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Abstract

This paper studies decidable fragments of predicate calculus. We will focus on the
structure of Direct Predicate Calculus as defined in [KETONEN and WEYHRAUCH 1984] in
the light of the recent work of Girard [GIRARD 1987, 1988 A and B] on Linear Logic.,
Several graph-theoretic results are used to prove correspondences between systems of Nat-
ural Deduction, Direct Predicate Logic, and Linear Logic. In addition, the implementation
of a decision procedure for Direct Predicate Logic is sketched.
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1. Introduction

Much of the recent work in Artificial Intelligence (AI) and its applications uses predi-
cate logic as its foundation. Yet, full predicate logic is known to be undecidable. Given an
arbitrary formula, one cannot predict whether the formula is provable, and if so, how fast
one can verify it. We are faced with the problem of combinatorial ezplosion: programs ex-
hibiting supposedly intelligent behavior can get swamped in many unexpected ways. This
situation can be somewhat remedied with a better understanding of heuristic approaches
and programming tricks in universal proof methods such as resolution. However, we feel
strongly that this methodology — derived from the everyday practice of Al programming
— must be coupled with a better formal understanding of the use of predicate logic. For
example, it is intuitively clear that in most situations the full power of predicate logic is
never used: our intention is to mechanize simple-minded reasoning. We are led to study
decidable fragments of predicate logic. For example, propositional logic is quite sufficient
for simple knowledge representation tasks. Even though all known bounds for procedures
for checking propositional tautologies are exponential, they are good enough in practice.
However, if we go further and add unary predicates (i.e., study decision procedures for full
monadic predicate calculus), we are faced with double exponential bounds [LEWIS 1978].
Other fragments defined by restriciting the number of quantifiers that can occur also be
proven to be decidable with extremely high bounds [DREBEN and GOLDFARB 1979]. We
do not view these types of approaches — syntactic restrictions — as intuitively satisfac-
tory. Our intention is not to restrict the expressiveness of our base language, merely the
methods of proof and rules of deduction.

The paper of Ketonen and Weyhrauch [KETONEN and WEYHRAUCH 1984] defines a
fragment of predicate calculus — Direct Predicate Calculus (DPC) — by eliminating the
use of the rule of contraction. Intuitively, this means that every formula can be ‘used’ at
most once in a proof. Thus, ‘“tricky’ proofs such as proof by cases are not covered. For
example, the formula

Jy.Vz.A(y)DA(x),

while provable, is not provable within DPC. It was shown that DPC admits a relatively
simple decision procedure.

The work of Girard [GIRARD 1987, 1988] can be viewed as a logical extension of this
research; by defining multiplicative and linear versions of all propositional connectives and
their corresponding proof rules, one can gain a more refined analysis of decidable proof
procedures.

Our paper will explore the connections between these two approaches. In particular,
we demonstrate correspondences between the basic data structures used in Natural Deduc-
tion (proof trees), Linear Logic (proof nets), and Direct Predicate Logic (chains). Finally,
we will sketch an implementation approach for the decision procedure for DPC.
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1.1. Notation

Our basic language is that of pure first-order predicate logic. We are given a language
Lo consisting of an infinite list of variable symbols z,y,z2,..., a list P; (: = 1,2,...) of
predicate symbols of arity n;>1, and a list of function symbols f; (i = 1,2,...) of arity
m;>1. The notion of a term and a formula in the language Lo is then defined in the usual’
manner.

Definition: Any variable is a term. If ¢1,...,%, is a list of terms and f is an n-ary
function symbol, then f(t1,...,t,) is a term. If ¢1,...,t, is a list of terms and P is an
n-ary predicate symbol, then P(t1,...,t,) is an atomic formula. If z is a variable and ¢,
are formulas, then so are

—¢, ¢, AY, ¢VY, Vz.é, dz.g.

One can now go on and formulate a system of predicate logic in the expected fashion.
Our interest lies in analyzing the notion of provability in this context. For this reason, we
need to often distinguish between a term and its occurrence in a proof. For example, the
two occurrences of a formula “A” in “AA(ADC)DD” might arise in different ways in a
proof. We wish to make this explicit by constructing another language £ which will allow
us to denote any term of £y in infinitely many different ways. £ is constructed by assigning
to each symbol s of Ly a countable list of distinct symbols 0!,02%,... of the same arity
and type.

In general, we use the letters A, B,C,... to denote formulas of £ and T',IL %, ...
for finite sequences of formulas. Comma will be used as a concatenation operator for
sequences. The symbol “)” denotes the empty sequence. For any formula A, we use the
notation A(t1,...,%,) for A with all the free occurrences of the variable z; replaced by t;
fort=1,2,....

Define a partial mapping 7 from the terms and formulas of £ onto the terms and

formulas of £y by setting .
7(0) = s

for all symbols and extending this by a straightforward induction to all objects of L.
Clearly, the set of pre-images of any term or a formula of £y under 7 is infinite. We view
7 as a fibration of the base language Lo.

Two terms t,u of £ are called similar (t = u) if 7(¢) = 7(u).

A term t of L is separated if any two similar occurrences of subterms in ¢ are distinct
elements of L.

For any t in L there is a separated u similar to it. Using this representation one can
uniquely identify a term (or a formula) through its position in the proof of some other
term or its appearance in some other term. This fact will make our arguments somewhat
easier to formulate.

Define a partial order < on the set of all terms and formulas of £ as follows:

t < u =4¢f t OCeurs in u.
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Thus A < B if and only if A is a subformula of B if and only if A occurs above B in the
tree of formulas.

A positive or negative occurrence of a subformula B in a formula A is defined induc-
tively as follows:
— A is positive; ,
— let B be CAD, CVD, Vz.C(z) or 3z.C(z): if B is positive [negative], then C, D, C(t):
are positive [negative];
— let B be COD or ~C: if B is positive [negative] then C' is negative [positive] and D is
positive [negative]. )

A quantifier is called essentially universal if it is universal in a positive occurrence or
existential in a negative occurrence; otherwise, the quantifier is called essentially ezisten-
tial. This terminology is extended to the variables bound by such quantifiers.

A conjunctive subformula in a set of formulas is either (i) a positive occurrence of
a subformula of the form AAB or (ii) a negative occurrence of ADB or (iii) a negative
occurrence of AVB. Similarly, a disjunctive subformula is either a positive occurrence of
AVB or of ADB or a negative occurrence of AAB.
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1.2. Sequents

A sequent S is a pair of sequences I', A of formulas, usually written as I' - A. I' is
called the antecedent and A the succedent. For our purpose it is convenient to use the
notation '

F =T A,

or even F I, assuming an implicit partition betwen positive and negative formulas in I'.
We set =B =q.1 B. -
All of the notions of occurrences for formulas can be extended to sequents by inter-
preting sequents of the form + —A4y,...,mAp, B1, ..., Bm say as implications of the form:
AiA...ANA,DB;V..VB,,.
We define Axioms and Rules of Inference as follows.
Axioms are sequents - - A, B such that A = B.

An Inference is a relation between sequent(s) — the premise(s) — and a sequent —
the conclusion —, written as usual

S S1 Sa
S S
according to the rules indicated below.

Structural Rules are Weakening and Exchange; Contraction is excluded:

Contraction

FT,4,A

FT,A
Logical Rules are -, V, A, D, V, 3 Left and Right.

In this context it becomes essential to decide whether the rules for disjunction and
conjunction are given an edditive interpretation, e.g.,

TFAA TFAB ATFA ~B,T+A

'k A,AAB AAB,T'F A AAB,T F A
or a multiplicative interpretation:

I'FAA TIFAB ABTFA

T,IIF A, A, AAB AAB, T+ A
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Symmetrically for disjunction.

Left Rules Right Rules
Weakening
FT
FT,A
Exchange
FT,A,B,A
FT,B,4,A
Conjunction
F{ERBYT s v -
Disjunction
. —IlA-’n{Av B)frﬁ,g’ = ‘ I—t%,%\/LBB
Implication
FT,A F-B,A FT,-A,B,A
F-(ADB)I', A l FT,ADB,A
Universal Quantification
F —A(4),T F T, Ala)
F —Vz.A(z),T FT,Vz. A(z)
where a does not occur in I'; A.
Existential Quantification
F-A(a),l FT,A(t)
F—dy. A(y)A FT,dz. A(x)
where a does not occur in I, A.
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In addition, the Cut rule has the form
FT,A FB,A

FT,A

where A = —B.

In each rule, the indicated formulas in the premise(s) are the active formulas and
the indicated formula in the conclusion the principal formula. All the formulas in the
indicated sets are side formulas. The active formulas of Cut are the Cut formulas. The
active formula(s) are the smmediate ancestors of the principal formula and the relation “
is an ancestor of ...” is the transitive closure of “... is an immediate ancestor of ...”.

Derivations are inductively defined as usual. The definition of a branch 8 in a deriva-
tion is also routine.

Definition. A derivation D is separated if for every pair of distinct branches $1, 82 and
every pair of terms t;, to with t; € B, t2 € B2, t1 =tz implies ¢; # ta.

We work with separated proofs.

1.3. Relations with the Classical System

The relations between the languages Lo and £ and between Classical and Dlrect
Sequent Calculus could be further explored by introducing in £ the notation A™ with
the meaning Ao Ao...o0 A (n times), where “o0” is “V” in a positive context and “/\” in a
negative context. One can then introduce the following approximation of Contraction

FT,A™ B™ A

F DA™ A

where A ~ B.
Next, one may consider a Generalized Cut rule, or Mix

FT,AM B A

FT,A

where A =~ —B. The trouble with Mix is that it cannot be reduced to Cut: one completely
loses control over the number of iterations. Thus Mix must be forbidden from Direct Logic.
On the other hand, the rule

FT,A F B(™ A

F T, A
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with A &~ -B, is definable in terms of Cut, and yields an (exponential) bound on the
number of needed duplication. The dynamical analysis of Contraction (i.e., with respect
to Cut elimination) in classical logic is a main concern and motivation for a logic as ours.
However, the issue will not be pursued further in this paper.

The following is clear:

Approximation Theorem. Let S be any sequent in Lo. S is derivable in classical
sequent calculus LK iff there is a sequent S* in L, derivable in Direct sequent calculus
such that 7(S*)=S5. m

1.4. Basic Proof Theory

Cut Elimination Theorem: Every derivation D in Direct Sequent Calculus can be
transformed into a Cut free derivation D'. B

The length of D' grows exponentially, as usual.

Let D be a cut free derivation of S in which all axioms involve atomic formulas.
Without loss of generality, we may also assume that all principal formulas in applications
of a Weakening are atomic.

Corollary (Strong Subformula Property): There exists a bijection between the
subformulas of S and the active formulas of inferences of D. W

Corollary (Midsequent Theorem): Let S be a sequent containing only prenez
formulas, derivable in Direct Sequent Calculus. There exists a Cut free derivation D of S
and a sequent Sp in D with the following properties:

(i): So results from S by erasing all quantifiers and replacing the variables by terms;

(ii): every inference above Sy is propositional and every inference below Sp is quan-
tificational. W

We may assume that different variables are used in different occurrences of quantifiers.

Herbrand’s Theorem has nice properties in Direct Logic. We recall the definition
of Herbrand function. In a sequent S, let Qy.A(y) be an essentially universal subfor-
mula which lies in the scope of the essentially existential quantifiers Qz1,..., Qzn: then
y[z1,...,2n] is the Herbrand term associated with Qy.

The Herbrand form Sg(z1,...,2s) of asequent S is the result of erasing all quantifiers
of S and of replacing each essentially universal variable with the corresponding Herbrand
function. (Here zi,...,z, are all the essentially existential variables in 5.
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Corollary (Herbrand Theorem):{ Let S be a sequent containing only prenez for-
mulas. Then S is derivable in Direct Predicate Calculus iff there are terms ty,...,t, such
that Sg(t1,...,tn) 18 derivable in Direct Propositional Calculus. W

1 The theorem is not true for non prenex formulas. Counterexample:
(3y.A(y))vB>(3z.A(z)VB).

It is true, however, that given S, there exists $* & S such that some subformulas of S are
fibrated in S$™ and the theorem holds for S*. We will not pursue this topic here.
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2. Linear logic and Direct Predicate Calculus

Girard’s Linear Logic provides a comprehensive framework in which the above issues
can be discussed. The context is particularly stimulating, since connections are exibited
between results of Proof Theory, Category and Domain Theory, Linear Algebra and Banach,
Algebras [GIRARD 1987, 1988 A and B]. ’

" Developing ideas already present in the literature on Contraction free systems
[OND 1988] and in Relevance Logic (see [AVRON 1987]), Girard gives an instructive pic-
ture of the structure underlying Classical and Intuitionistic Logic.

The connectives of Linear Logic and their dual are organized in 5 levels:

(1) the self-dual linear negation (.)*;

(2) multiplicative conjunction ® (times) and the dual disjunction Ul (par), with their
identities, namely, 1 and 1;

(3) additive disjunction & (plus), and the dual conjunction & (with), with the identities
0 and T, respectively;

(4) the ezponentials: ! (of course) and its dual ? (why not)

(5) additive quantifiers A (every) and the dual \/ (some).

Linear negation is defined for non atomic formulas, linear implication is defined as
multiplicative.

At the moment (November 1988) we are aware of 5 different semantics for Linear Logic:
Girard’s Phase Semantics, Coherent Semantics [GIRARD 1987] and the interpretation in
C* Algebras [GIRARD 1988 BI]; Lafont’s interpretation in Linear Algebra [LAFONT 1988]
and Sambin’s in Formal Spaces [SAMBIN 1988]. {

Sequent Calculi for Linear Logic are obtained by eliminating both structural rules of
Weakening and Contraction.

The Multiplicative Fragment (levels (1) and (2)) has logical rules for ® and U

FT,A FA,B A BT

FT,A,A® B FAUB,T

the axiom I 1 and the rule Weakening, but only with the constant L as principal formula.
The Additives (level 3) satisfy the rules

FT,A +TI,B FAT BT

F T, A&B FA®B,T FA® B,T

1 We will not say anything about semantics. The reader of [GIRARD 1987] may want do
the following easy Exercise for Chapter 1: Direct logic is sound and complete with respect
to Phase Structures with 0 = L. In this Chapter we work within the limits of Proof Theory
— with the prospect of applications for automatic formalization of proofs.
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and the axiom F T,T (given that T and O are dual, this means “0 linearly implies every-
thing”).
Finally, for the Ezponentials (level 4) there are the rules

2T, A FT,A

77,14 FT,74

where ?T" means that all formulas in I’ begin with ?; in addition, Contraction and Weak-
ening are allowed for formulas beginning with ?. It is easy to see that the rule of Mix is
not derivable in this system (see Section 1.3 ).

It is clear that Propositional Direct Logic is exactly the Multiplicative fragment with
Weakening for arbitrary formulas.

2.1. Proof Nets

In addition to Sequent Calculus, the Proof Theory of Linear Logic consists of the new
and suggestive notion of Proof Net. We will be mainly interested in this notion for the
Multiplicative Fragment.

Given a set S of propositional formulas in the multiplicative language, a Proof Net
comprises the following set of data:

(1) the set S™ of subformulas of S arranged in the obvious tree stucture. A link is
the relation between a formula (the conclusion of the link) and its immediate subformulas
(the premises of the link);

(2) a set P of Aziom links, i.e., connections between positive and negative occurrences
of the same formula (the conclusions of the axiom link). Here we consider axiom links
with atomic formulas only. Each occurrence of atomic formula in S~ is a conclusion of at
most one axiom link.

A pair (S, P) is a Proof Structure for (Multiplicative) Linear Logic if
— (relevance condition) all atoms of S~ are conclusions of ezactly one axiom link.

(3) A Proof Structure is a Proof Net if it satisfies a graph theoretic condition.

Thus, a Proof Structure for the Multiplicative Fragment is built using the following
links, with the condition that every formula occurrence is a consequence of one link and
premise of at most one link.
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The graph theoretic condition (3) is defined in terms of trips over (S=,P). A trip
visits the formulas of a proof structure in two directions, T and |, the movements being
determined by the nature of the link and by arbitrary choices (switches) as follows:

Azioms

Conclusions

Times
Switch L

Switch R

Par
Switch L

Switch R

A proof structure 8 with n formula occurrences is a proof net if for every position of the
switches the resulting trip does not return to the starting point in the same direction in

less than 2n steps.

DirecT LoGic

Girard Multiplicative Links

Axioms

A AT

Times
A B
A®B

Par
A B
AUB

AA, A'Lv; A'LA, Av
Cy,Cc"

A® B",B"; By, A™;

AQ® BA,AA; AV,BA;

AUBM A",  By,B%;

AuB* B  By,A";

A main theorem of [GIRARD 1987] is

AVaA ® BV;
BV7A ® BVa

AV,A U BV1
Bv,A 8] Bv,
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Theorem S is provable in Multiplicative Linear Sequent Calculus if and only if there
is a P such that (S, P) is a Proof Net. W

(The “if” direction is called Sequentialization Theorem. For a simplification of the proof,
see also [GIRARD 1988 Al, Quantifiers in Linear Logic, IL.1., Remark 2, p. 21.)

Proof structures for the multiplicative fragment can be extended to a rule of Weakening
by using a boz: if 8 is a proof structure (with boxes) with conclusions Ay, ..., Ay, then the
following is a proof structure with boxes:

g
A1 Ay

LAy ... A, _B]

The list of formulas at the bottom of the box may be regarded as an extended Axiom
for the structure outside it. If o is any cyclic permutation of n + 1, then C;", Coiyy, (for
C; = Ai,..., Ay, B) determines the trip at the outside of the box — independently of the
trips inside the box.

A proof structure with boxes is defined to be a proof net if for each box both the
structure inside each box and the structure outside are proof nets.

The main theorem can be extended to Proof Nets with Weakening Boxes.

2.2. Multiple Conclusion Natural Deduction

Girard’s notion of Proof Net requires us to reconsider the following question:
What are the relevant features of Natural Deduction Systems vs. Sequent Calculi?
The issue is not just one of terminology. Both Natural Deduction and Sequent Calculi

(i) create links between occurrences of formulas — roughly corresponding, in informal
reasoning, to the sequence of statements in an argument. In Natural Deduction these links
are given by the Rules of Inference. In Sequent Calculus they are the relation between
active and principel formulas in an inference.

(ii) establish relations between the occurrences of formulas in (i) and the context —
roughly corresponding in informal reasoning to the structure of an argument (what are the
presuppositions? what is the conclusion?) and conditions for its correctness. For instance,
a sequent is precisely a notational device that keeps track of side formulas. In Natural
Deduction such specifications are given, e.g., as Rules of Deduction (see [PRAWITZ 1965],
Chapter I). In both formalisms there are restrictions on eigenvariables, i.e., the free vari-
ables that become bound in an (essentially) universal quantification. Typically, these
restrictions are relations between the active premise of a quantification and its context.
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A Sequent Calculus can be characterized as a formal system where (i) and (ii) are
local, i.e., given simultaneously by the rules of inference — this is one of the reasons why
Sequent Calculus is an efficient mathematical tool. On the contrary, Natural Deduction is
a formal system in which (i) is local and (ii) is global.

According to the above calssification, Proof Nets are clearly to be regarded as a
Natural Deduction system. A Multiple Conclusion Natural Deduction (MCND) system is’
one in which formula occurrences are arranged as a directed acyclic graph, rather than as
a tree. Proof Net are a MCND system.

This view may encounter objections:

(a) Natural Deduction is a system for deducibility from assumptions as opposed to
derivability from logical axioms, as in Sequent Calculus;

(b) essential feature of Natural Deduction is the presence of Introduction and Elimi-
nation rules and a certain logical priority of the Introduction rules.

To (a): The present arrangement of Multiplicative Proof Structures is very convenient
and economical and makes assumptions and conclusion interchangeable, at the cost of
giving up the functional character of the implication rule. However, another MCND system
for the Multiplicative Fragment could be designed that has multiple-premise rules for
®-Introduction and U-Introduction, multiple-conclusion rules for ®-Elimination and LI-
Elimination, as well as Introduction and Elimination rules for Linear Implication of more
traditional kind. Constraints to guarantee consistency of such system could easily be
described by adapting the “No Short Trip” condition.

To (b): Proof Nets are a system with only Introduction rules, thanks to the duality of
the connectives. However, something of the intuition behind the Introduction-Elimination
classification is preserved, in a certain priority of the connectives themselves: for instance,
the notion of ® seems to be more easy to understand than that of Ll and & easier than &.

2.3. Proof search in Sequent Calculi

The above considerations are relevant to the discussion of more mundane issues, like
the computational content of derivations in Classical Logic. It is inefficiently represented
by the standard systems of Sequent Calculus and Natural Deduction.

Prawitz’s treatment of Intuitionistic Logic in Natural Deduction seems definitive from
the point of view of Proof Theory: the proofs of very strong results (e.g., Strong Nor-
malization) are elegant and the weak spots (e.g., the permutability of 3-elimination and
V-elimination) may be regarded as relatively minor inconveniences. Also, the computa-
tional content of Intuitionistic Logic is well represented by Natural Deduction, given the
Curry-Howard analogy with A-calculus. However, Prawitz’s Natural Deduction system
for Classical Logic is inadequate, since it uses essentially the negative translation into
Intuitionistic Logic.
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Sequent Calculi for Classical Logic effectively express semantical ideas and arguments
(see Schutte’s Valuations and Girard’s work on the semantics of Cut-free proofs). Com-
putationally, sequent calculus is less satisfactory. For example, the standard algorithm for
searching for proofs — the Wang algorithm — (based on the invertibility of the rules of
Sequent Calculus (cfr. [0. KETONEN 1944])), is relatively inefficient even for propositional
calculus. :

 Here we write the tree from bottom up, breaking alternately the leftmost formula in
the antecedent (i.e., at the left of ) and the leftmost formula in the consequent (i.e., at the
right of ). In a system with Contraction, we also rewrite the formula under consideration
in the upper sequent(s). Then we keep going upwards and break formulas on each branch
until the process enters a loop on each branch — or, in the case of a system without
Contraction, until there is no formula to break.

The very locality of the rules of sequent calculus forces us to neglect the global ‘leit-
motifs’ of proofs. For example, the mechanical application of inverted 2-premise rules not
only duplicates the work to be done in every succeeding step but may also be unnecessary.
The ‘global picture’, i.e., the natural order of application of inference rules, cannot be
deciphered through the application of this kind of formalism. The problems presented by
the classical resolution approach are similar: again we are faced with the necessity of a
global, conjunctive normal form — a transformation that erases the local connections used
in natural proof generation.

Consider, e.g., the treatment of the right conjunction rule in a system without Contrac-
tion: an additive interpretation must be taken. Notice that this is incompatible with the
notion of “formulas as trees”. A multiplicative interpretation would be attractive because
formulas in I’ and A would be broken just once. However to implement it intelligently, we
need a global consideration of the role of the side formulas in the proof.

In terms of Girard’s trips one can effectively express the main task of any reasonable
procedure: to continue the search from a formula occurrence of the form AAB (multiplica-
tive interpretation) one needs two separate ‘explorations’ of the context, one from A and
the other from B, or:

Lemma: Any trip in a proof net containing the link

A B

A®B
has either the form
AN, ... Ay,B",....By,(AQ B)y,...,(A® B)", A"
or

A™, ..., Av,(AQ B)v,...,(A® B)",B", ..., By, A",

where here are no visits to A, B and A ® B other than the indicated ones. (see [GIRARD
1984], Lemma 2.9.1.).
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3. A Decision Procedure for Direct Predicate Logic

Let S be a set of closed first order formulas of £ in prenex normal form. We shall
outline below a procedure (and the appropriate abstract data structures) for deciding
whether ;

FS :

in Direct Predicate Calculus. )
We can consider the Herbrand form Sg(z1,...,2s) of S (as in Section 1.4 ). Our
problem reduces to finding a substitution o = (21 /%1,...,%n/tn) such that

Sa(t1,...,tn)

is provable in Direct Propositional Logic.

3.1. Paths

The first step of the procedure is the search for an open path through Sg(z1,...,2x),
ie., a set P(z1,...,T,) of pairs of atoms (P, P').

Definitions.(i) An open path P is a set of pairs of atomic formulas such that:
(a) if (P, P'), (Q, Q') are two distinct members of P then P # Q and P' # Q'.

(ii) We say that P satisfies a formula A (in symbols P — A) if there is a pair (P, P') in P
such that either P < A or P' < A.

(iii) Let S be a set of formulas. We say that P is a path for § if

(b) P satisfies some formula in S;
() for all conjunctive subformulas AoB in S, if P +— AoB then P +— A and P — B

(relevance condition for conjunctions);
(d) for all (P, P') € P, P occurs positively in S and P' occurs negatively in S.
(iv) a path P for S is minimal if no proper subset P’ of P is a path for S.



SECTION 3 17

3.2. Chains

Consider the tree S7 of all subformulas of Sg(z1,...,%n), as in Section 2.1 .

It is convenient to mark the conjunctive subformulas of S3:

Multiplicative Links
And
-A -B A B
"S(4AB) ANB

Or

-A -B A B

"S(4vB) | AVB

Implies

A -B -A B

~(4>B) | 4>B
|

Consider the tree Sg(z1,...,2,), together with an open path P(zy,...,%,) and a substi-
tution o = (z1/t1,...,%n/ts) such that '

() If (P,P') € P, then P[z1/t1,...,Tn/tn] and P'[z1/t1,...,2n/ts] are similar.

Then the pair (§<,P?) with $7= = S§(t1,-..,tn) and P’ = P(ty,...,tn) (closed
path) can be regarded as a proof structure in the sense of Section 2.1 , except that in
Direct Logic the relevance condition is relaxed to a relevance condition for conjunctive
subformulas.

Definitions. (i) For 4,B € S%* A # B, say that A and B are connected (write A || B)
if there is a pair (P, P') € P? such that P < A and P' < B (or viceversa).

(ii) Let X,Y € §7~ be such that X AY and Y £ X, with A < X and B < Y. We write
X4-Yif A||B.

(iii) For X € S~ we write 4Xp if AoB is a conjunctive subformula of X.

(iv) Let C = Cy,...,Cy be a set of subformulas in ($=,P?) with n > 0 and C; # C; for
all 0<: # j<n. C is called a cycle if

4Cop —4, Cip, — ... —4, Cup, —4 Co.
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The graph theoretic conditions that select the proof structures corresponding to a
correct proof are the following;:

(B) If P — AAB, then not A || B.

(%) There is no conjunctive cycle.

3.3. The Main Theorem

The main theorem (Theorem 4.4.) of [KETONEN and WEYHRAUCH 1984] is:

Theorem For any sequence t1,..., t, of terms, the sequent Sg[z1/t1,...,Tn/tn] is
provable in Direct Sequent Calculus if and only if we can find a minimal path P for Sglz1/
11500y Tn [tn] satisfying:

(a) If (P,P') € P, then Plz1/t1,...,Tn[ts] and P'[z1/ts, ..., 2n/ts] are similar.

(8) If AoB is a conjunctive subformula and P +— AoB, then not A || B.

() There is no conjunctive cycle.

3.4. An Example

Consider the set of formulas
S = {AAB, AA-B,-~AAN-B,~AAB}.

Construct the tree of subformulas S=: every path P for S~ creates a conjunctive cycle.
For instance:

| | | | | |

A B A -B -A -B -4 B

AAB AN-B -AA-B -AAB

Therefore S is not provable in Direct Logic. To find a set S, provable in Direct Logic,
such that its projection 7(S') is S, notice that we must break the conjunctive cycle into
two loops. The simplest S’ will have the form

S' = {(AAB, AAB), AA-B,(~A,—~A)A(-B,-B),~AAB}.

In other words, we need to duplicate both a ‘top level conjunction’ and the subformulas
of a conjunction.



SECTION 3

~4  -=A -B ~B
A B A -B  (-A,-A)  (=B,~B)
AAB AA-B (—A, ~A)A(~B, —B)

—-A

B

A B

-AAB

AAB

19
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4. Some Properties of Graphs

In this section we formulate abstractly some properties of graphs to be applied to
formulas in trees of subformulas.

4.1. Definitions

Let G = (V,E) be a graph with V finite and let F be a set of subsets of V. Also, let
C be a set of distinguished elements of F', such that each C € C is partitioned by some
elements A;,..., A, of F. (The set of singleton subsets of) V will be interpreted as the
set of all atomic formulas, F' as the set of all formulas and C as the set of conjunctive
subformulas, where each C € C is written in conjunctive normal form as AjA...AAp.
Finally, E as the set of connections on V determined by a unification of positive and
negative atoms.

(i) For A,B € F with AN B = 0, say that A and B are connected (write A || B) if
there is an edge e in E with vertices v; and vy such that v; € A and v2 € B.

(i) Let X,Y,A,B € C. We write X4 —pY f XNY =0, AC X, B C Y and,
moreover, A || B. Think of A and B as “doors” of X and Y, respectively.

(i) We write 4 Xp if A and B are different sets in the partition of X. A chain is a

sequence Xy,...,X, suchthat Y —4, X1p, —... —4, Xnp, — 2.
(iv) A chain is pure if for all 7 # j with 1<z, j<n, X; # Xj.
Let C = X; — ... — X, be a nonempty pure chain.

(v) aAYB —C —4Y is called a cycle.

(vi) Yp —C —4Y is called a loop if A = B. Y is the ezit of the loop.

(vii) A chain C is terminal if there is a formula in C from which C cannot be continued.
(viii) X >' Y iff there is a loop

L:Zg—...— X —..—aZ
and either Y = Z or there is a pure chain
CiaZg—..-Y.

We summarize this condition by saying that Y is dominated by the loop, which X
belongs to.

(ix) X > Y iff X >'Y andnot ¥ > X.

Remark. Let £ be a loop with exit Z and let C be a pure chain starting with Z. If
CNL #{Z} then there must be a cycle.
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Indeed, suppose

L:Zp—..—cUp—..—a 72
and
CiaZgp—..—gU~—..-Y.
Now either
eUp—..—aZ2p—..—gU or EUC—---—AZB—---—EU

or both are cycles, depending on whether E = C, E = D or C # E # D, respectively. ®

4.2. Basic Properties of Chains

Lemma 1. Suppose no chain is a cycle. Then > i3 a strict partial ordering.

Proof. To show that X > Y and Y>Z 1mp11es X > Z, we need only to show that
foral U, V, W, U >V and V >! W implies U >' W. Indeed assume X > Y and
Y > Z. Then certainly X >! Z. Moreover, given Y > Z,if Z >' X, then Y >' X, a
contradiction.

Assume there are loops £y, L2 and pure chains Cl, Cy

Lq: Usa—X1—...— X—...— X, —4U
Ci: AUg—-U;—-Uy—..-U;—gY
ﬁz: Vc——X{—...—FYG—...—X,'n—CV
Cy: cVp-WV1—-Vo—...— 2

Clearly, either gYg or gYF or both, depending on whether E=F, E=Gor F# E# G,
say the latter.
Then we claim that

UB-—...—EYG—-...——CVD-—...——Z

is a pure chain. Since there are no cycles, CoNL; = {V'}, as remarked above. On the other
hand, if U* € C; N Cy, then either we have a cycle

HUE—...-—Y——...—V—...——HU*

or

Vp—w.—gUj—...=U—...— X
is a pure chain and Y >' X, against the hypothesis. ®
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Let T be a subset of C such that for each X, Y € Tif X #Y, then X NY =0 and
for each A € C, if X N A # 0 then A C X. The intended interpretation of T is the set of
top level (i.e., outermost) conjunctive subformulas. Consider the set Chain of chains of
elements of T.

Lemma 2. If Chain contains an infinite chain C* but no cycle, then the relation >>
is nonempty and there is Xo € T such that for noY € T, Xo > Y.

Proof. Since there is no cycle, for some C C C* there is a C' € Chain such that

i

C=L'—..—C—..=L"

where £' and L" are loops.

Let W be the exit of £’ and X an element of £’ different from W. Suppose L* is
another loop, W € £* and X is dominated by £*, then it is immediate to see that X and
W belong to a cycle. Hence X > W and >> is nonempty.

An X, minimal with respect to >> exists by finiteness of V and Lemma 1. B
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5. Proof of the Main Theorem

This proof details the procedures by which we can compute the proof data structure
from the representing chain and vice versa.

5.1. From Proofs to Chains

Consider first an application R; of Weakening in D, let A be the principal formula,
and R, the inference immediately below R;.

If A is passive in R, then we can certainly permute R; and R2. Thus we may assume
that for every Weakening R, the principal formula A of R; is either

(i) active in the inference R; immediately below, or

(i) that Rz is also a Weakening with principal formula B and that the next inference
R3 is a one-premise rule, say V-Right, with B and the descendant of A as active formulas.

If (i) and R; is a two-premises rule, then we can delete the entire branch ending with
the other premise of R, and replace Ry and R, with a sequence of Weakenings.

In case (ii) we can replace Ry, Rz and R3 by a unique application of Weakening with
principal formula AVB. And so on.

The point of this standard fact is that, by applying Weakening as low as possible we
obtain a derivation in which every active formula in a two premise rule has some ancestor
in an axiom. We assume that D has this property.

Now we construct the desired path P by induction on the length of the derivation D
of §. We let P be the set of (P, P') such that - P,~P' (or F =P', P) is an axiom of D.
If D consists of an axiom or if the last rule of D has one premise only, then the proof is
trivial.

Suppose it has two premises S; and Sz, with subderivations D; and Ds, active formulas
A, B and principal formula, say AAB. By induction hypothesis there are paths P; and
P, for Sy and S, respectively, satisfying the required conditions. The pairs of formulas in
P; and P correspond to axioms of Dy and D;. Construct S~ by adding the appropriate
conjunctive link below the subformulas-trees of A and B, etc.

Let P = P, U P,. Since D is separated, P satisfies part (a) in the definition of path
(4.2). P obviously satisfies parts (b) and (d). By the argument above P; + A and P; — B,
so P satisfies also (c), the relevance condition for conjunctive subformulas. The fact that
P is minimal is immediate from the inductive hypothesis. Condition () is trivial. The
axioms of D; and D, are distinct, so P satisfies condition (§).

To check condition (¥), since a cycle cannot occur only inside S or S5, we need to
consider only infinite conjunctive chains containing AAB, say

C:rXc—..—pAABg —...—r X.



24 DIrRECT LOGIC

Every chain containing conjunctive subformulas of both S* and S3* must contain AAB.
If
Ci: Xec—-Y,—.. —p AAB

and
Cy:ANBg — ... — Zp —F X ;

are both pure, then all ¥; € S5 and all Z; € S. But X cannot belong both to S7* and to
S5, |

Thus we may assume that X is AAB, C < A and F < B. If, however, there was
a conjunctive subformula, say CAD < A, then we would have a cycle in ST, against the
hypothesis. Thus C = D = A, i.e. C; is a loop (and similarly for Cy).

5.2. From Chains to Proofs

We have S~ and P satisfying the conditions. The proof is by induction on the number
of logical symbols in &, plus the number of atoms in § which do not occur in any (P, PHe
P.

The case of all formulas in S that are not satisfied by P is clearly handled using
Weakening.

If S contains a disjunctive formula, say S = ADB, C1,..., Cy, then the result is imme-
diate from the induction hypothesis applied to $' = =4, B, C\, ..., Cn, using D-right.

Now we assume that S = TUIIUY, where I contains only negations of atoms, II only
atoms and ¥ only conjunctive formulas.

Case 1. The case of two atoms in S connected by P corresponds to an Axiom, possibly
followed by a sequence of Weakenings.

Now we assume that P + C, for some conjunctive subformula C.

Case 2. There is a conjunctive formula X, in ¥, say X = —~(A4;VAz2), such that for
every (P,P') € P, if P < A;, then also P' < A;, say i = 2.

By condition (8) on P, the inductive hypothesis is satisfied by the proof structures
((~A41,81)%,P1) and (-A5,P2). Here &, is S\ {X} and where the path P; is P restricted
to (Al,CI'l)< and P; is P restricted to A;'. Therefore - ~A;,®; and I -4, are derivable.
The claim follows by V-left.

Case 9. There is a conjunctive formula X in X, say X = —~(ADB), such that one
immediate subformula, say =B, is connected only to ITUT"

Let T'y, II; be the list of atoms or negations of atoms in S connected to -B and let
Lo =T\Ty, Oo =1\, Tp = T\ {X}. By definition of path (4.2.(a)), these lists are
disjoint. The inductive hypothesis holds again for (I'; U II; U {-~B})~, on one hand, and
(To UTI U Xp)~, on the other, with the set P appropriately restricted. Our claim follows
by D-left.

Case 4. none of the above.
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Now P +— C, for some (conjunctive) subformula C' € X, and since cases 2 and 3 do
not apply, for each X € X there is a (conjunctive) Y € ¥ such that ... — X —Y. Let Chain
be the set of all conjunctive chains on S. Thus Chain is nonempty, and it contains an
infinite chain C*°. Furthemore, Chain contains no terminal chain, since cases 2 and 3 do
not apply.

Let X, € ¥ be minimal with respect to >>. Such a X, exists by Lemma 2, say Xo =’
A1 NAy. Fori=1,2let

Li={Y e 2\ {Xo}:Y | A
or A; — C —Y, for some pure chain C with X, ¢ C}.

Since there is no cycle and X is minimal with respect to >, |

NI, =10

Let
Ii={Pel:P| Z;U{4;}} H,'={PEH:P||Z,'U{A,'}}

By the property (a) of paths,
MmNy =0=1I;N1;
Let ®; =T; UII; UZ; U {A;} and let
P;={(P,Q) € P: for some Z,Z' € ®;, we have P < Z and Q < Z'}.

We would like to apply the induction hypothesis to (®;,P;) and then conclude by using
A-right. We certainly can do so if we show that

For each i, P; i3 a path for ®;.

The fact that the P; are minimal and satisfy («), (8) and () follows immediately from
the same fact for P.

Lemma 3. If Chain contains and infinite chain but no cycle, and X € S, X # Xo,
then
X|Y, YeX;U{4}=>X¢e€d,

Proof. If X is atomic, then by definition X € I" U II. Suppose X is conjunctive and
not X = A;.

Let Y be A;. Since in $, Chain has no terminal chain, certainly ... — X' — X — 4, X,
i.e., X € %, and thus X € %;.

t This is crucial: for a partition of £\ AAB to exist, the conjunctive chains reaching
out from A and B must not join, not only in a cycle but also in the exit of a loop: here
we need the minimality condition.
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Assume now that Y € ;, say Y € X; and, moreover, that X ¢ £;. We show that
this contradicts the assumption that P is a minimal path for S; we conclude that X € X;.

Fact. Let X,Y,Y' be conjunctive, with Y' || Y || X; suppose Y,Y' € Ty but X ¢ 5;. If
CoD <Y is such thatY' | C and X || D, then C o D is disjunctive.

Proof. Let A; —C —Y' —Y be a pure chain, where we may suppose that ¥ £ Z for all’
Z € C. If C oD is conjunctive, then A; —C —Y' —C oD — X is a pure chain, i.e., C € X;.
|

Returning to the refutation of the assumption X ¢ X,, first notice that this implies
X ¢ I, too. Otherwise, given pure chains Y —C; — A; and A3 —C; — X we conclude that
Y —-C — Xo—C2 — X =Y is a loop, thus X is not minimal with respect to >>.

Now let &9 be S\ (B UP;). U € ® and U | V with V € ®;, for j = 1,2,
then U and V are conjunctive. Let (Q,Q') € P be such that Q' < U and Q@ < V. If
A; —...— V' =V is any pure chain and (P, P') is such that P' < V' and P < V, then
there must be a disjunctive subformula C o D of V such that, say, P < C and @ < D, by
the above Fact. Therefore, if we drop (@, Q') from P, then the resulting path still satisfies
the relevance condition on conjunctive subformulas, relatively to ;. In conclusion, let

Po = {(P,Q) € P: for some Z € ®g,P < Z or Q < Z}

and let
P' =P\ P,.

It is easy to check that P’ is a path not only for &; U®2, but also for S. But P’ is a proper
subset of P, and this contradicts the minimality of the path P. m

Now we can conclude the proof of the Theorem and check the conditions of Section
3.1. for P;. Of these, (a) and (d) are immediate and (b) follows from relevance for A; and
Lemma 3.

We need to check the relevance condition (c). Assume P; — CAD < &; via (P, P'),
say P < C and P, P' < ®;. Then there is a (Q, Q') € P such that P — D via (Q,Q"), say
Q < D. Let X € S such that Q' < X. Since CAD < ®;, Lemma 3 implies that X € @;.
This means that (Q, Q') € P;, namely P; — D. n
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6. Equivalence with Girard’s Proof Nets

Of course, the equivalence of the decision procedure with Girard’s Proof Nets for
the Multiplicative Fragment with box for Weakening follows from their equivalence with
Sequent Calculus for Direct Logic. But there may be some interest in seeing a direct,
graph-theoretic proof. '

Lemma. If § is a Proof-Net with conclusions S and without Cut-links in propositional
Multiplicative Linear Logic without L, 1, then there is a minimal path P for S satisfying

conditions (o), (B) and (7).

Proof. Let P be the set of axiom links of the Proof-Net 5. Suppose P is not minimal,
and let P’ be a proper subset of P and also a path for S. Then either (1) there is a proper
subset S’ of S such that P’ A S\ S’, or (2) there is a nonempty set of subformulas C'o D
in 8 such that, say, P' — C and P' v/ D. In case (1) no trip starting in S’ will ever reach
S\ S'. In case (2) “o” in C o D must be a “par”, since P’ satisfies the relevance condition
for conjunctive subformulas. We obtain a short trip as follows: start with an X such that
P' — X; if and when a trip reaches C downwards, continue the trip upwards on C, etc.
Thus in both cases, we contradict the fact that 8 is a Proof-Net.

Suppose P does not satisfy condition (8). It is easy to see that to (S=,P) there
corresponds a Girard proof structure of the form

Axiom

..........

Notice that the switches can always be arranged in such a way that from A" the trip
reaches directly P, and from Py, reaches directly By. Then set the switch on L at the
indicated times link: the trip

A A A
AN .. PN Pyy,...,By, A

never reaches A ® B, and so is short.

Suppose P does not satisfy condition (7). Then there is a Girard Proof Structure of
the form
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Axiom
Axiom Axiom
PnJ- Pl PI'L P2 Pn—-lJ- Pn
Bl ..... Cl 32 ..... 02 BnCn
B ®Cy By ® Cs B,QC,

......................

Again we can set the switch to obtain a short trip:

A 1A A A
B] ,...,P-n ,an,...,Cnv,Bn ,..-,C2v,B2 y

..............

N A
vy Py ,P]V,...,C;[V,Bl . N

Lemma. If (S=,P) satisfies (), (B) and (7), then there is a Proof Net § (with bozes)

The proof follows that of Main Theorem (<): in Case 1 we construct a Proof Net
consisting of just an axiom, possibly inside several boxes. In Cases 2, § the result is given
by the induction hypothesis and in Case 4 Lemma 3 of 5.1 guarantees that we can split

the structure and apply the induction hypothesis. B
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7. Implementation of the Decision Procedure for DPC

We shall sketch the definition of a decision procedure for Direct Predicate Calculus.
No extensions — natural or not — will be discussed.

We may assume, for the sake of exposition, that we are considering a formula F' in-
volving only A, V, = with all negations pushed in, Skolemized and all unifiable (existential)
variables noted. As shown in [KETONEN and WEYHRAUCH 1984] an arbitrary formula can
be gotten into this form by linear time transformations. Of course, the procedures defined
below can be applied with minimal change to the more general case.

We will use symbols p, ¢, r,... to denote atoms or negated atoms, U, V, ... for unifiers:
unifiers are viewed as finite sequences of pairs (z,t), where z is a variable and £ is term.

Let us define a match as a triple (p, g, U), where we have a a positively occurring term
p together with a negatively occurring formula ¢ with a unifier U such that

(M.a) : plU] = ¢[U].
and
(M.b): there is no conjunction AAB such that p < A and ¢ < B or vice versa.

We will re-define the notion of a path slightly: A path is a finite sequence of matches
paired with a unifier containing all the unifiers in the matches such that

(P.a): no literal occurs more than once.

We shall use symbols P, Q,R,... to denote paths, and symbols &,Y,... to denote
sets of paths.

We also need to define functions that combine paths:

COMBINE-PATHS(P, Q) returns the least path R containing all the matches in P and
Q. If no such path exists, it returns ERROR. We will use the notation P* Q for the resulting
path.

For any formula A and set of paths X, let X'\ A be the set of paths in X containing
no literals < A.

7.1. The Goal

Our objective is to decide whether there exists a path P of matches such that

(a) P satisfies F' (P — F): there is a triple (p,q,U) in P such that p < F or ¢ < F'.

(b) if P+— AAB, then P — A and P — B.

(¢) P contains no cycles; there is no sequence A; — A2 — ... — A, = A; of distinct
conjunctions appropriately connected to each other via conjunctive components.

As we have shown, such paths correspond to proofs; our problem is equivalent to
finding a proof of F. Each element of such a path corresponds to an axiom in the sense of
Gentzen calculi; a sequent of the form p — gq.

Thus the critical issue consists of defining an appropriate search strategy for paths

with all of the above properties. Note that the search space size is roughly exponential in
size with respect to the size of F. Thus we need limit the search in smart ways.
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7.2. Finding All Matches

The first phase of the process consist of finding the set M of all matches (p, ¢, U) that
can occur in a path described above.

Let £ be the set of all literals in F. Then £ = POSUNEG, the union of all pos1t1vej
and negative literals in F' ’

Construct the set of all such matches, M, by unifying each p in POS against each q
in NEG s.t. condition (b) for matches is satisfied.

This process is roughly quadratic in the size of F. In practice, the use of suitable
indexing methods will make this pass very fast.

Define a function MATCHES on L as follows: For any p in £, MATCHES(p) is the set of
all matches associated to p in M:

MATCHES(p) = {(p,4,U)| (p,q,U)EM} (pePOS),

MATCHES(p) = {(¢,p, U)| (¢, p, U)eM} (peNEG).

7.3. Simple Depth First Search

Let’s look at the problem of finding paths with (a) and (b): Any non-empty path P
automatically satisfies (a). If (b) is not true, then the set :

UNCOVERED-CONJUNCTS(P) = {A|AAB < FAP — BA-P — A}

is non-empty. For any A in this set, we can look at the set of all possible extensions to P:

EXTENSIONS(P, A) = {Q * P|Q€PATHS(p),p < A},

and then repeating this process for the members of this set until we have constructed a
path with no uncovered conjuncts.

This allows us to find a path satisfying (a) and (b) without having to construct all
alternatives at the same time. This can be time consuming, since the suggested algorithm
will do an enormous amount of re-computation in situations where an entire branch ter-
minates in failure or no proof exists. In fact, in a typical “first time around” situation the
“fact” to be proved is often invalid — the user in question forgot to include all the relevant
assumptions.
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7.4. Breadth First Search: Pre-Computing Valid Path Combinations

The simplest algorithm using breadth first search can be expressed in terms of com-
puting the function PATHS on all subformulas of F*

PATES(p) = {{((¢,, U), U)}|(g, 7, U)EMATCHES(p)} (peL)
PATHS(AAB) = {P * Q|P€PATHS(A), QEPATHS(B)}
PATHS(AVB) = (PATHS(A) \ B)U(PATHS(B) \ A)U
{P * Q|P€PATHS(A) — PATHS(A) \ B, Q€PATHS(B) — PATHS(B) \ A}.

This, of course, has the effect of computing all possible proofs for F. PATHS(F') then
results in all paths with properties (a) — (b). What remains is to find a non-cyclic path.
More precisely, every valid path contains a path from PATHS(F').

Of course, the algorithm suggested by the above equations is impractical. We propose
an alternative; an algorithm that combines aspects of depth and breadth first search in
order to prune the search space down as much as possible.

7.5. Static Irrelevance Elimination: the First Refinement

One of the primary causes for failure is irrelevance; a subformula may have no con-
nections with any other fact simply because some critical assumptions were omitted. Let’s
call a subformula weakly irrelevant if none of its subformulas can occur as a subformula of
an axiom in any Direct Predicate Calculus proof of F. In the language of Gentzen calculi,
this means that the only way it can be introduced into a proof is through the rule of weak-
ening. In practice, weak irrelevancy is hard to compute. Instead, it is better to return to
our stated goals; namely reduction in the size of the search space for valid paths or proofs.
One step towards this goal is to eliminate in advance those literals that provably cannot
occur as a part of any valid path for the entire formula. We can make a few observations:

Lemma 1: If MATCHES(p) is empty, then p cannot occur as a part of any valid path.

Proof: Obvious.

Lemma 2: If no literal of a formula A occurs as a part of any valid path, then the
same holds for any formula of the form AAB.

Proof: If not, take a valid path P — AAB. But then P — A by property (b) of
paths.

Lemma 3: If all literals of MATCHES(p) other than p cannot occur as a part of any
valid path, then p cannot occur as a part of any valid path.

Proof: Obvious.



32 DirecT LoOGIC

Definition The set of irrelevant formulas is the smallest set of formulas closed under the
following rules:

If MATCHES(p) is empty or contains matches of p to only irrelevant literals, p is irrel-
evant.

If A and B are irrelevant, then AVB is irrelevant.
o If A or B is irrelevant, then AAB is irrelevant.
o If A is irrelevant and B < A, then B 1s irrelevant.

*

Theorem 4. No subliteral of an irrelevant formula cannot occur as a part of a valid
path.

Proof: Obvious, from above.

It is useful to observe the interaction of the last two rules; if any part of a conjunction
is irrelevant, then all other parts may be declared irrelevant. Irrelevancy elimination can
be simply implemented as a relaxation algorithm; mark formulas irrelevant until no more
irrelevance can be found.

In practice, irrelevance elimination significantly reduces the search space for valid
paths: We may from now on assume that all literals in £ are not irrelevant.

7.6. Modified Breadth First Search: Partial Pre-Computation

As pointed out above, a full breadth first algorithm is impractical; too much infor-
mation is kept and computed. Our second improvement involves only partially computing
the PATHS function on the set of all subformulas of F. First of all, we wish to separate
all potential paths into strongly connected components; if F' is conjunctive, they are the
conjunctive components of F. Thus, in this case we apply our procedure separately to
each component. We may assume that F is disjunctive, of the form C1VCyV...Cp. In
fact, we expect that in the most typical instance F represents a query of the form

AiNASAN ... DB;

i.e., to conclude fact B from assumptions Ay, 4z, ....

We compute the function PATHS for all elements of Dom, the set of all disjunctive
sub-components of F.

Given the function PATHS on Dom, we can extend our irrelevance algorithm: Remove
from the set M all matches not occurring in any PATHS(A) for A€ Dom. Declare any A
irrelevant for which PATHS(A) = 0. We can then apply the methods defined in the previous
section iteratively in order to further reduce the search space.
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7.7. Searching for Paths

We can now describe our algorithm in full: Consider the function PATHS on Dom,
where

Dom = {C4,Cs4,....,Cr},

such that
0 < card(PATHS(C}))<card(PATHS(C?))<...

We search in order through Dom, trying to find an element of PEPATHS(C;) that
can be extended to a complete path. If no such path can be found in Cj, we declare the
subformula C; irrelevant, compute the propagated irrelevancies, and move onto the next
element in Dom. If no such element in Dom can be found, we return failure.

The general step in completing a path is as follows: Consider a path P, and the set
UNCOVERED(P) = {C€Dom|P + C, P contains no path from PATHS(C)}.

Pick a C in this set with the lowest index, and consider all extensions of P that are
complete with respect to C':

EXTENSIONS(P,C) = {Q » P|Q€PATHS(C)};

repeat this process for the members of this set until we have constructed a path with no
uncovered elements of Dom. This method will search through all paths satisfying (a) and

(8).
7.8. Dealing with Cycles

It remains to consider the issue of detecting cycles in paths; at first blush, this seems
time-consuming and complicated. But again there are many situations where it is not
necessary to perform such a check and by a relaxation algorithm we can extend these
situations iteratively much further.

Let us call a subformula non-cyclic if it cannot possibly contribute to a cyclic path.
We can make the following observations:

A atom 1s non-cyclic if it is not contained in any conjunction.
If a formula is non-cyclic, so are all of its subformulas.

A conjunctive formula C is non-cyclic if all but one of the conjuncts connected to a
conjunction distinct from C is non-cyclic.

The iterative application of these rules drastically reduces our need for cycle checking.

For any match (p,q,U) we construct the set of all possible triples (4, B, C) such that
A, B,C are non-cyclic conjuncts occurring as a part of a path because of this match; i.e.
A —p Bg — C with p < D and ¢ < E or vice versa. These triples will be stored in a table.
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Then, for any path P it remains to check all of the triples in this table that are active
for this path and verify that there is no cycle; i.e. a sequence of active triples

(A1, A2, A3), (A2, A3, As),. .., (An, Ant1, A1), (Ang1, A1, Az),

where no 4; is a subexpression of another A; for j # i. Note that n has to be >2 for such:
a cycle. This is easily accomplished by a depth first search through the table. '
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