
ALGEBRAIC STRUCTURE FOR BICATEGORY

ENRICHED CATEGORIES

R. Gordon and A.J. Power
∗

Abstract. We define algebraic structure on a locally finitely presentableW -category
for a locally finitely presentable bicategory W with a small set of objects. We fur-
ther define the W -category of algebras for given algebraic structure. Each algebraic
structure gives rise to a finitary W -monad with the same W -category of algebras.
Moreover, every finitary W -monad arises in this way from some algebraic structure;
but that algebraic structure is not uniquely determined by the monad.

§1. Introduction

The study of data refinement in the development of programming languages
gives rise to the study of categories enriched over a monoidal biclosed category, in
which the monoidal structure need not possess a symmetry (see [7] and [6]). One
requires an analysis of universal algebra enriched over such a monoidal category.
The reasoning is as follows. Traditional universal algebra corresponds to the study
of finitary monads on the category of small sets. In order to study data refinement,
one studies not sets with operations and universally defined equations, but more
exotic structures such as locally ordered categories with operations and universally
defined equations. So one seeks precise definitions of the concepts of operations
and equations, and algebras, in sufficient generality to include the above example,
together with a theorem characterizing those definitions in terms of finitary monads.
The theorem both validates the definitions and is explicitly used. For this approach
to data refinement, the enrichment is central: it allows one to lift data refinement
from a set of base types to the set of all types of a programming language (see [7]
and [6]).

The natural mathematical level of generality in which to pursue such a study is in
terms of W -categories, for a locally finitely presentable bicategory W with a small
set of objects. This paper provides such an analysis. It is a further development
of the work of [1] and [2], in which we established the basic definitions and results
we require here, such as the notion of colimit in a W -category, what it means for
a W -category to be locally finitely presentable, and the appropriate generalization
of Gabriel-Ulmer duality.

Here, we generalize the work of [5], which amounts to a study of universal algebra
with respect to enrichment over a symmetric monoidal closed category V . We
define algebraic structure on a locally finitely presentable W -category, and the
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corresponding algebras. We then prove that any algebraic structure gives rise to
a finitary W -monad with the same W -category of algebras. Finally, we show that
every finitary W -monad arises in that way from some algebraic structure.

Once the definitions are established, then except for one of the main results of
[1], the argument here is essentially the same as that of [5]. We require a little more
delicacy here as, in general, functor W -categories do not exist, whereas functor V -
categories were used freely in [5]. However, with care one can avoid them, and
except for that delicacy, the generalization is largely routine.

We do not develop examples in this paper; but a detailed analysis of the leading
class of examples appears in [6], with further explanation of their computational
significance in [7]. Briefly, our leading class of examples is based on the category of
small locally ordered categories. That category has a monoidal biclosed structure,
with closed structure yielding Lax(A,B), the category of locally ordered functors
and lax transformations, and coclosed structure giving the dual. That monoidal
biclosed category is locally finitely presentable in the sense we define here, and
one may study data refinement via universal algebra enriched in it. For further,
relatively gentle discussion of enriched universal algebra, we recommend Robinson’s
paper [8].

Section 2 recalls those definitions and results we need from [1] and [2]. In Section
3, we define the W -category of algebras for a W -monad and characterize both
algebras and maps of algebras in terms of maps of monoids if the monad is finitary.
In Section 4, we define algebraic structure on a locally finitely presentable W -
category, together with its W -category of algebras, and in Section 5, we prove that
algebraic structure gives rise to a finitary W -monad with the same W -category of
algebras. Finally, in Section 6, we show that every finitary W -monad arises from
some algebraic structure. Our notation agrees with that of [1] and [2], but we
review it all here anyway. The one extra condition we need for our main results is
that ObW is small.

We would like to thank Kris Rose and Ross Moore for their XY-pic.

§2. Preliminaries

We assume throughout that W is a bicategory with the horizontal composite of
x:u→ v and y: v → w denoted by y⊗x. We say W is closed if for all x:u→ v and
y:u→ w, there is a universal diagram
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We call W coclosed if W op is closed, with coclosed structure, given x: v → u and
y:w → u, written as in
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and we call W biclosed when W is both closed and coclosed.

Definition 2.1. A biclosed bicategory W is locally finitely presentable if for each
u, v ∈ ObW the category W (u, v) is locally finitely presentable, each identity arrow
Iu is finitely presentable, and y ⊗ x is finitely presentable whenever x and y are
finitely presentable.

We denote the locally full subbicategory of W determined by the finitely pre-
sentable arrows by Wf , and we use the abbreviation lfp for the term locally finitely
presentable. It is routine to verify that if W is lfp, then for all finitely presentable
x, xt− and x!− preserve filtered colimits.

This definition of locally finitely presentable bicategory agrees, in the case that
W has one object and is symmetric, with Kelly’s definition for symmetric monoidal
closed categories in [4], and we use it in [2] for the same purpose as he did, i.e., to
prove Gabriel-Ulmer duality.

A W -category A consists of a set ObA, a function e: ObA → ObW , for each
A,B ∈ A an arrowA(A,B): eA → eB, and 2-cells jA: Iu ⇒ A(A,A) and µABC :A(B,C)⊗
A(A,B)⇒ A(A,C) subject to the evident three coherence axioms. W -functors and
W -natural transformations are defined similarly, giving a 2-category W-Cat.

For an object u of W , we denote by Au the category determined by those A
such that eA = u, and we say that A lies over u. If W is closed, we denote by
Wu the W -category for which an object over v is an arrow from u to v, and with
Wu(x, y) determined by closedness of W . For any W -category A and A ∈ Au,
there is an evident W -functor A(A,−):A →Wu. A W - functor is representable if
it is W -naturally isomorphic to such A(A,−).

Definition 2.2. A W -category A has tensors with an arrow x:u → v in W if for
any A ∈ Au, the W -functor Wu

(
x,A(A,−)

)
:A → W v is representable. If W is

lfp, we say A has finite tensors if it has tensors with all arrows x:u→ v in Wf .

Cotensors in A are defined by tensors in the W op-category Aop. We denote
tensors by x⊗A and cotensors by xtA.

Definition 2.3. Given lfpW , a W -category A is locally finitely presentable if each
Au is lfp, A has finite tensors, and each x⊗−:Au → Av has a finitary right adjoint.

If A is lfp, then A has all tensors [1, Corollary 3.9], and the right adjoint to each
x⊗− is xt−. A W -functor is called finitary if its restriction to each Au is finitary
as an ordinary functor. If we denote by Af the full sub-W -category of A given by
all finitely presentable objects of Au for each u, we have [1, Theorem 4.5].

Theorem 2.4. For lfpA and B, the inclusion Z of Af in A induces an equiva-
lence between the category W-Catf (A,B) of finitary W -functors from A to B and
W-Cat (Af ,B), the reverse equivalence given by left Kan extension along Z.
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The definitions given here are in the form best suited to our purposes in this
paper. They agree with the definitions of [1], which were best suited to our proof in
[1] of Theorem 2.4 above. Those definitions were further explored in [2], in which
we gave two characterizations of locally finitely presentable W -categories. We first
gave an intrinsic definition of a cocomplete W -category, defined strong generator
and finitely presentable object directly in terms of A rather than Au, then showed
that a W -category is locally finitely presentable in the above sense if and only if
it is cocomplete and has a strong generator of locally finitely presentable objects.
Second, and more substantially, we characterized locally finitely presentable W -
categories as W -categories of models of finite limit theories.

§ 3. finitary monads and their algebras

Assume now and for the rest of the paper that W is locally finitely presentable
and ObW is small.

By Theorem 2.4, for lfpA, the ordinary category W-Catf (A,A) is equivalent to
W-Cat (Af ,A). For any small W -category D, W-Cat (D,A) is lfp: it has colimits
given pointwise; and it follows from the Yoneda lemma for W -categories that the
family of W -functors D(D,−) ⊗A for finitely presentable A ∈ Au and all D ∈ Du
for all u, forms a strong generator of finitely presentable objects. So W-Catf (A,A)
is lfp. Colimits in W-Catf (A,A) are given pointwise, so for any finitary R:A → A,

W-Catf (R, 1): W-Catf (A,A)→W-Catf (A,A)

is cocontinuous, hence has a right adjoint. Thus W-Catf (A,A) is a monoidal closed
category. Its monoids are precisely finitary W -monads on A, i.e. W -monads whose
underlying W -functor is finitary; and monoid maps are precisely W -monad maps.

Let the category of monoids and monoid maps be denoted by Mndf(A).
For any cocomplete monoidal closed category C for which x⊗− is finitary for all

x, the category of monoids in C is finitarily monadic over C: the proof of monadicity
follows from the Beck condition (see [3,Theorem 23.3]), and finitariness is routine.
So we may deduce

Proposition 3.1. The forgetful functor from Mndf (A) to W-Catf (A,A) is fini-
tarily monadic.

The left adjoint L may be described as follows (see [3,Theorem 23.3]): given
finitary R:A → A, let R0 = 1:A → A, Rn+1 = 1 +RRn, and define

ρ0:R0 → R1 ρ0 = inj1: 1→ 1 +R

ρn:Rn → Rn+1 ρn = 1 +Rρn−1.

L(R) is the (directed) colimit of the above diagram.
Given a W -natural transformation φ:R → T , where (T, ηT , µT ) is a finitary

W -monad, the corresponding map of monads L(R)→ T is given by the cocone

φ0:R0 → T φ0 = ηT : 1→ T

φn:Rn+1 → T φn = ηT + µT (φφn): 1 +RRn → T.
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Corollary 3.2. For any lfp W -category A, the ordinary category Mndf (A) is lo-
cally finitely presentable.

Since W-Catf (A,A) is equivalent to W-Cat(Af ,A), the latter category inher-
its the monoidal structure of the former. Moreover, the equivalence lifts to an
equivalence between Mndf(A) and MonoidsW-Cat(Af ,A), where the latter is the
category of monoids in W-Cat(Af ,A).

Proposition 3.3. For each u ∈W and A ∈ Au, the composite

W-Cat(Af ,A) Z∗−−→W-Catf (A,A) evA−−→ Au
has a right adjoint, where Z is inclusion of Af in A and Z∗ denotes left Kan
extension along Z.

Proof. Z∗ is an equivalence. Since colimits in W-Catf (A,A) are calculated point-
wise, evaluation, evA, at A must be cocontinuous. So, since W-Cat (Af ,A) is lfp,
evA has a right adjoint (see [4,Theorem7.8]).

�
The right adjoint {A,−} is given by {A,B} = A(−, A)tB and the family

{A,−}A∈Au may be made functorial in A uniquely such that the A -indexed family
of isomorphisms
Au (Z∗(S)A,B) ∼= W-Cat(Af ,A) (S, {A,B}) is natural in A.

Since W-Cat is a finitely complete 2-category, for any W -monad T in it, there
is a W -category of algebras.

Definition 3.4. Given a W -monad T on A, T-Alg is the following W -category:
an object of T-Alg over u is a Tu-algebra; given T -algebras (A, a) and (B, b), we
define T-Alg ((A, a), (B, b)) to be the equalizer of

A(A,B)

&&T MM
M
M
MM

M
M
M
MM

//A(a,B)
A(TA,B)

A(TA, TB)

77

A(TA,b)

p
p
p
pp

p
p
p
pp

p

(3.1)

Composition is induced by that of A.

It is routine to verify (cf. [3])

Proposition 3.5. For any A ∈ A, the adjunction evA ◦ Z∗ a {A,−} induces a
monoid structure on {A,A}; for any finitary W -monad T on A, the adjunction
further yields a bijection natural in T between monoid maps α:TZ → {A,A} and
T -actions a:TA→ A.

Proposition 3.6. Given an arrow f :A→ B in Au, define [f, f ] to be the pullback

[f, f ]

��
π1

//π0 {A,A}

��
{A,f}

{B,B} //
{f,B}

{A,B}
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in W-Cat(Af ,A).
Then, [f, f ] lifts uniquely to a monoid in W-Cat(Af ,A) such that π0 and π1

become monoid maps. Moreover, if (A, a) and (B, b) are T -algebras, then f is a
map of algebras if and only if, in Monoids W-Cat(Af ,A), the map(

α

β

)
:TZ → {A,A} × {B,B}

factors (uniquely) through [f, f ].

§4. algebraic structure

In this section we define algebraic structure on an lfpW -category. This general-
izes the usual definition for universal algebra, which amounts to the case in which
W is the one object lfp bicategory determined by Set, and our lfpW -category is
also Set. An analysis for one object symmetric W appears in [5]; the definitions
here are similar.

For an idea of how to think about our definition of algebraic structure, consider
the case of W being Set and the W -category being Set. An instance of algebraic
structure is that for groups. A group consists of a set X together with functions
from Set(2,X) to Set(1,X), from Set(1,X) to Set(1,X), and from Set(0,X) to
Set(1,X), subject to universally defined equations for associativity and left and
right unit and inverse laws. So, in the notation of the next definition, we would
put S(n) = 1 if n = 0, 1, or 2, and 0 otherwise. The equations hold on derived
operations, so we will not express them here. An S-algebra (see Definition 4.2) is
precisely a set X together with the three above-mentioned functions, and an (S,E)-
algebra (see Definition 4.3) is a group. The category (S,E)-Alg (see Definition 4.4)
is the category of groups.

Definition 4.1. Given an lfpW -category A, algebraic structure on A consists of
the following:

(1) a W -functor S: | Af | → A, where | Af | is the discrete W -category on
Ob (Af ). From S, we construct F (S):Af → A as follows: set

S0 = Z, the inclusion of Af in A

Sn+1 = Z +
∑

d∈|Af |
A (d, Sn−)⊗ Sd

and define σ0:S0 → S1 and σn:Sn → Sn+1 by

inj1:Z → Z +
∑

d∈|Af |
A (d, S0−)⊗ Sd

and
Z +

∑
d∈|Af |

A (d, σn−1−)⊗ Sd:Sn → Sn+1

respectively.
F (S) = colimn<ω Sn.

(2) a W -functor E: | Af | → A together with W -natural transformations τ1,
τ2:E → F (S)J , where J : | Af | → Af is the inclusion.
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We denote this algebraic structure by (S,E), generally suppressing τ1 and τ2.
Informally, for each c in | Af |, Sc may be regarded as the object of basic oper-

ations of arity c, and F (S)c may be regarded as the object of derived operations
of arity c. The σn’s are typically monomorphisms, so F (S) is typically the union
of (Sn)n<ω. The functor E, together with τ1 and τ2, represents the equations that
must hold between derived operations. A series of detailed examples illustrating
this appears in [6].

Definition 4.2. Given S: | Af | → A, an S-algebra is an object A together with a
2-cell νc:A(c,A) ⇒ A(Sc,A) for each c, or equivalently, a map ν:

∑
c∈|Af |

A(c,A) ⊗

Sc→ A in A.

An S- algebra extends canonically to an F (S)J -algebra (A, ν̄) as follows: define
ν0:

∑
c∈|Af |

A (c,A)⊗ S0c→ A by evaluation, and νn+1:
∑

c∈|Af |
A (c,A)⊗ Sn+1c→ A

inductively by evaluation on the first component of Sn+1c, and for the d-component,
by

A (c,A)⊗A (d, Snc)⊗Sd
(νn)c⊗1−→ A (Snc,A)⊗A (d, Snc)⊗Sd→A (d,A)⊗Sd νd−→ A.

Since colimits in W-Cat (Af ,A) are given pointwise, we thus obtain an F (S)J -
algebra structure on A.

Definition 4.3. Given algebraic structure (S,E), an (S,E)-algebra is an S-algebra
(A, ν) such that both legs of

A (c,A) //ν̄c A (F (S)c,A)
//A(τ1,A)

//
A(τ2,A)

A (Ec,A)

are equal for every c.

Definition 4.4. Given (S,E)-algebras (A, ν) and (B, δ), define (S,E)-Alg by letting

(S,E)-Alg ((A, ν), (B, δ)) be the equalizer of

A(A,B)

��
{A(Sc,−)}c∈|Af |

//
{A(c,−)}c∈|Af | ∏

c
A(c,A)!A(c,B)

��

Q

c
A(c,A)!δc∏

c
A(Sc,A)!A(Sc,B) //Q

c
νc!A(Sc,B)

∏
c
A(c,A)!A(Sc,B).

(4.1)

(S,E)-Alg is then a W -category, with composition and identities induced by those
of A.

An arrow in (S,E)-Algu is given by an arrow f :A→ B in Au such that for all c,
fνc(−) = δc(f−):A(c,A)⇒A(Sc,B), i.e. an arrow in Au that commutes with all
basic c-ary operations for all c.
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§5. from algebraic structure to a finitary monad

In this section we give a construction that assigns a finitary monad T(S,E) to
algebraic structure (S,E). This is done by showing that our construction F (S)
corresponds to the free finitary monad on S, then defining T(S,E) by the coequalizer
in Mndf (A) determined by τ1, τ2:E → F (S). This induces an isomorphism between
the category of T(S,E)-algebras and that of (S,E)-algebras.

Proposition 5.1. The forgetful functor

U : Monoids W-Cat(Af ,A)→W-Cat(| Af |,A)

has left adjoint with object part given by F .

Proof. The functor U is a composite of four functors, each having a left adjoint
that we can describe easily. By Theorem 2.4, W-Cat (Af ,A) is equivalent to
W-Catf (A,A). So MonoidsW-Cat (Af ,A) is equivalent to Mndf (A), since the
monoidal structure on W-Cat (Af ,A) was defined (in Section 3) to force that equiv-
alence. By Proposition 3.1, the forgetful functor from Mndf (A) to W-Catf (A,A)
has a left adjoint L. Then, again by Theorem 2.4, composition with the inclusion
Z:Af → A yields W-Catf (A,A) equivalent to W-Cat (Af ,A). Finally, the functor
from W-Cat (Af ,A) to W-Cat (| Af |,A) given by composition with the inclusion
J : | Af | → Af has a left adjoint given by left Kan extension. So, to describe a left
adjoint to U , we need only describe the composite of these four left adjoints.

Putting them together, the left adjoint of U takes S: | Af | → A to L ((ZJ)∗(S))Z:Af →
A. Now (ZJ)∗(S) =

∑
d∈|Af |

A(d,−)⊗ Sd, and putting R = (ZJ)∗(S) after Propo-

sition 3.1, we have by induction Sn = RnZ for all n. The result follows immediately.

�
Henceforth in this section we suppose that (S,E) is algebraic structure on A.

By Corollary 3.2, Monoids W-Cat(Af ,A) is cocomplete. Let T(S,E) be a finitary

W -monad on A such that F (E)
//τ̄1

//
τ̄2

F (S) //γ
T(S,E)Z is a coequalizer in

Monoids W-Cat(Af ,A), where τ̄1 and τ̄2 correspond to τ1 and τ2 respectively.

Lemma 5.2. Composition with γ induces a bijection between the set of T(S,E)-
algebras and that of (S,E)-algebras.

Proof. It follows from our explicit description of {A,−} that to give an S-algebra
is to give an object A and a W -natural transformation ν:S → U{A,A}: | Af | → A,
or equivalently a monoid morphism ν̄:F (S)→ {A,A}.

By induction it follows that the maps φn:Rn → T after Proposition 3.1 agree
with those after Definition 4.2, in the case that R = (ZJ)∗(S) and T = {A,A}. So,
an (S,E)-algebra is precisely aW -natural transformation ν:S−→ U{A,A}: | Af | →
A such that both legs of

E
//τ1

//
τ2

F (S)J //ν̄ {A,A}
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are equal, where ν̄ corresponds to ν under the adjunction F a U . Hence, by
definition of T(S,E), an (S,E)-algebra is precisely a T(S,E)-algebra, the bijection
being given by composition with γ.

�
Lemma 5.3. Given (S,E)-algebras (A, ν) and (B, δ), (S,E)-Alg ((A, ν), (B, δ)) is
the equalizer of

A(A,B)

""

A(ν,B)

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

//(ZJ)∗(S)
A ((ZJ)∗(S)A, (ZJ)∗(S)B)

xx

A((ZJ)∗(S)A,δ)

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

.

A ((ZJ)∗(S)A,B) .

(5.1)

Proof. Compare (4.1) and (5.1). It is immediate that the lower arrows from
A(A,B) to A ((ZJ)∗(S)A,B) are the same.

The upper arrow of (5.1) corresponds to

A(A,B)⊗ (ZJ)∗(S)A ev−→ (ZJ)∗(S)B δ−→ B,

which, when preceded by a canonical isomorphism, is∑
c∈|Af |

A(A,B) ⊗A(c,A)⊗ Sc
P

(µ⊗1)−−−−−→
∑

c∈|Af |
A(c,B)⊗ Sc δ−→ B,

which corresponds to the upper arrow of (4.1).

�
Lemma 5.4. Given (S,E)-algebras (A, ν) and (B, δ) corresponding to T(S,E)-
algebras (A, a) and (B, b) respectively, both triangles in

A(A,B)

""

A((ZJ)∗(S)A,δ)◦(ZJ)∗(S)

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

""

A(ν,B)

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

//A(TA,b)◦T

//
A(a,B)

A(TA,B)

||

A(ψA,B)

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

.

A ((ZJ)∗(S)A,B)

(5.2)

commute, where ψ is the W -natural transformation determined by γ and the unit
of the adjunction between Monoids W-Cat(Af ,A) and W-Cat(Af ,A) applied to
J∗(S).

Proof. The bijection between T(S,E)-algebras and (S,E)-algebras given in Lemma
5.2 shows that ν corresponds to

J∗(S) ψ̄−→ TZ
α−→ {A,A}, (5.3)
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where α is the monoid map associated with (A, a) and ψ̄ corresponds to ψ. It is
immediate that the lower triangle of (5.2) commutes. The upper triangle is easily
checked, using (5.3) with ν replaced by δ and α replaced by β, and by naturality
of ψ.

�
Theorem 5.5. Given algebraic structure (S,E), composition with γ induces an
isomorphism

(S,E)-Alg ∼= T(S,E)-Alg.

Proof. By Lemma 5.2, γ induces a bijection from the set of T(S,E)-algebras to
the set of (S,E)-algebras. By Definition 3.4 and Lemmas 5.3 and 5.4, it follows
that composition with γ yields a (unique) W -functor γ∗:T(S,E)-Alg → (S,E)-Alg
commuting with the forgetful W -functors to A. It remains to show that γ∗ is
fully faithful. It suffices to show that for any finitely presentable x and φ:x →
A(A,B) making the composites with the lower legs of (5.2) equal, it follows that
the composites with the horizontal legs of (5.2) are equal.

First observe that xtB inherits a canonical algebra structure from (B, b) given
by

T (xtB)
πT,B−−−→ xtTB xt b−−−→ xtB, (5.4)

where π is the evident comparison map.
Given φ:x→ A(A,B), there corresponds a map A→ xtB, which we shall also

denote by φ, and which makes the diagram

(ZJ)∗(S)A

��

ν

//(ZJ)∗(S)φ
(ZJ)∗(S) (xtB)

��
π(ZJ)∗ (S),B

xt(ZJ)∗(S)B

��
xt δ

A //
φ

xtB

commute.
By definition of [φ, φ], there exists a uniqueW -natural transformation ω:J∗(S)→

[φ, φ] making
J∗(S)

��

ξ

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

&&
ω

N
N
N
N
N
N
N
N
N
N
N

++

λ

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

V

[φ, φ]

��
π1

//
π0

{A,A}

{xtB,xtB}

commute, where ξ corresponds to (5.4) composed with ψ, and λ corresponds to ν.
By elementary use of adjunctions, the fact that π0 and π1 are jointly mono, and the
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definitions of T(S,E) and γ, it follows that ω lifts to a monoid map T(S,E) → [φ, φ]
making the evident two triangles commute; so φ:A→ xtB is a map of T -algebras
by Proposition 3.6. Hence, the composites of φ:x → A(A,B) with the horizontal
legs of (5.2) are equal. Hence, as remarked above, it follows that γ∗:T(S,E)-Alg→
(S,E)-Alg is an isomorphism.

�

§6. finitary monads as algebraic structure

In this section we show that every finitary W -monad on an lfpW -category A
arises from algebraic structure. Of course, that algebraic structure is far from
unique even in the case that W is the one object bicategory Set, and A = Set:
for instance, there are several presentations of the monad for groups. Nevertheless,
this is still a weak completeness result.

Theorem 6.1. Given a finitary W -monad on lfpA, there exists algebraic structure
(S,E) on A such that (S,E)-Alg ∼= T-Alg.

Proof. By Theorem 5.5, it suffices to show that for any finitary W -monad T , there
is a coequalizer in Monoids W-Cat (Af ,A) of the form

F (E)
//τ1

//
τ2

F (S) // TZ.

Observe that for any T ∈Monoids W-Cat (Af ,A), if η, ε:F a U , then

FUFU(T )
//FUεT

//
εFU(T )

FU(T ) //εT
T

is a U-split coequalizer diagram. So if we can show that U reflects the coequalizers
of U-split coequalizer pairs, then (U(T ), UFU(T )) provides algebraic structure as
desired.

Accordingly, suppose that

P
//τ1

//
τ2

Q //γ
T (6.1)

is any U-split coequalizer diagram in MonoidsW-Cat (Af ,A). Since colimits in
W-Cat (Af ,A) are given pointwise, (6.1) is a coequalizer in W-Cat (Af ,A). So
given a monoid map ω:Q → V such that ω · τ1 = ω · τ2, there exists a unique
W -natural transformation λ:T → V such that λ · γ = ω. We must show that λ is
a monoid map.

Since γ and ω preserve the unit of Q, it is immediate that λ preserves the
unit of T . In order to show that λ preserves composition, it suffices to show that
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γ ◦ γ:Q ◦ Q → T ◦ T is epi in W-Cat (Af ,A), where ◦ is the monoidal struc-
ture on W-Cat (Af ,A). The map γ ◦ γ is given explicitly, using the equivalence
Z∗ aW-Cat(Z, 1): W-Catf (A,A)→W-Cat (Af ,A) by

Z∗(Q)Q //Z∗(Q)γ
Z∗(Q)T //(Z∗γ)T

Z∗(T )T.

Since the coequalizer

UP
//

Uτ1

//
Uτ2

UQ //Uγ
UT

is split, γ is a pointwise retraction. So Z∗(Q)γ is a pointwise retraction: given
c ∈ Afu, the component of Z∗(Q)γ at c is the arrow Z∗(Q)γc in Au. Hence Z∗(Q)γ
is epi. Since γ is epi in W-Cat (Af ,A) and Z∗ aW-Cat (Z, 1) is an equivalence, it
follows that Z∗γ is epi in W-Catf (A,A), hence pointwise epi. So (Z∗γ)T is epi.
Hence the composite γ ◦ γ is epi, so (6.1) is a coequalizer as required.
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