL [or NCMALL)] as a proof structure satisfying
the (1) vicious circle, (2) connectedness, (3) parameters, (4) box [and planarity] condition.

The vicious circle, parameters and planarity conditions are as before. The connected-
ness condition in this context is weakened:

(2) For every link {;.Ug in 8, and for every X,Y that are conclusions of S or ezternal
ghosts, we have XY .

We take the following formulation of the box condition:

(4) The official boz condition: For every link ﬁqm&ﬁ,

(i) the connectedness condition holds among all occurrences flagged with one of its
premises, i.e., for every D, if D is flagged with 4;, then DOA;:;
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(ii) the no vicious circle condition holds for the 1 link, ie., AgDA,, and
(iii) for every premise A’ of a M link, 4;Q A’ implies A’ = A;.
Remark. Such a formulation of the box condition may seem awkward, like the following

Box Lemma. However, the advantage is that only (i) will remain as a condition, when the
boxes are sliced. ‘

1

The definition of inductively generated proof structures is easily extended to MALL
and NCMALL. In the clause allowing the introduction of a link %ﬁﬁL we require that
the structures containing Ag and A; are disjoint (as the case for ® links, clause (2), section
1.4). The details are left to the reader. The verification that every IPS satisfies the box
condition is almost immediate, thus we have

3.1.1. Theorem. Every IPS in MALL or NCMALL is a proof net. ®

The properties of empires (section 2.3) and of consistent proof structures (section 2.4)
remain true. In addition, the main facts about boxes are the following.

3.1.2. Box Lemma. Let S be a proof net for MALL or NCMALL and let %411 be
a link in S.

(i) If X € e(Ai), then e(X) C e(A;);

(ii) no closed door of e(A;) is a premise of a U link;

(iii) the doors of A; are precisely the formula occurrences flagged with A; together with the
ghosts flagged with some A', where A'C A;;

(iv) if A=fr is o link and A'CA;, then A"C A;

(v) (o) N e(Ay) = 0.

Proof. (i) Let Y € e(X) and consider any sequence in a normal computation T : [X]—-Y:
if Y ¢ e(A;), then there must be a step of the form { £ B D where, say, D is a door of
e(4;). Since C ¢ e(A), the subtree 7 : [X] — C must contain a step { iﬁ—’?—', where, e.g.,
D' is a door of e(A;). Moreover C' and C must be different formula occurrences, because
7 : [X] — Y is normal; thus D is different from D' too. By repeating this argument we

obtain an infinite sequence D, D'. ... of distinct doors of e(A;), a contradiction, since S
is finite.

(ii) Let %—ﬁ be a link in § with D € e(A;). By the connectedness condition, COD; by
part (i), C € e(A;); hence D cannot be a door of A;.
(iii) If A and A’ are premises of two distinct I links, by the box condition we have only

three possibilities, ACA' or AQA' or A'CA. By Corollary 2.3.2, CC is a strict partial
ordering. Therefore we can argue by induction on [T over the set of premises of M links.

Fix 1, say ¢ = 0. The fact that every formula flagged with Ay is a door of e(Ay) follows
from the following remarks. Ag is a door of e(4y) by part (ii) of Proposition 2.4.1. A ghost
flagged with Ay is obviously a door. Let X' be flagged with A and occur in a Contraction
link X2 s ". Hence X" is flagged with A; and A; € e(X") by the box condition. If
X € e(Ay), then also X" € e(Ao), hence A; € e(Ag) by part (i), contradicting the box
condition. Hence X ¢ ¢(Ap), and X" is a door of e(A4g).
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We prove that every door of e(4g) is flagged with Ag. This is true of the main door
Ap. Let D be a door of e(A4g), with D # Ay. First, D cannot be a conclusion of § nor an
external ghost, since this implies A; € e(D) by connectedness, hence A; € e(A4o) by part
(i), contradicting the box condition. Second, let D be a ghost flagged with A’. By the
box condition A’ € e(D); by part (i) we have A’ € e(Ay); using again the box condition
we obtain either A' = Ay or A'C Ay, as required. Third, if D is a closed door of e(Ao);
then it must be a premise of a M-link or of Contraction link, say D ¢ by part (ii). Now
every such premise is flagged, say D is flagged with A’ and C is ﬁagged with A" for some
’:‘4’,” ﬁ:'. As before we obtain A’ € ¢(4g). We claim that AqQA': by the box condition
the claim implies Ag = A', as required. If not, the only possibility is A'C"Ag, hence by the
induction hypothesis every door of e(A') is flagged with A’. A door X of e(A') is certainly
encountered in any normal computation 7 : [Ag] — A', which must contain a step T £Y.
Since by induction hypothesis X is flagged with A', ¥ must be flagged with A", and by
the box condition CQY. But obviously ¥ € e(Ag), hence C € e(4y), contradicting the
fact that D is a door of e(Ag)

(iv
and apply parts (1) and (111)

(v) Let X € e(Ao) Ne(A1). First notice that X can be neither a conclusion of S nor an
external ghost, by the connectedness condition for S and part (i). Next, X can be neither
a ghost flagged with A; nor a closed door of e(A;): by parts (iii) and (i) this implies
A; € e(A;-;), a contradiction.

Now suppose that X € e(A4g)Ne(Ay) is a ghost flagged with A’, where A’ is a premise
of a Mlink and A'C 4;. By part (iv) the conclusion of that link also belongs to e(Ag)Ne(4y)
and we consider the first ¥ such that A" <Y and Y is a door of e(4;). By the argument
of the previous paragraph, this can only be a ghost flagged with some A”. Proceeding this
way, we obtain an infinite sequence of premises of M links

..CA"CA'CA;

which is impossible, since S is finite.
Finally, if X is not a door of e(4) nor of e(A;), consider the first D € e(4o) Me(A;)
such that X < D and D is a door of e(4;) and we apply the previous argument to D. ®

It is now immediate that the official box condition implies version I of the same condition,
if in (2) we take S’ = ¢(4), S" = e(B) and let

8° =8\ (e(A) Ue(B))

with the additional non-logical axiom I', AN B. It is also easy to see that version 2
of the box condition follows from the official box condition: by continuing the above
decomposition until all M links are eliminated, we obtain a class C of multiplicative proof
structures (with non-logical axioms and ® links). The relation <, is obtained from C
applied to premises of 1 links.
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3.1.3. Proposition. Let S be a proof net for MALL or NCMALL and let C be the
collection of proof nets for MLL or NCMLL ( with non-logical axioms and ® links)
resulting by decomposing all the N links in S. For every Sy € C, if A and B both belong
to So, then B € ¢(A) in S if and only if B € e(A) in S.

Proof. By direct inspection of normal trees 7: [A] = Bin Sy orin S. ®

3.1.4. Sequentialization Theorem. If S is a proof net for MALL and NCMALL:
then S is an IPS.

Proof. By induction on <, using the above proposition and the Sequentialization Theorem
for MLL or NCMLL (extended with @ links and non-logical axioms). ®

3.2. Quasi Structures and Structures.

A Quasi Structure Q is defined as a proof structure for MALL or NCMALL except
that (a) there are no Contraction links and (b) M links have only one premise:

X Y
Xny XxXny’

Maps preserving links, axioms and conclusions are defined for Quasi Structures as in the
case of proof structures.

We want to define the category Struct of Structures, whose objects are either proof
structures for MALL or Quasi Structures and whose maps are embeddings (and similarly
for the definition of the category of NCStrct of noncommutative structures). We need to
define an appropriate notion of embedding of a Quasi Structure in a proof structure.

A segment o in S is a sequence of occurrences Co,. . .,Cy of the same formula with the
property that

(1) Co is not the conclusion and Cy, is not the premise of a Contraction link;
(2) if 0<i < n, then Cyy; the conclusion of a Contraction link with premise C;.

Given a segment ¢ = Cy,...,Cp,, we say (with some abuse of terminology) that o is a
premise [conclusion] of a link if and only if Cy, is a premise [Cj is a conclusion] of it. We

use the notation
P g1 g1 02
J1...,0% —
o o

with the obvious meaning. Given a map m : Q@ — S, where Q is a Quasi Structure and S
a proof structure, we say that m preserves an aziom or a o link

_ A A A
Al...,An, ;B“l or —1‘39'

if there are segments o; in S and an axiom or a o link such that

g1 02 or g1
o g

01..+3,0F,



28

and moreover m(4;) € o; and m(B) € o. Here of course [the premise of] a unary N links
is mapped to [a formula occurrence in a segment which is a premise of] a binary N link.
Finally, we extend the notion of preserving the conclusions in a similar way.

Let Struct™ be the category whose objects (O, A) are structures @ with a selected
conclusion A and whose morphisms are embeddings preserving links and selected conclu-
sion. Consider the assignments }

Times ((01,4),(02,B)) = (01 4_p O2,A® B)
Plus (O’A)H(OW/?B"AEBB) (O,A)H(O%‘;A,BEBA)
Egists (O, A(1)) — (O a) ,3z.A4)

dz.A

Fact. The assignment Times determines a bifunctor on Struct*. Given B or ¢, the
assigments Plus or Ezists determine functors on Struct*. m

3.3. Slicings of Proof Nets for MALL and NCMALL.

Let ¢ : O — O’ be an injective mapping such that X and ‘L(X ) are occurrences of the
same formula, for all X € O. Suppose first the both O and @' are either proof structures
or quasi structures. We say that ¢ is a quasi-embedding if

(1) ¢ preserves all links different from axioms;

(2) ¢ preserves axioms in the weak sense that it maps an axiom

X,..., X5 to (X1),-- (X)), Y1,..., Yp;

(3) whenever «(X;) and «(X;) occur in an axiom Y, ..., ((X;),... ,¢(Xj) of O, then also
Xi, X; occur in one axiom of O.

We extend the notion of quasi-embedding to the case ¢ : @ — S by considering segments
as above.

Example. Consider the following proof-structure S.

A At A At
An At Au At
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There are quasi-embeddings of the following Quasi Structures Q;, Q, into S. Here A and
AL are non-logical axioms.

Q: ' Qy:
l l | l
At A AL A A At
AM At Au At An At AuAt
Let Q3 be _
A A AL

ANAL Ap AL
Then there is no quasi-embedding of Q3 in S nor between Q1, @2 and Q3.
Define Slicing(S) to be the set of all quasi-embeddings ¢: Q — S preserving conclusions.

We let
Fam(S) = {Q: for some ¢ in Slicing(S), ¢:: Q — S}.

Details for the noncommutative case are left to the reader.

3.4. Proof Networks for MALL and NCMALL.

Given a proof structure § for MALL or NCMALL, let 7 = Fam(S). Define an
equivalence relation R on [ J F by letting A’ R A" if and only if there are ¢, ¢" in Slicing(S)
such that J/(4") = /"(A"). If A = //(4"), we let [4] be the corresponding equivalence class.

of formula occurrences. If A’ € Q N[A4], then A’ is unique, and in this case we sometimes
write A< for A'.

For any @ € F the definition of empire of a formula occurrence is as in section 4.
Let F = Fam(S) as before. The empire e[A] of an equivalence class [4] is a set of equiv-
alence classes, defined as follows: [B]€e[A] in F if and only if for every Q€F such that
[B]N Q # 0, we have [A]N Q # 0 and B%c¢(42) in Q.

In this context the box condition is as follows. Given S with flagging function ¢, let
and F = Fam(S).
Slicing Boz Condition: (1) for every D,D' € S, if D and D’ are flagged with the same
formula, then [D]Q[D'] in F;

(2) every ¢ € Slicing(S is an embedding.

A family F = Fam(S) is a proof network if every Q € F satisfies the vicious circle
and connectedness condition and F satisfies the slicing box condition.
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3.4.1. Proposition. Let S be a proof structure for MALL or NCMALL. Let F be
Fam(S).
Q) If 2{{,2 [ or —)—(—0—}—,——)(—1] 18 @ o-link in S different from a N or Contraction link, then for
) Q Q

each Q € F either [Xo]NQ = [X3]NQ =0 = ¥YINQ or -i,{%- [ or £°7Q;X—1-]

-Q -9
(ii) Conversely, every link in Q different from a N link can be written as %,‘; or é—%—éL
n correspondence with some link of the same type in S.

iii) For every link Xe—2X in S for every Q € F and for some i = 0,1, either [X;]N Q
XoNX,

=0 =[Y]NQ or rxes. If Zo < Xo and Zy < X, then [Zo] N [Z1] = 0.

)
(iv) Conversely, every M link in Q can be written as (X—o—f_%m—g in correspondence with some

. X X, -
20
lznlc XoMX; mn S

Suppose F satisfies the boz condition.
(v) For every aziom X1,...,X, € S and every Q € F, either (XilNnQ@ =40, foralli <n,
or X2,...,XQ is an aziom of Q.

(vi) Conversely, every aziom of Q can be written as XIQ,. .., X2 in correspondence with
some aziom X1,...,X, of S.

(vil) For every Contraction link XY in S, [X] U [Y] = [Z] and for every Zo < X and
Zy Y, [Z]N[Z:]=0. m

3.4.2. Equivalence Theorem. Let S be a proof structure for propositional MALL or
NCMALL.

(i) If Fam(S) satisfies the boz condition, then B € e(A) in S if and only if [B] € ¢[A4] in
Fam(S), for all A, B;

(ii) S is a proof net if and only if Fam(S) is a proof network.

Proof. (i) Using the proposition above, given a computation for B € e(A) in § we obtain
family of computations of BC € ¢(42) for each B? in [B], and conversely. (ii) If S is a
proof net, then it is generated inductively and so is F, ie., each Q in F can be generated
inductively. By theorem 2.2.1. (extended to quasi structures), each Q in F satisfies the
vicious circle and connectedness conditions. Also in the inductive generation of F each
axiom of Q € F is defined as a copy of an axiom of S and the box condition for F follows
from the connectedness condition.

Conversely, if F is a proof network, then by part (i) we immediately obtain that
the vicious circle and connectedness conditions hold for S. To show that the official
boz condition (condition (4), section 3.1) also holds for S, consider that condition (4)(4)
is immediate from the slicing boz condition for F and part (i). Next notice that for

every XTI"HTX": in S there are Q' and Q" in F such that [X'|N Q' # § # [X"1n Q" and
[X"INQ" =0 = [X'|NQ". Therefore condition (4)(ii) is immediate, again by part (i). To
prove condition (4)(iii), consider two distinct M links in S , with conclusions X = X, M X;



31

and Y = Y, MY; and write X 4Y if X < Z, where Z is a formula flagged with Y;, for i = 0
or 1.

On one hand, suppose X aY, say X < Z{VY,, and consider a @ € F such that
[Xi]NQ # 0. Then X2 € ¢(Z2) and X2 € (¥,2) (using the slicing box condition) and
moreover [X;-;] N Q = 0. This proves [X;] € e[Yp] and [Yy] ¢ €[X;_;]. Excanging X; and
X1-; and applying part (i), we obtain XgCY; and X;CY; in S. o

On the other hand, if neither X 1Y nor Y <X, then for each ,j = 1,2 we can certainly
find Q; and @, in F such that

(XilNnQi =0#[Y;In O,

and

(Xi]NQ: #0=[Y;]NnQ,
by construction of F. Hence in both cases we cannot have X ;0Y;.

Remark. Thus we have the following decision procedure for proof structures for propo-
sitional MALL: given S, test the multiplicative conditions for every Q € Fam(S); next
test the slicing box condition, and in particular, consider whether every quasi-embedding
Slicing(S) is an embedding.

3.5. Slices,

In section 6, pp. 93-97 of Girard [1987] slices are defined for the whole system
of linear logic, including exponentials. In particular, a slice for MALL is like a proof
structure for MLL™, with the addition of 1 axioms, unary N and @, A and \/ links and
of sets of formula occurrences that are not conclusions of any link and do not belong to
any axiom.

In MALL maps *, * and ¢ have been constructed
Sequent Derivations — Proof Nets —— Proof Networks —- Sets of Slices

that identify equivalent proofs. Notice that such a # is unique in MLL™, % is unique in
MALL™ and e is unique in MALL.

It would be desirable to give sets S of slices an independent logical meaning, as much
as possible. To do this, one must express in some way the restriction on S as a whole which
is given by the M boxes, and the additional connections within each slice which is created
by the L boxes. Assuming this to be done, the problem of irrelevance created by the slicing
of T boxes is easily solved if we assume that each slice satisfies the relevance condition
on conjunctions (cf. section 2.3.). This amounts to the requirement that we check logical
correctedness only after garbage collection, i.e., that S is the slicing of a proof structure
which is normal with respect to the following reduction.
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o Zero Commutation. A proof structure S is transformed into a proof structure S’ by
replacing a configuration of the form

e(C)

T,X4,....Xm, B C 1n,....,.Y,
BeC

where Y3,...,Y, are all the doors of e(C), with the configuration

T.X1,.. . XmB®C,Yh,...,Y,.

Notice that in a T box, an occurrence of T is marked as principal. Clearly, one effect of
Zero Commutation on proof structures is to erase axiom link and markings on occurrences
of T. Define the path P of a proof structure S for MALL to be the set of axiom links
different from a T axiom and of marked occurrences of T boxes (cf. section 2.3.). The
following is clear:

Proposition. Let S and S' be proof structures for MALL, where S' results from S by
an application of Zero Commutation. If the path P of S is non-empty and S satisfies the
vicious circle condition, then so does S'. u

The above rotions can be easily transfered to slices. Moreover, in a slice the notion of
empire of a formula can be relativized to the given path P: in the case of a link %Lﬁ{){l
where X; is irrelevant we let Xo U X; € ep(A) if and only if X;_; € ep(A). Therefore, if a
slice satisfies the relevance condition on conjunctions, then the multiplicative consistency
conditions are the vicious circle, connectedness conditions, relativized to the path P and,
moreover, the requirement that P is non-empty. Details are left to the reader.

3.6. Strong Normalization Theorem.

The Strong Normalization Theorem for the system of proof nets (with boxes) for full
second order linear logic is proved in Girard [1987], Section 4, pp.60-78. The reader is
referred to that paper for a definition of all the contraction rules (definitions 4.1.- 4.18.)
and for a definition of contractions for slices (definition 6.4.). It is also remarked there
that the Church-Rosser Property holds for proof nets only in the fragment MLL™, but
that it does hold for sets of slices in the full system.

As an illustration, we consider the case of propositional MALL ™, the additive frag-
ment without propositional constants.

A Contraction for proof structures transforms S into S' by one of the replacements
indicated below.

e Axiom Contraction: A configuration of the form

At 4 4t



is replaced by N
A~

e Times Contraction: A configuration of the form

A B Bt At
A®B Btu At
1s replaced by
' B Bt
A At

o With Contraction: A configuration of the form

S() 51
Ay T A At
T' AgN4 A @ At
is replaced by
Si

r A; A; L

e With Commutation: A configuration of the form

So S
A T C AATC e(D)
AgMA; T C D A
C®D
is replaced by
So e(D) Si e(D)
A4 T C D A Ay TC D A
C®D Ce®D

Ao M A, r C®D A

33
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A Contraction for Quasi Structures is defined like for proof structures in the case of
an Aziom contraction or Times contraction. There are no commutations.

¢ With Contraction: If a Quasi Structure Q contains a configuration of the form
A; Af
AgMA; AF @ Af o

then Q' is obtained from Q by replacing that configuration by
A AR

A Quasi Structure Q containing a configuration
Ai Ar
AoNA A @ Af

is deleted (replaced by the empty set of formula occurrences).

3.6.1. Reduction Lemma. If S is a proof net for MALL™ or NCMALL™ and S'
results from S by application of one of the above contractions, then S' is a proof net and
U Fam (S') contains less links than | J Fam (S); if 8" results from S by commutation, then
Fam (§') = Fam (S). '

Proof. In the case of an Aziom or Times reduction, to prove that the vicious circle
condition is preserved by a reduction it is convenient to argue as follows: suppose some
Q' € Fam(S") contains a cyclic chain and show that there is a Q € Fam(S) that contains
a cyclic chain. Further details can be found in Bellin [1990].

3.6.2. Strong Normalization Theorem. In MALL™ or NCMALL™ every reduction
sequence starting from S terminates, and Fam(S) reduces to o unique F. o

4. Part II1. Permutability of Inferences in the Sequent Calculus for Linear Logic.

As an application, we give a classification of permutability of inferences in linear se-
quent calculus. We do not define standard terminology: principal formula, active formulas,
ancestors of a formula, etc.

The table below is to be interpreted as follows.

Let Z;, I, be inferences such that:
(1) Iy occurs immediately after 7;

(ii) the principal formula of Z; is not active in Z,
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(iii) Z; and Z; are of the type indicated in the horizontal and vertical entries, respectively,
then 7, can always be permuted above Z;, unless explicitly indicated.

I ® u r @ ! Der Weak Contr Cut
Io: !
® no
u no no no
n no no no no no no no
57 no
! no no no no no no no
Der |
Weak
Contr - no no
Cut no

Remarks. (z) The fact that Cut can be permuted above any inference other than a ! rule
is part of the proof of the Cut elimination theorem. In the case

!/Cut :
....... F2(CH), T, A
I3 I
FAIC F2(Chy, 7T, 14
Iy
F A, 1A

a permutation of 7; and T, is permissible only if A has the form ?A, in particular, if Z; is
itself a ! rule.

(22) A Cut I; cannot be permuted below another inference Z, in the following case:

Cut /U :

FB,A,Ct FC,T,A
A

FB,ATA
_
FAUB,AT
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A similar case arises for the pair Cut / Contraction. Cut can be permuted below a ! rule
only if the Cut formula C is of the form ?D:

Cut /! :

F2A,Ct FC,T, A g
T |

F?A,7T, A
Ty
F?A, 70,14

(#42) A permutation of Cut below a M rule is permissible only if 73 is also a Cut with
premises F A,C and F C+, A, A:

Cut/m :
........ FA, Gt FCT.B
Iy I
FAT, A - A,T,B
1,
FA,T,AMB

(tv) Because of the restrictions on the side formulas of the ! rule, in a derivation there
cannot be a sequence of consecutive inferences 1:1, I» as above, where T; is a ! rule and
where 7; is one of the ®, U, M, @, ! rules.

(v) The following sequents provide counterezamples to the permutability of the indicated
inferences: Cut-free proofs of the following sequents must end with a pair of logical infer-
ences in the fixed ordering.

/® FPYPRQT),IQ
1/u F2(Phyu(Ph), 1P
/N F((PH)NT,IP
/e FPY) e Q,1P

/M FPraQt,PnQ
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Der /N F2(PH, PO P

Weak /1 F2(Ph),PN1

Contr /N F2(PH),PN(P@P) |
®/U FQtuUPYP®Q

®/ Contr F2(PY),PRP

®/n FSteTH, (TesheR SePra (R ®QY),PNQ

With respect to the last counterexample, notice that the permutation of Z; with Zs is
impossible in the following case

®/M :

................ FA,C  FDUT,B
Ig I1
FA,C®D,T, A FA,C®D,T,B

I

FAC®D,T,ANB
unless T is itself a ® rule with premises F A,C and F D, T, A. Now let
A=Ster:, C=5

and let
D=[P'e®R"®Q"Y), TI=TeSYY®eR B=Q

and notice that
Y (T®SY)®R, [Pro (R 9Qh). P.

Since the ! rule cannot be permuted above or below the ®, U, M and @ rules, the most
interesting cases of a Permutability Theorem for linear logic can be stated simply for the
fragment without ! rule.

For such a fragment we can define a notion of proof net as before and the links for ?
require no modification in the definition of empire.
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We define inductively what it means for an inference R in a deduction to introduce a
formula-occurrence X: either X is the principal formula of R or if X is a side formula and
R introduces the immediate ancestor X' of X.

For simplicity, we consider only derivations in which every application of the L rule
occurs above any other rule of inference. Let * be the mapping sending each derivation
to the corresponding proof net, and let * send each proof net to the corresponding proof
network. We write D* = §, §* = F. For each formula occurrence A in a derivation D,
A" is a formula occurrence in the proof net D* and A** is a class of formulas in the proof
network D**. Also, given a D such that D* = S and B in S, we write B™* for the set of
formula occurrences X in D such that X* = B and similarly we write (e(B))—* for the
inverse image of e(B) in D.

4.1. Permutability Theorem. Let D be any derivation of T in propositional linear
logic. For every formula occurrence A in D there ezists a derivation D', which is obtained
from D by permuting the order of inferences, with the following properties.

(1) Suppose A is introduced in D by either the ® rule or the U rule or by a Contraction
with active formulas A; and Ay; let B = A*, B, = A}, B, = A3; then

(i) D* = (D)

(i) in D', (e(B1)Ue(B: ))_* 18 the set of formula occurrences that are introduced above
all formulas A" in B™*.

(2) Suppose A is introduced in D either by the @ rule or by Weakening or Dereliction; let
B = A*; then

() D* = (D)

(ii) in D', (e(B))™" is the set of formula occurrences that are introduced above all
formulas A' in B™*.

(3) Suppose A is introduced in D by the N rule; let B = A*; then

(l) D** — (DI)**;

(i) in D', (e(B)) ™" is the set of formula occurrences that are introduced above all
formulas A' in B™*.

Proof. (1) Let R be the inference of D introducing A (we may suppose A is the principal
formula of R) and consider the link
B, B,
B

in § = D, where B = A*, etc. Let k be the number of formula occurrences Z* in S that
belong to e(B) but such that Z is introduced below R. By induction on e(B) (see section
2.1), we reduce k by permuting the inferences of D. The cases of clauses (2) — (377) in the
definition of empire are trivial.

Clause (iv): for a fixed ¢ = 1,2, X* € ¢(B;) and X # B; implies (X®Y)* € e(B;). By
induction hypothesis we may assume that X is introduced above R. If R’ introduces the
principal formula X®Y and occurs below R, there is a passive formula X" in every sequent
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between R and R' such that (X')* = X*. By the table above, we can certainly permute
R' with the inference R" immediately above it. In this way it, we do not increase the
number of formulas Z* in e(B;) such that Z is introduced below R. After a finite number
of steps, the inference introducing X®Y is permuted above R and we have reduced k.
Clause (v): X* € e(B:),Y™* € e(B;) and X* # B; # Y* imply (X UY)* € e(B;). If
R' introduces the principal formula X UY, then by the table above the only problematic
case is when the inference immediately above R’ is a @ rule. By induction hypothesis we
assume that both X and Y are introduced above R. It follows that for each application
R® of the ®-rule between R and R’ both X and ¥ have ancestors only in one of the upper
sequents of R®. But in this case it is certainly possible to permute R’ with R® too.

The cases of clause (v) that deal with the conclusion of a M link or of a Contraction link
flagged with a M link do not apply here. Indeed, if R' introduces the principal formula
X MY and R occurs above R', then B} € e(X*) or Bf € e(Y*) and by the Box Lemma,
section 3.1, e(B;) C e(X™) or e(B;) C e(Y™), hence (X NMY)* & e(B;).

Finally, it is easy to see that if D; comes from D, by a permutation of inferences as before,
then D = Di. This concludes part (1). Parts (2) and (3) are similar. ®

5. Conclusion.

What has been achieved?

(I) We have provided a unified treatment of multiplicative and additive linear logic,
essentially based on the notion of empire. We have already stressed the significance of the
empire of a formula as a subnet in a proof net. The vicious circle, connectedness, box
and parameters conditions depend on the possibility of a simple subdivision (tiling) of a
structure and correspond to natural properties of proofs in linear logic.

(IT) The slicing of a proof structure with boxes has the Church Rosser property as
most obvious motivation. In the case of proof networks, the result from our slicing (the
quasi structures) still maintain enough connections, so that the test of the multiplicative
condition for correctness can still be done on them.

It may be asked whether proof networks are adequate per se to represent proofs,
or only in connection with proof nets, as the outcome of the process of slicing. One
could informally describe a proof network as a family of quasi structures satisfying certain
properties. (a) All quasi structures in the family satisfy the conditions for consistency
and relevance. In addition, (b) all quasi structures in the family are identified at the
conclusions. It must be possible to chose the points of identification in such a way that the
can be grouped in patterns of the form Cj,. . .» Cn, AN B. (c) Putting the same flag on all
the points of the same group, the set of substructures occurring above flagged points must
constitute two subnetworks. To express these conditions precisely is complicated enough;
the alternative route, the embedding of the family in a proof structure seems more elegant.
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The importance of avoiding bricolage in the theory of slicing is related to our un-
derstanding of the distinction between 0 and L1: practically useful applications of this
distinction would certainly encourage further attention to the matter.

It is not our intention to advertise proof networks as the ultimate representation of
provability for the systems in question. Ultimately, the significance of formalisms has to
be proved in applications. If slicing represents ‘the absolute limit for a parallelization of
the syntax, i.e., the removal of all boxes but !-ones’ (Girard [1987], p.94), then its value
ought to be tested in the field of parallelism.
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