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Abstract

In this paper we study Systolic Y-tree Automata (SYTA), a class of systolic
automata where the communication structure is obtained by adding new edges,
and therefore new sons, called adoptive sons, to the nodes of the underlying tree
according to some regularity condition. We study SYTA in the more specific
case where the tree is t-ary or a tree with base. We show that for each s=0 the set j
of classes of languages accepted by SYTA whose underlying tree is a tree with
base with s leaves has a maximum, called LsSYTA. We study when LsSYTA is
reached depending on number and position of the adoptive sons. We prove that if
s and t are powers of the same base, then LsSYTA=LtSYTA. We give also a
simulation of SYTA on regular and modular systolic trellis automata,
strengthening a previous result on simulation of systolic tree automata on systolic
trellis automata. '



1. Introduction

Systolic automata have been introduced as abstract models to study systolic
systems (cf. [12],[13] for survey papers on the subject). Systolic systems (cf.
[14]), are parallel systems composed of a large number of (a few types of) simple
processing elements interconnected in a regular pattern. At each time unit, some
processing elements are active and transmit simultaneously their results to the’
ones connected to them. These processors become the new set of active
processing elements, and the process is repeated until an output is produced.
Systolic automata are (infinite) networks of (a few type of memoryless) finite
automata, in which the way to input a word over a given alphabet, the direction
of control flow, the transition rules of the processing elements and the output
node are specified.

A systolic automaton is called regular if processors are distributed in the
network in such a way that the label of any node is uniquely determined by the
labels of its control fathers (fig.1 shows a regular systolic tree automaton and a
regular systolic trellis automaton, respectively; the flow of control is represented
by arrows). In this paper only regular systolic automata will be considered.

Figure 1

Systolic automata whose communication structure is an array, a tree or a
trellis have been introduced and results about the power of different input/output
modes, the power of various types of homogeneity, etc., have been obtained. The
logarithmic time complexity of tree-like communication structures makes systolic



tree automata, STA, a very basic model; their formal investigation has been
started by Culik II, Salomaa and Wood in [5] and has been continued in
[11,[21,[71,[91,[16].

To keep logarithmic time complexity and to obtain greater computational
power, one can add new connections as in the case of X-trees. In ([6],[8], [11])
systolic automata are studied where the connection structure is obtained from a
tree by adding new connections between nodes: for a node N the only incoming '1
edges which may be added are those with origin in the first node on the left of
the leftmost son of N and in the first node on the right of the rightmost son of N.
In the present paper a more general case is considered: there is no restriction on
the number and origin of the added incoming edges; the only - natural -
remaining conditions are that edges must connect nodes in consecutive levels and
that to nodes with the same label incoming edges are added in the same way. We
shall call adoptive the new sons assigned to a node, while the graphs and the
automata themselves will be called Y-trees and systolic Y-tree automata (SYTA),
respectively. In figure 2 we show a Y-tree obtained from a binary tree, in which
a node labelled a has one right adoptive son and a node labeled b has one right
and one left adoptive son.

The first question which arises naturally is whether and how the number or
the position of these adoptive sons affects the computational power of the new
model. In [8] it is proved that, with respect to binary trees, greater computational
power is achieved by taking a binary tree and assigning two adoptive sons (one
on the left and one on the right) only to the nodes in the leftmost path of the right
subtree of the root and to the ones in the rightmost path of the left subtree of the
root. Then, an infinite hierarchy of automata can be obtained by applying the
above construction to subtrees rooted in nodes at successive levels. Here we
prove a quite surprising result, namely that if the underlying tree is a t-ary
infinite balanced tree (i.e. an infinite balanced tree with each node having exactly
t sons) we get the same computational power either by assigning to any node as
adoptive son the node immediately to the left (to the right) of the first (the last)
son or by assigning as adoptive sons the m consecutive nodes immediately to the
left of the first son and the n consecutive nodes immediately to the right of the
last son, with m+n>0. This proves that the class of languages accepted by SYTA
on a Y-tree whose underlying tree is a t-ary tree, has a maximum that we will
call LtSYTA. As regards the class of languages accepted if one varies the
position of the adoptive sons, we prove that LESYTA is also the class of
languages accepted by SYTA whose underlying tree is a t-ary balanced infinite



tree and with the m-th node to the left (right) of the first (last) son of a node as
its adoptive son for some m=1(mod t).

A subclass of STA with interesting modularity properties has been
introduced in [9] and furtherly studied in [16], the class of systolic automata with
base (T(b)-STA). Roughly speaking, the underlying tree of a T(b)-STA, called a
T(b)-tree, is obtained starting from a finite balanced tree b, called the base, and
by iteratively substituting b for all the leaves of the tree already obtained. We "
shall call T(b)-SYTA the class of SYTA whose underlying tree is a T(b)-tree. If
C is a class of systolic automata, we shall call L(C) the class of languages
accepted by such automata.

In [16] the classes of T(b)-STA obtained by varying b are compared. In
particular it is proved that if we call Bt the set of bases having t leaves, then
L(T(b)-STA), with be BS, coincides with L(T(c)-STA), with ce Bt, if and only if
s and t are powers of the same base and the number of nodes in each level of b
and c satisfies a rather particular condition on the internal structure of the base.
Here we tackle the same problem in the case of automata on Y-trees. We prove
that for every be Bt, L(T(b)-SYTA)=LtS YTA. It follows that in order to
compare classes of L(T(b)-SYTA) where be Bt with varying t, it is enough to
consider LESYTA . We show that if s and t are powers of the same number, then
LsSYTA = LtSYTA . We conjecture that this condition is also necessary; that
is, in the case of SYTA, the equivalence between L(T(b)-STA) and L(T(c)-STA)
would not depend on the internal structure of the bases b and c.

Notice that we have not specified whether the automata we consider are
deterministic or not. Actually, every mentioned result is proved in the paper for
the deterministic case, but it holds also in the nondeterministic version. Moreover
let us just mention that it would be easy to generalize the arguments given to
characterize the class of languages accepted by a nondeterministic SYTA on a
binary Y-tree in which every node has one adoptive son, (cf. [8]), and prove that
in the nondeterministic case L2ZSYTA = LLSYTA, for any t>2.

In [7], it has been shown that for any systolic tree automaton on a t-ary
balanced infinite tree a modular and regular systolic trellis automaton can be
found which accepts the same language. A systolic trellis automaton is a systolic
automaton whose communication structure is a labeled triangularly shaped
infinite square grid (cf.[3],[4]). A systolic automaton is called modular if the
trellis network of processors can be seen as built from simple blocks (of thombic
shape) of processors using simple recurrent rules. The modularity condition can
be viewed as to imply that the corresponding chips can be designed from simple
modules using recurrent design rules.
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In this paper we prove that for every t, LESYTA is contained in the class
of languages accepted by regular and modular systolic trellis automata. Since
SYTA on t-ary balanced infinite trees are strictly more powerful than the
corresponding STA, this result strengthens that of [7]. Notice that the same
result could have not been obtained for homogeneous (i.e. all the processors are
identical) systolic trellis automata, which are known to be incomparable with
systolic tree automata in terms of computational power ([3]). Our results allow to 9
bring some more light in the understanding of how powerful the notions of
regularity and modularity are for trellises: a number of different communication
structures become provably representable on such trellises.

Simulation results like the ones mentioned above, can be helpful in the
development of a VLSI algorithm; some VLSI algorithms are conceptually
simpler to be formulated on a certain communication structure even though this
structure may turn out to be more difficult or more expensive to be implemented
than some others.

The paper is organized as follows: in section 2 we give some preliminaries;
in section 3 we prove the main results of comparison among classes of SYTA,
and in section 4 we study the construction of regular and modular trellises
accepting LESYTA .

A preliminary version of sections 2 and 3 has been presented in [10].

2. Preliminary definitions and properties.

Given a infinite labeled tree T, let levelp(i) denote the set of all the nodes of T
whose distance to the root is i, for i=0,1,2, ... . Let us consider the natural
ordering from left to right of nodes in levely(i) and let us call N+(i,j) and L(i,j)
the j-th node in levelp(i) and its label, respectively, for 1sj<llevelp(i)l. Given a
node N(i,j), which is the first (last) son of a node in levely(i-1), let us call n-th
predecessor (successor) of Np(i,j) the node Np(i,j-n), 1<n<j,( Np(i,j+n), j<n+j<
lNevelt()l).

Consider a finite alphabet P and an infinite leafless tree T, labeled by
elements in P. We assume that the following two conditions are satisfied: the
arity condition, namely nodes with the same label have the same number of sons,
the exponential growth condition, namely there exists a real number o>1 such
that for every k=1, IlevelT(k)l>0ck. Let Pf(N™) be the set of finite subsets of the

set N*of positive natural numbers and h be a function from P to Pf(N)XPf(N™);



a Y-tree T=(T,P,h) is obtained from T as follows: if h(a) =
({i1s --im}s {j1> -xdn}) then for each node which is labeled a add an incoming

edge from the i,-th predecessor of its first son, 1<u<m, and an incoming edge
from the jy-th successor of its last son, 1<v<n. When the endpoints are not

defined, dummy sons are added (this does not change the power of the obtained
structure, but makes the treatment easier). All the new sons of a node created by’
the above procedure will be called adoptive sons. The degree of a node labeled a,

d(a), is the total number of its sons - adoptive sons included. A Y-tree T is
regular if the label of a node uniquely identifies the labels of its nondummy

sons. If N is a node of the Y-tree ’T‘=(T,P,h), then we will call subtree rooted in
N the subgraph of T given by the subtree of T whose root is node N.

In fig.2 we show a regular Y-tree T=(T,P,h) where T is a binary tree with
labels in P={a,b,c}, h(a)=h(c)=(2,{1}), h(b)=({1},{1}).

Figure 2

Definition 1. A Systolic Automaton on a Regular Y-tree ’T‘=(T,P,h),
briefly SYTA, is a 6-tuple A=(’T‘,I,Q,Q',G,F), where:

i) T is the underlying Y-tree,



i) Iis the input alphabet, which contains the special symbol #,
iii) Q is a finite set of states which contains the special state #,

iv) Q'c Q-{#]} is the set of final states,
v) G ={gyaI— Q-{#}, acP} is the set of input functions,

vi) F= (£,:Q4(®) - Q, ac P} is the set of transition functions. ’
If A is an SYTA and T its underlying tree, we will also denote the node
NT(l,j) by A(i,j) and the nodes in levely(i) by level, (i).

To define formally the language accepted by the SYTA A, we introduce some

notions. Firstly, we suppose that a dummy node is always in the particular
quiescent state #. Given a word w over the alphabet I-{#} with Iwl=t, let m be the
smallest integer such that llevel , (m)l=u>t. Let a,,...,a;, be the labels of the

nondummy nodes (from left to right) in the m-th level. We define Op (m,w) the
word x_ of length u over the alphabet Q such that the j-th letter of x, is equal to
the result of applying gaj to the j-th letter of wi#". Assume that we have already
defined O A(i,w)=xi, for some i with 1<i<m. Then O (i-1,w) is defined as follows.
Let llevel , (i-1)l=r (clearly, r<|x;| and Ix;|=llevel (i)l); consider the projections Yj»
1<j<r, of x; on the nodes in the i-th level that are sons of the node A(i-1,j) and let
the latter node be labelled by b;. Let m; (m;) be the number of dummy sons of

A(i-1,j) on the left (right) of its nondummy sons and let )7J-= mlyj#mZ. Then Oy (i-

1,w) is the word of length r over Q whose j-th letter, for j=1,...,r, is the result of

applying fbj to the letters of }_Ij, in the order. The arity condition guarantees that

fbj is an s-argument function, where s is the length of §j. Let O (1,j,w) be the j-th

letter of Op (i,w), for 1<i<m. Sometimes we shall write O (k) to denote the state

entered by the node k.
The word w is accepted by A if and only if O (0,w) is in Q'. The language

accepted by a SYTA is defined as L(A)={we (I-{#})* | Oo(0,w)eQ'}. Given a Y-

tree T, the class of (languages accepted by the) SYTA over T will be called T-

SYTA (L(T-SYTA)). Note that, when h(a)=(@,8) for every label A of T, T-
SYTA is the class of systolic tree automata introduced by Culik II, Salomaa and
Wood in [5].



Definition 2. A SYTA A=(’T‘,I,Q,Q',G,F) is in normal form if: i) each
input function is the identity function, ii) fa(X1 , -...Xg(a)) = # & X1 = ...= Xd(a)

= #, for every aeP. A SYTA A=(T,L,Q,Q",G/,F) is homogeneous if it holds that
d(a)=d(b) implies a=b for all a,b labels of T. ¢

The proof of the following theorem can be easily obtained by generalizing
the one for the same properties given in [6] for DSBCTA, which is the class of

SYTA on T‘=(T,P,h) whose underlying tree T is complete binary, i.e. such that
every node has arity 2 and h(P)={({1},{1}}.

Theorem 1. For every SYTA there exists an equivalent and homogeneous
one which is in normal form. *

In the following, otherwise explicitly said, we shall consider only SYTA in
normal form; therefore, we shall always omit specifying the input function.
Moreover in the successive simulation results, Theorem 1 will allow us to
assume that the simulated automata are homogeneous (simulating automata will
not be homogeneous in general).

Now we shall consider a particular subclass of regular
Y-trees, the class of Y-trees with base.

Definition 3. A base b is a balanced labeled finite tree. A T(b)-tree is
obtained in the following way :

step 1. take a base b,

step 2. to each leaf of the so far constructed tree attach a copy of the base b
in such a way that the root of the base substitutes the leaf,

step 3. repeat step 2.

We call hgt(b) the height of a given base, and Bt the set of bases with t
leaves. We call T(b)-Y-tree a Y-tree whose underlying tree is a T(b)-tree and
T(b)-SYTA a systolic automaton on a T(b)-Y-tree. We call t-Y-tree a Y-tree
whose underlying tree has nodes all of arity t, and t-SYTA the class of systolic

automata on a t-Y-tree. Note also that if T=(T,P,h) with h(P)={(@,2)}, T-SYTA
is the class of systolic tree automata with base defined in [9].



Let k be the set {1,...k}. In the case where in the Y-tree T = (T,P,h) we have
h(P)={(m,n)} or h(P)={({m},{n})}, the obtained Y-trees (resp. T(b)-Y-trees)
will be called (m,n)t-Y-trees and (m,n)t-Y-trees (resp.(m,n)T(b)-Y-trees and
(m,n)T(b)-Y-trees). The corresponding automata will be called (m,n)t-SYTA
and (m,n)t-SYTA (resp. (m,n)T(b)-SYTA and (m,n)T(b)-SYTA).

In the SYTA in the figures 3-9, the nodes are marked with the output (or part of -
the output) that they produce. In the simulated SYTA letters all different from
each other have been chosen in order to better show how the simulation takes
place.

3. Comparison among classes of SYTA.

In this section, after giving a general lemma on SYTA, we study subclasses of
SYTA on t-ary trees and trees with base with particular patterns of adoptive
sons. Firstly, we compare the classes of (m,n)t-SYTA with varying m and n, and
we show that if m+n>0 all the respective classes of accepted languages coincide in
one class. We shall call LESYTA this unique class. We consider the classes of
languages accepted by t-SYTA in which every node has one only adoptive son
and we show under which conditions the class of accepted languages is LESYTA.
Next we see whether and how these comparison results can be extended to
systolic automata on Y-trees with base. We shall show that it is possible to
construct a (m,n)T(c)-SYTA, with m+n>0 and ce BS, equivalent to a (p,q)T(b)-
SYTA, with p+q>0 and be B, if t and s are powers of the same number. This
result confirms the usefulness of adoptive sons when compared to its analogous
in the case of systolic automata on trees with base where an additional and rather
involved condition on the internal structure of the base is necessary (cf. [9]); it
shows also that even in the case of systolic automata on T(b)-Y-trees the presence
of more than one adoptive son does not increase the computational power.
Given sets W,X,Y,Z we write (W,X) c (Y,Z) if WcX and YCZ.

Lemma 1. L(T-SYTA)cL(T'-SYTA) whenever T=(T,P,h), T'=(T,P,h")
and h(a) < h'(a) for any aeP .
Proof. Immediate. ¢

Theorem 2. Given t>1, all the classes L{(m,n)t-SYTA), with m,n = 0 and
m+n>0, coincide.

Proof. We shall show, by induction on m, that L((m,n)t-SYTA)=
L(m+1,n)t-SYTA) for a given n>0 and every m=0. The proof that L{(m,n)t-



SYTA)=L((m,n+1)t-SYTA) for a given m>0 and every n = 0 is completely
analogous.

<— input level

<€— input level

By lemma 1 we have that L((m,n)t-SYTA) < L((m+1,n)t-SYTA). To
prove L{(A,m)t-SYTA)cL((0,n)t-SYTA) we have to show that for every (1,n)t-
SYTA A there exists an equivalent (0,n)t-SYTA A'.
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The simulation of a node A(i,j) cannot be done in A’ by a node in the level i
because of the lack in A' of some of the edges of A. Instead such simulation is
possible at the level i-1. In particular, the node A'(i-1,1) can do the same
computations done by the nodes A(i,1), ..., A(i,n+t), the node A'(i-1,j), for
1<j<ti‘1, can do the same computations done by the nodes A(i,(j-1)-t+n+1), ...,
A(i,j-t+n), and finally the node A‘(i-l,ti'l) can do the same computations done by
A(i,ti+n-t+1), ...,A(i,ti). Moreover the root processor A'(1,0) can perform the ’
cdmputations of A(1,1), ...,A(1,t) and, on the results of these, the computation
of A(0,1), the whole in one only step. Now it is not difficult to construct an
automaton A' whose behaviour is the one described above.

The proof that L{((m+1,n)t-SYTA)cL((m,n)t-SYTA) for m>0 is analogous;
(actually in this case the condition m>0 allows a simpler simulation where the
node A'(i,j), i>0, performs the same computations of the nodes A(i+1,(j-1)-t+1),
.., A(i+1,j-t), i.e. the nodes in A in the same positions of its non-adoptive
sons). ¢

In fig.3 we show a simulation of a (1,1)2-SYTA by a (0,1)2-SYTA
following the proof of theorem 2. Dummy sons are not represented.

We call LtSYTA the unique class of languages obtained by theorem 2.

Since from lemma 1 and theorem 2 it can be deduced that L{(0,m)t-SYTA)
cL((0,m)t-SYTA)cL((0,1)t-SYTA) it is interesting to know whether the inverse
inclusion holds true, possibly under some conditions.

Lemma 2. If 22, then L((0,1)t-SYTA) cL((0,m)t-SYTA) if m=1 (mod t).

Proof. Given an (0,1)t-SYTA A we outline how to construct an equivalent
nonhomogenous (0,m)t-SYTA A’ when m=1(mod t). It is sufficient to take three
labels, namely a for the leftmost nonadoptive son of a node, b for the other sons,
¢ for the root. Take n=min{ue N | t¥>m}. Suppose that a word is given as input
to the nodes in levelp(k). A node A'(i,j) is required to perform the two following
computations at the same time:

i) if k-n<i<k, A'(i,j) concatenates the inputs it receives from its nonadoptive
sons, otherwise, for O<i<k-n, it performs the computations of the nodes
AGi+n,t(j-1)+1),..., A(i+n,t?), which are the t? nodes in the subtree rooted in
A(i,j) and whose distance to A(i,j) is n.

ii) if O<i<k, A'(i,j) performs also the computation of A(i+1, t-(j-1)+1),
which is the leftmost nonadoptive son of A(i,j).

11



Exploiting the computation (i) of its nonadoptive sons, A'(i,j) can execute
(ii); the result of such computation is sent in one step to A'Gi-1,I(j-m)/t?l)
and from here it goes to A'(i-n,I(j-1)/t%l) following n-1 edges of the tree;
A'(i-n,I(j-1)/t1) uses such information, together with the computation (i) of its
non-adoptive sons, to execute (i).

Eventually, the root processor performs the last 2n-2 computation steps of A

in one step. ’

Figure 4.a

Figure 4.b
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In fig.4 we represent the simulation required for the proof of lemma 2 in
the case t=2, m=3, and therefore n=2. In fig.4a we show the computation of a
-piece of a (0,1)2-SYTA between the input level k and the level k-4. In fig.4b we
represent the nodes of a (0,3)2-SYTA simulating the (0,1)2-SYTA which are in
the same positions of the nodes producing as output V,T,U,N,P,Q,R,S. Inside the
circles we have written only the portion of the output of the nodes which is
exploited by the node on the top to simulate the nodes N,P,Q,R. In the level k-2
the letter I obtained from the fifth node is an example of computation (ii) in the
proof of lemma 2. ’

The next lemma shows that if t>3, the condition in lemma 2 is also
necessary. This does not seem to be true in the case t=2; for instance it seems that
L((0,1)2-SYTA) =L((0,2)2-SYTA). Anyway, it is not clear yet how in general
the computational power of (0,m)t-SYTA varies when m is not congruent to 1
modulo t.

Lemma 3. If me N and m#1(mod t), t>2, then there exists a language

Le L((0,1)t-SYTA)-L((0,m)t-SYTA).
Proof. We consider first the case m#0 (mod t).

Let us take the automaton A=(T,I,Q,Q',f) where T is the (0,1)t-Y-tree,
I={a,b,#}, Q={a,b#@]}, Q'={a,b} and f is defined as follows:

(X 150000 Xg41)=%¢ if (X9=Xi11 V X117 A (X1500X141=@,

f(X1,....X;41)=@  otherwise.

Roughly speaking, the output of a node K is the input symbol given to the
rightmost node of the subtree rooted in K in the input level iff the states entered
by the second and the (t+1)-th sons of K, K' and K" are equal (that is the input
symbols in the rightmost node of the subtrees rooted in K' and K" are equal) and
the same conditions hold for all the sons of K.

We prove that L(A)z L((0,m)t-SYTA). Let us suppose that A'e L{(0,m)t-
SYTA) exists with L{A)=L(A"). Let q be the number of its states. We consider

an input we L(A) with Iwl=t» and 2A-15q. We write w=w{ ... wp for Iwql=
.. =lwyl=tA-1. The letter which in w, is in the position ti, 0 <i<A-2, must be
equal to the letter which in wy is in position tM1-tl.(t-2).

We define w‘l’ (resp. WX) the word obtained from w; (resp. w,) by replacing

the letter tM1-ti of wy (resp. the letter i of w, ), 0 <i <A-2, by the i-th letter

of v. We have 21 different choices for v. Since 2A-1 >q , there are at least two

13



. s ] " M ! v
different choices, namely v' and v", such that the inputs w'=w; w1 waw, and

" 1"

w"=wj wy w3w, produce the same output S on A'(1,1). But the value computed

by A'(1,1) never depends on the letters of w, in position tl, 0 < i<\ -2, because
such letters enter nodes of A' which are not descendant of A'(1,1). Hence S is

given as output by A'(1,1) also for the input w= wf wy W3w, , which means

that w is accepted by A'. But w & L(A), against the hypothesis on A'.
In the case m=0 (mod t), it is not true that the letters of w, in position tl,

0<i<A-2, enter nodes which are not descendant of A'(1,1); anyway we get the
same result interchanging the roles of 2 and t in the definition of the function f
and in the subsequent proof. ¢

From lemmas 2 and 3 we have the following theorem.
Theorem 3. For t>2 L((0,m)t-SYTA) =LtSYTA iff m=1 (mod t).
Symmetrically, we can prove also the following theorem.

Theorem 4. For t>2 L{(m,0)t-SYTA)=LtSYTA iff m=1(mod t).

From [9], [16] we know that for any be Bt and for any t-STA there exists an
equivalent T(b)-STA equivalent to the t-STA. The following lemma allows to
generalize the result to SYTA.

Lemma 4 For every t>2 and be Bt it holds L((0,1)t-SYTA) cL((0,1)T(b)-
SYTA).

Proof. Take a t>2 and a base be Bt.Consider a new label a not appearing
among the labels of b and let b’ be the base obtained from b by replacing with a
the label of the rightmost node in the level hgt(b)-1. Consider now the T(b)-Y-

tree T' where the function h assigning the adoptive sons is defined by h(a)
=(2,{1}) and h(a")=(3,9) for every a' different from a. We will prove that for

every homogeneous (0,1)t-SYTA A=(T,1,Q,Q',f) there exists an equivalent
SYTA A' whose underlying Y-tree is T'. This would be enough for proving the
thesis because from lemma 1 and theorem 1 we haveL(A")cL((0,1)T(b)-SYTA).

The output of a node K in A' is a sequence of states of A obtained as
follows:
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i. if K has no adoptive sons, it concatenates the outputs given by its sons;
otherwise (i.e. if the label of K is a) it concatenates the outputs of its non-
adoptive sons together with the first symbol of the sequence of states given by its
adoptive son. In both cases, let us call w the sequence of states obtained;

ii. if w=wy... Wq.;+1, Where w; is a state of A, for 1<i<d-t+1,d 21, and K
is in a level c-h(b), ¢ = 0, then K performs a simulation step of A. In particular,
K gives as output qj... qq , Where qy=f(W(p.1).t41 - Wpet+1)» ISP < d. :

It is easy to verify that if K=A'(hgt(b)-1,j) and the input level is c-hgt(b)+c',
0<c'<hgt(b), then it holds that:

i. d is the number of nodes of the level c' of the base b,

ii. if ¢'=0, K gives as output O, (i,j),

iii. otherwise it holds dp= Op(G+1,G-1)-d4p), 1Isp <d.

Therefore the output z of the root of A’ is a final state iff
i. either Izl=1 and z is a final state of A, or
ii. lzl=r, 1< r <t, and f(z#7) is a final state of A. .

The following lemma can be proved analogously.

Lemma 5. For every t>2 and be Bl it holds L((1,0)t-SYTA) cL((1,0)T(b)-
SYTA). ¢

While L(T(b)-STA) cL(t-STA), be B!, in general is not true ([9], [16]) in
the Y-trees the corresponding inclusion does hold. The foolowing lemma is
crucial in the proof of this (Theorem 7).

Lemma 6. For every T(b)-SYTA on a (m,n)T(b)-Y-trees, be Bt, there
exist p,q=20 such that L(T(b)-SYTA) cL((p,q)t-SYTA).

Proof. Let us concentrate our attention on the right adoptive sons, forgetting
the left ones in order to simplify the proof. The argument we use could be used
for the case of the left adoptive sons, and the arguments for the two cases could be

easily combined. Given be Bt and a (0,n)T(b)-SYTA A, a nonhomogeneous (0,q)t-
SYTA A' equivalent to A can be constructed along the following line. Let n.' be

the number of nodes in levely(c') for O<c'<hgt(b). Now we consider the nodes in
level 5 (hgt(b)-i) as collected in -1 ordered groups of t consecutive nodes. Let
G(i,j) be the j-th group of nodes in level 5 (hgt(b)-i), that is the group consisting of
the nodes A(hgt(b)-i,t-(j-1)+1),..., A(hgt(b)-i,t-j).
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Correspondingly, we consider the first ncv-ti‘1 nodes in level:(i) as collected in
ti-1 ordered groups of n.' consecutive nodes. Let H(i,j) be the j-th group of nodes
in levely:(i), that is the group consisting of the nodes A'(i,(j-1-ng'+1),
A'Gi,jng). We call Gi(i,j) (Hi(i,j)) the k-th element in G(i,j) (H(i,j)), for Isk<t
(1<k< n¢"). Now suppose that a word w is given as input to A and let hgt(b)-i+c’,
0< c'<shgt(b), i=0, be the level of the nodes receiving such input. Then the word w
is given as input to A' in the level i+1. Any processor of A' cannot decide to
which level among hgt(b)-i, ..., hgt(b)-i+hgt(b)-1, w is given as input to A. Then
the computations corresponding to all the possible cases are performed by A’
simultaneously. The processors in H(i,j) simulate the computations done by the
processors in G(i,j) as follows:

i. Op(H1(1,j),w) contains (O, (G1(@.j),w),..., OA(Gmc,.,_l(i,j),w),

i1.0 7 «(Hi(1,j),w) contains O A(Gt-nc.+k(i’j)’w)» for 2<k<n,'.

If >t2+n one may be sure that the above computations are possible.

The root processor, which is also different from the others, selects the right
result which depends on the number s, of processors in levels:(1) receiving an

input not in {#}*: the right input level is ¢’ if n.'_1< s <n,". ¢

Theorem 5. For any (m,n)T(b)-Y-tree, be Bt, m+n>0, L((m,n)T(b)-
SYTA) =LtSYTA .

Proof. By theorem 2 and lemmas 4 and 1, LSYtTA=L((0,1)t-SYTA)c
L((0,1)T(b)-SYTA) < L((m,n)T(b)-SYTA). On the other hand, by lemma 6
there exist p,q>0 such that L((m,n)T(b)-SYTA)cL((p,q)t-SYTA) and,
therefore, by theorem 2, the thesis holds. ¢

By exploiting theorems 2 and 5 the following theorem can be easily proved.

Theorem 6. Given c22, p,q21, t;=cP,ty=cq, it holds that LsSYTA=
LtSYTA.

Theorem 7. For every T(b)-Y-tree T(b), L(T(b) -SYTA)CLESYTA.

Proof. Given a T(b)-Y-tree T(b)=(T(b),P,h), by lemma 1 L(T(b)-
SYTA)cL((m,n)T(b)-SYTA), where m is the maximum number occurring in
h(a), for every ae P. Then the result follows from theorem 5. ¢
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4. Simulation of SYTA by systolic trellis automata.

Let us call SRMTA the class of systolic trellis automata which are both regular
and modular. In this section - which is very much based on [7] - we show that
LtSYTA cL(SRMTA). Actually we will only outline the proof for the case t=2.
Both a more detailed proof of this and its generalization to any t can easily be
obtained adapting the schema of the proof of L{t-STA)CL(SRMTA) in [7].

An infinite trellis (trellis for the rest of the paper) is an infinite directed
graph which satisfies the following conditions:

1) there is exactly one node (called the root) without outgoing edges,

2) every node K, a father, has three ingoing edges from three nodes, the left
son L(K), the middle son M(K) and the right son R(K), such that R(L(K))=
M(K)=L(R(K)).

A labeled trellis T is a trellis whose nodes are labeled by symbols from a
finite alphabet A - called the label alphabet.

If T is a labeled trellis and 1<j<i, then N(i,j) will denote the j-th node (the
enumeration is from left to right starting with one) in the i-th level of nodes (the
enumeration is from the root starting with one) and A(i,j) its label. For any
I<j<i, the sequence of nodes N;(i,j), N;(i-1,j), Ny(i-2,j), ..., N3(,j) is called the
left-to-right diagonal (starting at the node N(i,j)) and the sequence N(i,j),
N;(G-1,j-1), Np(G-2,j-2), ..., Np(i-j+1,1) is called the right-to-left diagonal
(starting at the node N(i,j)).

A trellis T is said to be regular if the label of any node is uniquely
determined by the labels of its fathers (sometimes in the literature the trellises
with such property are called rop-down deterministic and a regular trellis is then
defined as a trellis obtained from a top-down deterministic trellis T by means of
a relabeling c, i.e. a function from the label alphabet A of T to some "new" label
alphabet A'; anyway such two notions of regularity are equivalent in term of
computational power ([3] ).

A labeled trellis T is said to be strictly (p,q)-modular if there is a morphism
¢ that maps A into two-dimensional rectangular words of size pxq (they can be
viewed as mappings of {1,2, ..., p} X {1,2, ..., q} into A) such that
o(Ap(1,1))(1,1) = Ap(1,1) and T= lim;_, ,,¢'A(1,1)), where the symbol ¢ is used

also to denote a natural extension of ¢ to map arbitrary two-dimensional words
into two dimensional words. The trellis T is said to be (p,q)-modular if T=c(T")
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for some strictly (p,q)-modular trellis T' and a coding c. A trellis is said to be
modular if it is (p,q)-modular for some p,q.

A regular and modular systolic trellis automaton (SRMTA) is a construct
H=(T,A, ZI,I" ,g,h) where T is a regular and modular trellis labeled by symbols

from A, and X, T', I' cT" are finite alphabets of terminal, operating and accepting

symbols, g:AXX—T is the input function, h:AXI'XI'XI"—>T is the transition
function (actually g and h specify a certain collection of input and transition
functions on X and I'XI'XT, respectively, one for each o€ A).

In order to define a flow of computation on H, we extend the functions h
and g as follows. If w=w,...w_ for w;€Z and A,, ..., A, are the labels of the
nodes, from left to right, at the n-th level of T, then
g(w)=g(A,w)gAy,Wy)...g(A,w). If w=w,...w_and z=z,..z__, , for w;,z,€ ¥ and
Ay, o, A, are the labels of the nodes at the (n-1)-th level of T, then
h(w,z)=h(A;,w,,2,,Ww,)h(Ay,Wy,Z3,W3)..h(A 1, W, 1,2, W)

If we I+, then ko(w)=g(w), k{(w)=h(ko(w)#W+1)), ky(w)=h(k;(w).ko(W)),
k3(w)=h(ky(w),k1(W)), ..., Kjwi(W)=h(K}y.1(W).Ky.2(W)) is the sequence of

output words, level by level, when w is processed on H ; L(H)={wlwe Z*,
ki (W)eT',} is the language accepted by H.

Theorem 8. L((0,1)2-SYTA) < L(SRTA).

Proof. Consider the top-down deterministic trellis R’ defined as follows:

i. the label alphabet of R' is {a,b},

ii. the nodes of the rightmost and leftmost paths of R’ are labeled by a,

iii. a node R'(i,j), 1< 1, 1<j<i, is labeled by b if its fathers on the level i-1
have the same label, otherwise it is labeled by a.

The constructed trellis has the property that the nodes in a level i are all
labeled by a iff i=2] for some j>0.

The regular and modular trellis R we need here is obtained from R' by
relabeling with a new letter ¢ the nodes of the rightmost path of R'.

Let A be a (0,1)t-SYTA; we will outline the construction of a SRMTA A’
equivalent to A.

We shall divide the rest of the proof into two cases. Let w be the input word
to be processed. Firstly, we show how A' can simulate the computation of A if
w=2J. Then we shall consider the remaining possible lengths for w.

For a node M in A we shall call A'(M) the node in A' which simulates M.
We will denote w(i,j) the substring of w which enters the subtree rooted in
A(i,)), 11 <1. We will call a-nodes, b-nodes, ... nodes labeled by a, b, ... .

Case 1: There exists A> 0 s.t. lwi=2A,
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The computation of A' implements the "strategy” given by the following
three rules:

1) A'(A(i,j)) is located as follows: A'(A(i,j)) is in the same left to right
diagonal of the node of A' which receives as input the first letter of w(i,j); the
level of A'(A(1,j)) is A-2M1+142 if j<i, A-2M141 if j=i.

2) Anode K=A'(A(i,j)) sends Ox(i.j):

« along the left to right diagonal (except when K is a c-node);

+ along the right to left diagonal if K is a c-node or if K is an a-node with a
b-node as left father (therefore in the latter case O, (i,j) is sent along both the

diagonals).

Now Oy (i,j) follows this (these) diagonal(s) until the condition for the
application of rule 3 below is satisfied.

3) When a state S of Q propagating along the left to right diagonal and a t-

uple S of states of A, t=1,2 propagating along the right to left diagonal, reach
the same node K:

« if t=1, K collects S and S into a pair and sends it along the right to left
diagonal;

« if t=2, K computes £(S,S,S,), where S;, i=1,2 is the i-th component of S.
With reference to the SYTA of fig. 5.a, fig.5.b shows an example of an "ideal"
computation for A' according to these rules (in practice the implementation of
such strategy would introduce some more complications). The input is abcdefgh
and has length 23. In the trellis the nodes performing the simulation steps and the
paths followed by the states of the (0,1)2-SYTA so obtained, have been
evidenced.

Case 2: There is no A= 0 s.t. Iwl=2M .

We write w=wy... wp, Iwjl=2t", n; >n;,(, ISi<r.

First, we introduce the equilateral triangles Tj, B; and Q;. The sequence of
equilateral triangles T;, 1<i<r, each of side Iw;jl, cover, in the given order, the
first Iwl nodes of the rightmost path of T (see fig. 6 ). The nodes on the sides of
these triangles are labeled by a and c. The triangle Bj, 1<i<r, shares the base
with Tj, has all the remaining nodes labeled b and its vertex is in a level greater
or equal with respect to the input level. The base of the triangle Qj, 1<i<r, is
determined by the input nodes not belonging to B; and receiving letters of wj: its
vertex is the left son of the leftmost node in the base of Tj .
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Figure 6

A\, ;)

A i+l
Figure 7

Let A, be the subtree in the underlying (0,1)2-Y-tree of H which receives
wj as input and A(A;,p;) its root (note that then we have w(A;,p;)=wj ).

The idea is that to bring the letters of w; up to the base of T; and to make
the simulation of A;j on Tj.
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The letters of w;j entering nodes of B; reach the base of T; by imposing that

an input b-node just makes its input to be transmitted along the left to right

diagonal through b-nodes until an a-node or a c-node is reached.
Now we consider the letters of w; entering nodes in Qj. During the

computation of A' we cannot distinguish the nodes of T; from the nodes of Qj,
the former having to compute the simulation of the nodes in A; (we shall refer to

this kind of computation as to simulating computation), the latter having to
transmit the input letters along the left to right diagonals (we shall refer to this
kind of computation as to input transmission). Therefore a node in Qj or Tj
performs both the computations at the same time.

We use the signal [ to prevent the simulating computation of Q; from
affecting the nodes which do not belong to Q;. A signal B starts in an input b-

node whose brother on the left is an a-node, flows along the right to left diagonal

and ends in the second a-node that meets.
The simulating computation of Qj is stopped by the signal f running through

the leftside of B;. An input transmission passes signal  and will cause the

beginning of a new simulating computation when an a-node is met.
Let us denote by S; the subtree rooted in A(A;,pi+1) (see fig. 7) and by

A{ the nodes of A; on the rightmost path. Using the previous rules 1 (for the
level of the base of Tj instead of A ), 2 and 3, it is possible to simulate the nodes

of Ai-Ai in Tj. Instead, the simulation of the nodes of A? will be a bit more

involved because their computation depends also on the nodes of the leftmost path
of S;, which we will denote by SA. Anyway we can still impose that the position

on T; of the nodes simulating those in A{ is given by rulel (for the level of the

base of T; instead of A ). Let us prove how this is obtained.

We need a new signal, which we call signal n| (see fig. 8). A signal 1 starts
from a node N iff all the following conditions hold:

N isa b-node

« its left son is a b- node

» its right son is an a- node

» the right son is an input node or is reached by a signal P .

The signal n starting from N runs along the vertical links until:

* a c-node is reached

ea P signal is met.
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--=-=- signalm
— signal

Figure 8

In fig.8 there are two 1 signals which are stopped by B signals, whereas two
other m signals reach the rightmost path of the trellis. Let Me A§ , and My, M,,

Mj be its first, second and third son, respectively. A'(My) is the left son of
A'(M); A'‘(M,) is a c-node descendant of A'(M). Therefore it is possible to
transmit O A(Ml) and OA(MZ) to A'(M).

As regards Op(M;3), we distinguish three cases:

i) M3e (S?b N Aj1- Ay 1Di41)) (see fig.7) : A'(M3) is an a-node sending
O (M3) also along the right to left diagonal (by the rule 2). When O, (M3)

meets an 1M signal (it will be the one starting from the left vertex of the base of
Tj+1), it changes direction and reaches the right son of A'(M) through the left to

right diagonal.
ii) M3=A(A;,1.pj41) : the difference is that A'(Mj3) is a c-node and O (M3),

through the c- nodes, joins the 1 signal in A'(M,).
iii) Mze (Si?‘-AHi) : let Uje A{ be in the same level as A(A;, 1,p;+1); A'(Uyp

is identified as the c-node in T; reached by an m signal. We impose that the

behaviour of A’ satisfies the following conditions:
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Condition 1) For i<r, let Ve A{ be located between A(A;,p;) and U; (U;
1°r'1 1 1

excluded). The node A'(V) simulates also the node in Sik in the same level of
V;
Condition 2) For i>1, the states produced by the roots of A; and S; are
transmitted along the c-nodes, from A'(A(A;,p;)) up to A'(U;_). ?
~ Notice that Condition 2 makes Condition 1 satisfiable when V is the father
of Uj (the only potentially difficult case). Condition 2 is satisfiable because the
father of A'(A(Ai,pj)), namely Z, is identified by the left to right diagonal

starting from the input level and ending in the left son of Z, which consists of
nodes all labeled by b . Condition 1 obviously implies that Op(M3) reaches

A (MI\)I;)W we have that O, (0,1)e 04+(0,1) since A'(A(A;,p1))=A'(0,1).

Withe reference to the SYTA of fig. 9.a, fig. 9.b shows an example of a
computation of A' for the case when the length of the input w is not a power of 2.
If we take wy=abcdefgh, wy=ilmn, w3=op, then it is the same situation of figures
6 and 8. Only the "correct” M signals (that is the ones that reach the rightmost

path of the trellis) are represented. The [ signals, the simulating computations of
the triangles Q; and Q, and input transmissions of the triangles Ty, T, and T3 are

not shown (Qq, Q,, T, T and T3 are the triangles represented in figures 6 and
8). ¢

5. Conclusions.

In this paper we have studied Systolic Y-tree Automata (SYTA), a class of
systolic automata where the communication structure is obtained by adding new
edges, and therefore new sons, called adoptive sons, to the nodes of the
underlying tree, according to some regularity condition. We have studied SYTA
in the more specific case where the tree is t-ary or a tree with base. We have
shown that for each s=0 the set of classes of languages accepted by SYTA whose
underlying tree is a tree with base with s leaves has a maximum, called
LsSYTA, and we have studied when LsSYTA is reached depending on number
and position of the adoptive sons. We have proved that if s and t are powers of
the same base, then LsSYTA=LtSYTA. We have also given a simulation of
SYTA on regular and modular systolic trellis automata, strengthening the result
of [7].
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These first results of comparison among classes of SYTA suggest that both
the position and the number of the adoptive sons influence the computational
power of the considered automata. By fixing the underlying tree and varying
position and number of adoptive sons one can obtain classes of automata which,
with respect to the accepted languages, are equivalent, contained one in the other
or incomparable. We think that the algebraic structure one obtains is a lattice, but
we have not studied yet the problem. As regards the comparison results one may ‘1
obtain by varying the underlying tree, we believe that the sufficient condition of
equivalence of theorem 9 is also necessary. Most of the comparison problems of
this type are still open for the classes of T(b)-SYTA languages strictly contained
in the maximal one. In the maximal case we noticed that all the classes of
nondeterministic systolic t-ary automata are equal, for t=2. This may not be true
for the nonmaximal cases. From this point of view the nondeterminism may
offer several surprises.
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