LFECS

Laboratory for Foundations of Computer Science
Department of Computer Science - The University of Edinburgh

Formal Program Development
in Modular Prolog: A Case Study

by

M G Read
E A Kazmierczak

:60]0.4 Jenpopy ul Juswdojensg weiboid [ew.ioH

LFCS Report Series ECS-LFCS-92-195

LFCS January 1992
Department of Computer Science

University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ Copyright © 1992, LFCS

Copyright © 1992, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Formal Program Development in Modular Prolog : A
Case Study

M. G. Read
E. A. Kazmierczak®

Department of Computer Science
University of Edinburgh

Edinburgh, EH9 3JZ
eka@uk.ac.ed.lfcs

Abstract

In this paper we present a case study in which we specify and formally de-
velop a modular Prolog program from its specification. The modular Prolog
which we use is that proposed in [SW87] which is based on the modules system of
Standard ML [HMT90, MT90]. We give a specification language for writing spec-
ifications of modular Prolog programs and also a methodology, based on that of
Extended ML, for the stepwise construction of a program from its specification.
The case study is intended to examine the Extended ML methodology applied
to the formal development of Prolog programs and to assess the feasibility and
outline the potential difficulties of this approach.

1 Introduction

In this paper we present a model oriented approach to formally developing PROLOG
programs. The approach is based upon that of the Extended ML wide-spectrum lan-
guage [ST89, San89, ST91]. In the Extended ML approach a specification denotes a
class of models or possible programs. The final program must be a member of this class.
This program is not given in a single implementation step but is constructed from the
original specification via a number of smaller program development steps. At each step
some design choices are made, for example, choosing the modular structure of the final
program or giving an actual algorithm to realize some aspect of the specification. To
guarantee that each step results in a correct refinement of the original specification
proof obligations are associated with each step and must be formally discharged.

This style of program development is independent of the particular logic and pro-
gramming language used and only depends upon a definition of what it means for a

*This research was supported by SERC grant GR/E 78463

1

program module to satisfy its specification (written in the specification logic in ques-
tion). The question that we ask is if this style of program development is suited to
other programming languages, for example, PROLOG.

The purpose of this paper is to describe a case study showing just how program
development using the Extended ML approach may be put into practice in developing
modular PROLOG programs. We begin by describing a modular version of PROLOG
and a language for specifying modular PROLOG programs. We then present our case |,
study which is the formal development of a program to test confluence of rewrite rules

[HO80, Kl1o87].
The reason for choosing PROLOG is that it, like Standard ML [HMT90, MT90],

has a semantics which can be formalized [L1084]. This is required for the kind of formal
development which is presented here because of the requirement that proof obligations
need to be formally discharged. Formally discharging a proof obligation means knowing
exactly when a program satisfies (or, is a model of) a specification.

The reason for choosing the term rewriting example is so that the example is suf-
ficiently large to naturally lead to a modular PROLOG program via several program
development steps. Consequently it is a good test for the development methodology. It
was also chosen because of its relevance to other work on decomposing term rewriting
systems into modules, for example, [Les89, Les90].

The remainder of this paper is organized as follows. Section 2 describes the module
language and program development methodology in more detail. In section 3 we present
the major results about term rewriting which we use and in section 4 our requirements
specification and one program development step are presented. We conclude in section

5.

2 Specifying Modular Prolog Programs

2.1 PROLOG with Modules

The target language which we use is PROLOG enhanced with module constructs similar
to those of Standard ML [SW87]. The modules system which we use consists of three
components: structures, signatures and functors. Structures are program modules and
program clauses in a structure are “executable”. They consist of a two basic elements:
(1) data declarations and (2) predicate and function definitions.

An example of a structure is given in figure 1. The data declaration in figure 1 is
given by:

fun zero : 0
fun suc : 1

which declares two function constants zero with arity 0 and suc with arity 1. Predicates
may also be declared as follows:

pred le : 2

structure Elements =
struct
fun zero : 0
fun suc : 1

le(zero,X).
le(suc(X),suc(Y)) :- le(X,Y).
end.

Figure 1:

structure Sort =
struct
structure Elem = Elements

insert (X, [1,[X1).

insert(X,[Y|Z],[X,YIZ]) :- Elem/le(X,Y).

insert(X,[Y1Z],[YIW]) :- not(Elem/1le(X,Y)),
insert(X,Z,W).

sort([1,[1).
sort ([X],[X1).
sort ([X1Y],Z) :- sort(Y,W),
insert(X,W,Z).
end.

Figure 2:

but this is always used in signatures for the purpose of making some predicates visible
while hiding others. Function declarations introduce the language which is available
for constructing terms while predicate and function declarations introduce the language
for constructing (atomic) formulae. In the structure Elements the predicate le uses
terms built up only from the function constants zero and suc. Another example is
the structure in figure 2 which provides a sorting predicate based upon a substructure
Elem.

Signatures are interfaces to structures. They specify which components of the struc-
ture are externally visible but hide the details of the code. An example is given in figure
3. The structure Elements matches the signature ELEM precisely because it contains
a predicate definition 1e and function constants zero and suc as required by the sig-
nature. If the signature ELEM in 3 is ascribed to the structure Elements then this is
written as:

structure Elements : ELEM =
struct
fun zero : O

signature ELEM =

sig
fun zero : 0
fun suc : 1
pred le : 2
end.

Figure 3:
signature SORT =
sig
structure Elem : ELEM
pred sort : 2
end.
Figure 4:

fun suc : 1

le(zero,X).
le(suc(X),suc(Y)) :- le(X,Y).
end.

Signatures may also specify substructures. Any structure matching the signature
SORT in figure 4 must also contain a substructure Elem with the signature ELEM. The
structure Sort of figure 2 matches the signature SORT because it contains a predicate
sort of arity 2 and a substructure Elem which will match the signature ELEM. Note
that the predicate insert is hidden by the signature SORT.

Functors are parameterized modules. They accept structures as arguments and
return structures as results. For example, in figure 2 the substructure Elem is assigned
to Elements but if we wish to have a generic sorting structure which will sort elements
from any structure which includes a 1e predicate then we may use a functor as in figure
5.

2.2 Specifying Structures and Functors

In practice PROLOG programs use many extra logical features such as cut. Also the
ordering of clauses in a program is important for termination. Here we assume only
pure PROLOG with negation and no extra-logical features or cut as the language in
which programs will be written.

To specify pure PROLOG programs we make the following additions, along the
same lines as Extended ML [San89, ST89], to the language outlined above.

4

functor Sort(X:ELEM) :SORT =
struct
structure Elem = X

end.

Figure 5:

signature ELEM =

sig
fun zero : O
fun suc : 1
pred le : 2

axiom forall x => le(x,x)
axiom forall x => forall y => forall z =>
le(x,y) & le(y,z) -> le(x,z)
end;

Figure 6: A signature specifying a pre-order

1. Axioms, written in First Order Predicate logic, are allowed in signatures and
structures. This means that the same module constructs are used to structure
both PROLOG programs and their specifications. Axioms are written using the
following notation: & (conjunction), | (disjunction), -> (implication), not (nega-
tion) and <-> (equivalence).

2. Signatures must be ascribed to every interface of a structure or functor. This was
not necessary in our examples of 2.1 but in specification interfaces provide the
description of the behaviour of modules from which they to be developed.

3. Requirements specifications are given by adding a ? in place of actual structure
or functor bodies.

Signatures with axioms specify classes of PROLOG structures, for example, consider
the signature in figure 6. The class of structures which will now match the signature
ELEM will be all those with at least two function constants, zero and suc, and a predicate
le which is a pre-order. The structure in figure 2 certainly matches this signature.

As well as just the flat specifications like the pre-order in figure 6 specifications may
exhibit internal structure. Substructures and local or auxiliary predicates and axioms
can be used in specifications. The signature in figure 7 uses both the substructure Elem
and three auxiliary predicates, member, permutation and ordered to specify sorting.

5

signature SORT =
sig
structure Elements : ELEM

pred sort : 2
local
pred member : 2

axiom forall x => not(member(x,([]))

axiom forall x,y => forall 1 =>
member (x, [x11])

axiom forall x,y => forall 1 =>
member(x,1) -> member(x, [y,1])

pred permutation : 2

axiom forall 1 => forall 1’ =>
permutation(l,1’) <->
(forall x =>
member(x,1) <-> member(x,1’))

pred ordered : 1

axiom ordered([])
axiom forall a => ordered([a])
axiom forall a => forall b => forall 1 =>
Elem/le(a,b) & ordered([bll]) -> ordered([a,bll])
in
axiom forall 1,1’ =>
permutation(l,1’) & ordered(l’)
<=> sort(1,1’)
end
end;

Figure 7: A signature with substructures and hidden functions

functor Sort(X:ELEM) :sig
include SORT
sharing X = Elements
end = 7

Figure 8: Specification of a Sorting Functor

A statement of the programming task can now be given as in figure 8. This is the
requirements specification from which further program development takes place. What
is required in this case is a parameterized module which accepts any structure with a
predicate le and function constants zero and suc and returns a sorting module for
lists of that data.

The phrase include SORT includes all the axioms and definitions in the signature
SORT. The phrase sharing X = Elements introduces a sharing constraint. Sharing
constraints are part of the module language for PROLOG [SW87] and impose the
constraint that two structures be built up in exactly the same way. In specifications
like the requirements specification of figure 8 a sharing constraint expresses the fact
that the result depends upon the input’.

In figure 8 for example, the sharing constraint specifies that the predicate Elements/le
in SORT is the same as the predicate X/1e in the (actual) parameter. Without this shar-
ing constraint the predicate Elements/le need not be the same as that of the parameter
X, and so the requirements specification would not explicitly require us to sort lists of
data from the module X.

2.3 Stepwise Development of PROLOG Programs

One proceeds from a requirements specification to a program by a series of develop-
ment steps. Each development step results in a program which is correct (in the sense
described below) with respect to the results of the previous development step if all the
proof obligations associated with that step are formally discharged. We may think of
each development step as filling in some detail left open in the previous step, for exam-
ple, providing a predicate definition for some predicate which hitherto has only been
specified using axioms. Once the results of a development step includes no axioms and
all the predicates are defined by PROLOG predicate definitions then the development
process is complete. If all the proof obligations have been discharged then this final
program satisfies the original requirements specification by construction.

There are three possible kinds of development steps in the Extended ML methodology
which we also use to stepwise refine our modular PROLOG programs [San89)].

Functor Decomposition
Intuitively functor decomposition is used to break a task into subtasks. Suppose

1This is a form of dependent type. See for example [ST91].

7

we are given the following specification:
functor F(X:%):% =7

The first of the development steps allows us to define the functor F in terms of
the composition of a number of other functors, for example, in the simple case of
two new functors G and H we have:
functor F(X:X%):¥ = G(H(X))
where .
functor G(Y : Xg): &

=7
q —.
functor H(Z : Xg): X, =7

and Yz, E}{, Yq and E'G are all appropriately defined signatures. The task of
finding a solution to F has been broken up into the subtasks of finding solutions
to G and H. This decomposition is correct if:

1. all structures matching the parameter signature of F also match the param-
eter signature of H, that is, ¥ = Zg%

2. all structures matching the result signature of H can be used as an argument
for G, that is, ¥, |= Xg;

3. all structures matching the result signature of G also match the result signa-
ture of F, that is, T, = X',

The development of the functors H and G may now proceed separately.

Coding
Given a specification of the form:

structure A: ¥ =7

or

functor F(X:%):% =7
coding is used to replace the ? by an actual structure body to give

structure A: X = strexp
or in the case of functors

functor F(X:%): X' = strezp
A coding development step is correct if
| strezp E X
in the case of structures and
Y U strezp = ¥

in the case of functors. A structure body need not be all PROLOG code. Indeed
the possibility of fixing only some design details exists since axioms are allowed
within structure bodies. An example is the functor in figure 9 which could be one
stage in the development of the sorting functor of figure 8.

2The notation X = Ly is to be read as ¥ “matches” £y and is defined in section 2.4

8

functor Sort(X:ELEM):sig
include SORT

sharing X = Elements
end =
struct ‘
structure Elem = X

pred insert : 2

axiom insert(x,[],[x])
and forall x,y => forall 1 =>
Elem/le(x,y) -> insert(x,[yl1], [x,yl1])
and forall x,y,z => forall 1 =>
not(Elem/le(x,y)) & insert(x,l,z) -> insert(x, [yll],[ylz]).

sort([1,[1).
sort ([X], [X1).
sort ([X1Y],Z) :- sort(Y,W),
insert (X,W,2).
end.
Figure 9:

Refinement Refinement is the third kind of development step used to fill in design
choices left open by a coding step or by another refinement step. Given a functor

of the form:
functor F(X : %) : X' = strezp

we can replace strezp by strezp’ in a refinement step to give:
functor F(X:X%):% = strexp
A refinement step is correct if
T U strezp’ |= strezp

The rules for coding structures are similar.

2.4 Matching

So far we have not explicitly defined matching in the sense of a structure matching a
signature. For the purposes of “matching” PROLOG programs are considered to be
equivalent to their predicate completions [ClaT8].

Let strezp be a structure and sigezp be a signature. The rules for matching, written
strexp k= sigexp, are defined as follows:

1. the set of function constants in strexp must be equal to the set of function con-
stants in sigexp and the arity of each function constant in strexp must be the same
as the corresponding function constant in sigexp;

2. the predicate symbols of sigezp must be a subset of the predicate symbols in
strexp; '

3. the axioms, including the predicate completions of any programs, of strezp must ,

entail the axioms of sigezp.

The rules for matching signatures sigezp, = sigexp, are identical.

The restriction on sets of function constants in point 1. above is necessary because
quantifiers range over the terms defined by function constants and these need to be
identical in both strezp and sigezp. This is important for proofs involving existential
quantifiers.

3 Term Rewriting and the Knuth Bendix Theorem

The subject of our case study is the formal development of a module to test the conflu-
ence of sets of rewrite rules and so below we review some of the important definitions
of term rewriting.

Let ¥ be a (universal algebra) signature, X a set of variables, T5(X) the set of all
terms which can be constructed using the operator symbols in ¥ and the variables in X
and o and p be two terms in Tx(X). A rewrite rule [Bun83, HO80, K1o87] is an ordered
pair of terms, which we write ¢ — p (o "rewrites to” p), such that the variables of p
are a subset of the variables of 0. The following is now taken from [HO80, Klo87].

Definition 1 Let B be a set of rewrite rules and ¢ : X — T5(Y) be any substitution.
The one step rewriting relation —p defined by B is inductively defined as follows:

1. ifo — p € B then ¢(0) —p ¢(p) where by abuse of notation we assume that ¢ is
extended to ¥ terms;

2. if $1(z) = 1y, ¢a(2) =1, and Vy.y#z = $1(y) = b5(y) = y and t; —pt,
then for any term t, ¢,(t) —p ¢,(%);

3. if ty —p t; then ¢(t1) —p &(ts).

s

The reflexive and transitive closure of —p is written —7.
Definition 2 —7% is confluent if
VieT(X). toptiAt—pty= 3ty 55t Aty =5t

The Newman theorem [New42] is often used to reduce the problem of testing a set of
rewrite rules for confluence to the problem of testing the set of rules for local confluence
and termination.

10

Definition 8 A set of rewrite rules is locally confluent if

Ve Tg(X). t—ptiAt—pty= 3t st Aty =5t

Definition 4 A set of rewrite rules is terminating if for no term t € Ty (X) there exists
an infinite string of one step reductions

t"“)Btl —)Btz—)B...

Theorem 5 (Newman) A set of rewrite rules is confluent if and only if it is termi-
nating and locally confluent.

One procedure for testing local confluence relies on finding critical pairs [KB70, HO80,
Bun83].

Definition 6 If oy — p; and o4 — py are two rewrite rules such that there exists a
unifier ¢ of o, and some subterm y of oy then a critical pair for oy — p; and oy — p,

is defined to be
(¢(a1)[1 — 8(p2)]; ¢(p1))

We use the notation o[u < p] to mean the term o with the subterm p replaced by p.
The Knuth-Bendix theorem now gives a means for testing local confluence of set of
rewrite rules under the assumption that the rewrite rules are terminating.

Theorem 7 (Knuth-Bendix) Let B be a set of rewrite rules. If for all critical pairs

(P,Q) in B there exists a term R such that P —" R and Q@ — R" then B is locally
confluent.

Testing the termination property is not as straightforward. The basic technique
which we assume is based on the concept of a termination ordering [Der82, Klo87].
The basic idea is to define an ordering on terms in the language such that if ¢ — ¢’ then
t' <t. If for every rewrite rule in a set of rewrite rules the left hand side is greater
than the right hand side and the ordering on terms is well founded and satisfies some
additional closure properties then the set of rewrite rules is terminating.

4 A Case Study: Testing the Confluence of a Set of
Rewrite Rules

We wish to now give a requirements specification for a program that will test a set of
rewrite rules for confluence. Rather than starting with the specification of confluence
as

Vit tgt mp i At oty = 3ty o A ot

we begin with the simpler problem of testing for the confluence of a set of rewrite rules
by using the Newman theorem 5.

11

functor Confluence(R:REWRITES):
sig
include CONFLUENCE
sharing R = Rewrites
end = 7

Figure 10:

4.1 The Requirements Specification

The requirements specification is given in figure 10 while the signatures for the require-
ments specification are given in appendix A.

The parameter to this functor is a structure which manipulates ¥ terms with the
predicates in the signature REWRITES. Intuitively the predicates do the following:

isrule(r,rs) succeeds if r is a rewrite rule in the set rs of rewrite rules;

lhs : 2 returns the left hand side of a rule;

rhs : 2 returns the right hand side of a rule;

subexp(e,e’) succeeds if e is a subexpression of e’;

unify:3 unifies two terms and returns the most general unifier;
replsubexp(el,e2,e3,e4) replaces the subexpression e2 in el by e3 returning e4;
apply:3 applies a substitution to a term;

rewrite(e,e’,rs) performs a 1 step rewrite of e to e’ using one of the rules in rs.

The signature REWRITES also contains a number of auxiliary predicates, for example,
member:2, modify:4 and subst:4.

The result signature is given in appendix A.2. The only predicate definition which
is returned by the functor Confluence is confluent and the substructure Rewrites.

The sharing constraints expresses that the substructure Rewrites must be the same
as the actual parameter and so also states that the axioms and predicates in the result
signature are dependent on the actual parameter. The programming task is now to
provide a functor body which gives a program to implement confluent.

4.2 A Program Development Step
We now wish to construct a PROLOG program from the requirements specification
in figure 10 by using the methodology outlined in section 2.3. Indeed there are only

two choices of program development step to apply to the functor in figure 10, that is,
functor decomposition or coding. We choose a functor decomposition as in figure 11

12

functor Confluence(R:REWRITES):
sig
include CONFLUENCE
sharing R = Rewrites
end =
Local (Noetherian(R))

Figure 11:

functor Local(N:NOETHERIAN) :
sig
include LOCAL_CONFLUENCE
sharing N/Rewrites = Rewrites
end = 7

functor Noetherian(R:REWRITES):

sig
include NOETHERIAN

sharing R = Rewrites
end = 7

Figure 12:

where the requirements specifications for the functors Local and Noetherian are given
in figure 12. The signature NOETHERIAN specifies termination in terms of a termination
ordering po.

This decomposition gives rise to only one non-trivial proof obligation:

LOCAL CONFLUENCE | CONFLUENCE

What needs to be shown is that the axioms for the predicate noetherianin LOCAL_CONFLUENCE
are sufficient to prove the properties of noetherian in CONFLUENCE. We have only given

an informal argument for the correctness of this decomposition step [Rea] and it re-
mains to give a formal proof of it. At this point we have used only first order logic

in our specifications and so formally discharging this proof obligation would require a

proof system for first order predicate logic.

Much harder is showing that parts of the PROLOG code satisfy their specification.
In this case we would require two additional features in the proof system:

1. reasoning with negation and the order of clauses in a logic program;

2. induction rules for reasoning about data inductively defined by function constants.

A means of meeting the second requirement is to augment a proof system for the first
order predicate calculus by the appropriate inductive rules for data types, for example,

13

for lists we have:
P(nil/z) VaVI.P(l/z) = P([a|l]/x)
Vi.P(?)

for any predicate P.

5 Conclusions and Further Work

In this paper we have presented a language for structuring PROLOG programs, a lan-
guage for specifying structured PROLOG programs, a methodology for formally deriv-
ing programs from specifications of modular programs and briefly outlined a case study
in the use of the specification language and the program development methodology.

This case study has shown up at least two areas in which further work is required:

1. the area of proof systems for discharging proof obligations and especially for rules
dealing with negation and ordering of axioms (see for example [And89] where
some work has been done on the latter topic);

2. a formal definition of the specification language is required to establish exactly
the class of programs which can be models of a specification.

More generally in the area of discharging proof obligations is the problem of proving
theorems in structured specifications [FC89]. A definition of the language would need
to specify precisely what program modules denote and what it means for them to satisfy
a specification.

The benefits to be gained by adopting this approach are precisely those that can be
gained by using a modular approach to program design. Also once a program module
has been constructed from its requirements specification it can be re-used. All that is
known about a module is given in the interfaces and the details of the code are hidden
from the user.

To make the approach feasible and practical for specifying and constructing PRO-
LOG programs from specifications the major hurdle appears to be in discharging proof
obligations. With the advent of the proper tools and proof systems this burden ought
to be eased and this is one of the goals of research into Extended ML. If this can be done
then this approach gives a simple method of constructing PROLOG programs to meet
specifications with all the benefits of a modular specification and target language.

Acknowledgements

The authors would like to thank Don Sannella for his valuable comments on earlier
drafts of this paper and also Terry Stroup, Steffan Kahrs and James Harland for lis-
tening to and commenting on our ideas.

14

References

[Ands89]
[Bun83]
[ClaT8]
[Der82]

[FC89]

[HMT90]

[HOS0]

[KB70]

[Klo87]

[Les89]

[Les90]

[Llo84]
[MT90]
[New42]

[Rea]

[San89]

J. H. Andrews. Proof-theoretic characterisations of logic programming. Tech-
nical Report ECS-LFCS-89-77, University of Edinburgh, 1989.

A. Bundy. The computer modelling of mathematical reasoning. Academic
Press, 1983.

K. L. Clark. Negation as failure. In H Gallaire and J Minker, editors, Logic
and Databases, pages 293-322. Plenum Press, New York, 1978.

N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer
Science, 17:279 — 301, 1982.

J. Farrés-Casals. Proving Correctness of Constructor Implementations. In
1989 Symp. on Mathematical Foundations of Computer Science, LNCS 379,
pages 225 — 235. Springer-Verlag, 1989.

R. Harper, R. Milner, and M. Tofte. The Definition of Standard ML. MIT
Press, 1990.

G. P. Huet and D. C. Oppen. Equations and Rewrite Rules. In Ronald V.
Book, editor, Formal Language Theory: Perspectives and Open Problems,
pages 349 — 405. Academic Press, 1980.

D. E. Knuth and P. B. Bendix. Simple problems in universal algebra. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 203 —
297. Pergammon Press, 1970.

J.W. Klop. Term Rewriting Systems : A Tutorial. Bulletin of the EATCS,
pages 144 — 192, June 1987.

Pierre Lescanne. Implementation of Completion by Transition Rules + Con-
trol: ORME. In TAPSOFT’89, LNCS 851, pages 262 — 269. Springer -
Verlag, 1989.

P. Lescanne. Completion Procedures as Transition Rules + Control. In Al-
gebraic and Logic Programming, Springer LNCS /68, pages 28 — 41. Springer
- Verlag, 1990.

J. Lloyd. Foundations of Logic Programming. Springer Verlag, 1984.
R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, 1990.

M. H. A. Newman. On theories with a combinatorial definition of equivalence.
Annals of Mathematics, 43(2), April 1942.

M. G. Read. Formal Development of Prolog Programs. 4th year project
report, University of Edinburgh, May 1991.

D. Sannella. Formal Program Development in Extended ML for the Working
Programmer. Technical Monograph ECS-LFCS-89-102, Laboratory for the
Foundations of Computer Science, December 1989.

15

[ST89] D. Sannella and A. Tarlecki. Toward Formal Development of ML Programs:
Foundations and Methodology - Extended Abstract. In Proceedings of the
Colloguium on Current Issues in Programming Languages, LNCS 352, pages
375 — 389. Springer Verlag, 1989. '

[ST91] D. Sannella and A. Tarlecki. A Kernel Specification Formalism with Higher
Order Parameterization. In 7th Workshop on Specification of Abstract Data
Types. Lecture Notes in Computer Science, to appear. Springer Verlag, 1991.

[SW87] D.T. Sannella and L. A. Wallen. A Calculus for the Construction of Modular
Prolog Programs. In IEEE fth Symp. on logic programming, 1987. .

16

appendix

A Signatures for the Requirements Specification

A.1 The Signature REWRITES

signature REWRITES =
sig
pred isrule:2, lhs:2, rhs:2, subexp:2
pred unify:3, apply:3, rewrite : 3
pred replsubexp : 4

fun var : 1
fun rule : 2, op : 2

local
pred member : 2

axiom forall x => not(member(x,[]))
axiom forall x => forall 1 => member(x,[x|1])
axiom forall x,y => forall 1 =>

member(x,1) -> member(x, [y[1])

pred modify : 4
axiom forall el,e2 => modify([],el,e2,[])
axiom forall e,el,e2 => forall 1 =>

e \== el -> modify([ell],el,e2,[ell])
axiom forall e,el,e2 => forall 1 =>

e == el -> modify([ell],el,e2,[e2]|1])
pred subst : 4

axiom forall v,x,y =>

v \== x -> subst(var(x),v,y,var(x))
axiom forall v,x,t =>
v == x -> subst(var(v),v,t,t)

axiom forall v,x,t => forall 1,1’ =>
subst (op(x,[1),v,t,op(x,[1))
axiom forall e,e’,v,x,t => forall 1,1’ =>
subst(e,v,t,e’) &
subst (op(x,1),v,t,op(x,1)) ->
subst (op(x,[ell]),v,t,op(x,[e’11°]))

pred FV : 2

17

axiom forall x => FV(var(x), [var(x)])

axiom forall x => FV(op(x,[1),[])

axiom forall x => forall t => forall terms =>
FV(t,11) & FV(terms,12) & append(11,12,1) ->
FV(op(x, [t|terms]),1)

pred dom : 2

axiom dom([],[1)

axiom forall 1,1’ => forall v => forall t =>
dom(1,1’) -> dom([(v,t)|1],[viI1’])

pred disjoint : 2

axiom forall 1,1’ => forall x =>

disjoint(1,1’) <->
member(x,l) -> not(member(x,1’))

in

axiom forall r,rs =>
member(r,rs) ~-> isrule(r,rs)

axiom forall e => lhs(rule(e,_),e)
axiom forall e => rhs(rule(_,e),e)

U}

axiom forall e => subexp(e,e)
axiom forall e,e’ => forall 1 =>
subexp(e,e’) & member(e’,l) ->
subexp(e,op(_,1))

axiom forall e,e’ => replsubexp(e,e,e’,e’)
axiom forall e,e’ => forall 1,1’ =>
(exists el,e2 =>
member(el,l) &
replsubexp(el,e,e’,e2) &
modify(l,el,e2,1’))
-> replsubexp(op(x,1),e,e’,op(x,1’))

axiom forall e => apply([],e,e)
axiom forall e,e’ => forall v,t => forall 1 =>
forall fv => forall s,s’ =>
FV(t,fv) &
dom([(v,t)Is],s’) &
disjoint(fv,s’) &
subst(e,v,t,e’) &
apply(s,e’,e’’) ->

18

apply([(v,t)|z],e,e’’)

axiom forall e,e’,t => forall u =>
apply(u,e,t) &
apply(u,e’,t) ->
unify(e,e’,u)

axiom forall e,e’ => forall rs =>
(exists r,lr,rr,rr’ => exists e’’ =>
exists phi =>
lhs(r,1r)
subexp(e’’,e)
apply(phi,lr,e’’)
rhs(r,rr)
apply(phi,rr,rr’)
replsubexp(e,e’’,rr’,e’))
-> rewrite(e,e’,rs)

% Br P B &

end
end

A.2 The S.ignature CONFLUENCE

signature CONFLUENT =
sig
pred confluent:1

structure Rewrites : REWRITES
local
pred normal_form : 2

axiom forall e => forall rs =>
normal_form(e,rs) <->
not(exists t => Rewrites/rewrite(e,t,rs))

pred critical_pair : 3

axiom forall p,q,rs =>

exists theta =>

exists ri,r2,lhs1,1lhs2,rhsi,rhs2 =>

exists subl,subl’,lhsi1’,lhs2’ =>
Rewrites/isrule(ri,rs) &
Rewrites/isrule(r2,rs) &
Rewrites/lhs(ri,lhsl) &
Rewrites/lhs(r2,lhs2) &
Rewrites/rhs(ri,rhsl) &

19

Rewrites/rhs(r2,rhs2) &
Rewrites/subexp(subl,lhsl) &
Rewrites/unify(subil,lhs2,theta) &
Rewrites/apply(theta,lhsi,lhsl’) &
Rewrites/apply(theta,lhs2,1lhs2’) &
Rewrites/apply(theta,subl,subl’) &
Rewrites/apply(theta,rhsi,p) &
Rewrites/replsubexp(lhsi’,subl’,rhs2’,p) ->
critical_pair(p,q,rs)

pred reduces : 3

axiom forall e => reduces(e,e)
axiom forall rs => forall e,e’ =>
(exists e’’ =>
exists r =>
Rewrites/isrule(r,rs) &
Rewrites/rewrite(e,e’’,r) &
reduces(e’’,e’,rs)) ->
reduces(e,e’,rs)

pred locally_confluent : 1

axiom forall rs =>
(forall p,q =>
critical_pair(p,q,rs) ->
(exists e =>
reduces(p,e,rs) & reduces(q,e,rs)))
-> locally_confluent(rs)

pred noetherian : 1

axiom forall rs =>
(forall e =>
exists e’ =>
reduces(e,e’,rs) & normal_form(e’,rs))
-> noetherian(rs)

in

axiom forall rs =>
noetherian(rs) &
locally_confluent(rs) ->
confluent (rs)
end
end

20

B The Signatures for the Program Development Steps

B.1 The Signature LOCAL_CONFLUENCE

signature LOCAL_CONFLUENCE =
sig
pred locally_confluent : 1, confluent : 1
-pred reduces : 3

structure Noetherian : NOETHERIAN
local
pred critical_pair : 3

axiom forall p,q,rs =>

exists theta =>

exists rl,r2,lhsl,lhs2,rhsl,rhs2 =>

exists subl,subl’,lhsi’,1hs2’ =>
Rewrites/isrule(rl,rs) &
Rewrites/isrule(r2,rs) &
Rewrites/lhs(rl,lhsl) &
Rewrites/lhs(r2,1hs2) &
Rewrites/rhs(r1,rhsl) &
Rewrites/rhs(r2,rhs2) &
Rewrites/subexp(subl,lhsl) &
Rewrites/unify(subl,lhs2,theta) &
Rewrites/apply(theta,lhsi,lhs1’) &
Rewrites/apply(theta,lhs2,1hs2’) &
Rewrites/apply(theta,subl,subl’) &
Rewrites/apply(theta,rhsl,p) &
Rewrites/replsubexp(lhsi’,subl’,rhs2’,p) ->

critical_pair(p,q,rs)

pred reduces : 3

axiom forall e => reduces(e,e)
axiom forall rs => forall e,e’ =>
(exists e’’ =>
exists r =>
Rewrites/isrule(r,rs) &
Rewrites/rewrite(e,e’’,r) &
reduces(e’’,e’,rs)) ->
reduces(e,e’,rs)

in
axiom forall rs =>

21

(forall p,q => critical_pair(p,q,rs) ->
(exists r => reduces(p,r,rs) & reduces(q,r,rs)))
-> locally_confluent(rs)

axiom forall rs =>
Noetherian/noetherian(rs) & locally_confluent(rs)
-> confluent(rs)
end
end

B.2 The Signature NOETHERIAN

signature NOETHERIAN =
sig
pred noetherian : 1

structure Rewrites : REWRITES
local

éred po : 2

axiom forall x => po(x,x)

axiom forall x,y,z =>
po(x,y) & po(y,z) -> po(x,z)

axiom exists x => forall y => po(x,y)

axiom forall e, e’ => forall rs =>
Rewrites/reduces(e,e’,rs) <-> po(e,e’)

axiom forall e,e’ => forall t,t’ =>
po(e,e’) &
Rewrites/subexp(e,t) &
Rewrites/subexp(e’,t’) ->
po(t,t’)

axiom forall theta => forall t,t’ =>
forall e,e’ =>
po(t,t’) &
Rewrites/apply(theta,t,e) &
Rewrites/apply(theta,t’,e’) ->
po(e,e’)
in

axiom forall rs => forall r => forall lr,rr =>

22

end
end

Rewrites/isrule(r,rs) &
Rewrites/lhs(r,1r) &
Rewrites/rhs(r,rr) &
po(rr,lr)

-> noetherian(rs)

23

