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An Analysis of a Monte Carlo Algorithm

for Estimating the Permanent
Mark Jerrumj

June 1991

ABSTRACT Karmarkar, Karp, Lipton, Lovész, and Luby proposed a Monte
Carlo algorithm for approximating the permanent of a non-negative n X n
matrix, which is based on an easily computed, unbiased estimator. It is not
difficult to construct 0,1-matrices for which the variance of this estimator is
very large, so that an exponential number of trials are necessary to obtain a
reliable approximation that is within a constant factor of the correct value.
Nevertheless, the same authors conjectured that for almost every 0,1-matrix
the variance of the estimator is small. The conjecture is shown to be true;
indeed for almost every 0,1-matrix, O(nw(n)e™?) trials suffice to obtain a
reliable approximation that is within a factor (1 + €) of the correct value.
Here w(n) is any function tending to infinity as n — co.

Department of Computer Science, University of Edinburgh, The King’s Buildings,
Edinburgh EH9 3JZ, UK. Part of the work described here was carried out while
the author was visiting Princeton University as a guest of DIMACS (Center for
Discrete Mathematics and Computer Science).



1. Summary

The permanent of an n X n matrix A = (a;; : 0 < ¢,j < n—1) is defined by

n-1
per(4) = Z H i, m (i) »
n 1=0

where the sum is over all permutations m of [n] = {0,...,n — 1}. In this paper, A will
usually be a 0,1-matrix, in which case the permanent of A has a simple combinatorial |
interpretation: namely, per(A) is equal to the number of perfect matchings (1-factors)
in the bipartite graph G = (U,V, E), where U = V = [n], and (¢,j) € E iff a;; =
1. The permanent function arises naturally in a number of fields, including algebra,
combinatorial enumeration, and the physical sciences, and has been an object of study
by mathematicians since first appearing in 1812 in the work of Cauchy and Binet.
(See [11] for background material.) Despite considerable effort, and in contrast with
the syntactically very similar determinant, no efficient procedure for computing this
function is known.

Convincing evidence for the inherent intractability of the permanent was provided
in the late 1970s by Valiant [13], who demonstrated that it is complete for the class #P
of enumeration problems, and thus as hard as counting the number of satisfying assign-
ments to a CNF formula, or the number of accepting computations of a polynomial-
time-bounded nondeterministic Turing machine. Interest has therefore turned to finding
computationally feasible approximation algorithms for the permanent.

The notion of “computationally feasible approximation algorithm” can be for-
malised as follows. Let f be a function from input strings to natural numbers. A
randomised approzimation scheme [8] for f is a probabilistic algorithm that takes as
input a string z and a real number 0 < € < 1, and produces as output a number Y
(a random variable) such that (1 —€)f(z) <Y < (1 +¢€)f(x) with high probability.
For definiteness we take the phrase “with high probability” to mean with probability at
least % . The success probability may be boosted to 1 — ¢ for any desired § > 0 by run-
ning the algorithm O(lg6™") times and taking the median of the results [6, Lemma 6.1].
A randomised approximation scheme is said to be fully polynomial if its execution time
is bounded by a polynomial in |z| and ¢'. We shall contract the rather unwieldy
phrase “fully-polynomial randomised approximation scheme” to fpras.

The question of whether there exists an fpras for the permanent of a 0,1-matrix
has received much attention, but for the time being remains open. Given the apparent
lack of progress on this front, it seems reasonable to weaken the requirements further,
and ask whether there exists an fpras for per(A4) that works for ‘almost all’ inputs. In
order to make this statement precise, it is convenient to switch to a graph-theoretic
viewpoint. Our new question, then, is whether there exist a randomised algorithm .4
and a family G of bipartite graphs, satisfying the following two conditions:
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(1) When restricted to inputs of the form (G,¢) where G € G, the algorithm A con-
stitutes an fpras for the number of perfect matchings in G.

(2) Almost every (a.e.) bipartite graph is a member of G. That is, the fraction of
2n-vertex bipartite graphs that are not members of G tends to zero as n tends to

infinity.

The modified question was answered affirmatively by Jerrum and Sinclair [5, 12],
who presented a randomised approximation scheme based on the simulation of an appro-
priately defined Markov chain, an approach that had earlier been proposed by Broder [2,
10]. A brief discussion of this result, including a description of the class G, can be found
in the final section of the paper. The polynomial bounding the execution time of the
algorithm of Jerrum and Sinclair was not explicitly computed in [5], but its degree is
not small. It is not yet clear whether this approach could form the basis of a truly prac-
tical algorithm, despite the undoubted scope that exists for optimising the algorithm
and tightening its analysis. For this reason alone, it is worth investigating alternative

approaches.

A promising Monte Carlo algorithm for approximating the permanent of a 0,1-
matrix was proposed by Karmarkar, Karp, Lipton, Lovdsz, and Luby [7]. Their al-
gorithm is based on an unbiased estimator for per(A), which will be described in the
next section. The KKLLL estimator may be computed relatively efficiently, the most
computationally demanding step being the evaluation of a single n x n determinant.
A randomised approximation scheme can be obtained from the KKLLL estimator as
follows. Choose t sufficiently large, and make a sequence of ¢ trials with the KKLLL es-
timator, letting the results be Zo, Z1,...,Z;—1; then return (Zo + Z; +--- + Zt_l)t_l
as the estimate of per(4).

The efficiency of the above approximation scheme depends on the chosen value
of ¢t and hence on the variance of the KKLLL estimator. Reverting once more to the
graph-theoretic viewpoint, suppose that the KKLLL estimator is being used to provide
an approximation to the number of perfect matchings in a specified bipartite graph G.
The number of trials necessary to obtain a reliable and close approximation is greatly
influenced by the structure of G. To illustrate this point, consider first the graph G
that is the disjoint union of %n copies of K ;. In this case, exponentially many trials
are necessary to obtain an approximation that satisfies the conditions of a randomised
approximation scheme. In stark contrast, O(ne™?) trials are sufficient to accomplish
the same task when G is the complete bipartite graph K, [7].

Karmarkar et al. conjecture that it is the second of these two examples that is
the more characteristic of graphs in general, and that O(ne™?) trials suffice for a.e. G.
It is a consequence of the main result of this paper that something very close to the
conjecture is true: namely that nw(n)e™? trials suffice for a.e. G, where w(n) is any
function tending to infinity as n — oo. A more precise statement of the result will be
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possible after we have reviewed the properties of the KKLLL estimator.

2. The KKLLL estimator

The estimator is defined to be the random variable Z that results from the simple
experiment described below.

(1) Form a matrix B = (b;;) from A as follows. Let {1,w,w®} be the cube roots of
~ unity. For each pair 7,7 in the range 0 < ¢,7 < n—1:
(a) if a;; = O then set b;; equal to 0;
(b) if a;; = 1 then choose b;; independently and u.a.r. from the set {1,w,w?}.
(2) Set Z equal to |det(B)|?, where |2| denotes the modulus of complex number z.

The KKLLL estimator is a simple modification of an earlier estimator of Godsil and
Gutman [3], which used square rather than cube roots of unity. At first sight, it may
seem surprising that the KKLLL estimator should be unbiased. Nevertheless, the fol-
lowing theorem can be established with little difficulty [7].

Theorem 1. E(Z) = per(4). O

As we have noted, the efficiency of the KKLLL estimator will depend on its variance.
Karmarkar et al. derive a useful expression for the variance, which is best formulated
in graph-theoretic terms. Let G be a bipartite graph on vertex set U + V', where
U =1V = [n], and let M and M' be perfect matchings in G. Denote by c(M,M")
the number of connected components (cycles) in M @& M', the symmetric difference of
M and M'. Define v(G) = E (2°(M’MI)) to be the expected value of 2°MM) when
M and M’ are selected u.a.r. from the set of all perfect matchings in G. (If G has no
perfect matchings then define v(G) = 1.)

Theorem 2. (Karmarkar, Karp, Lipton, Lovasz, and Luby.)

£ = 76

Proof. The theorem is essentially a restatement of Theorem 4 of [7]. However, it
may be helpful to point out the precise correspondence between the two versions of the
theorem.

The set D that appears in the original version of the theorem can be interpreted as
the set of all subgraphs of G that can be expressed as a union of two perfect matchings
in G. Note that any subgraph in D is a disjoint union of single edges and cycles;
further note that the number of ways of expressing the subgraph as a union of two

3



perfect matchings is 2°, where c is the number of cycles in the subgraph. With this
correspondence in mind, it can be seen that the denominator appearing on the right
hand side of the identity in the original statement of the theorem is simply the square
of the number of matchings in G. (Note that the G appearing in the original theorem
is not the same as the one used here.) Using the same correspondence, the numerator

can be seen to be equal to ZM,M' 9c(M,M")

(M, M') of matchings in G. Thus the quotient is the expected value of 2eMM") hen »
M and M' are perfect matchings selected u.a.r. from G. By definition, this expectation

is y(G@). O

, where the summation is over all pairs

Corollary 3. A sequence of O(e‘zy(G)) trials with the KKLLL estimator suffices
to obtain an approximation to the number of perfect matchings in G that satisfies the

conditions of a randomised approximation scheme.

Proof. Perform t = [4¢72y(G)] trials with the KKLLL estimator, letting the results
be Zy,Z1,...,Z—1. Using Theorem 2,

e ZZ) Vis(z) _ HG)EE)

t
=0

Hence, by Chebychev’s inequality,

O

Ll

Pr((1-0EZ) S 1Y % < 1+ 9E(2)) 2

1==0

The important point about Corollary 3 is that it reduces the analysis of the KKLLL
approximation scheme on random inputs to the analysis of y(G) for randomly chosen G.
The latter will be our goal for the remainder of the paper.

3. The permanent of a random matrix

For reasons that will be explained later, we choose to work with the random graph model
B(n,m); thus our sample space is the set of all m-edge bipartite graphs on vertex set
U +V, where U = V = [n] and the probability distribution is the uniform one. The
formula “select G € B(n,m)” is thus a shorthand for “select u.a.r. an m-edge bipartite
graph on vertex set U + V.” We have noted that the performance of the KKLLL ap-
proximation scheme on input G depends crucially on the quantity v(G) = E (ZC(M M ')) ,
where M and M' are matchingsin G selected u.a.r., and ¢(M, M') denotes the number
of cycles in M @ M'. An analysis of the behaviour of the approximation scheme on a

random input will therefore rest on an estimation of v(G) when G is selected according
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to the random graph model B(n,m). The natural route is via an experiment (A) of the

form:

(A1) select G € B(n,m);
(A2) select M, M' u.a.r. from the set of all matchings in G.

Unfortunately, it seems impossible to argue about the behaviour of ¢(M,M') when
M and M' are generated in this way. Instead we consider a related experiment (B) of

the form:

(B1) select k in the range 0 < k < n from an ‘appropriate’ distribution;

(B2) select M, M' u.a.r. from the set of pairs of matchings on vertex set U + V that
satisfy [IM N M'| = k;

(B3) select G u.a.r. from the set of all m-edge bipartite graphs, on vertex set U +V,
that contain M and M'.

We shall see that these two experiments are not too dissimilar provided the number
of perfect matchings in a random G € B(n,m) is fairly tightly clustered. Theorem 4
assures us that this is indeed the case. It is worth remarking that no analogous theorem
holds for the random graph model B(n,p), in which potential edges are selected inde-
pendently and with probability p; it is for precisely this reason that we have chosen to
work with the former model.

Theorem 4. Suppose the function m = m(n) satisfies m*n™> — oo as n — oo.
For G € B(n,m), denote by X(G) the number of perfect matchings in G. Then

E%)—g =1+0(25).

Proof. Let M be a perfect matching on U + V, i.e., a set of n independent edges
spanning U and V. For G € B(n,m), define the random variable Xp(G) to be 1 if
M is contained in GG, and 0 otherwise. Note that by linearity of expectation

E(X) = ) E(Xu), 1)
M

and

EX?) = Y E(XuXwr), (2)
M, M’

where M and M' range over all n! matchingson U + V.

To estimate the above sums, we need to compute the probability that a particular
graph appears as a subgraph of a randomly selected G € B(n,m). Let H be any t-edge
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bipartite graph on vertex set U + V, where ¢ < 2n. The probability ¢ = ¢(¢) that H
is a subgraph of G € B(n,m) is given by

g = (nz-—t)(nz)—l _ m(m—=1)---(m—t4+1)

m—t/\m T n?2(n2—-1)---(n2—t+1)

Taking logarithms, and expanding In(1 — z) as —z + O(z?), we have:

Ing = tz:i [In(m — i) — In(n” —4)]
—etn(5) 3 [ (1= ) - (1= 75)]
=0 (%) -3 [~ + o))

o= () e {-5 (-2 +olZa)} @

Specialising to the case t = n, we obtain

cin) = () e~ Zo 3 o)
and hence, from equation (1),

ECEP = () (5) " exp { - = +140(2)). @

In order to deal with sum (2), we need to estimate the number of pairs of matchings
M,M' as a function of the overlap k¥ = |M N M'|. This is essentially the probléme
des rencontres, which asks for the number of permutations of [n] that leave precisely
k elements fixed. Let D(n) denote the solution to the probléme des renconires in the
special case k = 0; thus D(n) is the number of ‘derangements’ of n elements. An
elementary application of the principle of inclusion-exclusion establishes that D(n) is
equal to e !n!, rounded to the nearest integer [4, p. 9]. The number of pairs of matchings
M,M' with |M N M'| = k has a simple expression in terms of D(-), namely

n!(Z)D(n — k). | (5)
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(To make sense of this formula, we should take D(0) = 1.)

We are now ready to tackle sum (2). Letting a = 2n(m™" — n™?), and using

estimates (3) and (5) we have:

E(X2)=i > E(XmXwm)

k=0 M,M':
|MAM'|=k
= én!(Z)D(n - k)(%)zn"k exp { - (—2?—52——162 (‘,71; - ;15) + O(‘S;)}
n 2 3

3 n o 2

e {—an+0(T5)} 3 ()P -w[T

k=0

" (6)

Noting that D(n — k) < e"}(n —k)! 4+ 1 and e = 1+ O(nm™'), we obtain the fol-
lowing bound on the sum appearing in (6):

> (oe-m[] < B g [ e (D5
= nterp {2 1} 4 [14+ S
< n'exp{-’:-; —1+o(%§,—)} +[1+0(/m)]"
- n!exp{%; —1+o(§;)}. (7)

(The second term in the penultimate line is much smaller than the first, and can be
absorbed within the O(-) of the first term.) Substituting (7) for the sum in (6) we

obtain
2 3

2y = ()P () " exp { = 5 n
B(XT) = (») (n"’) exp{ m+1+o(m2)}'
The theorem follows from this estimate combined with the earlier one (4). [1

It is perhaps worth remarking that there is a rudimentary approximation algorithm
for the permanent implicit in Theorem 4. Suppose A is a 0,1-matrix chosen uniformly
at random. Let m be the number of ones appearing in A, and compute the expectation
of per(A) conditional on A having precisely m ones. Theorem 4 assures us that the
probability that this expectation differs from per(A4) by more than say 1% tends to zero
as n tends to infinity.



4. The main result

We are now ready to tackle the main result, which states that v(G) is small for almost

every bipartite graph G.

Theorem 5. Let m = m(n) and § = §(n) be functions satisfying 0 < é < 1, and
m26n™® — oo as n — oo. Assume n is sufficiently large, and select G € B(n,m).
Then Pr (y(G) < né™') > 1-6.

Proof. We begin with some preliminary computations concerned with the number of
cycles in a random derangement. Denote by S, the set of all permutations on [n], and -
by D, C S, the set of all derangements, i.e., permutations with no fixed points. For
7 € Sy, let ¢(m) be the number of cycles in 7, including those of length one. Consider
the sums s(n) = > s 2¢™ and d(n) = Y reD, 2¢(m ; the latter may be expressed
in terms of the former by applying the principle of inclusion-exclusion:

d(n) = s(n) — (’11)213(71 —1+ (;‘)223(n _2) et (—1)"(2)2"3(0)

- i (Z)(—2)ks(n — k). (8)

T k=0

(The first term corresponds to unrestricted permutations; the second to permutations
that fix specified single elements; the third to permutations that fix specified pairs
of elements; and so on.) Now it is known (see [9, Ex. 3.12]) that s(n) = (n + 1)!

Substituting for s(n) in equation (8) and simplifying, we obtain

(=2 (n—k+1

n _9 k n _9 k
= (n+1)!k¥_0—(_7—9% - n';z%:)ﬁ?
= e 2(n+ 1)+ 0(2") + 2 n! + O(2™)
= e 2(n + 3)n! + O(2™).

Since the total number of derangements of n elements is e~ n! 4+ O(1), the expectation

of 2™ over all derangements = is

e (n +3)+ o(?ﬁ) = e In + O(1). (9)

n!

Let © denote the set of triples (G, M, M'), where G is an m-edge bipartite graph
on vertex set U 4+ V, and M, M’ are matchings in G. Recall experiment (B) from the
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previous section. Observe that the number of ways of extending M, M’ to a graph G
in step (B3) is a function only of the overlap k¥ = |M N M'|. Thus it is clear that
the probability distribution on k in step (B1) can be chosen so that the result of the
experiment is a triple (G, M, M') chosen u.a.r. from . Observe that, for given k, the
expected value of oMM’y ofier step (B2) is the same as the expected value of 2¢(m) |
where = is selected u.a.r. from the set of all derangements on n — k elements. Thus the
expected value of 2e(MM') o1 5 triple (G, M, M') selected u.a.r. from § is bounded

above by e~'n + O(1), that is: »

1 : '
0 > 2MMD < eTin 4+ 0(1). (10)
(G, M, M")eQ

Choose G € B(n,m), and recall that X(G) denotes the number of perfect match-
ings in G. Theorem 4 and Chebychev’s inequality together imply Pr (X < % E(X )) =
O(n*m™?), which is clearly equivalent to Pr(X? < & E(X)?) = O(n*m™?). A second
application of Theorem 4 then yields

’I’L3

Pr(X? < 1LE(X?)) = O(W)‘ (11)

Let N be the number of m-edge bipartite graphs on vertex set U + V. To complete
the proof of the theorem, we shall assume that there are more than §N graphs G with
v(G) > né~!, and obtain a contradiction. Note that the assumption, taken together
with (11), would imply that at least [§ — O(n3m_2)]N graphs simultaneously satisfy
the conditions v(G) > né~! and X(G)* > 1 E(X?). Now observe that inequality (10)
may be recast in the form

ﬁ X(GPG) < '+ 0(1).
G

According to our calculations, the left hand side of this inequality is bounded below by

3 3

R )

But since n®m =261 — 0 as n — oo, this provides a contradiction when n is suffi-
)

ciently large. U

It should be clear that the event y(G) < né~! appearing in the statement of
Theorem 5 may be replaced by v(G) < ané™', where a is any constant exceeding e ™.

The result easily translates to the random graph model B(n,p).
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Corollary 6. Let p = p(n) and § = §(n) be functions satisfying 0 < p,6 < 1, and
p?6n — co as n — oco. Assume n is sufficiently large, and select G € B(n,p). Then

Pr (7(G) < n6_1) >1-6.

Proof. The result follows from Theorem 5, using standard techniques for translating
between the two random graph models. See Theorem 2 on page 34 of [1]. [

Specialising to the case p = %, we obtain:

Corollary 7. Let w(n) be any function tending to infinity as n — oco. Then a.e.
G € B(n,p=%) satisfies v(G) < nw(n). O

5. Trustworthy approximation

We have seen that the KKLLL estimator provides an fpras for the permanent of a.e.
0,1-matrix, which is more efficient than the one proposed by Jerrum and Sinclair [5].
However, there is an important sense in which the results obtained by the latter approach
are more ‘trustworthy’ than those of the former. The aim of this section is to assign a

precise meaning to this informal claim.

As usual, let G' be a bipartite graph on vertex set U + V, and let X(G) be

the number of perfect matchings in G. Denote by X (G) the number of ‘near-perfect
matchings’in G, i.e., matchings that have precisely n — 1 edges. Define

p(G) = %E—g%

provided X(G@) > 0, and adopt the convention that p(G) = oo when X(G) = 0.
The approximation scheme of Jerrum and Sinclair is known (Corollary 5.3 of [5]) to
provide a reliable approximation to the number of perfect matchings in G in time
polynomial in n, p(G), and e™'. (Here, € is the parameter controlling the accuracy
of the approximation, and p(G) is assumed to be known in advance.) Although it is
possible to construct graphs G for which p(G) is very large, it can be shown, using

tools from Section 3, that such graphs are exceptional.

Corollary 8. Almost every G € B(n,p=1) satisfies p(G) < 4n.

2 3

Proof. Assume the function m = m(n) satisfies m*n™° — oo as n — oo, and select

G € B(n,m). The estimate

Eg)g - 1+O(n )



is akin to that provided by Theorem 4 and can be proved by a similar argument. By
applying Chebychev’s inequality to X and X in turn, we obtain

Pr(X < £E(X)) —» 0, asn — oo, (12)

and
Pr (5{\' > %E()?)) — 0, asn — oo. (13)

The expectation of X , obtained by computations similar to those appearing in the proof
of Theorem 4, is

EX) = (n+ 1)!(-72'"‘5)”_1 exp { - '?; +14 o(%)};

comparing this formula with the existing one for E(X), we see that

mE(X)
m" —_ 1, asn — o0, (14:)

Combining (12), (13), and (14), we obtain

™®
< 2
Pr(p(G) < 4m) — 1, asn — oo.

(The constant I here has no significance beyond its lying strictly between (%)2 and 2.)
The corollary is obtained by translating this result to the B(n,p=%) model using stan-
dard techniques. [

A result related to Corollary 8 (but formally incomparable with it) may be found in [5].

So far we have seen nothing that distinguishes the two approaches in a qualita-
tive sense. The efficiencies of the two approximation schemes depend on parameters,
v and p, which are large in the worst case, but small on average. However, the crucial
point is that the condition “p(G) is small” can be verified by a randomised polynomial-
time algorithm with small error probability, whereas no such verification procedure is
known for the condition “v(G) is small.” (See the discussion following Theorem 5.3

of [5] for a precise precise statement of this claim.)

Following a suggestion of Joel Spencer, we may formalise the consequences of this
apparent distinction. Let f be a function from input strings to natural numbers, and let
A be a probabilistic algorithm that takes an input string z together with real numbers
0 < 6,e < 1, and returns aresult Y (a random variable) that is either an approximation
to f(z) or a special ‘undefined symbol’ L. For each n, the input strings of length n
are assumed to be drawn from some specified probability distribution. A strong notion
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of what it means for A to work for almost every input is encapsulated in the following

two conditions:

(1) Pr(Y =L or (1-¢€)f(z) Y < (1+¢€)f(x)) 21-6, for every z;
(2) Pr(Y # L) > 1—§, for every n and randomly selected z with |z| = n.

The idea here is to separate the twin concerns of religbility and range of applicability,
and give the former a higher status. Thus condition (1) demands that the response
must be correct with high probability for arbitrary inputs, while condition (2) merely
asks that an informative response should be provided with high probability for random
inputs. As before, we may call such an algorithm fully polynomial if it runs in time
polynomial in 7, €, and 6. (Since there is no obvious ‘powering lemma’ for failure
probabilities under this definition, § must appear as an explicit input parameter.)

The above definition crystalises an apparent distinction between the two known
approximation schemes for the number of perfect matchings in a random graph. The
approach via Markov chain simulation does lead to an approximation scheme that sat-
isfies conditions (1) and (2) above, where z is interpreted as the encoding of a bipartite
graph, f(z) as the number of perfect matchings in 2, and the probability distribution
on inputs z is given by the random graph model B(n, p:%) . (Full details may be found
in the discussion following Theorem 5.3 of [5].) However, it is not known whether the
same end could be achieved using the KKLLL estimator. The question is of some inter-
est, since the latter approach is more likely to lead to a practical algorithm. The barrier
appears to be the difficulty of obtaining estimates for the crucial parameter v(G).
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