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Abstract

A systolic array is a network of processors that are locally and regularly connected. This
special-purpose computing paradigm supports the parallel implementation of iterative algo-
rithms in a variety of areas, e.g., numerical analysis, signal or image processing and graph
theory.

The special appeal of systolic arrays is that they can be derived mechanically by provably
correct and (in a sense) optimal synthesis methods. These methods transform algorithmic
descriptions that do not specify concurrency or communication — usually functional or im-
perative programs — into functions that distribute the program’s operations over time and
space. This process is called systolic design. The distribution functions can then be refined
further and translated into a description for fabrication of a VLSI chip or into a distributed
program for execution on a programmable processor array.

Systolic design has received a lot of attention in the past decade. This paper is an
overview and bibliography of recent results and current issues in the mechanical synthesis of
systolic arrays.

*An abridged version of this paper was presented at the Int. Conf. on Parallel Computing Technologies
(PaCT-91) in Novosibirsk, U.S.S.R., Sept. 1991.

tSupported by the Science and Engineering Research Council, Grant no. GR/G55457.

tSupported by a University of Edinburgh Postgraduate Fellowship.
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1 Introduction

With the advent of powerful VLSI design and fabrication techniques and of programmable
processor networks, the reliable synthesis of multiple-instruction-multiple-data (MIMD) al-
gorithms and their refinement into hardware and software has become increasingly attractive.
The potential of VLSI for MIMD parallelism was first recognised by Kung and Leiserson [50],
when they introduced the term systolic array to describe a processor network that was suit-
ably restrained to meet the limitations of the then just emerging VLSI technology. The main
reéstrictions are synchrony of the parallelism and locality of the interconnections between pro-
cessors. The proceedings of recent yearly or bi-yearly conferences and workshops on regular
array processors attest to the variety of areas in which systolic solutions have been proposed
since then, e.g., numerical analysis, signal or image processing and graph theory. We refrain
from tabulating individual examples here; there are too many and this is a review of systolic
design, not of systolic algorithms. The proceedings of said conferences and workshops are
referred to throughout the paper.

The special appeal of systolic arrays is that many can be derived by mechanical synthesis
methods. These methods take a traditional (but very restricted) imperative or functional
program and spread its individual operations over time and space. They are based on a
geometric theory and deliver maximal parallelism, i.e., the shortest execution derivable from
the source program, if the assumption is made that all individual operations take equal
time. With the increasing possibilities promised by new computer architectures — increasing
communication bandwidths and distances, decreasing communication cost, asynchronous
parallelism in programmable processor arrays — the restrictions that characterise the systolic
paradigm are losing their practical relevance. As this is being realised, the theory of systolic
design is undergoing extensions to encompass less restricted regular processor arrays. Still,
regularity is of prime importance; irregular optimisations or adaptations must be identified
and implemented by hand.

We review the current status of systolic design. The paper is structured as follows:

Sect. 2. Initial methods could synthesise a class of (rather simple) systolic arrays au-
tonomously with a guarantee of the correctness and time-minimality of the systolic
execution. These are, essentially, systolic arrays whose source specifications can be
expressed by one set of restricted nested loops (uniform recurrences).

Sect. 3. For a non-uniform source, human intervention is often necessary in the systolic
design process, but there have been recent advances in the search for automatic schemes
to turn more general forms of recurrences into uniform recurrences.

Sect. 4. Even when the syntactic requirements on the source can be satisfied, the systolic
design process may still yield an unsatisfactory solution, for example, one with more
processors or execution steps than are necessary to solve the problem. Systolic design
methods guarantee time-minimality with respect to the source only. A different source
may specify the same problem but lead to a faster systolic array.

Sect. 5. A uniform source guarantees linear distribution functions. Sometimes a systolic
solution can be improved by breaking the linearity.



Sect. 6. A systolic design may be complicated by a limitation of the number or nature of
processors or channel connections. Time-minimality can usually not be guaranteed in
the presence of resource limitations.

Sect. 7. A realisation in hardware often requires control signals that tell cells what to do
when. Methods for synthesising these signals exist and are being improved.

Sect. 8. A realisation in software requires the generation of computation and communication
code for each cell and communication code for the injection and extraction of data to ’

and from the array.

Sect. 9. Present programmable processor networks are not supporting parallelism of suf-
ficiently low granularity to be ideally fit for systolic computations, but more suitable
architectures are under development.

Sect. 10. Theoretical issues of systolic arrays and systolic design are also reviewed.

This survey is intended to be comprehensive, but it cannot be complete. The focus is on
mechanical systolic design based on uniform recurrences. Elsewhere there is an overview
that also considers other, earlier methods [29].

2 Uniform Systolic Design

2.1 The Source Description

The starting point of the mechanical systolic design methods that we review is a functional
program [18,71, 78] or an imperative program [40, 56], both without parallel commands and
communication directives. Both adhere to the format:

for ¢, from [b, by st, to rb; do

for ¢, from (b, by st, to rb, do
Byie ity

The loops define a space ® of points (iy,- -+, 1,), called the indez space (2 CZ"); the coordi-
nates of the points are the loop indices. The bounds /b, and rb; are linear expressions in the
loop indices 7, to 7;_; (0<k<r) and in additional variables that specify the problem size;
the bounds must make the index space a convex polyhedron [85]. The steps st; are constants.
We call 7;:- - -1, the basic operation of the program. It can be viewed as a procedure with r
parameters whose body is of the form:

Gie ity i if Bg(eq,- 0 ,4,) — Sy

U Bt(ila"'vir) — 5
fi

B; — S; is called a guarded command [26]. The guards B; are side-effect-free predicates
that relate the loop indices; the computations S; are functional or imperative but must be



without non-local references other than to the variables indexed by the loop indices. There
is a formal correspondence between the functional and imperative style [14,61].

In the functional style, a computation must contain a set of uniform recurrence equations
(UREs) [71,78], i.e., equations of the form:

o(I) = f,(w(J),--) where I€® and J=1I1-9,

The three dots in the argument list of f, stand for an arbitrary but fixed number of similar ar-

guments. The constant vectors ¥, are called dependence vectors; the (partial) order imposed
on the computation by these vectors may not be violated in the systolisation. (For nota-
tional convenience, we assume that there is only one dependence vector per variable.) The
dependence vectors form the columns of the dependence matriz. The graph whose vertices
are the basic operations and whose edges are the dependences between the basic operations
is called the dependence graph. This graph changes with the size of the problem. The graph
whose vertices are the variable names and whose directed edges connect the arguments with
the results of the UREs is called the reduced dependence graph. It is independent of the
problem size.

In the imperative style, a computation may specify a reassignment, each non-local vari-
able is subscribed by r—1 linear expressions in the loop indices, their coefficient matrix has
rank r—1 and non-local variables in a fixed computation that agree in name must agree in
subscripts. The missing index is made superfluous by the introduction of the re-assignment.
The parallelisation is based on the concept of an independence relation, a semantic condition
that ensures the correctness of the parallel composition of two basic operations and that is
declared as follows [40]:

independence criterion = 1;:-- -4, ind j3q:-- 17,

The most general definition of semantic independence is rather complex [13]; generally more
restrictive, simpler conditions are used. Uniform systolic design enforces the pipelining of all
variables accesses. The according independence criterion is the absence of shared variables.

The product of two square matrices is the standard example in the literature for the
illustration of concepts in systolic design.

Example: nxn Matrix Product (V ¢,5:0<¢,j<n:c¢;; = (Z k:0<k<n :a;5-b;))

Loops: for ¢ from 0 to n do
for j from 0 to n do
for k from 0 to n do

0:7:k

Index Space: @ = {(s,5,k) | 0<1,4,k<n}

Basic Operation (imperative): 5k if k=0 —¢;;:=0
| k#0 — c;j:=cij+aip by,
fi



Independence Relation:
(10, Jo) 7 (31, 31) A (30, ko) # (315 k1) A (Ko, Jo) # (K1, J1) = toidorko ind 243712k,
Basic Operation (functional):

ik ifj=0— A(s,j,k) = a;
[I .7#0 — A(iui, k) = A(i,j——l,k)
fi,
ifi=0 — B(3,5,k) = by ;
[ i#0 — B(:,j,k) = B(i—1, j,k)
fi,
if k=0 — C(i,,k) =0
| k40 — C(s,5,k) = C(3, 5, k—1)+A(s,§—1,k)-B(i—1,4, k)
fi,
Cij = C(¢,3,n)

010
Dependence Matrix: [J4,95,95]=1]1 0 0
0 01
Dépendence Graph (n=3): Reduced Dependence Graph:
. 0
J 0
4 , (3,3,3) 1

q

(End of Ezample)

N | 0
> 1 1
(1,1,1) 0

2.2 The Target Description

The systolic array is described by two functions; further functions are derived from them.
Let Z denote the integers and Q the rationals:



step: ®—1Z, step(l)= A, AeZ'.

step specifies the temporal distribution. A is the scheduling vector. I is computed at
step Al.

(r—1)xr

place : 8— 272", place(I) =al, o€l

place specifies the spatial distribution. o is the allocation matriz. I is computed at
location oI. B

The combination of step and place is called the space-time mapping. The square matrix in
which the coeflicients of step occupy the first row and the coefficients of place occupy all
other rows is called the index transformation matriz.

The mechanical derivation of a shortest execution is always possible in uniform systolic
design; it employs techniques of integer programming in the functional style [78] and of
program transformation in the imperative style [40]. One chooses a compatible distribution
in space by a search [40,65]. With this choice, one can also optimise other aspects of the
array, e.g., the throughput or the number of processors of channels or storage registers per
Processor.

step and place each partition the index space; all domain elements with the same image
form one partition. The partitions defined by step are slices (i.e., parallel hyperplanes [69]).
The partitions defined by place are parallel lines that are defined by a common vector, the
iteration vector u, satisfying cu=0. If the iteration vector also satisfies the condition Au>0,
it specifies the iteration direction in the respective processors and can be viewed as the most
concise characterisation of the choice of systolic array.

If step and place are given, the direction, speed and layout of all data travelling through
the array are determined. Let V be the set of variables of the program:

flow: V—@Q", flow(v) = o9,/),, 9,€D.

flow specifies the velocity with which elements of a stream travel at each step. Stream
v is called moving if flow(v)#0 and stationary if flow(v)=0. (9, € D means that J, is
a column of matrix D.)

input : V—®—7""", input(v(I)) = place(v(I))—(step(v(I))—fs)-flow(v(I)).

input specifies the layout of the data at the first execution step, fs. (This function has
also been called pattern [40].) The layout at the k-th following step is input(v(I))+k-
flow(v(I)).

Example: 3x3 Matrix Product
Partitions:

Fig. 1. step(z:j:k) = ¢+7+k is time-minimal for the previously presented set of UREs.
Systolic Arrays (at the first step; imperative source):

Figs. 2, 3. The dark cell is active. (End of Ezample)



2.3 Functional vs. Imperative

As is usually the case for functional vs. imperative programs, the functional style is based
on a richer and cleaner theory. The systolisation in the functional style is independent of the
problem size. Integer programming is NP-complete [34] but it is frequently asserted that, in
the restricted setting of systolic arrays, it can often be solved efficiently.

Only very little work has addressed this problem. The minimisation of the step function

with respect the computation of one specific variable (rather than all variables) can be for-

mulated as a linear programming problem [87,88]. The step function can also be minimised
by combinatorial optimisation. A branch-and-bound method has been proposed and demon-
strated to be effective on practical problems [95]. A method for minimising the number of
processors in the systolic array has also been reported [96]. The solution space of projection
vectors is bounded for a given step function; the minimising place function is obtained by
enumeration.

To systolise a program in the imperative style, its loops must be expanded for a fixed
problem size. Generalisation techniques of the kind described in [56] can then make the step
function independent of the problem size. The imperative method can take other semantic
aspects than independence into account, like idempotence and neutrality [40] (an idempotent
operation has the same effect executed once or any number of times in succession; a neutral
operation has no effect). Its parallelisation scheme can also generate non-systolic solutions
[57]. There has been much, mostly informal work on the parallelisation of non-uniform loop
programs; we do not review it here [92].

2.4 Implementations

Early rudimentary implementations of the functional style include DIASTOL [31, 32], ADVIS
[66] and SYSTOL [68] among others [91]. A more elaborate effort is Crystal; it started out
as a system for systolic design [18] and subsequently targeted other machine models like
Hypercubes [19]. More recent systems are PRESAGE [91] and ALPHA [33,60]; they can
assist in non-uniform systolic design (Sect. 3). PRESAGE respects resource limitations
(Sect. 6); so do Systars [70] and HIFI [5].

A different set of tools is not based on recurrence equations but on some subset of the
functional language FP [6] for regular array design — the most prevalent is uFP [63]. These
tools help the human interactively transform a simple functional specification into a program
that represents an array. This approach is not based on the theory of uniform recurrences
but on the theory of functional program transformations. This is particularly useful for
reasoning about and comparing systolic arrays, as various interpretations and metrics can
be applied [62].

The imperative method has also been implemented [40, 56] and used in the development
of a complex new systolic array [59].

3 Syntactic Adaptations

Uniformity is a rather restrictive requirement on recurrences. Many loop algorithms are
more easily phrased in a non-uniform way. Research is presently being conducted on the



transformation of non-uniform into uniform recurrences. In cases where the deviation from
uniformity is not too serious, mechanical methods can be hoped for.

Recently, methods of transforming affine recurrences (AREs) into uniform recurrences
have appeared [72,73,75,93]. An affine recurrence equation differs from a uniform recurrence
equation only in the format of the arguments’ index vectors. In an affine recurrence, it is
J = A, I-9,, where the affinity matriz A, is a constant rxr matrix; in a uniform recurrence,
A, is the identity matrix. A, may be singular; if so, the dependence is non-injective. Only ,
injective dependences enforce the full data pipelining required in systolic arrays.

Example: nxn Matrix Product

Loops, Index Space, Basic Operation (imperative): as in Sect. 2.1.
Independence Relation: (%, jo) # (21,71) = toiJoko Ind 24371k
Basic Operation (functional):

ejik A(G0,k)=a;; ,
B(())j) k) = bkyj ’
if k=0 — C(i,j,k) =0
[ k#0 — C(, 5, k) = C(G,j, k—1)+ A(5, 0, k)- B(0, j, k)

f.
Cijg = C(Z)]a n)
1 00 [0 0 0 1 00
Affinity Matrices: Ay,=]10 0 0|, Ag=]0 1 0|, Ag=]01 0
0 01 | 0 0 1 0 01
0 0] 0
Dependence Vectors: d,=|0 |, dg=[ 0|, dc0=1|0
0 0 1

(End of Ezample)

Uniformisation methods amount to the introduction of more pipelining by adding com-
patible dependences. In the matrix product, the added dependences are in the second index
of A and the first index of B (see Sect. 2.1). Uniformisation methods can also handle data
reflections in the systolic array, i.e., the case where flow is not constant for a variable.

One can obtain a linear step function directly from AREs with index vectors of one
common length [72,75,101]. This may yield a faster execution than can be obtained via a
uniformisation. For example, for the matrix product one obtains an execution that is three
times as fast: step(::j:k)=k. However, only place functions for UREs, not for AREs, enforce
local communication (i.e., a bound on the communication length).

A further mild deviation from the ARE format is a set of nested loops with several basic
operations (where scoping is indicated by indenting) [59]:



for i; from [b, by st; to rb, do
for i, from [b, by st, to rb, do
for i3 from [b; by st3 to rb; do
14305123
1112

This can be made uniform by letting the inner loop apply 2;:¢; in an added step. In the "
functional setting, a source of this form corresponds to a set of AREs in which the length of
the index vector varies between different variables; it is known how to derive a linear step
function in this case [64].

4 Semantic Adaptations

The time-minimality of the systolic solution is only with respect to the source program.
Different source programs with the same input/output behaviour may prescribe different
dependences and therefore lead to systolic solutions of varying quality. This occurs, for
example, in the presence of commutative or associative operations.

1. nxn Matrix Product:

The cumulative additions (“inner product steps”) [50] in a matrix product can be
performed in any order, but one must choose a fixed accumulation order in both the
imperative [40] and the functional source [31,72]. In certain situations (e.g., band
matrices [40]), the choice of order makes a difference to the execution time of the
systolic solution.

2. Optimal String Parenthesisation by Dynamic Programming;:
(V Z,] . 0<Z,]Sn : c‘i,j = wi’j+(min k' . Z<k<] H c‘i,k+ck,j))
The minimum must be accumulated from the middle to the two ends of the interval

(3,7) in order to make a systolisation possible; this keeps the treatment of ¢ and j
symmetric [32, 39, 73].

There are other examples. If the expense in processors and communication is justified, a
sequence of associative operations can be turned into a tree, in which each level of nodes
can be performed in parallel, from the leaves to the root [59]. A small collection of semantic
transformation techniques has been proposed recently [74].

The size of the search space makes a systematic identification of useful application orders
a particular challenge which has not been addressed by systolic design so far. A desirable
specification would be a minimally ordered source program, as is possible in GAMMA [7, 8] in
the functional and Unity [17] in the imperative style. But these languages are too general
to support an implemented scheme of systolic design. They leave too many implementation
choices because they are targeted at a much wider range of architectures than systolic arrays.
To support the mechanical development of systolic implementations, we need to address
issues in the specification that need not be addressed in GAMMA or Unity programs. One
requirement is that a dependence graph must be constructible from the specification.

8



5 Non-Linear Distributions

Uniform systolic design delivers linear distribution functions. In certain cases, non-linear
distribution functions improve a systolic solution or make it at all possible. Non-linearity
usually means piecewise linearity. We give two examples:

1. Processor-Time Minimal n xn Matrix Product:

Cappello [16] presents a systolic array for the square matrix product that has [(3/ 4)n?]
processors and requires 3n—2 execution steps. The best linear distribution requires n®
processors. Cappello saves a quarter of the processors by overlapping the corner of the
array that is inactive in the first few steps with the corner that is inactive in the last
few steps. To keep communications neighbouring, the two-dimensional array must be
made cylindrical, i.e., curved in the third dimension. [(3/4)n®] processors is minimal:
the step with the most parallelism requires that many.

2. The Algebraic Path Problem

The algebraic path problem [80,81], instances of which are the shortest paths prob-
lem and reflexive transitive closure, is solved by Gauss-Jordan elimination. It can be
divided into three successive phases [81]:

(a) the decomposition of the input matrix into two triangles,
(b) the inversion of the two triangles, and
(c) the multiplication of the inverted triangles.
The step function of the according systolic solutions is piecewise linear with one linear

piece per phase [41,52]. The previously mentioned uniformisation methods have been
tested on the algebraic path problem [72,73].

The algebraic path problem has been the most popular object of systolic design; new
solutions are still emerging. Arrays have been proposed that are processor-time mini-
mal for the standard source, with roughly 5n steps and [n?/3] processors for an nxn
matrix [12,84]. Again, they were derived by overlapping portions of the array that are
not active simultaneously.

Similar folding ideas have led to a general method of processor-time minimal systolic design

[21].

6 Resource Limitations

Systolic design methods that return a time-minimal solution disregard resource limitations.
Resource limitations fall into three classes.



6.1 Lack of Dimensions in the Processor Space

If the systolic design postulates more dimensions of processors than are available, a projection
of the processor space becomes necessary. Dimensions of the processor space can be traded off
to time, yielding a multi-dimensional step function, which can then be made one-dimensional
again [98].

6.1.1 Projection of the Source Program

The simplest way of projecting is by absorbing loops in the source program inside the basic
operation [59]. We demonstrate with the imperative source for the matrix product.

Example: nxn Matrix Product

Loops: for ¢ from 0 to n do
for k from 0 to n do
1k

Basic Operation (imperative): :k:: for j from 0 to n do
1:5:k

Independence Relation: ig#i, Akg#k, = ig:ky ind i1k

i:7:k is defined as previously. This specification leads to the same systolic arrays as for the
matrix-vector product [40]. But, as can be seen by the hidden loop in the basic operation
i:k, the streams with only one index contain vectors rather than scalars.

(End of Ezample)

6.1.2 Projection During the Systolic Design

There are a number of methods that accept arbitrarily many nested loops. Most work in
this area has focussed on the synthesis of arrays with a one-dimensional processor layout —
either approaching one-dimensional time directly or via multi-dimensional time.

In the first approach [55,76,98], one applies a 2xn index transformation to the source
UREs. In the transformed UREs, one index represents time and the other space. This
approach relies on heuristics-based techniques but can easily take any type of constraints in
the specification into account.

In the second approach [46,51,78,93], one applies an n Xn index transformation matrix
to the source UREs. In the transformed UREs, n—1 indices represent time and the remaining
index represents space. Then, (n—1)-dimensional time is converted to one-dimensional time.
This approach relies on integer programming, which makes it inflexible when the specification
is constrained.

10



6.1.3 Projection of the Target Program

When a software representation is targeted, one can impose the projection on the distributed
program rather than earlier in the design process. The projection then takes the form of a
program transformation that aggregates formerly concurrent processes into one sequential
process. Some languages provide process placement directives for this kind of aggregation
(e.g., occam [42,43]). This may involve potentially inefficient intra-processor communica-
tions. o

. While it is advisable to impose resource limitations as late in the programming process
as possible, there are indications that the projection of systolic programs proceeds at too low
a level: the regularity of channel communications is not properly recognised and gives rise
to needless inductions in the description of the projection. Even the square matrix product
example becomes unwieldy [58]. v

6.2 Lack of Processors in a Given Dimension

If a given dimension of the processor layout requires more processors than are available,
a partitioning of the array is required. In partitioning, several cells of the ideal array are
mapped to the same processor of the available array. There are two different approaches:

o The locally parallel and globally sequential strategy [51,67], partitions the array into
blocks such that the number of cells per block matches the available number of pro-
cessors. The blocks are superimposed; cells that are at the same position in different
blocks are mapped to the same processor and emulated in sequence. Opposite border
processors in the partitioned array are connected by extra “wrap-around” channels.
Extra memory is required at the boundary processors of the partitioned array to buffer
data on the extra channels; the amount of memory required grows with the block size.
This partitioning scheme does not work if the array to be partitioned contains counter
flows.

o The locally sequential and globally parallel strategy [15,21,24,102] partitions the array
into blocks such that the number of blocks matches the available number of processors.
All cells of that make up one block are mapped to the same processor. Again, cells
that are mapped to the same processor are emulated in sequence. This approach
requires extra memory, proportional to the number of blocks, at every processor of the
partitioned array but does not exclude any combination of flows in the ideal array.

In order to éimplify the code generation in a software realisation and the control signal
generation in a hardware realisation, a partitioning must be regular. It should also minimise
the number of processors and channels [24].

6.3 Lack of Channels

If channels postulated by the systolic design do not exist, a re-routing along existing chan-
nels becomes necessary. Simple cases of re-routing have been addressed by uniformisation
methods [30,72,73,94] (compare Sect. 3). AREs may specify an unbounded number of
channels (i.e., broadcasts) or channels of unbounded length. UREs enforce pipelining and

11



local connections. The basic idea of re-routing methods is to transform the non-uniform,
non-constant and broadcast data dependences in the ARE source program into uniform,
constant and pipelining data dependences. This requires the introduction of additional data
dependences. They can be:

o the null bases of the affinity matrices specified by the AREs [73, 72|,
e canonical or non-canonical bases of the index space [94], or

" e the extreme rays of the (pointed) cone generated by the original dependence vectors
in the source program [72]. :

Uniformisations are not unique. Uniformisation methods provide a choice of many solutions
without providing a measure of the quality of the resulting systolic array. The methods of
[73,94] require the affinity matrices to be singular. The method of [94] does not guarantee
the existence of a step function but it guarantees the existence of multiple step functions as
described in [78], one for each variable.

On programmable processor networks, system software may be able to perform the rout-
ing [20,27]. On newer networks, the hardware performs this task [2, 86].

7 Hardware Realisation

If the systolic array is realised in hardware and requires a cell to perform different operations
at different steps, the cell must be told when to perform what operation. It was first suggested
a decade ago that this could be done by communicating control signals in addition to the
variables needed for the computation [39]. Later, formal treatments of this idea emerged
[18,89].

These methods aim at a time-minimal array with a dimension one less than that of the
index space. They have the drawback that the control signals are not derived not until the
space-time mapping has been determined, make no allowances for resource limitations and
do not apply for the generation of fixed-size or projected systolic arrays. Recently, these
problems have been overcome by specifying the control signals by a system of UREs called
control URFEs, which has no notion of space and time. The space-time mapping technique is
then simply extended to synthesise the data and control flow together.

The state of current VLSI technology imposes restrictions on the communication in the
systolic array. This complicates the specification of the control UREs for systolic arrays
of reduced dimension (Sect. 6.1.3). For example, in matrix product, no control signals are
necessary in two-dimensional arrays, but control signals are generally indispensable in one-
dimensional arrays. There are two types of space-time mapping: those that describe systolic
arrays of dimension n—1-[100] and those that describe systolic arrays of reduced dimension
[99]. The specification of systolic arrays of reduced dimension is complicated by the fact that
their space-time mapping is not a bijection from Q" and Q" (it is not injective).

At present, there is no systematic method for specifying the control that governs the ac-
cess of stationary streams. This problem may be best addressed in an architecture-dependent
way.
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8 Software Realisation

Systolic arrays can be viewed as synchronous programs: the index transformation yields
recurrence equations over space-time [18] that can be coded in programming languages like
ALPHA [33,60], GAMMA [7,8] or Unity [17]. The matrix product is less easily expressed
in GAMMA than in the other languages, because GAMMA has only one data structure: the
multiset.

The parallelisation of for-loops has been an active area of research for many years [54,92].
Most of this work focuses more on the issue of concurrency than on the issue of communi-
cation because, predominantly, vector processors and other shared memory machines have
been targeted.

Many commercial processor networks, like Warp [4] and transputer networks [35], have
asynchronous parallelism and no shared memory. Recently, work on the synthesis of inter-
process communication directives for such architectures has appeared — in the setting of
systolic arrays, we call it systolising compilation. The system SDEF [27] takes a set of uniform
recurrence equations and the space-time mapping derived from it and fills a distributed
program skeleton in C with the appropriate computations and communications. The program
code is for a fixed problem size, i.e., the loop limits must be constants.

A systolic program for the algebraic path problem was generated with an extension of
another mechanical systolising compilation scheme [56]. It also takes the source program
and the space-time mapping as input, but it generates abstract distributed program code
that is parameterised with the problem size and that can be manipulated further, e.g.,
optimised or translated to a target language. The initial version of this scheme works only
for place functions that are projections along one axis of the index space; they correspond
to parallelisations of one or more loops in the source program. A more recent version works
for all linear place functions [9,10].

Ribas [79] and Ramanujam and Sadayappan [77] generate more concrete and efficient
program code. They address resource limitations by projection and partitioning (Sect. 6),
but put more restrictions on the source. That is, they handle a smaller class of systolic
arrays.

Most of the work on systolising compilation uses matrix product as an example [10,27,

56, 79].

9 Programmable Processor Networks

Following the taxonomy of Seitz [86], we classify networks with 2" processors as large-grain
if nx2, medium-grain if n~8 and fine-grain if n~14.

9.1 Medium Grain

Past commercially available medium-grain processor networks were not ideally suited for
systolic computations, mostly, because of their inflexible and too slow inter-processor com-
munication. An example is the INMOS T800 transputer [44]. It is restricted to four channel
connections and its communication speed is considerably slower than its computation speed.

13



Warp was ahead of its time in terms of communication speed. With arithmetic pipelin-
ing in its ten cells, it transcends the traditional systolic paradigm that forms the basis of
mechanical systolic design methods. Therefore code generation for Warp has focussed on
techniques outside the realm of traditional systolic design {53, 90], but systolic programs have
also been generated for Warp [79].

Recently, there have been significant advances in the power of medium-grain processor
networks. ;

The T9000 transputer [45] is the descendant of the T800. It has eight connections per
processor (which makes complete neighbour connections in a two-dimensional systolic array
possible) and comes with a powerful VLSI routing chip, the C104, that can fully interconnect
32 transputers.

iWarp [11] is the successor of Warp [4]. Like the T9000, it provides eight connections per
processor and improved performance and communication schemes. With four processors per
chip, arrays can contain up to 21 processors.

9.2 Fine Grain

Fine-grain processor arrays have a higher number of processors with less computational
power and storage capacity than medium-grain networks.

9.2.1 Bit-Level

In bit-level architectures, each processor holds one bit and is capable of simple logic opera-
tions.

The Computational Array Logic (CAL) [36,49] is a two-dimensional bit-level processor
array. A connection pattern between neighbouring processors can be specified and quickly
(in below 100 us) altered by software. A fast routing scheme aims to minimise delays in
non-neighbour communications.

The Xilinx [97] has more complex cells than CAL and is a commercially maturer prod-
uct. The Altera [3] has more sophisticated cells still, but uses EPROM rather than RAM
technology, i.e., its routing pattern cannot be changed dynamically.

These networks can emulate bit-level systolic arrays; for examples, see any conference
proceedings on systolic arrays. The arithmetic required for algorithms that use integer, or
even real numbers must be explicitly configured on bit-level networks; this quickly requires
an inordinate amount of cells.

9.2.2 Word-Level

Mosaic, under development at CalTech [86], will be a two-dimensional array of up to 2'*
processors, each with a moderate amount of memory (64K) and with connections to its
neighbours. An automatic routing scheme supports communication between any two pro-
cessors; one specifies the position of the target processor relative to the source processor.
The Rewrite Rule Machine (RRM), under development at SRI [2], is planned to be a
completely scalable massively parallel processor network, with hundreds of processors on a
chip. Up to one hundred boards, each comprising up to one hundred chips, form the complete
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network. Each chip operates in SIMD mode internally, while the chips operate in a MIMD
mode collectively. The RRM is planned specifically for the execution of programs expressed
as rewrite rules [1]. Recurrence equations can be viewed as rewrite rules.

10 Theoretical Issues

10.1 Computability

A set of uniform recurrence equations is called ezplicitly defined [48] or computable [72] if none
of its variable instances depends on itself. The computability of uniform recurrence equations
has been investigated widely [25,48, 78,83, 101]; it can be reduced to the halting problem for
a Turing machine and is, therefore, undecidable [47]. The undecidability arises out of the
possible unboundedness of the index space. For a fixed problem size (and, therefore, a finite
index space), a set of UREs is computable, if its dependence graph is acyclic.

Karp et al. [48] point out the decidability of strict UREs. In strict UREs, each equation
depends directly on each of its arguments. Strict UREs are computable, if the reduced
dependence graph does not contain non-positive cycles.

The strong point of systolic design is that the existence of a linear step function for a set
of uniform recurrence equations can be established automatically.

10.2 Sys;colic Automata

Systolic automata theory is an automata and complexity oriented discipline that has been
dealing with a restricted class of problems that have a systolic solution in two-dimensional
space-time.

Systolic automata are languages acceptors that are models of processor networks, usually
in an array, trellis or tree-like form [37,38]. (If the network is two-dimensional, it emulates
space-time directly and has a one-dimensional time-minimal equivalent.)

Various basic problems concerning systolic architectures and computations have been
studied on such models; examples are the computational power of various interconnection
patterns (e.g., two-way vs. one-way), different ways of interacting with the external environ-
ment and different types of heterogeneity. Problems of classical language theory have also
been investigated [22,28].

Special attention has been devoted to the comparative study of the recognition power
of classes of systolic automata with different underlying structure. Some restricted but
useful design methods can be extracted from this theory [23] and have been applied in the
improvement of a systolic array for string correction [82].
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step(i:j:k) = i+j+k

Index Space
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Figure 1: Square matrix product: partitions of the index space.

24



Cc C Cc
82 1.2 (2),2
b =
0,2
c o C
0,1 1.1 (2),1
b b
2,1—} 1,1% 0,1—> O
o3 c C
0‘0 60 60
b -
2,0—> 1,0-_> 0,0 N
a
0,0
0 0
a
0.1 1,0
0 0 0
a a a
0.2 1.1 2,0
0 0
a
1,2 2.1
/I\
a
2,2

Figure 2: Square matrix product: the systolic array with iteration vector u =0 0 1].
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Figure 3: Square matrix product: the systolic array with iteration vector u =[1 1 1].

26



