LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - The University of Edinburgh

'A Mildly Exponential Approximation Algorithm
for the Permanent

by

Mark Jerrum
Umesh Vazirani

JusuewWIasd 8y} Joj wyiob)y uonewixosddy renusuodx3y ApjIN v

LFCS Report Series ECS-LFCS-91-179
LFCS October 1991
Department of Computer Science

University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ Copyright © 1991, LFCS

Copyright © 1991, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

A Mildly Exponential Approximation Algorithm

for the Permanent

Mark Jerrumft

Department of Computer Science, University of Edinburgh
The King’s Buildings, Edinburgh EH9 8JZ, UK

mrj@dcs.ed.ac.uk
and

Umesh Vazii'anii

Department of Computer Science, University of California
Berkeley, CA 94720, USA

vazirani@cs.berkeley.edu

QOctober 1991

ABSTRACT A new approximation algorithm for the permanent of an n X n
0,1-matrix is presented. The algorithm is shown to have worst-case time com-
plexity exp (O(nl/ ? log? n)) . Asymptotically, this represents a considerable
improvement over the best existing algorithm, which has worst-case time com-

plexity of the form e®(™.

T Supported by SERC grant GR/F 90363; work done in part while visiting DIMACS
(Center for Discrete Mathematics and Computer Science).

I Supported by an NSF PYT grant, with matching equipment grant from the AT&T
Foundation; work done in part while visiting DIMACS.

1. Summary

The permanent of an n X n matrix A = (a;; : 0 < 4,5 < n—1) is defined by

n—1
per(4) = Z H @i, m(3) >

T =0

where the sum is over all permutations 7 of [n] = {0,...,n — 1}. In this paper, A will
always be a 0,1-matrix, in which case the permanent of A has a simple combinatorial
interpretation: namely, per(A4) is equal to the number of perfect matchings (1-factors)
in the bipartite graph G = (V,V' E), where V = V' = [n], and (3,;') € E iff a;; = 1.
(Primes will be used consistently to distinguish the blocks of the bipartition of G.) The
permanent has been the object of extensive study, since first appearing in 1812 in the
work of Cauchy and Binet. Minc [9] has provided an excellent survey of the results of

these investigations.

Despite considerable effort, and in contrast with the syntactically very similar de-
terminant, no efficient procedure for computing the permanent is known. Valiant [11]
provided convincing evidence for the inherent intractability of the permanent, by demon-
strating that it is complete for the class #P of enumeration problems, and thus as hard
as counting the number of satisfying assignments to a CNF formula, or the number of ac-
cepting computations of a polynomial-time-bounded nondeterministic Turing machine.
In the light of this result, we should not expect to find a polynomial-time algorithm for
the permanent of a 0,1-matrix. Indeed, the fastest known (exact) algorithms for the
permanent have time complexity ©(n2"); see, for example, the method of Ryser [9,
p- 122].

Recently, Karmarkar, Karp, Lipton, Lovdsz, and Luby [6] showed that a lower
time complexity can be achieved, provided we are content to settle for an algorithm
that provides only an approzimation to per(A) within specified relative error. Their
algorithm is an example of a ‘randomised approximation scheme’ [7]. Let f be a function
from input strings to the natural numbers. A randomised approzimation scheme for f
is a probabilistic algorithm that takes as input a string z and a real number 0 < € < 1,
and produces as output a number Y (a random variable) such that ¥ approximates
f(z) within ratio 1 + e with high probability.f For definiteness we take the phrase
“with high probability” to mean with probability at least %. The success probability
may be boosted to 1 — é for any desired § > 0 by running the algorithm O(logé™")
times and taking the median of the results [5, Lemma 6.1].

T For non-negative real numbers a, d, e, we say that & approzimates a within ratio

l+eifa(l+e)™! <a < a(l+e).

The randomised approximation scheme for per(A) proposed by Karmarkar et al.
has time complexity €2 poly(n) 2"/2 1t is a classical Monte Carlo algorithm which
performs a sequence of trials using an unbiased estimator for the permanent; this esti-
mator is closely modelled on one given earlier by Godsil and Gutman. The worst-case
time complexity of this algorithm is the lowest of any existing approximation scheme
for the permanent; nevertheless it shares with the exact algorithm of Ryser the general

form 8™

. In this paper we use different techniques to design a randomised approximation
scheme for per(A) that has time complexity €2 exp (O(nl/ 2 log® n)). The new algo-
rithm is easily sketched at an informal level, though the details need careful working
out. The approach is one of ‘divide-and-conquer’, and can best be described using the
graph-theoretic formulation introduced earlier. Let G be a bipartite graph, and suppose
that we wish to estimate the number N(G) of perfect matchings in G. The progress
of the algorithm is controlled by the expansion properties of G. If G has sufficiently
large expansion ratio then an existing approximation scheme of Jerrum and Sinclair [4]
is used to estimate N(G) directly with acceptable speed. Otherwise a set of vertices
A C V is found that has the property that A is adjacent to rather few vertices in V'.
The set A foms a ‘constriction’ in G, which allows an economical decomposition of G
into subproblems that may be solved recursively. The full description and analysis of
this approximation scheme form the main body of this note.

Given our current (lack of) knowledge, it is entirely possible that there exists a
randomised approximation scheme for per(A) that has time complexity poly(n,e").
(Such an approximation scheme is said to be fully polynomial.)) Thus, although the
approximation scheme presented here is asymptotically much faster than any previously
proposed, it may still be very far from optimal. The question of whether there exists a
fully-polynomial (randomised) approximation scheme for per(A) presents an intriguing
challenge. Optimists may take heart from the fact that such algorithms are known for
some restricted classes of 0,1-matrices [4, 3]; these classes have the property that the
proportion of n X n matrices lying within the class tends to 1 as n tends to infinity.

2. The algorithm and its analysis

Let G be a bipartite graph on vertex set V + V' and edge set E, where V = V' =
[n] = {0,1,...,n — 1}. We shall use primes to distinguish vertices in V' from those
in V'; thus each vertex v in V has a counterpart v' in V', and each subset U of V has
a counterpart U' = {u' € V' : u € U} in V'. Denote by G* the reversal of G, i.e.,
the graph with vertex set V 4+ V' and edge set E* = {(u,v') € V x V' : (v,u') € E}.
For each subset A C V', let I'¢(A) denote the set of all vertices in V' that are adjacent
to some vertex in A. Suppose a is in the range 0 < @ < 1. We say that G is an

a-ezpander if [Tg(A)] > (1 + a)|A| for every A C V with |A] < In. Let N(G)

2

denote the number of perfect matchings in G and N7 (G) the number of near-perfect
matchings in G, i.e., matchings that leave precisely two vertices uncovered.

Lemmal. If G and G* are a-expanders then N (G)/N(G) = exp (O(a""log’n)).

We postpone the proof of Lemma 1 to allow an investigation of its consequences.

Corollary 2. There is a randomised approximation scheme MARKOVSIM that meets
the following specification:

(i) the input to MARKOVSIM is a triple (G, a,¢€), where G is a bipartite graph, «
is a number which is to be interpreted as a guarantee that G and G* are both
a-expanders, and 0 < € < 1 controls the accuracy of the result;

(ii) the output is a random variable that with probability at least 3 approximates
N(G) within ratio 1+ ¢;
(iil) the execution time of MARKOVSIM is € 2 exp (O(a ' log? n)).

Proof. The approximation scheme in question is presented as Figure 2 of [4], which
should be considered in conjunction with the discussion following Corollary 5.2, and
the statement and proof of Theorem 5.3. (The quantity ¢(n) that appears in the figure
is an upper bound on the ratio N7(G)/N(G).) The algorithm works by simulating
a Markov chain whose states are matchings in G; hence we dub the procedure here
“MARKOVSIM”. (The notion of basing an approximation scheme for the permanent on
such a Markov chain was first proposed by Broder [1], but two years were to elapse
before a correct analysis was completed [10, 4].) The procedure call “G(G(c¢),€)” which
appears in MARKOVSIM invokes a simulation of the Markov chain; this simulation runs
until the chain is near to its equilibrium distribution, at which point the current state
(matching) is returned as a sample. (The parameter ¢ determines how close the Markov
chain must be to equilibrium before the sample is taken.) A single call to the simula-
tion procedure has time complexity log(e™') poly(n, p), where p is an upper bound on
the ratio N™(G)/N(G); and the total number of calls to the procedure is bounded by
e 2 poly(n). Since these procedure calls dominate the time complexity of MARKOVSIM,
the overall time complexity is bounded by €2 log(e ™) poly(n, p). Observe that there is
no point in taking €' to be greater than 3n!, for this already guarantees an ezact eval-
uation of N(G); thus, without loss of generality, we may assume loge™! = O(nlogn).
Further observe that p > N7(G)/N(G) > n. These two observations allow us to sim-
plify the expression of the time complexity of MARKOVSIM to ¢~ poly(p). The corollary
follows from Lemma 1, setting p = exp (O(Ol_l log® n)) .o

ProofofLemmal. Let M be any near-perfect matching in G. We demonstrate that
M can be transformed to a perfect matching by augmentation along a short alternating
path. It follows easily that the number of near-perfect matchings cannot exceed the
number of perfect matchings by a large factor.

3

Define an alternating path (in G) to be a path that is composed of edges that are
alternately elements of M and E — M. (The first and last edges of the path may or
may not be elements of M.) Let s € V and ¢ € V' be the vertices left uncovered
by M. We shall show that s is joined to ' via an alternating path of length at
most 4k + 1, where k is that smallest integer such that (1 + a)F > in; observe that
k = O(a"'logn). Let A;,for 0 < i < k, be the set of vertices in V that are reachable
from s via an alternating path of length at most 2:. The expansion property of G entails
|Ait1] = (1 + a)|4;| provided [4;| < in. Thus |Ai| > min{(1 +a)k,%n} = in.
Similarly, let B!, for 0 < i < k be the set of vertices in V' that are reachable from ¢’
via an alternating path of length at most 2i. The expansion property of G* entails
|Bi| > in. Now there must be an edge joining Ar to B}, and hence an alternating
path from s to ¢’ of length at most 4k + 1. (If the edge e joining Ay to Bj happens to
be an element of M, we apparently do not obtain an alternating path; note, however,
that the edge e must then occur three times in succession, and can be collapsed to a

single occurrence.)

We have demonstrated that every near-perfect matching M may be associated
with a perfect matching M by augmentation along an alternating path of length
O(a"'logn). This process assigns at most exp (O(oa_1 log?n)) near-perfect match-
ings to any given perfect matching. (To recover M from M we follow an alternat-
ing path of length at most 4k + 1, the selection of which involves a sequence of at
most 2k + 1 choices from among at most n possibilities.) Thus N7(G)/N(G) =
exp (O(a™"log” n)), as claimed. [

Suppose the bipartite graph G contains a perfect matching, say M. It is clear
that [I'g(A)| > |A| for every set A C V'; let us call A tight [8] if equality holds. Note
that the collection of all tight sets in V is closed under union and intersection; in par-
ticular for each v € V there is a smallest tight set containing v, which we shall denote
by Ag(v). Note that Ag(v) is the set of all vertices in V' that can be reached by an
even-length alternating path in G which starts with an edge not in M ; thus the sets
Ag(v) are easy to compute in polynomial time. The procedure TESTEXPANSION pre-
sented in Figure 1 uses the idea of tight sets to compute (approximately) the expansion
ratio of the input graph G. If the expansion ratio is not too small, Corollary 2 can be
applied to estimate N(G) directly. Otherwise, TESTEXPANSION returns a ‘constriction’
in G (aset A C V such that |T'g(4)|/]|A| is close to 1) which permits an efficient de-
composition into subproblems which can then be solved recursively. The specification
of TESTEXPANSION is made explicit in Lemma 3.

Lemma 3. Oninput (G,a), where G is a bipartite graph and « > 0, the algorithm
TESTEXPANSION presented in Figure 1 esither

(i) correctly identifies G as an «-expander, or

4

procedure TESTEXPANSION(G, a);
begin
Let M be any perfect matching in G;
Reorder the vertices in V' so that
M matches each vertex v in V with the corresponding vertex v’ in V';
for each subset X C V with |X| < 1an do begin

Let G be the graph obtained from G
by removing vertices X, X', and all incident edges;
(1) if there exists v € V with in < |Ag (v)] < in then A := Ag(v)
else begin
Let wvo,v1,...,Vp-|x|-1 be an enumeration of vertices v € V — X
satistying |Ag (vo)] < |Ag ()] < -+ < 1A (@aixi-)l;
1:=0; A:=0;

2) while [AUA5(v:)| < #n do begin
A= AUA5(vi); i:=1+1
end
end;
(3) if |X|/]A| < 2« then output A and halt
end;
(4) output “G is an a-expander”
end

Figure 1. Algorithm for testing the expansion factor of a graph

(ii) produces a set A C V such that |A| < in and [Te(4)] < (1 + 2a)|4].
The execution time of TESTEXPANSION is exp (O(anlogn)).

Proof. It is clear that the algorithm terminates, and either outputs aset A C V, or
an assertion that G is an a-expander. In the first instance we must assure ourselves
that the set A satisfies the conditions |A| < in and |I'¢(4)| < (1 + 2a)|4], and in
the second that the assertion is correct.

Suppose first that line (3) is reached and the condition |X|/|A| < 2« is true. The
set A is a union of tight sets, and hence is itself tight (with respect to the graph G);
equivalently, I's(A) = A'. Thus [Tg(4)| < |[A'UX'| = [AUX| < (1+ 2a)|4], as
required.

Now suppose that the for-loop runs to completion, and line (4) is reached. We
must demonstrate that the claim that G is an a-expander is correct. Suppose to the
contrary that there exists a set B C V such that |[B| < in and [T'g(B)| < (1 + «)|B|.
Note that 'g(B) can be written as a disjoint union B’ + X' with |X'| < «|B|. Since

5

|X| < %an, the for-loop will eventually consider the set X ; observe that B is tight

with respect to the graph G obtained by removing vertices X, X', and all incident
edges. We distinguish two cases and obtain a contradiction in both.

CASE 1. There exists a vertex v € V such that {n < |Az(v)| < jn. Thissituation is
caught in line (1). Since |A| > in and |X| < Jan, the for-loop terminates prematurely
at line (3), contrary to our assumption.

CASE 2. There does not exist a vertex v € V such that in < 1Az (v)] < zn. After
execution of the while-loop in line (2) we are left with a set A C V satisfying |4| < in
and [AU Ag(vi)| > 3n. Now either |Ag(vi)| < in or |Ag (vi)| > in. If the first
inequality holds, |A| > %n and we obtain a contradiction as in Case 1. If the second

inequality holds then no v; with j > ¢ can be a member of B, and hence A 2 B. Thus
|X|/|Al < |X]/|B| < a and again the for-loop terminates prematurely at line (3). O

We now have all the ingredients for the proposed approximation scheme, which is
presented in Figure 2 as the function COUNTPM. The analysis of COUNTPM is the
subject of Theorem 4.

Theorem 4. With appropriate choices for the parameters ¢ and €, the algorithm
CoUNTPM of Figure 2 is a randomised approximation scheme for the number of perfect
matchings in G. The execution time of COUNTPM is €2 exp (O(nl/ ? log? n)).

Proof. Let us first deal with the correctness of COUNTPM, deciding on the parameters
t and € as we do so. First imagine an idealised situation in which the procedure
MARKOVSIM always returns the ezact number of matchings in G. Then it is not too
difficult to see that COUNTPM also produces the correct result. The crucial step to
check is the division into sub-problems effected by the for-loop in line (5). Observe
that any perfect matching M in G matches A C V with some subset B’ C T'g(4) of
size |A|, and that the set of all matchings in G can be partitioned according to the
set B' so defined. The for-loop ranges over the blocks of this partition, accumulating
the number of matchings in each block as it goes. To see that the body of the loop is
correct, one merely needs to observe that the each perfect matching in the block defined
by B' can be decomposed into a disjoint union of a perfect matching in Gy and a
perfect matching in G4 .

Next set € = €/2no, where ng is the value of n at the top level of recursion, and
suppose that MARKOVSIM always produces a result that is within ratio 1 + € of the
correct value. (This is still an idealised situation, since the specification of MARKOVSIM
allows large deviations with probability i—) Then a simple induction on n establishes
that COUNTPM returns a result that is within ratio (1 4+)" of N(G) when applied
to a bipartite graph G with n + n vertices. In particular, the result returned from

6

function CouNTPM(G);
[[Returns an approximation to the number of perfect matchings in G]I
begin

if n = 1 then return 0 or 1 as appropriate;

if G has no perfect matchings then return 0;

— /2.
a:=n""1"%;
(1) Execute TESTEXPANSION(G, a) and TESTEXPANSION(G™, a);
(2) if G and G* are both confirmed as a-expanders then begin
(3) Call MARKOVSIM 2t + 1 times with parameters G, o, €;

[[The parameters ¢ and € are appropriately initialised
before entry to COUNTPM at the top level.]]
(4) return the median of the 2¢ + 1 trials
end else begin
Wilog, let A C V satisfy |[4] < in and |Te(4)] < (14 2a)|4];
sum = 0;
(5) for B' C T'g(A) with |B'| = |A| do begin
Let Gy be the subgraph of G induced by A and B';
Let G; be the subgraph of G induced by V — 4 and V' — B’;
(6) sum := sum + COUNTPM(G,) x COUNTPM(G,)
end;
return sum
end
end

Figure 2. Recursive algorithm for counting perfect matchings

the top-level call to COUNTPM is within ratio (1 + €)™ = (14 €¢/2n)™ < 1+¢, as
required.

Finally, suppose that MARKOVSIM is as specified, and produces a result that is
within ratio 1 + € with probability at least %. Let us call the sequence of trials carried
out in line (3) an ezperiment, and say that the experiment is a success if the median of
the 2t + 1 trials approximates N(G) within ratio 1 + €. We shall choose ¢ so that the
probability that every experiment is a success is at least %. An easy induction on n
establishes that the number of experiments is bounded by 8". (This is a gross overesti-
mate, as will be apparent once we have completed the analysis of the time complexity
of COUNTPM.) By [5, Lemma 6.1], the failure probability of a single experiment may
be reduced to 8 (™FV by setting ¢ = 18(ng + 1) = O(no). (The point here is that ¢
need not be very large.) With this choice of ¢, the probability that every experiment is
a success is at least ;i—. This completes the validation of COUNTPM.

7

Let T(n,€) be the (worst-case) time complexity of COUNTPM as a function of the
size of G and the accuracy parameter €. (Technically, the time complexity depends on
€ and t, and hence should be a function also of ng; however, the dependence on ng
is cubic, and can safely be swept under the carpet in the current context.) We show,

1/2

by induction on n, that T(n,€) < € 2 exp(cn'/?In’®n), where c is a suitable constant.

From Figure 2,
T(’n, 6) < max {Tl(na e),Tg(n,e)}, (1) .

where Ti(n,e) and Ty(n,e) are, respectively, the time complexities conditional on
whether the ‘then’ or ‘else’ part of the if-statement is selected at line (2). The time -
complexity T) is determined by the calls to TESTEXPANSION in line (1), and the se-
quence of 2t + 1 trials using MARKOVSIM in line (3). From Corollary 2 and Lemma 3,

1/2

setting @ = n~/*, we have

Ti(n,e) < exp (O(nl/2 logn)) + €% exp (O(nl/2 log”® n))
< e %exp (O(nl/2 log? n)). (2)

The time complexity T3 is determined by the call to TESTEXPANSION in line (1) and
the recursive calls to COUNTPM in line (6). Let S(k) be an upper bound on the number
of subproblems generated (i.e., the number of times the for-loop is executed) when the
set A returned by TESTEXPANSION has size k. By Lemma 3,

Ty(n,€) < exp (O(nl/2 logn)) + max {S(K)[T(k)+T(n—k)] : 1 < k < 3n}. (8)

In preparation for the inductive step, we proceed to estimate each of the quantities
appearing on the right hand side of (3). Suppose the set A returned by TESTEXPANSION

is of size k; then |T'g(A)| = k +d, where d < 2ak = 2kn"'/2, and

S(k) = (k Z d) <nt< exp(2kn_l/2 lnn) (4)
< exp(n*/*1nn). (5)

Applying the induction hypothesis we obtain (since k < %n)

T(k,€) S e % exp(ck?In’ k) < €2 exp(-i—cnl/2 In® n), (6)
and, again,
T(n — k,€) < € *exp (c(n — k)1/2 In’(n — k)
< e %exp (c(1 - %kn‘l)nl/z In® n)

< e Zexp (cnl/2 In®n— %ckn_l/z In? n). (N

8

Now suppose ¢ > 8. By combining inequalities (5) and (6), we have

S(kYT(k,e) < e %exp (%cnl/2 In’ n), (8)
and by combining (4) and (7),
S(k)T(n —k,e) < € %exp (cnll2 In’n— ickn“l/2 In? n)
< e Zexp (cnl/2 In®n — 2n-1/2)

<A=-n"YHeexp (cnl/2 In® n). 9)
It is immediate from (2) that Ty(n,e) < e 2exp(cn/2In’n) for ¢ sufficiently large,
and it follows easily from (3), (8), and (9) that Ty(n,€) < e 2 exp(cn'/?1n? n). Finally,
from (1), T(n,e) < e 2 exp(en'/? In? n), which completes the inductive step. [

3. Extensions and open problems

The algorithm presented here rests on a tradeoff: a graph with a high expansion factor
is amenable to direct solution using an existing approximation algorithm, while a graph
with low expansion factor admits an efficient recursive decomposition into subproblems.
The exponent % appearing in the expression for the time complexity arises quite natu-
rally from a consideration of the crossover point for this tradeoff, and it seems unlikely
that a further improvement in asymptotic time-complexity is possible without the in-
troduction of some new technique. The ultimate goal must surely be to construct a
fully polynomial approximation scheme (or to provide convincing complexity-theoretic
evidence that no such scheme exists). However, a reasonable intermediate goal might
be to design an approximation algorithm with ‘quasi-polynomial’ time complexity, i.e.,
with time complexity O(exp (poly(log n))) .

Of possible generalisations of the problem considered in this note, the two most nat-
ural appear to be (1) estimating the permanent of a general non-negative integer matrix,
and (2) estimating the number of perfect matchings in a general (non-bipartite) graph.
Provided the entries in the matrix are small, the first of these problems can handled by
reduction to the 0,1 case. Suppose A is an n X n matrix of non-negative integers whose
binary expansions are uniformly bounded in length by k. It is not difficult to show
that there exists an m x m matrix A' with 0,1-entries for which per(4') = per(4);
here m = O(nk), and the matrix A’ is easily constructed in polynomial time. How-
ever, if the matrix entries are very large integers (of roughly n bits) it will be seen that
this reduction provides no gain in efficiency over exact computation using Ryser’s algo-
rithm. The question of whether Ryser’s method can be beaten for general non-negative
maftrices remains open.

It seems plausible that the second generalisation (to non-bipartite graphs) can be
handled by methods similar to those employed in this note. The stumbling block is

9

Lemma 1: even if the lemma itself can be extended to non-bipartite graphs G, the

proof presented here cannot.

References

[1]

Andrei Z. BRODER, How hard is it to marry at random? (On the approximation of
the permanent), Proceedings of the 18th ACM Symposium on Theory of Computing,

- 1986, pp. 50-58. Erratum in Proceedings of the 20th ACM Symposium on Theory

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

of Computing, 1988, p. 551.

C. D. GobsiL and I. GUTMAN, On the matching polynomial of a graph, Alge-
braic Methods in Graph Theory, I (L. Lovész and V. T. Sés, editors), Colloquia
Mathematica Societatis Janos Bolyai 25, North-Holland, 1981.

Mark JERRUM, An analysis of a Monte-Carlo algorithm for Estimating the Perma-
nent, Report ECS-LFCS-91-164, Department of Computer Science, University of
Edinburgh, June 1991.

Mark JERRUM and Alistair SINCLAIR, Approximating the permanent, SIAM Jour-
nal on Computing 18 (1989), pp. 1149-1178.

Mark R. JERRUM, Leslie G. VALIANT, and Vijay V. VAZIRANI, Random genera-
tion of combinatorial structures from a uniform distribution, Theoretical Computer

Science 43 (1986), pp. 169-188.

N. KARMARKAR, R. KARP, R. LIPTON, L. LOVASZ, and M. LUBY, A Monte-Carlo
Algorithm for Estimating the Permanent, preprint 1988.

R. M. KARP and M. LUBY, Monte-Carlo algorithms for enumeration and reliability

problems, Proceedings of the 24th IEEE Symposium on Foundations of Computer
Science, 1983, pp. 56-64.

L. LovAsz and M. D. PLUMMER, Matching Theory, North-Holland, Amsterdam,
1986.

Henryk MINC, Permanents, Addison Wesley, 1978.

Alistair SINCLAIR, Randomised Algorithms for Counting and Generating Combina-
torial Structures, PhD Thesis, University of Edinburgh, June 1988.

L. G. VALIANT, The complexity of computing the permanent, Theoretical Computer
Science 8 (1979), pp. 189-201.

10

