LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - The University of Edinburgh

Silence is Golden:
Branching Bisimilarity is Decidable
for Context-Free Processes

2}

@

=

] by

w

G .

S Hans Huttel

@

-

LFCS Report Series ECS-LFCS-91-173
LFCS August 1991

Department of Computer Science
University of Edinburgh
The King's Buildings

Edinburgh EH9 3JZ Copyright © 1991, LFCS

Copyright © 1991, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Silence is Golden:
Branching Bisimilarity is Decidable for Context-Free
| Processes

Hans Hiittel ©

Laboratory for Foundations of Computer Science
James Clerk Maxwell Building
University of Edinburgh
Edinburgh EH9 3JZ
SCOTLAND

hans@dcs.ed.ac.uk

Abstract

We show that the branching bisimulation equivalence introduced by Rob
van Glabbeek is decidable for the class of normed, recursively defined BPA
processes with silent actions, thus generalizing the decidability result for
strong bisimilarity by Baeten, Bergstra, and Klop.

Note: This is the full, revised version of the paper with the same title that
appeared at the 3rd International Workshop on Computer-Aided Verification
(CAV91) in Aalborg, 1-4 July 1991.

1 Introduction

In their paper [BBK87a] Baeten, Bergstra, and Klop showed that strong bisimula-
tion equivalence is decidable for normed recursively defined BPA processes [BK88],
a class of processes corresponding to that of irredundant context-free grammars
without empty productions. In this paper we generalize this result by showing that
the branching bisimilation equivalence introduced by van Glabbeek and Weijland
in [vGW89] is decidable for the class of normed recursively defined BPA processes

*Present address: Department of Mathematics and Computer Science, Aalborg University
Centre, Fredrik Bajersvej 7TE, 9220 Aalborg 3, Denmark. E-mail: hans@iesd.auc.dk

1

with silent actions. The proof generalizes that of the decidability of strong bisimu-
lation equivalence given by Colin Stirling and the present author in [HS91], relying
as it does on a similar tableau-based decision method. This tableau method is re-
lated to the equivalence algorithms for certain classes of context-free grammars
introduced by Korenjak and Hopcroft [KH66], and it directly reflects usual in-
tuitions about determining the equivalence of processes by means of successive
- matchings of transitions.

Since the class of processes considered allows infinite state spaces, the present
result further underpins the fact that the decidability of behavioural equivalences
can extend beyond the finite-state case, and that decidability should be seen as a
criterion for determining the relative merits and deficiencies of behavioural equiv-
alences.

Section 2.1 introduces the notion of branching bisimilarity and the class of
normed BPAL,. processes. In Section 4 we describe the tableau system, prove its
soundness and completeness, give a complexity measure and establish the decid-
ability result of branching bisimilarity. Section 5 sums up conclusions and gives
suggestions for further work.

2 Preliminaries

2.1 Branching bisimilarity

The processes that we will be looking at have their behavioural semantics given
by transition graphs with silent actions. For comparison we first describe the
notion of weak bisimulation equivalence, introduced by Milner [Mil80, Mil89].
This equivalence is essentially bisimulation equivalence defined on the derived
weak transition relations that disregard silent actions.

Definition 2.1 For a transition graph G = (Pr,ActU{r},—) with silent action
T, the Weak transition relations {=> l.s € Act U {e}} are given by == =

T * a

L7545 5 foraEAct and = =

In the definition below, we use the ‘observational’ mapping ¢ : (ActU {r})* —
Act”™ which is the homomorphic extension of the function defined by ¢(a) = a for
a € Act and ¢(1) = €.

Definition 2.2 [Mil89] A weak bisimulation on G is a symmetric relation R C
Pr x Pr such that whenever pRq for any a € ActU{r} we have that p-= p' implies

that there exists a q' such that g ¢=(a; g with p'Rq’. We define ~ by
= {(p,q) | pRq for some weak bisimulation R}

If p = q we say that p and g are weakly bisimilar.

2

The notion of branching bisimilarity was put forward by van Glabbeek and
Weijland in [vGW89] as an alternative to weak bisimulation.

Definition 2.3 [vGW89] A branching bisimulation (bb) on G is a symmetric
relation R C Pr x Pr such that whenever pRq for any a € ActU{r} we have that
p > p implies

e a=7 and p'Rq or

o tlhere exist q;, q' such that ¢ == q; 2 ¢ with qu;, p' Rq'

We define =, by -
~y = {(p,q) | pRq for some bb R}

If p =~ q we say that p and q are branching bisimilar.

Unlike weak bisimulation equivalence, changes in branching properties caused
by individual 7-transitions must always be taken into account in branching bisim-
ulation. (Example 3.2 provides an example of the importance of this, namely two
processes that are weakly bisimilar but not branching bisimilar). An equivalent
definition which reflects this stuttering property better is the one below which we
will be using in the tableau system presented in Section 4.

Proposition 2.1 A branching bisimulation on G is a symmetric relation R C
Pr x Pr such that whenever pRq for any a € ActU {1} we have that if p-> p' then
either

e a=7 and p'Rq or

T /1 a

o therf,i exist qg, oy q;, q' such that ¢ = q(') 5 q; 5.5 g, = q with quﬁf for
0<:<nandpRq.

van Glabbeek proves that the above notion of branching bisimilarity is indeed
equivalent to that of Definition 2.3 by introducing a notion of what he calls a
semi-branching bisimulation where the conditions for matching p = p' have been
relaxed to allow matches of the form ¢== ¢’ with p'Rq’. He then proceeds to show
that the maximal semi-bb satisfies the stuttering property of Definition 2.1. For
the details of the proof, see [vG90].

3 Normed BPAT
rec

Basic Process Algebra (BPA) was introduced by Bergstra and Klop in [BK84].

Extending BPA with silent actions gives us the class BPA[. [BK88] consisting of

processes given by systems of defining equations A = {X; def E;|1 <i<m}. The
process expressions F; are given by the syntax

3

E::=G|TIE1+E2|E1E2|X

where 7 is a new, silent action not in Act. In the following, elements of Var* will
be denoted by Greek letters: a, 3, ... and BPA expressions in general by E, F'....
. The operational semantics given by the transition relations { = |a € Act U {r}}
is as given below.

Definition 3.1 Any system of BPA process equations A defines a labelled transi-
tion graph. The transition relations are given as the least relations satisfying the
following rules:

ESE FXF
E+FSE E+F3 F
ESFE
ﬁ—;—E—'-ﬁ ae a € Act U {7}
_)
ESE def
N X=FeA

We restrict our attention to weakly normed systems of process equations.

Definition 3.2 The weak norm of any X € Var is given by
[|X|| = min{length(w) | X == ¢,w € Act™}

A system of defining equations A is weakly normed if for any X € Var
0 < ||X]] < 0. The mazimal norm of any variable in A is defined by My =
max{||X]||| X € Var}.

Since norms must be strictly positive, all variables must eventually perform an
observable action and processes can therefore not terminate silently.
In Section 4 we shall also need the notion of a strong norm (cf. [HS91]).

Definition 3.3 The strong norm of a BPA7 . expression E is defined as

|E| = min{length(w) | E 2 ¢,w € Actt}
A system of defining equations A is strongly normed if for any variable X €

Var |X| < co. The mazimal strong norm of any variable in A ism, = max{|X||X €

Var}.

Clearly, if A is weakly normed it is also strongly normed.
Finally, we restrict our attention to systems of defining equations given in

3-Greibach Normal Form (3-GNF).

Definition 3.4 A system of BPA equations A is said to be in Greibach Normal
Form (GNF) if all equations are of the form

n;
{X,’ déf Za,-ja,-j |]. S 'l, S m}
j=1

If for each i,j the variable sequence o;; has length(oy;) < k, A is said to be in
k-GNF.

The normal form is called Greibach Normal Form by analogy with context-
free grammars (without the empty production) in Greibach Normal Form (see e.g.
[HUT79]). There is an obvious correspondence with grammars in GNF: process
variables correspond to non-terminals, the root is the start symbol, actions cor-
respond to terminals, and each equation X; df 27;1
family of productions {X; — a;;04; |1 < j < n;}. The notion of normedness says
that the grammar must not have useless productions. The requirement of norms
being positive is in analogy with the requirement that a grammar has no empty
productions.

It is well-known that any context-free language (without the empty string) is
generated by a grammar in 3-GNF [HU79]. One can show that actually is not a
real restriction, since any system of process equations A in BPAIT.eC can effectively
be rewritten to a A’ which is strongly bisimilar to A and therefore weakly normed
iff A is [BBK87b]. This leaves us with transition graphs whose states are strings
of process variables; the further restriction to variable sequences of length at most
2 guarantees limited growth when determining single transitions:

a;;;; can be viewed as the

Proposition 3.1 Suppose A is in 3-GNF. Then, for any a € Var®, whenever
a5 o we have length(a') < length(a) + 1.

Because weak norms are assumed strictly positive, we have a simple relation-
ship between lengths and norms:

Proposition 3.2 For a € Var® length(a) < ||a]| and ||a|| < Malength(ea).
The weak norm is additive under sequential composition:
Proposition 3.3 For a, € Var® ||a8|| = ||o|| + [|8]l-

PROOF: Let w, be any shortest string with the property that a =2 ¢ and let wg

be any shortest string with the property that 3 =2 . Clearly, w,wpg is a shortest
string u such that off =% «. o

Figure 1: Transition graph for A Y e+bBC; B 14; C e

Definition 3.5 The observational language L;,,(X) accepted by a variable X is
defined by L, (X) = {w| X 23 ¢}.

We have
Proposition 3.4 [vG90] If a =, B then L, (o) = L,,(5)-
Note that for weakly normed systems this implies

Proposition 3.5 a =y, 8 implies that ||a|| = ||8|]-

Example 3.1 Consider A; = {A % a+b8BC; BE 74, C ¥ c}and A, = {X &

a+bXY;Y def ¢}. The transition graphs are shown in Figure 1. For A; we have

Lobs(A) = {bnacn l n 2 0}7 Lobs(B) = Lobs(A) and Lobs(C) = {c} X Rob A because

of the branching bisimulation
(XY™, AC™) |n >0} U{(XY",BC™) |n > 1} U{(Y",C") |n > 1} U{(, €)}
a

For the tableau system we need the following results - firstly, ~; is a congruence
w.r.t. sequential composition:

Proposition 3.6 If oy =, 5 and ay =y B, then oo, =y 5152

PrOOF: R = {(ayay, B152) | @y =4 By, 0 = B} is a bb. It is obvious that R is
symmetric. Suppose (a5, B;8,) € R. If oy, = o' this must be due to either
a; S af or a; = € and oy > . In the former case oy, = oy, in the latter
Qpog = a;. If a > a'l there are two possibilities. Either ¢ = 7 and a'l = By, but
then (o] 0y, 8,8;) € R. Or there exist 8, 8, with == B, % B/ such that o, ~,; 8,
and all R ﬂf Then 8,6, == ,3;,32 = ﬂ;lﬂz and (o0, ,3;,32) € R, (0/10‘2, ,3;,,32) € R.
If oy = € we must have 8; = € and thus 8, => ,B; 5 ,8;' with a, = ﬂ; and o/2 Ry, ﬂ;’,
so (ayaz,$18;) € R and (a,04, 81 8;) € R. O

The other result is a ‘split’ lemma that allows us to discard identical tails:

6

Lemma 3.1 If a,a =, aya then o =y a,.

PRrROOF: By Proposition 3.3 ||ay|| = ||as||, and since all variables are normed,
a; = ¢iff @y = €. Now R = {(y,) | ¢y =y aza} is a bb. It is obvious that
R is symmetric. Suppose (a;,a5) € R and a; # e. Then also ay # ¢, since

lley|| = |legll- So if @; = o then aya - o} can either be matched by a = 7

. 1 . . [€ [a n
and o,a & aya, implying o, Ra,, or by a,a = a0 — a,

"] . ey € a
and o, ~ o a. The latter holds, since weak norms are positive, so a0 = —

. !
a with a,o =) o0

€ a
because oy => — . a

It is important to note that this does not hold for weak bisimulation. The
following counterexample arose in a discussion with Kim Larsen and is due to
him.

Example 8.2 Consider A = {X = aY,Y = a+7X,A=a+aB,B = a}. As
[|X]] = 2,]IY]| =1,||A]l = 1 and || B]| = 1, A clearly obeys all requirements stated
above. It is easily seen that X ~ BY and that A % B. However, we have AY ~
BY, since {(AY, BY), (BY, X),(Y,Y), (¢, €),(X, X)} is a weak bisimulation. The
problem lies in the fact that weak bisimilarity does not require the results of
intermediate steps in weak transitions to be related. In particular, AY =Y is
matched by BY == X. The latter is due to BY =Y = X, where we clearly have
that AY £Y. O

4 A tableau system for branching bisimulation

4.1 Building tableaux

A tableau for determining branching bisimilarity is a maximal proof tree built
using the proof rules in Table 1. Tableaux consist of a number of subtableaux.
These are built from successive applications of the STEP rule.

STEP is applicable iff there is a possibility of matching transitions. A possible
match is any set of equations whose sides are the results of successful matching
transitions according to the definition of branching bisimilarity in Proposition 2.1:

Definition 4.1 A set of equations M is a possible match for a = S if for any
a € Act we have that if a = o then either

sa=71andd =€ M or

e there exist ﬂ(')z ﬂ,...,ﬂ;,ﬂ' such that ﬂo-Lﬂ;—Q —Qﬂ;&ﬂ' with a =
ﬂ:EMfOTOS’iSn ando' =p € M.

and similarly for any 8= B'.

This definition appears to allow infinitely many possible matches, since there
seems to be no bound on the length n of a matching transition sequence. However,
this is not the case. Firstly, we have

Proposition 4.1 If a =~ 8 we can find a possible match M for a = 8 such that
whenever a o is matched by ,3(') =8,..., ,B;, B’ such that fo— ﬂ;-L oD ,B;—% B
' withazﬂferorOSiSn and o' = ' e M allﬂt{ (0 <7 < n) are distinct.

PROOF: If some state 8; occurred twice in By = g, = -+ 5 B % B’ we could
remove any states between the two occurrences of §; and still have a matching
sequence. a

Secondly, we have

Proposition 4.2 If Xa~, YB3 and Xa = o'« is matched by Y = B, > BB
any intermediate state B’ in Y 3 => ﬂ;ﬂ has length(B") < My + length(B). Fur-
thermore, length(B') < My + length(B) + 1

ProOOF: For any single transition step B, — B, in Y8 == B, Proposition 3.1
applies, so length(fB;) < 1+ length(B;). Moreover, we must have §, ~, X« so by

Proposition 3.5 we have ||3;|| = || X ¢||. Thus, in the worst case, where ||Y|| = M,,
we would have replaced Y by a sequence of M, variables each having weak norm
1. O

The outbranching is a multiple of the bound Bxy on the number of single
transition steps for Xa = Y §; this factor only depends on the leftmost variables.

Definition 4.2 By y is the cardinality of
(/| X 5 d,acActU{r}}U{B |YB S F,a € ActU{T}}

Proposition 4.3 Let v be the cardinality of Var. If Xar, Y 3, there is a possible
match for Xa =Y B with at most By y Zj__l_{z (j —1)v’ equations in a match, where
K = Mj +1 + max(length(a), length(3)).

PROOF: By Proposition 4.2, we see that there is a possible match for Xa = Y
with expressions with lengths bounded by K = M, +1+max(length(a), length(B)).
So the total length on an expression is at most 2K, meaning that there are at most
Z;fz (j — 1)v’ different equations for any Xa - o« in a possible match.]

Clearly, STEP is forwards sound in the following sense:

Proposition 4.4 (Forwards soundness of STEP) If ars, 3, then there is a possible
match M such that whenever o' = 8/ € M we have o' ~; f'.

8

An eliminating subtableau for Xa = Y consists of attempted matches to the
depth where an equation of the form a = (3 is reached. When |X| < |Y'| each non-
residual leaf of an eliminating subtableau for Xa = Y 3 is either labelled a = v/
(a residual of the subtableau), or a;a = f;5. Because the number of successive
attempted matches is | X| there is at least one residual and since all norms are
strictly positive, & and § must persist as suffixes throughout the subtableau. For
~ any such subtableau we pick one residual node and call it the residual. If instead
Y] < | X| the same holds, only now the residual is ya = #. Unless a subtableau
leaf is a successful terminal (Definition 4.4 below) it is used as the basis of a new
subtableau. However, before a new subtableau is constructed, for every leaf one of
the SUB rules is used to trim the length of the expressions in the new subtableau
root. The SUB rules are forwards sound in the following sense:

Proposition 4.5 (Soundness of SUBL and SUBR) If q;ar, 3,0 and a=,vf then
oy Ry B If ya; =~ B; then a; & Biy
PROOF: From Propositions 3.6 and 3.1. a

Rule within a subtableau

a=p
TEP = =
S o =F a8 where {a; = By ..., = B}

is a possible match for a =

Rules for new subtableaux

SUBL aa = Bib where a = v is the residual
oy = fB;

SUBR M where ya = f is the residual
o; = By

Table 1: The tableau rules

The rules are only applied to nodes that are not terminal. Terminal nodes can
either be successful or unsuccessful.

Definition 4.3 A tableau node is an unsuccessful terminal if it has one of the
forms

1. a=p with || # |18

2. a=f with a # ¢,3 # € and no possible match exists (i.e. STEP is inappli-
cable).

In both of these cases it is obvious that the expressions compared are not
branching bisimilar. Thus, whenever we see an unsuccessful terminal the whole
tableau construction aborts.

The nodes that can be successful terminals are those that are potential roots
of eliminating subtableaux:

Definition 4.4 A residual or consequent of an application of a SUB rule is a
successful terminal if it has one of the forms

1. a = 3 where there is another subtableau root above it on the path from the
root also labelled o = B

2. a=«a
X=A
€E=¢ XY = BC STEP
XY = BC SUBL
XY = AC XYY = BCC Y=C STEP
XoaA SUBL XY = BC SUBL p— STEP

Figure 2: A successful tableau for X = A

Example 4.1 (Example 3.1 cont.) The tableau in Figure 2 is a successful tableau
for X = A. 0

4.2 Termination, completeness, and soundness

It is important for our decidability result that all tableaux are finite. This follows
from reasoning entirely similar to that for the tableau system for strong bisimula-
tion.

Theorem 4.1 For any equation a = f all tableauz are finite.

10

PROOF: Since our tableaux are finitely branching by Proposition 4.3, by Konig’s
Lemma an infinite tableau would have an infinite path. This would then be caused
by the combined absence of unsuccessful termination and the successful termina-
tion condition 1 along that path. Since we have assumed 3-GNF and normedness,
there is a uniform bound on the total length of the consequent of a SUB rule.
Assume wlog that we have a subtableau with root Xa = Y and that a SUBL
rule was applied to a subtableau leaf:

ao =B

oy = By SUBL

Since the depth of the subtableau is at most m,, repeated applications of
Proposition 4.2 tell us that length(a;) < ma(Ma +1), length(By) < ma(Map +1)
and length(y) < ma(Ma +1). This implies a uniform bound on the length of SUB
consequents of 3ma(Mja + 1), so there can be no infinite path through infinitely
many SUB applications since there are of course only finitely many different equa-
tions of any given length. Nor can an infinite path pass through infinitely many
residuals. For if a residual oy = B, is above the residual oy = f; we have that

llewll = HBoll < lleall = ||B:1]l- By Proposition 3.2, any subsequence of residuals
therefore has a uniform bound on the total lengths of expressions compared, again
ensuring termination. O

It is easily seen that the tableau system is complete:
Theorem 4.2 If a3, a = B has a successful tableau.

PROOF: By the forwards soundness of the STEP and SUB rules (Propositions 4.4
and 4.5) we can use the tableau rules in such a way that only valid consequents
arise. Clearly this must give rise to a finite, successful tableau. a

Finally we must show soundness of the tableau system, namely that the exis-
tence of a successful tableau for a = § indicates that a=; 8. This follows from the
fact that the tableau system tries to construct a ‘bisimulation up to a sequential
congruence’, which, if a successful tableau is reached, consists of the symmetric
closure of the set of nodes in the successful tableau. This notion is the counterpart
of the notion of a self-bisimulation used in the tableau system of [HS91] and in
[Cau90]. In order to define the corresponding notion for branching bisimulation,
we need a simple rephrasing of Proposition 2.1:

Proposition 4.6 A branching bisimulation on a transition graph G is a symmet-
ric relation R C Pr X Pr such that whenever pRq for any a € ActU {r} we have
that if p=po— p, — -+ p,, — p then there exist ¢y, qy,...,qm,q such that go=q
and p;Rq; for 1 <i<m, pRq and fori <m

® — ¢ =gy O7T

11

— there exist q; ..., Bincy such that ¢; > q;, = --- By 5 g;y1 with p;Rq;;
for1 <3 <n()

and either
ea=71andq,=q or
o there exist q,,,.. ©> oy such that ¢, = qpm, — -- Gy L4

PROOF: Clearly, any relation that satisfies the conditions of the proposition is a
bb (let m = 0). For the reverse direction, suppose p = py— p, — *++p,, — p'. One
then uses a straightforward induction in m.

Base case - m = 0: This is immediate, since here the definitions coincide.

Step - assuming for m = k: Here we know by induction hypothesis that the tran-
sition sequence p = py — p; — - - P,, can be matched according to the con-
ditions in the proposition. We then extend the match to cover p,, = p’' by
appealing to Proposition 2.1.

O

Definition 4.5 For any binary relation R on Var®, 2 is the least precongruence
w.r.t. sequential composition that contains R, - the symmetric congruence of
P and = the transitive closure of - and thus the least congruence w.r.1l.
sequential composition containing R.

Definition 4.6 A branching bisimulation up to sequential congruence (sbb) is a
symmetric relation R C Var x Var such that whenever cRS a = ¢ iff B = € and
for any a € Act U {r} we have that if o = ag— @y — ++- o, — o then there exist
Bos B, - - - ,ﬂm,ﬂ' such that B, = B and o - B; for1 <1< m, o = B’ and for
1< m
o - B = ﬂi+1 or
— there exist IB‘i17 ceey ’B'in(i) s.t. ﬂi ‘I* ﬂil ‘I* e ’Bin(i) 5 /Bi+1 with o (—E‘** ,3”
for 1 < j < n(i)

and either

o a=71andf,=p5 or

e there exist 3, ,..., gy S Bim 5 By = * Brromy % B with a, 7 Brmj
for1 <3 <n(m).

The reason why a bisimulation up to sequential congruence can be said to be
an essential part of a bisimulation lies in the following result.

12

Lemma 4.1 If R is an sbb then = is a bb.

PROOF: It is clear that «—+ is symmetric. Now suppose a «—* ; we must show
that we can match transitions within o as required by Definition 4.6. a «—=* 3

must be due to a = "B for some n, and the proof now proceeds by induction in
n:

Base case 1, n = 0 is obvious, since a = f in this case.

Base case 2, n = 1 must have a = oagx, 8 = ofx with ogRB,. If ag = [y =€,
we are done. Otherwise, if o # € any transition sequence

T T a !
Q== e, QA (1)
is due to
T a !
01— 0 —0C

with o; = 0,00 for 1 < i < mand o = o’agx. It is easy to see that this transition
sequence can be matched by

o BoX 5 0'1,50X D - 'am:BOX = U,,BOX

with o;0;x = o;B;x for all 1 <i < m and o'apy = o' Box.
If o =€, (1) becomes

T T a / 2
QoX — Qo1 X — " Qg X — O X (2)
due to
T T a !
Qg — Qgy — " Qopy, — Oy
There exist By, ... ,,BOM,,B(') where either fBy; = Bg;4q for ¢ > 1 or there exist
/ 7 T T T a !l .
ﬂoil’ .. "ﬂm’,,(l) such that By = Bog = ++-Bor = - Bom — +++ = B, is a matching

transition sequence with ay; - Byt and o o ﬂ(') If a = 7, possibly ,H(')m = ﬂ(')
Here (2) is matched by

Box = = BoaX = =+ BomX =+ = BoX

where possibly ﬂ(')mx = ,B(')x.
Step, n = k + 1 assuming for k, where k > 1: Here there is an p such that

o — kp - B. By induction hypothesis, we must have that (1) is matched us-

ing pp = PyPis---rPmsp Where o; = pi and either p; = p;,; or there exist
Pi1s- - - > Pin(i) Such that

Pi - Pi1 Do D Pin(i) = Pit1 (3)

13

with o; = Pij for 1 < j < n(i) and either p,, = p’ with @ = 7 or there exist
Pmis- -3 Pmn(m) Such that
T T T T /
P ™ Pm1 = = Pon(n) — P
Each transition sequence of the form (3) can be matched by g;, 8, such that
~ either B; = B;,, or there exist f;,..., Bik(i) such that
Bi = B = B+ By = Bina

such that for all 1 < ¢ < m we have p; - B; and p; - B;; for 1 < j < n(i).

And if p,, # p' we can match similarly with 8,, = --- = 8'. By transitivity of
—* We see that the concatenation of the matching sequences

ﬁo_’.,...ﬁl_g ...;ﬂm_g ..._‘:ﬁ'

constitutes the desired matching sequence of transitions for (1). a

Corollary 4.1 a =, 8 iff there is an sbb R such that aRpS.

PROOF: From the above and from the fact that any bb is an sbb.]

We now have
Theorem 4.3 If a = B has a successful tableau T then
Ry ={(c,B)| o' =8 or B’ =a is an equation in T}
is an sbb.

Proo¥F: It is obvious that Ry is symmetric. Since all variables have positive
norms, we see that o’ = € iff #' = e. We must now show that for any (', € Ry
any transition sequence

!

a'l>al-f->---a:n—a—>a" (4)

can match within 35—4* . We now proceed by induction in the length m of the
T
T-transition.

. / ’
Base case, m = 0: Here (4) is o' = o, and there are now four cases to be
considered, depending on where in T o/ = #’ is found.

o If o/ = ' is a successful terminal due to condition 2, it is obvious that we
can match within —*, since any least congruence contains the identity.
T

14

o If o’ = B’ is a successful terminal due to condition 1 this means that there
is a subtableau root above it also labelled o' = #’. This node must be the
premise of a STEP application, and because T is successful, a possible match
exists so we can find a matching sequence

/ /4 " "
B l’ﬂnl’ l)ﬂln(l).i)ﬂ

where (a/, ,3{']) € Ry for 1 <5 <n(1) and (”, ") € Ry.

e If o' = A is an internal node and the premise of a STEP, we proceed exactly
as in the previous case for termination condition 1.

o If o’ = ' is an internal node and the premise of a SUB, assume wlog that
the rule applied was SUBL. Further suppose o' = ' is X;oqa = Y, 3,8 and
that a = 4@ is the residual. Then we have

Xiya=Y,5,p
Xiyy=Y15,

SUBL

If X;07 = Y,8 is a terminal node it can either be an identity (condition
2) or a repeated occurrence (condition 1). In the former case we know
that the transition Xlal'y 2 an can be matched by Y;3 = ﬂ"ﬂl where

a,ayy = B, By, so clearly ooy = BBy

In the latter case the situation is the same as when STEP is applied to the
SUB consequent. Here the transition X; a7y = a;'al'y will be matched either

by Y15, (if a = 7) with o/ a;7RyY;; or by some

Ylﬂl 5 ﬂflﬂl R :B;ln(l)ﬁl = ﬂ;,ﬂl

with (a;'al’y,ﬂ;'jﬁl) € Ry for 1 < j < n(l) and (o] ,7,B.4) € Ry. Clearly
X,oqpa = iff X;007 = and thus (4) is of the form X o o = a;'ala which
can be matched either by Y; 4,8 if a = 7 or by

YiBiB 5 ByBiB -+ = BrnbrB = B8

For then X;o;c o ,3;' BB for 1 < j < n(1) and &/, s ,B"ﬂlﬂ This
holds, since = 7,3 and XlalvRTﬂl B, implies X; a;vf e ,31 3, giving

X« ‘—** ,51 ,31/3 and o al’YﬂRTﬂ 51,3, implying o 0‘1“ = ,3 ,31,3 Sim-
ilarly, aaala o Y, 6:8.
T

15

’ [" /. .
Step: Suppose o’ = a'1 A o % a. If o = B is a terminal because of

condition 2, it is obvious that we can match within R Otherwise, by the base
‘T

can be matched either by a'l e B’ or by
T

/

! T
case we know that o' — a,

! ! /4 'l
B l’ﬂul> l’ﬁln(l)iﬂl

where o e ﬂ;’J for 1 < j < n(1) and o o B;. Now if (a},B,) € Ry (or
(a'l, B') € Ry) we know by induction hypothesis that we can match the transition

1
combining these two matches. From the base case we see that the only case where
it might not be the case that (a'l, ﬂ;) € Ry or (a'l, B') € Rpis when o = ' is the
premise of a SUB rule. So assume wlog that the rule applied was SUBL and that
o =p'is Xyoqa =Y, 4,8 with a = v as the residual. Then we have

/I T [a "
sequence a, — -+ — « within —* 80 our match for (4) simply consists in

Xioya =Y, 8,8
Xy = Y15

SUBL

T ! I .
So here Xy — Xpa,0q0, so consequently o, = §; is of the form X001 =

Y,8:6.8 with either (Xya5007,Y525:5:) € Ry or Xyanayy = Y335, if we are

dealing with a terminal of type 2. A closer look at the transition sequence

! T

of Do a:n 2 o reveals that it is of the form

T T "
Xyopay0 5 oo+ D apopa = oo (5)
which is due to

T T a n
Xy00077 = Q3047+ + = QpoyY = Q07

Both in the cases when X,a,0,7 = Y55,0; is a terminal of type 2 and when
we have (X050, Y35:0:) € Ry, we know (in the latter case by induction hy-
pothesis) that there must exist §;8; for 3 < ¢ < m and ,B;'ﬂl such that either

BaPr T By - B -+ 2 By By

or,ifa=r,

,32:31 > ,33ﬁ1 Tt :Bm:Bl = ﬂfm
with oz e B;B, and either B;6; = P;,10; or there are §;;5; for 1 < j < n(2)
T
such that §;6 - BB S RE ‘Biy1B with a;aqy *é‘jr"* ﬁijﬂl and alllal’)’ ‘E;* ,3;,,31-

1 [I " . .
But then our match for o’ = a, 5. o = o consists of the concatention of the

match for o’ 5 o) and that for (5), which is

16

BaPrB T BsBifB - BB - -+ = BB,

with 3;8,8 for 3 < ¢ < m and if ;8,8 # B;;1516 the additional ;3,8 for
1 € j £ n(z). Clearly we now have that o;o e BiB1B, ooy e ;518 and
T T

' dfaa e BB, o

So we now get the soundness of the tableau system as

Corollary 4.2 If a = 8 has a successful tableau then o =, 3.

4.3 Complexity of the tableau system and decidability

The complexity of the tableau system can be measured in terms of the maximal
depth of a tableau, i.e. the length w.r.t. STEP applications of the longest possible
path in a successful tableau for an equation Xa = Y 8. Let v be the cardinality
of Var. By the discussion in the proof of Theorem 4.1 we have that any SUB
consequent has a length of at most 3m, (M, + 1), so an upper bound on the num-

ber of distinct SUB consequents along any tableau path is E3mA(MA+1)(j =1

Between any two SUB consequents there are at most f—in—‘-“—%"ré—tu] residuals, since
the worst that happen is that the total norm decreases by 2 in every subtableau
along the way. Thus, any path that contains SUB consequents can have at most

[MMA—'—F—Q] EjT;MAM(§ — 1)’ subtableau roots. As for the leftmost path, all of
whose subtableau roots are residuals, there can be at most max(||al|,||8]|) resid-
uals, since the norm of the residuals is strictly decreasing. So, since a subtableau
can have a depth w.r.t. STEP applications of at most m,, any path can have a

length of at most

m 3ma(Ma+1))
el + D G - 1) ©)

i=2

max(||a|], ||8]], [

STEPs.

We also have an upper bound on the outbranching of any tableau for Xa = Y .
This follows from the fact that there is a uniform upper bound on the total length
of any subtableau root in any tableau for Xa = Y 3. Any subtableau root along the
leftmost path is a residual and has its total length bounded by 2 max(||«|], ||5]])-
Since, as we saw, any SUB consequent has its length bounded by 3ma(Ma + 1),
and thus also has a norm of at most 3mu (M, + 1), any of its following residuals
must also have a length of at most 3m (M, +1). So the length of any subtableau
root is bounded by

L = max(2 max(||e|, [|B]1), 3ma(Ma + 1))

17

By repeated applications of Proposition 4.2 we see that any node in a sub-
tableau has a length of at most 2m, (M, +1) + L. By Proposition 4.3 this means
that there is a uniform upper bound on the number of STEP consequents at any
point in any tableau for Xa =Y S of

2ma (Ma+1)+L .
max{Bxy | X,Y € Var} Yoo (G- (7

i=2
Theorem 4.4 For any Xa = Y3 there are finitely many possible tableauz.

PROOF: From (6) and (7). O

Theorem 4.5 For any weakly normed A it is decidable whether or not a3 for
a,B € Var®.

PROOF: A naive decision procedure for =5, constructs all the finitely many tableaux
for a = 3, answering ‘yes’ if a successful tableau occurs and ‘no’ otherwise.]

5 Conclusions and directions for further work

We have here shown that the branching bisimilarity of [vGW89] is decidable for
the class of normed BPA processes with silent actions by giving a tableau system.
This system has exponential complexity in terms of the longest possible path of
a generated tableau; however, in the case of a successful tableau we get addi-
tional information in the form of a finite relation whose congruence closure w.r.t.
sequential composition is a bisimulation containing the initial equation.

The results of [GH91] show that all known strong equivalences except bisimilar-
ity are undecidable for normed BPA. This means that their weak counterparts also
are undecidable, but there are still several open questions for the weak versions of
bisimulation equivalence. For branching bisimulation, the restriction to processes
with strictly positive norms is rather strong, as it rules out the possibility of a
process terminating silently. A problem with having nullary norms in the tableau
system is that we no longer are guaranteed that a and S persist throughout an
eliminating subtableau for Xa = Y 3, since a match for Xo = may require access
to observable actions inside 8. So the natural question is whether there is a way
of introducing nullary norms. Moreover, we would of course also want to get rid of
the restriction of normedness altogether. However, since this problem also needs
to be tackled for strong bisimulation equivalence, it seems that progress must first
be made here before we can give any answer for the branching bisimulation case.
Last, but not least the questions for weak bisimilarity all remain open. As we
saw, Lemma 3.1 does not hold for this equivalence so a different approach must
be used in that case.

18

Finally, it would be interesting if we could give a syntax-directed version of our
tableau system for branching bisimulation since this could give us an equational
theory of a5 over normed BPA’ along the lines of [HS91]. A naive approach
would be to add the 7-laws for branching bisimulation to the equational theory
for strong bisimilarity of [HS91], where a proof system is given that consists of
rules that can simulate the tableau construction. However, this theory would not
* be powerful enough for this; the problem lies in simulating the STEP rule.

References

[BBKS87a]

[BBKS7b]

[BK84]

[BK88)

[Cau90]

[GHO1]

[HS91]

[HU79]

[KH66]

[Mil80]

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimu-
lation equivalence for processes generating context-free languages. In
LNCS 259, pages 93-114. Springer-Verlag, 1987.

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimula-
tion equivalence for processes generating context-free languages. Tech-
nical Report CS-R8632, CWI, September 1987.

- J.A. Bergstra and J.W. Klop. Process algebra for synchronous com-

munication. Information and Control, 60:109-137, 1984.

J.A. Bergstra and J.W. Klop. Process theory based on bisimulation
semantics. In J.W. de Bakker, W.P de Roever, and G. Rozenberg,
editors, LNCS 354, pages 50-122. Springer-Verlag, 1988.

D. Caucal. Graphes canoniques de graphes algébriques. Informatique
théorique et Applications (RAIRQO), 24(4):339-352, 1990.

J.F. Groote and Hiittel. Undecidable equivalences for basic process al-
gebra. Technical Report ECS-LFCS-91-169, Department of Computer
Science, University of Edinburgh, August 1991.

H. Hittel and C. Stirling. Actions speak louder than words: Proving
bisimilarity for context-free processes. In Proceedings of 6th Annual
Symposium on Logic in Computer Science (LICS 91), pages 376-386.
IEEE Computer Society Press, 1991.

J. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

A.J. Korenjak and J.E. Hopcroft. Simple deterministic languages. In
Proceedings of Seventh Annual IEEE Symposium on Switching and Au-
tomata Theory, pages 36-46, 1966.

Robin Milner. A Calculus of Communicating Systems, LNCS 92.
Springer-Verlag, 1980.

19

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall Interna-
tional, 1989.

[vG90] R.J. van Glabbeek. Comparative Concurrency Semantics and Refine-
ment of Actions. PhD thesis, CWI/Vrije Universiteit, 1990.

- [vGW89] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction
in bisimulation semantics (extended abstract). In G.X. Ritter, editor,
Information Processing 89, pages 613-618. North-Holland, 1989.

20

