LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - The University of Edinburgh

A Language for value-passing CCS

>

- by

3

e Glenn Bruns
&

(0]

5]

<

S

|

D

ge

(V]

wn

23

=3

«©

@]

O

w

LFCS Report Series ECS-LFCS-91-175
LFCS August 1991

Department of Computer Science

University of Edinburgh

The King's Buildings .

Edinburgh EH9 3JZ Copyright © 1991, LFCS

Copyright © 1991, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

A language for value-passing CCS

Glenn Bruns

August 23, 1991

Abstract

Milner has defined an extension to CCS, called value-passing CCS, which allows parameterized
agents and actions, and conditional expressions. This notation leaves open the problems of describing
data and of associating sets of values with actions. We define a language for value-passing CCS in
which sets, sequences, and tuples are built from natural number, boolean, and string constants.
Only finite values can be constructed. Our language also contains declarations to associate set-
valued expressions with actions. This paper contains a definition of the language and a description
of a translator to basic CCS.

1 Introdﬁction

Milner [2] describes CCS as a notation rather than a language, because it contains only the essential core
of operators needed for a theoretical study of concurrency. Value-passing CCS, also defined by Milner,
provides some of the conveniences a language should have, such as parameterized agents and actions,
and conditionals. Unfortunately, tools such as the Concurrency Workbench [1] support only basic CCS,
and the definition of value-passing CCS leaves unspecified the types and syntax of data.

We have developed a language for value-passing CCS that provides a concrete syntax and approx-
imately the same set of data types and operations as that found in Milner’s text [2]. We have also
implemented (with Stuart Anderson) a translator that generates basic CCS agent definitions from dec-
larations in our language.

This paper contains a definition of our language and a discussion of the translator. The semantic
definition defines value-passing CCS operationally, without reference to basic CCS. We feel that this
approach is more direct than a translational definition and also allows the semantics of agents and data
to be handled uniformly.

The data part of our language uses sets, sequences, and tuples as the main data types. Values of
these types can be built up from natural number, boolean, and string constants. Since all data operators
preserve finiteness, only finite data elements can be constructed. This is necessary since we implement
the language by translation to basic CCS.

The only feature found in our language and not in Milner’s value-passing CCS is that of indexed
actions. The motivation for this feature comes from the common situation in which a process would like
to accept an input only if it has a certain value. With parameterized input actions, any value must be
accepted. An input action in which the index value is the value to be accepted has the desired behavior.

2 Syntax

A program in value-passing CCS consists of three three kinds of definitions: agent definitions, constant
definitions, and label definitions.

program = decllist
decllist = decl
| decl decllist
decl := constdef | labeldef | agentdef | pagentdef

The syntax of definitions is as follows (keywords given in boldface):

constdef = const ident = vezpr
labeldef ::= label labeltypelist
agentdef = agent const = aezpr
pagentdef = agent const(params) = aexpr
labeltypelist ::= labeltype
| labeltype, labeltypelist
labeltype = label
| label vezpr
| label(vezpr)
params = param
| param, params
param := ident:verpr

where ident is an upper or lower-case letter followed by zero or more alphanumerics and const is an

upper-case letter followed by zero or more alphanumerics.

2.1 agent expressions

Agent expressions have the following syntax:

aezpr = mnil
t.aezpr
label.aexpr
label "vexpr.aexpr
name(ident).aezpr
coname(vezpr).aezpr
name vexpr(ident).aezpr
coname” verpr(vezpr).aezpr

aezpr + aexpr

aexpr\{namelist}

aezpr[sublist]

if vezpr then aezpr

if vezpr then aezpr else aexpr
sum (ident:vezpr, aexpr)

comp (ident:vezpr, aezpr)

const

const(vezprlist)

|
l
l
l
|
l
|
|
| aexpr | aezpr
!
l
l
|
|
I
l
|
l

(aezpr)

where name is a lower-case letter followed by zero or more alphanumerics and coname is a name starting
with a apostrophe (’). Note that the letter ‘t’ represents the symbol 7.

The operators on agent expressions have the following precedence, listed in decreasing order: restric-
tion and relabelling, prefix, composition, summation.

Auxiliary syntax for agent expressions:

namelist = name
| name,namelist
sublist = asub
| asub, sublist
asub = label [label
label = mname | coname

2.2 value expressions

Value expressions can be basic expressions, set expressions, tuple expressions, or sequence expressions:

vexpr = basicezpr | setezpr | tupezpr | seqezpr

The syntax for basic expressions:

basicezpr = ident

sir

num

bool

Unop verpr

vezpr binop vezpr

(vezpr)

where unop € {not}, binop € {+,—,mod, =, <>, <,<=,>=,>,and,or}, stris a string of characters
enclosed by double quotes, num is one or more decimal digits, and bool is true or false.

The binary operators are all left associative, and are given in order of decreasing precedence. The
logical operator not has higher precedence than and but lower precedence than the relational operators.
The syntax for set expressions:

setezpr == {}
{vezprlist}
{name:vexpr | vezpr}
{vezpr | name:veapr}
{vezpr | vezpr where name:vezpr}

prod (vezprlist)

|

|

|

l

l

| pow (vezpr)

| union(vezpr, vezpr)

| diff (vezpr, vezpr)

| size(vexpr)

| member (vexpr, vezpr)

vezprlist = wvezpr
| vezpr, vexprlist

The syntax for tuple expressions:

<< vexprlist >>

tupexpr =
| vezpr#vexpr
l

update (vezpr, vezpr, vezpr)

The syntax for sequence expressions:

segezpr = []

seqs (vezpr, vezpr)
cons (vezpr, verpr)
hd (vezpr)

tl(vezpr)

append (vezpr, vezpr)

len (vezpr)

Comments are allowed anywhere in a program; their syntax is (*commentx). Nested comments are
not allowed.

3 Semantics

The semantics of the value-passing language will be defined using structured operational semantics [3].
We will need to evaluate phrases of the language relative to an environment, because in value-passing
CCS parameterized actions depend on an association established between names and sets of values. For

example a(z).P o« P is only possible if the name a is associated with a set containing the value 1. The
semantics of basic CCS given in [2] implicitly refer to an environment in the definition of agent constants.

The environment is formalized as a partial function from variables to values. The operation of
updating an environment, denoted by EE’, is defined as follows:

0= { 5 daie

Sequents in the semantics have two forms. The first form is

E'I- phrase = result

Informally, this sequent is read as: “evaluating the phrase in environment FE yields the result”.
Sequents of this form are used in three different ways. If the phrase is a value expression, then the result
is a value. If the phrase is a declaration, then the result is an environment. If the phrase is a CCS
constant, then the result is a CCS expression.

The second form of sequent is

E+-PSP

This sequent is read as: “the transition P — P’ is possible in environment E”.

In the semantic rules that follow, E and E’ stand for environments, e and e’ stand for value expres-
sions, u and v stand for values, and S and T stand for set values. Conventions are also used for CCS
terms and actions. P and @ stand for CCS terms, a and b stand for names, and ! and m stand for
labels. The letter o stands for a label or an extended label, which is a label that has been indexed or
parameterized or both.

The notation ¥ denotes the indexed set {v; | ¢ € I'} of values, where I is understood.

declarations

Erd=>E, EVl decls => Es

declaration list
E+d decls = E1E,

Ete=>v
constant
Et const ¢ = e => {(z,v)}
simple label E t+ label a => {(a, simple)}
indexed label E I label a’e => {(a, index)}

Etle=S$S

parameterized label
E | 1abel a(e) = {(a, param(S))}

Ere =35

indexed, parameterized label
E t- label a’e(e') => {(a, indezparam(S))}

agent EF agent P =Q = {(P,Q)}
parameterized agent El agent P(3:€) = Q = {(P,(%,Q))}

Label declarations create an association in the environment between actions and label types, where
label types are built using the constructors simple, index, param(S), and indexparam(S). Note that the
constructors index and indezparam do not make use of the indexing set given in the corresponding label
declarations. As a consequence, actions that might be considered as type errors can occur. For example,
the action ag could occur even if the value 0 was absent from the set given in the label declaration for the
indexed action a. Similar type errors are possible with parameterized output actions. Future versions
of the language and translator will handle these type errors.

Note also that expressions in declarations are evaluated immediately, giving static binding and re-
quiring that constants be declared before use.

agent expressions

tau action ErtP 5P
EtF a = simple
simple prefix a = base(l)
Er1LPL P
Eta=—index Ele=>v
indexed prefix a = base(l)
EtleP P

i E'+ a => param (S)
parameterized input action vES

Et a(z).P “© p

Eta=> param(S) Elte=v

parameterized output action =)
Etra(e)P S P

Et a = indezparam(S) Ete=>u

indexed, parameterized input action ; veES
GyulV

EF a’e(x).P) p

Et a =5 indezparam(S) Ete—>u Ete = v

indexed, parameterized output action "
Gyl

EFa’e(e).P W p

ErFrPS P
summation-1
EFP+Q Ay -4
EFrQ3¢q
summation-2
EFP+Q>Q
ErpP3p

composition-1
EFP|QSP|Q

EFQ3¢Q

composition-2
ErP|Q3P|Q

ErPLP ErQLQ

composition-3
ErP|QSP|Q

ErP3S P
restriction base(a) € L
E+ P\L > P\L

E-PS P
EF P79 Py

relabelling

EF if e then P elsenil 5 P’

conditional-1
Etif ethenP 5 P’

Ete=>true E+P3 P

conditional-2
Etif ethen Pelse @ = P’

Ete=>false EFQ3>Q

conditional-3
EFif ethenPelseQ 5 Q'

Ete=S EtY , .5Pv/z] S P

sigma

E F sum(z:e, P) 5 P’

) Ete=S EF[],sPlv/e]> P

pi

EF prod(z:e, P) = P’
constant-1 ErP=Q ifEP)=Q

EFP=Q EFQ3¢Q

constant-2

EFPSQ
parameterized constant-1 EF P = (3,Q) if E(P) = (&,Q)
EFP=>(3Q) E{(z1,v1),...,(zn,v)}FQ>Q
EF P@) =>Q

parameterized constant-2

The function base in the simple prefix, indexed prefix, and restriction rules returns the name part of
a given action:

base(r) = T

base(a) = a
base(l,) = base(l)
base(l(v)) = base(l)
base(l) = base(l)

For example, base(ay(v)) = base(ay) = base(a) = a.

The function f' in the relabelling rule is an extension of the relabelling function f so that it also

applies to the base part of indexed and parameterized actions:

Fr) = 7
F@ = f@
F) = £
FUE) = FO)
FO = FO

i

value expressions

constant Etv=v
identifier Ere=v ifE(x)=v

Et+ {z | ¢ where z:e} = S

set comprehension 1
Et{ze|e}=S

Et+ {e| true where z:¢'} = S

set comprehension 2
Er{e|ze'}= S

Et e = {#} E{(z,v)}Fe=v. E{(z,v)}Fe =b

set comprehension 3
Et {e| e where z:¢"} => {y | y = v; A b; = true}

Et e=> (%) Ebe =i

tuple selection
ElFefe =>v;

Ete= (%) Ete =i Ete' = u
tuple update ¥
E I update (e, €, e”) = (')

!

~ !
= v, except v; = u

EtFe=n Ete =385

sequences
E+segs(e,e) = Ui, S

Most value expressions are not given semantic rules, since the types and operators are given their
common interpretation. For example, in the constant rule, the syntactic entity 1 is given as its interpre-
tation the integer 1. As another example, the operator + is interpreted as integer addition.

In case their meaning is not entirely clear, we state here that the set operators prod, pow, diff, size,
and member refer to, respectively, the set product, the power set, the set difference, the cardinality of a
set, and set membership. The sequence operators hd, ¢, append, and len refer to, respectively, the head
of a sequence, the tail of a sequence, the appending of two sequences, and the length of a sequence.

To define the relational operators, we make use of a total order (denoted here by <) over all values.
This relation is defined between values of different types by ordering the types themselves: booleans <
naturals < strings < tuples < sequences < sets. So, for example, 1 < {}. The following rules define
the order relation within each type. For booleans, false < true. Natural numbers are ordered by the
relation <. Strings, tuples, and sequences are ordered lexicographically. Sets are ordered as sequences
by ordering the elements they contain and then removing duplicates.

10

4 Translating to basic CCS

Our value-passing language is implemented through a two-step translation to basic CCS. In the first step,
a value-passing program is translated to an ml expression. The ml expression contains constructors of
datatypes that capture the abstract syntax of value-passing CCS. For example, the abstract syntax of
agent expressions is represented by the datatype Beh, and a conditional agent expression is represented
by the constructor cond of Elem x Beh * Beh. The ml expression also refers to functions that perform
the translation to basic CCS. For example, the function GenElems takes as input a set-valued expression
and returns a list containing the elements in the set.

The second step of the translation is to execute the ml expression produced in the first step, producing
a file of basic CCS definitions in a form readable by the Concurrency Workbench. In certain syntactic
respects, the basic CCS produced is not true to the operational semantics we have given. For example,
the subscripted actions found in the semantics cannot be represented in the basic CCS produced simply
because the Workbench accepts only ASCII characters. Therefore, subscripted actions are encoded into
ASCII strings by the translator. The value part of a subscripted action need also be encoded, since
mathematical symbols such as { and U are not allowed by the Workbench in an action name.

The encoding scheme is precisely described here so that the basic CCS generated by the translator
can be understood:

[7] t
[o] a
[<] ‘a

[]
[i()]
[l ()]

[1--[]
[1-I]
[%u]-I]

R A 2 2 2 2 R

[P(#)] P_[<< 7 >>]
{51 #[0] +
[# %[v]&
(@)1 <[>
[str] str
[true] “true”
[false] “false”
[int] int

Some tricks are used in the translation process so that the work of maintaining environments and
performing substitutions is mostly done by ml. A constant declaration, for example, is translated directly
to an mllet expression. A parameterized input operator in value-passing CCS is translated to a datatype
constructor having the signature

inp of Atom x LabelSort x (Elem — Beh)

The first parameter, an Atom, is the name of the input action. The second parameter gives the label
type, which specifies the set over which the input value can range. The third parameter is a function
from a value to the agent expression given after the prefix operator. For example, the CCS expression
a(z).P(z) generates the ml expression inp(“a”, Param({1,2}),fn => pconst(“P”, z)), assuming that
a has been declared as a parameterized label ranging over {1,2}, and that pconst is a constructor used

11

to represent parameterized agent constants. Substitution of a value for £ within the agent expression P
is accomplished by applying the function to the value.

5 Conclusions

The development of our language and translator was motivated by the difficulty in using basic CCS
to model real systems. Qur experience has confirmed that the language makes the modelling of these
systems much more convenient. A secondary benefit is that it is now usually possible to directly express
agents in the manner found in Milner’s text.

The basic CCS generated by our translator has values encoded into the names of agents and actions,
and is therefore awkward to manipulate when using the Concurrency Workbench. Work is currently
underway to integrate the translator into the Workbench so that translated terms are never seen by
users. In the long term, we plan to have the Workbench manipulate value-passing CCS terms directly.

Indexed actions are treated slightly differently in our language and Milner’s. We treat the restriction
and relabelling of indexed actions much the same as parameterized actions, so that an action indexed by a
particular value cannot be restricted or relabelled independently of the actions indexed with other values.
This aspect of indexed actions will probably be changed once a simple definition has been found. Better
type checking for indexed actions and for parameterized output actions is another planned improvement.

We have considered extending our language with features such as the pattern-matching of agent
parameters, and a “let” facility for making local definitions. We have so far resisted making such
additions because the simplicity of our language makes it more suitable for many problems than “heavier”
notations such as Lotos.

There is still work to be done in meeting correctness concerns. First, is the semantic definition given
here consistent with the translational semantics given by Milner in [2]? Second, is the translator correct
with respect to the semantics? We plan to report on these issues in a later paper.

References

[1] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency workbench: A semantics
based tool for the verification of concurrent systems. Technical Report ECS-LF(CS-89-83, Laboratory
for Foundations of Computer Science, Dept. of Computer Science, University of Edinburgh, 1989.

[2] Robin Milner. Commaunication and Concurrency. Prentice Hall International, 1989.

[3] G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI-FN-19,
Computer Science Department, Arhus University, Denmark, 1981.

A An example

(* Scheduler specification from Milner’s text, page 115 *)

const n =3
const index = {0,1,2}
const iset = pow(index)

label a“index, b~index

agent Schedspec(i:index,X:iset) =
if member(i,X) then
sum(j:X,b"j.Schedspec(i,dif£(X,{j})))
else
a"i.Schedspec((i + 1) mod n,union(X,{i}))
+ sum(j:X,b"j.Schedspec(i,diff(X,{j})))

12

