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Abstract

In this paper we describe a new method for proving the polynomial-time convergence
of an algorithm for sampling (almost) uniformly at random from a convex body in
high dimension. Previous approaches have been based on estimating conductance via
isoperimetric inequalities. We show that a conceptually simpler coupling argument
can be used to give a similar result.

1 Introduction

Dyer, Frieze and Kannan [7] gave the first fully polynomial randomized approximation
scheme for approximating the volume of a convex body in Rn, for large n. The algorithm
was based on a reduction to sampling uniformly at random in such a body. The necessary
sampling was achieved, to close enough approximation, by simulating a polynomial number
of steps of a random walk in the body.

The approach of [7] to proving “rapid mixing” of the random walk was to estimate the
conductance [22]. (This methodology was previously used in [13] to prove rapid convergence
of an edge-matching random walk proposed in [4].) Conductance estimation requires some
form of isoperimetric inequality. In [7] the appropriate inequality was geometric in origin.
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The result of [7] has been dramatically improved in a sequence of papers. For example,
see [2, 6, 18, 8, 19, 16, 15] and [14] for a recent survey. These papers have introduced
ideas which are important in their own right, for example new isoperimetric inequalities.
We exploit some of these ideas here, specifically the idea of using a surrogate log-concave
distribution, and the use of a “Metropolised” rotationally symmetric random walk. These
techniques were introduced in [2, 19]. However, while these advances have been made, all
approaches to the problem have essentially similarities to [7].

Here we explore a different approach, coupling, which previously seemed difficult to
apply to this problem. We show that, by viewing the problem from the correct perspective,
it is in fact rather easy to show polynomial convergence to the uniform distribution of a
certain random walk. To achieve this, we first transform the uniform sampling problem to
that of generating a random point from the log-concave distribution of [19]. Then we apply
our coupling arguments to a suitably chosen random walk for the transformed problem.

The most important application of the sampling algorithm is to the above-mentioned
volume computation problem. We do not consider this here, but refer the interested reader
to the papers already cited. The best time bound currently known is given in [15].

Our analysis contains many trade-offs between constants. We do not attempt to make
these choices “optimally”, and no doubt our estimates can be improved upon. Rather, for
ease of exposition, we employ a single constant c which must be chosen large enough for
various inequalities to hold.

Similarly, we do not address issues of precision in computation. While there is no
essential difficulty here, to do so introduces a level of tedious detail which we prefer to
avoid. We generally assume that computations can be carried out to the required precision,
and measure the complexity of the algorithm simply by the number of steps of the random
walk.

The plan of the paper is as follows. In section 2 we give the necessary backgound,
and some initial estimates. In section 3 we analyse the random walk using a coupling
argument. In section 4 we describe some improvements, and finally in section 5 we discuss
the relationship of our work to the literature cited above.

2 Background and preliminaries

2.1 Convex bodies and gauge functions

Let K ⊆ Rn be a convex body with 0 ∈ intK and let ∂K be its boundary. We will
assume that K is well-rounded, i.e. for some “small” R, B ⊆ K ⊆ RB where B is the
unit ball in Rn. A polynomial-time computation will yield R = O(n3/2) [10] or, for almost-
uniform generation purposes R = O(n) [19]. By a recent result of Kannan, Lovász and
Simonovits [16], we may even achieve R = O(n1/2). However, the algorithm producing
R = O(n1/2) requires generating almost uniform points in K, so here we assume only
R = O(n).

We define the gauge function of K by fK(x) = inft≥0{x ∈ tK}, and an associated
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density function1

FK(x) = e−fK (x) (x ∈ Rn).

It is well known that fK is convex and hence FK is log-concave. Note that K ⊆ L implies
FK ≤ FL pointwise. Also fB(x) = ‖x‖, so if K is well rounded, we have

‖x‖
R
≤ fK(x) ≤ ‖x‖. (1)

Note that, since fK is convex, it possesses at least one subgradient ∇(x) at each point x.
Then, for all y ∈ Rn and any subgradient ∇ at x,

fK(y) ≥ fK(x) +∇.(y − x). (2)

It is also easy to show that, for any v ∈ ∂B, the directional derivative δv(x), of fK at x in
direction v, satisfies

|δv(x)| ≤ 1. (3)

2.2 Sampling equivalence

We will show that sampling uniformly from K is equivalent to sampling with density FK .
Specifically, we show that there is a measure-preserving bijection between Rn and intK.

Let Γn the distribution with probability density e−ttn−1/(n − 1)!. We will assume this
to be defined for non-integer as well as integer n by using the obvious integral for (n− 1)!
in such cases. Let γn(t) =

∫ t
0 e
−uun−1 du/(n − 1)! be its distribution function. Let Pn be

the distribution on [0, 1] with probability density ntn−1 and distribution function tn.
Let us write w(x) = ‖x‖ and b(x) = x/‖x‖. A point x ∈ Rn \ {0} can be represented

uniquely by the polar coordinates (w, b), where b ∈ ∂B and w ∈ (0,∞). Let ξ be the
uniform probability measure2 on ∂B. Then the volume element in Rn is proportional to
wn−1dwdξ.

Let h(b) = 1/fK(b) be the distance from the origin to ∂K in the direction b. Note that
fK(x) = w/h. Then the uniform probability measure µ1 on K has element

dµ1 = C1w
n−1dwdξ (b ∈ ∂B,w ∈ (0, h]),

where clearly C1 = 1/Vol(K). Similarly, the measure µ2 determined by FK has element

dµ2 = C2e
−w/hwn−1dwdξ (b ∈ ∂B,w ∈ (0,∞)).

Integrating with respect to w, the marginal measures ξ1, ξ2 on ∂B induced by µ1 and µ2

have elements (C1/n)hndξ and C2(n− 1)!hndξ. Comparing, we see that ξ1 = ξ2 = ξ′ (say),
and hence in particular C2 = 1/n! Vol(K) (c.f. [19]).

1We will use the term density when the integral is not necessarily 1. If we wish to insist on integral 1,
we will write probability density.

2Measure will always mean probability measure.

3



It follows further that, given a point from µ2 we can generate a point from µ1. (The
reverse is also true, but we will not elaborate the details.) Note, from the expressions for
dµ1 and dµ2, that the measures ν1, ν2 of f(x) = w/h are Pn and Γn respectively. If z is a
random point from ν2, then γn(z)1/n is a point from ν1.

Thus, if we have a point x2 from µ2, we can construct a point x1 from µ1 as follows. If
x2 = 0 then x1 = 0. Otherwise, let b = x2/‖x2‖ ∈ ∂B be drawn from ξ′. Also, in obvious
notation, w1 = hγn(w2/h)1/n. Then x1 = w1b. Let us write x1 = χ(x2). Then clearly χ is
a bijection between Rn and intK.

In practice, we can only sample approximately from FK. We will take variation distance
as the measure of distributional approximation. Let µ1, µ2 be two measures defined on the
Borel sets in Rn. (All measures we employ satisfy this assumption, and henceforward we
presume the necessary measurability qualification on sets.) Then their variation distance
is defined by

dTV(µ1, µ2) = max
A
{µ1(A)− µ2(A)},

where A ⊆ Rn is a Borel set. See, for example, Appendix A.1 of [3] for more information.
Variation distance is a metric on measures, but we will extend the notation to random

variables. If X, Y are random variables, we will write dTV(X, Y ) for the variation distance
between the measures P(X ∈ ·), P(Y ∈ ·) associated with X and Y ,

Thus, let us denote the approximating measure to µ2 by µ̂2, and let µ̂1 be the resulting
approximation to µ1. Then, since χ is a bijection, we have from the definition of total
variation distance that

dTV(µ1, µ̂1) = dTV(µ2, µ̂2).

Thus the transformation preserves the quality of the approximation.
Note that, in view of this transformation, we can regard a random walk on Rn conver-

ging to the FK distribution as a random walk on K converging to the uniform distribution.
Thus our development below could be described equivalently in terms of K rather than
FK . For example, we define below a distance metric on Rn to gauge the convergence of
the random walk for FK . The bijection χ then induces a metric on K. We could equally
well work with this as a measure for convergence of the random walk in K.

In practice, it is not necessary to determinew1 = hγn(w2/h)1/n. We can merely generate
an independent uniform [0, 1] variable U and let w1 = U1/n. The additional generator ν̂1,
approximating ν1, introduces further error. We have to check that the effect of this on
the overall approximation is small. Letting µ̃1 be the resulting approximation to µ1, this
follows from

Lemma 1
dTV(µ1, µ̃1) ≤ dTV(µ2, µ̂2) + dTV(ν1, ν̂1).

Proof: Let ξ̂′ be the measure resulting from projecting µ̂2 onto ∂B. Then it is clear from
the definition of variation distance that

dTV(ξ′, ξ̂′) ≤ dTV(µ2, µ̂2).
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Let η = dTV(ν1, ν̂1). Now, for any A ⊆ Rn and given b ∈ ∂B, let Ab = A ∩ (0, h)b. We
have µ1(A) =

∫
∂B
ν1(Ab)dξ′ and

µ̂1(A) =
∫
∂B

ν̂1(Ab)dξ̂′ ≤
∫
∂B

(ν1(Ab) + η)dξ̂′.

Hence
µ̂1(A)− µ1(A) ≤

∫
∂B

ν1(Ab)(dξ̂′ − dξ′) + η ≤
∫
B′

(dξ̂′ − dξ′) + η,

where B′ = {b ∈ ∂B : dξ̂′ ≥ dξ′}. But∫
B′

(dξ̂′ − dξ′) = ξ̂′(B′)− ξ′(B′) ≤ dTV(ξ′, ξ̂′),

from which the Lemma follows. 2

Thus, if we can generate approximately from FK, we can sample almost uniformly from
K.

2.3 Modifying FK

We need to be able to sample from the log-concave distribution defined by FK . It will be
easier to show that we can do this for a slightly modified function, which differs from FK
only at “large” distances from the origin. We will first show that effect on the sampling
distribution will be negligible.

Let ρ = cnR, for some constant c ≥ 2. For convenience, we will assume without loss
that R ≥ c4. Then, if X has our target distribution, we have using (1),

P(‖X‖ ≥ ρ) = P(‖X‖/R ≥ cn) ≤ P(fK(X) ≥ cn)

But we know from section 2.2 that fK(X) has the Γn density. Therefore, using Stirling’s
approximation and Lemma 2 of section 2.7 below, we have

P(‖X‖ ≥ ρ) ≤ 2e−cn(cn)n−1/(n− 1)! < (c/ec−1)n. (4)

Thus, by suitable choice of c, ‖X‖ < ρ with very high probability.
In view of this, we may replace fK(x) outside ρB by a larger function without signific-

antly altering the distribution determined by fK for any polynomial-time sampling scheme.
We will choose

f ′K(x) = max{fK(x), 2(‖x‖ − ρ)}.
Note that this is convex. If ‖x‖ ≤ ρ, then f ′K(x) = fK(x), and if ‖x‖ ≥ 2ρ, we have
f ′K(x) = 2(‖x‖ − ρ) using (1) . For our purposes below, the advantage of this function is
that it behaves “essentially” like ‖x‖ at large distances from the origin. Note that f ′K has
(to within the required approximations) the same properties as fK , except that (3) must
be modified to |δv(x)| ≤ 2.

Henceforward we will simply write f for f ′K and F = e−f , assuming only a condition of
the form

|δv(x)| ≤ λ, (5)
for some given constant λ ≥ 1.
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2.4 Metropolis random walks

The following is sufficient for our purpose, but can be generalised. (See, for example, [14,
19].) Consider a lazy (discrete time, continuous space) Markov random walk Xt on Rn.
Denote the (nonnegative) transition density by p(x, x′) where, for each x ∈ Rn, we suppose
p(x, x′) > 0 in some neighbourhood of x and

∫
Rn
p(x, x′) dx′ ≤ 1. Then we assume P(Xt+1 ∈

x′+ dx′ | Xt = x) = p(x, x′)dx′ for x 6= x′, and P(Xt+1 = x | Xt = x) = 1−
∫
Rn
p(x, x′) dx′.

(Here dx′ is an infinitesimal neighbourhood of x′, and we abuse notation by employing the
same symbol for its volume.)

The random walk is time-reversible if there exists a probability density π(x) on Rn such
that the conditions

π(x)p(x, x′) = π(x′)p(x′, x) (for all x, x′ ∈ Rn with x 6= x′),

are satisfied. Then it follows that π(x) is the asymptotic density of Xt. These conditions
are called detailed balance.

The random walks in which we are interested arise in the following way. We have a
function q(x, x′) : Rn × Rn → R, symmetric in x and x′. We further assume q(x, ·) is a
probability density for each x, positive in some neighbourhood of x. Suppose F : Rn → R is
a log-concave function, integrable on Rn, such that the derivative of f = − lnF is bounded
in absolute value by λ in all directions at every point. Let

M(x) = e−λ‖x‖, and A(x, x′) =
√
M(x′ − x)F (x′)/F (x).

Clearly 0 ≤ A(x, x′) ≤ 1 everywhere, since |f(x′)−f(x)| ≤ λ‖x′−x‖ is a consequence of the
derivative condition. Thus A(x, x′) is a probability. Also A(x, x′)/A(x′, x) = F (x′)/F (x),
since M(x′ − x) = M(x − x′). Now define a lazy random walk as above by p(x, x′) =
A(x, x′)q(x, x′). Clearly this satisfies

F (x)p(x, x′) = F (x′)p(x′, x) (x, x′ ∈ Rn),

and hence the asymptotic density of the random walk is π(x) = F (x)/
∫
F (x). This is

a modification of the usual Metropolis random walk (see [14]), but is convenient for our
proofs. This random walk is easily implemented as follows. If Xt = x, we choose a trial
point x′ with density q(x, ·). We accept this point with probability A(x, x′). If we accept
the point, Xt+1 = x′, otherwise Xt+1 = x. We will let A(x, x′) be the 0-1 indicator variable
of the acceptance event, so P(A(x, x′) = 1) = A(x, x′). We will denote the complementary
quantities (1−A), (1−A) by Ā, Ā respectively.

2.5 The random walk

Given a log-concave function of the type discussed at the end of section 2.4, we define
a random walk as in section 2.4. We choose q(x, x′) to be Gaussian. Let φ be the unit
Normal density on R, and Gn be the standard Normal density on Rn, i.e.

φ(x) = e−x
2/2/
√

2π and Gn(x) =
n∏
i=1

φ(xi).
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Let U be a random variable with density Gn. We take q(x, x′) so that x′ = x + σU , for
some constant σ, to be determined. Then the trial step is to x′, and it is accepted with
probability A(x, x′).

In fact, for convenience, we will modify this random walk slightly. Let r = σ
√
n. Then,

for large n, r is the approximate step size for Xt. Now, with c as in (4), let us redefine the
acceptance multiplier M(x) to be

M(x) = exp (−λmax {cr, ‖x‖}) .

Now P(‖x′ − x‖ > cr) = P(‖U‖2 > c2n). But it is well known that 1
2‖U‖2 has the Γn/2

density. Hence, using Lemma 2 and Stirling’s approximation,

P(‖x′ − x‖ > cr) ≤ (c2/ec
2−1)n/2 ≤ (c/ec−1)n.

Thus, with a suitable choice of c, we may assume that with very high probability there is
no step of size greater than cr during any polynomial number of steps of the random walk.
Thus M(x) = exp(−λcr), where henceforth we will assume without loss that λr ≤ c−4. In
section 4.2 below, we will describe a further modification to M(x) which asymptotically
improves the number of steps required, but for ease of exposition here we use the expression
above.

2.6 Coupling

The proof technique we use below is coupling, and has been employed in similar contexts
by Jerrum [12] and Matthews [20]. An overview of the use of couplings for Markov chains
can be found, for example, in [1] and [5]. Details of the extension of the coupling method
to more general processes can be found in [9], and [23].

To analyse the convergence rate of our random walk Xt to its stationary distribution,
we consider a second random walk, Yt. The “Coupling Lemma” (which is very easy to
prove) then states that

dTV(Xt, Yt) ≤ P(Xt 6= Yt).

This Lemma is usually attributed to Aldous and holds for any (not necessarily Markovian)
processes Xt, Yt. In order to apply it to convergence of Markov processes, we will require
that marginally, Xt and Yt are both faithful copies of the process and that Y0 is chosen
randomly from the stationary distribution (and hence Yt has this property throughout).

The Coupling Lemma will give us an upper bound on the variation distance of the
random walk from its stationary distribution. To get good bounds, however, we have to
construct the joint process (Xt, Yt) so that we quickly get Xt = Yt. In order to achieve
this here, we use two different couplings depending on ‖Xt − Yt‖. The first encourages
the two random walks to come closer to each other when they are distant, and the second
encourages the random walks to meet if they are sufficiently close.

We wish to have dTV(Xt, Yt) ≤ ε for arbitrary ε. However, it is sufficient to have τ , of
size polynomial in n, such that P(Xτ 6= Yτ ) ≤ 1

2 . Then we may regard t as divided into
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blocks of length τ , each constituting a coupling “trial” with “success” probability at least
1
2 . The blocks are independent. and hence if k = dlg(1/ε)e,

dTV(Xkτ , Ykτ ) ≤ P(Xkτ 6= Ykτ ) ≤ (1
2)k ≤ ε.

Thus we can guarantee variation distance ε by increasing the execution time only by a
factor O(log(1/ε)). Therefore, we aim below simply to attain a probability 1

2 of coupling.

2.7 Technical Results

We collect here some simple lemmas which are used in the analysis of section 3. All but
the most tenacious reader may wish to skip this material, at least on first reading. We first
give the proof of a result used in section 2.3.

Lemma 2 Let Z have the Γk+1 density, and let µ ≥ 2k, then

e−µµk/k! ≤ P(Z ≥ µ) ≤ 2e−µµk/k!

Proof: The left hand inequality is easily proved by proved by parts integration. Also,
since µ ≥ 2k,

P(Z ≥ µ) =
1
k!

∫ ∞
µ

e−ttkdt

≤ 1
k!
e−µ/2µk

∫ ∞
µ

e−t/2dt

= 2e−µµk/k!

2

We now state a very simple bound on lnn, which we use repeatedly without comment.
It may be proved by elementary calculus.

Lemma 3 If α > 0, then lnn/nα ≤ 1/(eα).

We next prove two simple approximation results.

Lemma 4 Let a ≥ 1
4 , and b > 0. Then

√
a+ b ≤

√
a+ b.

Proof: This follows from a + b ≤ a + 2
√
a b ≤ (

√
a + b)2, on taking square roots. We

require only 2
√
a ≥ 1, i.e. a ≥ 1

4 . 2

Corollary 1 Let a ≥ 1
4 , and b > 0. Then 4

√
a+ b ≤ 4

√
a+ b.

Proof: Applying Lemma 4 twice

4
√
a+ b ≤

√√
a+ b ≤ 4

√
a+ b,

where the first application is valid for a ≥ 1
4 , and the second for a ≥ 1

16 . 2
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Lemma 5 If |z| ≤ 1
2 , then

√
1− z ≤ 1− 1

2z −
1
10z

2.

Proof: Since 1− 1
2z −

1
10z

2 is positive for |z| ≤ 1, we may obtain an equivalent inequality
by squaring both sides. Simplifying this gives z2 + 10z + 5 ≥ 0. This is satisfied for all
|z| ≤ 1

2 . 2

We now prove a simple bound on the tail of the Normal distribution.

Lemma 6 Let v ∼ N(0, σ2) and ` = cσ lnn, then P(|v| > `) < n−c
2 lnn/2.

Proof:

P(|v| > `) =
2
σ

∫ ∞
`

φ(t/σ) dt ≤ 2
σ`

∫ ∞
`

tφ(t/σ) dt

=
2σ
`
φ(`/σ) < n−c

2 lnn/2.

2

Next we prove two easy results to deal with mild conditioning in the analysis.

Lemma 7 Let Z be a real valued random variable, symmetrically distributed about the
origin. For t ≥ 0, let Et be the event |Z| ≤ t. Then if f(z) is an

(i) odd function, E (f(Z)|Et) = 0;

(ii) even convex function, E (f(Z)|Et) ≤ E (f(Z)).

Proof: The first statement follows by symmetry, the second by noting that f(z1) ≤ f(z2)
for |z1| ≤ |z2|. 2

Lemma 8 Let Z ∼ N(0, σ2), and for t ≥ 3σ let Et be the event |Z| ≤ t, then E (Z2|Et) ≥
0.97σ2.

Proof: It clearly suffices to prove the Lemma for σ = 1. Then E (Z2|Et) = 1−tφ(t)/(Φ(t)−
1
2). This expression is increasing for all t > 0, and putting t = 3 gives (1−0.0133/0.4987) >
0.97. 2

Finally we give a bound on a simple function.

Lemma 9 For z < 1
10 , ze−z is increasing and bounded above by z − 19

20z
2.

Proof: The first claim may be proved by elementary calculus. If z ≤ 0, the second follows
from e|z| ≥ 1+ |z|. If z > 0, note that the series for e−z is alternating with deceasing terms
for z < 1, and hence

e−z < 1− z + 1
2z

2 = 1− z(1− 1
2z) ≤ 1− 19

20z,

from which the result follows. 2
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3 Analysis of the random walk

We assume n ≥ 2. We present the coupling analysis in three sections. In 3.1 we prove
boundedness, in 3.2 we show approximate coupling, and in 3.3 we show that exact coupling
will eventually occur.

3.1 Boundedness of the walk

It will be necessary for us to be sure that with high probability the random walks do not
stray too far from the origin. For Yt (started in the stationary distribution) this can be
established easily by a calculation like that leading to (4). However for Xt (started at
an arbitrary point) it is not so straightforward. To bound this we consider the induced
random walk Ξt = ‖Xt‖. We assume only that Ξ0 < 2ρ, so in fact the analysis applies to
Yt also.

Let us call any set of consecutive values of t for which Ξt > 2ρ an excursion. We wish
to show that any excursion does not include values of Ξt > 3ρ. Suppose Xt = x with
Ξt = ξ ≥ 2ρ, and let s = Ξt+1 − Ξt. Then we know that f(x) = 2(ξ − ρ), and hence
we will assume λ ≥ 2 for the remainder of this section. (The argument may be modified,
with a weaker conclusion, for any positive λ.) Also, if x′ = x+ σU is the trial point as in
section 2.5, then letting ξ′ = ‖x′‖ and s′ = ξ′ − ξ, we have F (x′)/F (x) = e−2s′.

Now write u = x/ξ, and let v = σU.u and w =
√
σ2‖U‖2 − v2. Then

ξ′ =
√

(ξ + v)2 + w2 = ξ
√

(1 + v/ξ)2 + (w/ξ)2.

From Lemma 6 we may assume that |v| ≤ ` = cσ lnn ≤ 1
21 . Denote the event |v| ≤ ` by

E1, and the event w < 2cr/3 by E2. Let E = E1 ∩ E2. Then with high probability, E occurs
at every step for polynomially many steps, provided c is large enough. Note that E implies
σ‖U‖ ≤ cr

√
4/9 + (lnn)2/n < cr. Thus, if E occurs, the acceptance indicator A has

P(A = 1) = A =
√
e−λcre−2s′ = e−(c′+s′),

where c′ = λcr/2 ≤ 1
16 .

Assuming the same event, v/ξ ≥ −`/2cnR = −r lnn/2Rn3/2 ≥ −1/4000. Hence we
may apply Lemma 4 to give

ξ′ ≤ ξ(1 + v/ξ + (w/ξ)2) = ξ + v + w2/ξ ≤ ξ + v + ε,

for some constant ε, where 0 ≤ ε < 4(cr)2/18cnR ≤ σ2/144. Also it follows that ξ′ ≥ ξ+v,
and hence

v ≤ s′ ≤ v + ε.

Since ε < `/1000, we have |s| ≤ |s′| ≤ `+ ε < 1.001` ≤ 1
20 . Now, using Lemmas 7, 8, and 9,

E (s|E) = E
(
s′e−(c′+s′)|E

)
10



≤ e−c
′
E
(
(v + ε)e−(v+ε)|E1

)
≤ e−c

′
E
(
(v + ε)− 0.95(v + ε)2|E1

)
= e−c

′
E
(
ε(1− 0.95ε) + (1− 1.9ε)v − 0.95v2|E1

)
≤ e−c

′
(ε− 0.92σ2)

≤ −0.85σ2,

using ε ≤ σ2/144 and c′ ≤ 1/16. Hence |Ξt+1 − Ξt| < 1.001 cσ lnn and E (Ξt+1 − Ξt) ≤
−0.85σ2. Thus, suppose the excursion starts at t = a + 1, so Ξa ≤ 2ρ. Let k0 =
bc4(lnn)4/2.1σ2c. Then, since the process Ξt is Markovian, Hoeffding’s inequality for
Martingales [11] (see also [21]) gives,

P(∃k, 1 ≤ k ≤ k0 : Ξa+k − Ξa + 0.85σ2k > 0.4c4(lnn)4) ≤ n−c
2 lnn/6. (6)

However, (6) implies
P(Ξa+k0 − Ξa > 0) ≤ n−c

2 lnn/6.

Thus, with high probability, the excursion must have already ended at step (a+ k0). For
k < k0, (6) implies

P(∃k : Ξa+k > 2ρ + 0.4c4(lnn)4) ≤ n−c2 lnn/6.

But 0.4c4(lnn)4 < 2c4n ≤ 2nR ≤ ρ. Thus each excursion lies entirely in the ball 3ρB,
except with probability n−c

2 lnn/3. Since the algorithm can only perform a polynomial
number of excursions, we can choose c so that 3ρB includes the whole walk with high
probability.

3.2 Bringing the random walks close

We have two random walks Xt, Yt as in section 2.5, with Y0 chosen randomly from the
equilibrium density π. We will couple them in the following way. Suppose σU is the trial
step. Let u1, u2, . . . , un be an orthonormal basis for Rn such that u1 = (Yt−Xt)/‖Yt−Xt‖.
Then U =

∑n
i=1 Uiui, where Ui has the density G1. Let us write U ′ =

∑n
i=2 Uiui, so U ′ has

the density Gn−1. Then the trial points are generated by

X ′t = Xt + U1u1 + U ′, Y ′t = Yt − U1u1 + U ′.

We accept the trial points independently with probabilities A(Xt, X ′t), A(Yt, Y ′t ) respect-
ively. If we accept X ′t, then Xt+1 = X ′t, otherwise Xt+1 = Xt and similarly for Y ′t . Thus
the two random walks are coupled so that, if the two steps are accepted, their steps will
be reflections of each other in the hyperplane of points equidistant from Xt, and Yt. This
has similarities to the coupling given in [17].

We will show that, with this coupling, Xt, Yt have a tendency to converge. Specifically,
we show that, for some metric d on Rn, E (d(Xt, Yt)) decreases. The metric we choose
is the square-root of Euclidean distance, d(Xt, Yt) =

√
‖Xt − Yt‖. The rationale for this
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metric is to downweight larger values of the “neutral” Euclidean distance. We will write
dt = d(Xt, Yt), and let D denote d2

t = ‖Yt −Xt‖.
In notation similar to that in 3.1, let us write v = U1, and w = ‖U ′‖. Also, abbreviating

the indicator variables for acceptance to AX, AY , let

I = AX +AY = 1 +AXAY − ĀXĀY
J = |AX −AY | = |ĀX − ĀY |

where I ∈ {0, 1, 2} and J ∈ {0, 1}. Then it follows that

dt+1 = 4
√

(d2
t − vI)2 + w2J.

We will bound E (dt+1|dt) as a function of dt.
As in section 3.1, denote the event |v| ≤ cσ lnn by E1, the event w < 2cr/3 by E2, and

E1 ∩ E2 by E. Then, with high probability, E occurs at every step for sufficiently many
steps, and no step size is larger than cr. Now E implies

D− vI ≥ D− 2cσ lnn ≥ 1
2D,

provided we do not have the event dt < 2
√
cσ lnn. Let us call this event C. We will say the

walks are “close” when C occurs. Now if C does not occur, using Corollary 1 and Lemma 5,

dt+1/dt = 4
√

(1− vI/D)2 + w2J/D2.

≤
√

1− vI/D + w2J/D2

≤ 1− 1
2vI/D− v

2I2/10D2 + w2J/D2 (7)

We have to bound the terms on the right side of (7) conditioned by E.
Note that if E occurs then, for AX, AY ,

e−λcr ≤ A ≤ 1, 0 ≤ Ā ≤ 1− e−cλr ≤ λcr.

Thus, using Lemmas 7 and 8,

E
(
w2J |E

)
≤ E

(
w2(ĀX + ĀY )|E

)
≤ 2λcrE

(
w2|E2

)
≤ 2λcrE

(
w2) < 2λcr3, (8)

and, providing c lnn ≥ 3,

E
(
v2I2|E

)
= E

(
v2(AX +AY + 2AXAY )|E

)
≥ 2e−cλr(1 + e−cλr)E

(
v2|E1

)
> 3r2/n, (9)

since cλr < 1
8 and E (v2|E1) > 0.97σ2.

It remains to consider E (vI). Now, since E (v|E) = E (v|E1), using Lemma 7 we have

E (vI |E) = E
(
v + vAXAY − vĀXĀY |E

)
= E (vAXAY |E)− E

(
vĀXĀY |E

)
,

12



We will bound these two contributions separately. We do this by arguing conditionally on
both E1 and the value of w (given that this satisfies E2). Since the bounds we obtain are
independent of w, we may infer the same bound for conditioning on E. In this respect, for
either AX or AY , the notation A(v) will mean “A considered as a function of v for a given
fixed w”.

Thus let p(v) be the conditional density of v given E, and first consider the second
term. Then

E
(
vĀXĀY |E1, w

)
=
∫ ∞
−∞

vĀX(v)ĀY (v)p(v)dv

=
∫ ∞

0
v(ĀX(v)ĀY (v)− ĀX(−v)ĀY (−v))p(v)dv

= 2
∫ ∞

0

ĀX(v)ĀY (v)− ĀX(−v)ĀY (−v)
2v

v2p(v)dv

= 2
∫ ∞

0

[
d(ĀX(v)ĀY (v))

dv

]
θ

v2p(v)dv,

where −v ≤ θ ≤ v. Note that if ĀX(v)ĀY (v) is not differentiable everywhere we may
consider a suitably close approximant. Now

d(ĀX(v)ĀY (v))
dv

= −
(
ĀX(v)AY (v)

d(lnAY (v))
dv

+ ĀY (v)AX(v)
d(lnAX(v))

dv

)
,

and hence, using the bound on the directional derivative of f ,∣∣∣∣d(ĀX(v)ĀY (v))
dv

∣∣∣∣ ≤ 2λ2cr.

Thus, using Lemma 7,

E
(
vĀXĀY |E1, w

)
≤ 4λ2cr

∫ ∞
0

v2p(v)dv

= 2λ2crE
(
v2|E1

)
≤ 2λ2crσ2 = 2λ2cr3/n. (10)

Now let g(v) =
√
e−λcrF (Xt + U ′ + vu1). Then

g(D − v) =
√
e−λcrF (Xt + U ′ +Du1 − vu1) =

√
e−λcrF (Yt + U ′ − vu1).

Note that g(v) is a log-concave function (of one argument), and

AX(v) =
g(v)√
F (Xt)

, AY (v) =
g(D − v)√
F (Yt)

.
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Therefore, writing C = (F (Xt)F (Yt))−1/2, we have

E (vAXAY |E1, w) =
∫ ∞
−∞

vAX(v)AY (v)p(v)dv

= C

∫ ∞
−∞

vg(v)g(D− v)p(v)dv

= C

∫ ∞
0

(g(v)g(D− v)− g(−v)g(D + v))vp(v)dv,

≥ 0, (11)

since the integrand is non-negative by the log-concavity of g(v). To show this, let t(v) =
− ln g(v), so t(v) is convex. We have now to show that t(v)− t(−v)≤ t(D+ v)− t(D− v).
But this is clear since

t(v)− t(−v) =
∫ v

−v
t′(v)dv, t(D + v)− t(D− v) =

∫ D+v

D−v
t′(v)dv,

for some nondecreasing function t′(v).
We note in passing that it is only to establish (11) that we require log-concavity of F .

All our other estimates simply require suitable “smoothness” of F . On the other hand,
for something like (11) to be true, it appears we need a property close to log-concavity.
It is also the proof of (11) which necessitates our departure from the “usual” Metropolis
process, since we have to factor out the different contributions from the points Xt, Yt.

From (10) and (11) we now have

E (vI |E) ≥ −2λ2cr3/n. (12)

Therefore, putting (8), (9) and (12) into (7), we have

E (dt+1/dt|dt) ≤ 1 +
λ2cr3

nD
− 3r2

10nD2 +
2λcr3

D2

= 1 +
r2

10nD2

(
3− 10λ2crD − 5λcrn

)
≤ 1− r2

10nD2 ,

provided 10λ2crD + 5λcrn ≤ 2. This will be true if 20.1λ2crρ ≤ 1, using R ≥ c4 and the
fact that, with high probablity, D < 4ρ from sections 2.3 and 3.1. Thus let us take

r =
1

20.1cλ2ρ
=

1
20.1c2λ2nR

. (13)

Thus if R = O(n), r = Ω(1/n2). Now, using D < 4ρ,

E (dt+1) ≤ E (dt)
(

1− 1
65000nc2λ4ρ4

)
= E (dt)

(
1− 1

65000n5c6λ4R4

)
. (14)
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The reduction factor is (1 − Ω(1/n9)), assuming R = O(n). Therefore, since d0 = O(n)
and σ = Ω(n−5/2), in O(n9 logn) steps we must either have encountered C or E (dt) ≤
1
10

√
cσ lnn. In the latter case, by Markov’s inequality, P(C̄) ≤ 1

20 . Hence, in a sequence of
O(n9 logn) steps, there is probability at least 19

20 that C holds at some step.

3.3 Making the random walks meet

When C occurs, we switch to a different coupling. Note that Xt, Yt are still relatively far
apart compared to the expected movement in any direction in a single step. Therefore we
choose instead to correlate a sequence of steps in order to have sufficient probability that
Xt = Yt at the end of the sequence.

Thus suppose C occurs at step τ , but C̄ held at (τ−1). Let sX,t = X ′t−Xt, sY,t = Y ′t −Yt
denote the trial steps in the two walks. Let k = d(4c ln n)2e, and

SX =
τ+k−1∑
t=τ

sX,t, QX = Xτ + SX , (15)

and similarly SY , QY . Note that Xτ+k = QX and Yτ+k = QY if all trial steps are accepted
for t = τ, τ + 1, . . . , τ + k − 1.

Now SX, SY have density Gn(x/σ
√
k). We will couple SX , SY . Then sX,t, sY,t are

generated “independently” with density φ(x/σ), subject to the sum condition (15).
As in section 3.2, let u1, u2, . . . , un be a basis such that u1 = (Yτ − Xτ )/D, where

D = ‖Yτ −Xτ‖. Suppose SX = (v, v2, . . . , vn) in this coordinate system, where v, v2, . . . , vn
are independent with probability density ψ(x) proportional to φ(x/σ

√
k). We now take

SY = (−v′, v2, . . . , vn), where v′ will be defined in terms of v. Note that we have QX = QY

if and only if v′ = D − v. Thus, for given v, define v′ by

v′ =
{
D − v, with probability min{1, ψ(D− v)/ψ(v)},
v, otherwise.

Intuitively, we are reflecting the tail of the density ψ(v) about the point v = 1
2D. Then v′

has probability density function

ψ(D − v′) min{1, ψ(v′)/ψ(D − v′)}+ ψ(v′)(1−min{1, ψ(D − v′)/ψ(v′)}) = ψ(v′).

Hence, since ψ(v′) = ψ(−v′), −v′ has density ψ, as required. Also

P(QX = QY ) = P(v′ = D − v) =
∫ ∞
−∞

min{ψ(D− v), ψ(v)}dv

= 2
∫ −D/2
−∞

ψ(v)dv

= 2Φ
(
−D

2σ
√
k

)
≥ 2Φ(−1

2) > 0.616.
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We must now consider the probability that all steps accept. To maximise this, we choose to
make the random variables AX, AY dependent at each step. Their values are generated as
follows. Let w be a random variable, independent for each step, with distribution uniform
on [0, 1]. Then AX = 1 if w ≥ AX, otherwise AX = 0. The value of AY is chosen similarly,
using the same w. The advantage of this is that now

P(AX = AY = 1) = min{AX , AY } ≥ e−cλr.

Now if G is the event that all trial steps are accepted in both walks for t = τ, τ + 1, . . . , τ +
k − 1, we have

P(G) ≥ (e−cλr)k ≥ e−1/18 > 0.945,

using the value of r given in (13). Hence we have

P(Xτ+k = Yτ+k) = P(QX = QY )P(G) > 0.616× 0.945 > 0.582.

The number of steps, O((log n)2), is asymptotically negligible compared with the num-
ber required in section 3.2 to achieve P(C) > 19

20 . Hence, after O(n5R4 logn) steps, the
probability that the walks have failed to couple is at most 1

20 + 19
20(1− 0.582) < 0.45.

The other possible sources of failure to couple, for example that some step is too large,
can be made very small by appropriate choice of c. We may arrange that their combined
probability is less than 0.05 for all n. Hence, the probability of coupling will be at least 1

2 ,
as required.

This completes the analysis of the algorithm. Putting R = O(n), our “mixing time” is
O∗(n9), where O∗(·) is the notation which hides factors of logn. This is larger than is known
to be possible [15]. Note that the mixing time is O∗(nρ2/r2) = O∗((ρ/σ)2), By comparison
with one-dimensional random walk, this is of the optimal form. The problem is that the
step size, r, is too small. We attempt to offset this difficulty in the next section.

4 Improvements

In this section we describe two refinements which reduce the required number of steps of
the random walk from O∗(n9) to O∗(n6.5).

4.1 A faster simulation of the random walk

An idea similar to that used to couple the walks in section 3.3 can be employed to simulate
the random walk with fewer actual steps. A difficulty with our walk is that r = Θ(1/ρ)
is smaller than values known to be achievable [19]. However, the fact that our trial steps
are so small means that almost all will be accept, and hence we may simulate many steps
simultaneously in a larger “step”.

Suppose at step t, we attempt to perform k steps, where k is a power of 2. We will call
this a k-step. Denote the current k-step by S. Let S be the vector sum of the k trial steps
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in S, as in section 3.3. We generate the components of S as independent N(0, kσ2). If a
is the probability that all these trial steps are accepted, then we have

a =
√
e−kλcrF (Xt + S)/F (Xt),

since all other terms cancel. Thus we accept S with probability a. If we accept, then we
update t to t + k and consider the next k-step.

If however, with probability (1− a) ≤ kλcr, we do not accept S, we know that at least
one constituent step was rejected. We will say S rejects. We subdivide S into two 1

2k-steps
S1, S2 (in that order). We generate the corresponding vector sums S1, S2 subject to the
condition S1 + S2 = S. Suppose s1 is the ith component of S1, and s the ith component
of S. Then s1 has conditional density

(e−s12/kσ2
/
√
πkσ2)(e−(s−s1)2/kσ2

/
√
πkσ2)

e−s2/2kσ2/
√

2πkσ2
=

1√
1
2πkσ

2
e−2(s1−s/2)2/kσ2

.

Thus s1 ∼ N(1
2s,

1
4kσ

2). Hence we can generate S1, S2. Now let

a1 =
√
e−kλcr/2F (Xt + S1)/F (Xt)

be the unconditioned acceptance probability for S1. We must condition on the event that
S rejects. Let q be the conditional probability that S1 does not reject. Then clearly
q = (a1 − a)/(1− a). We use q to decide (by random generation) if S1 rejects. If not, we
can set Xt+k/2 = Xt +S1 and consider S2 (with vector sum S2), conditional that it rejects.
The base case of the recursion, k = 1, is clearly a (single) step.

If S1 rejects, then we (recursively) halve it conditional on this event. Eventually, using
this recursion, we compute Xt+k/2. Then we consider S2, with vector sum S2, now as an
unconditioned 1

2k-step. Hence we ultimately compute Xt+k.
To analyse this procedure, let tu(k) denote the expected total number of k′-step s which

are accepted within S, for all k′ ≤ k. This effectively determines the execution time for
S. Let tc(k) be this number conditional that S rejects. For notational convenience, let
β = λcr. Then, from the above,

tu(k) ≤ a+ (1− a)tc(k) ≤ 1 + kβtc(k)
tc(k) ≤ q(1 + tc(1

2k)) + (1− q)(tc(1
2k) + tu(1

2k)) ≤ 1 + tc(1
2k) + tu(1

2k).

Hence we have
tc(k) ≤ 2 + (1 + kβ)tc(1

2k) ≤ 2 + ekβtc(1
2k). (16)

Now (16) has solution tc(k) ≤ 2e2kβ lg k, as is easily shown by induction. (Note tc(1) = 0.)
Hence

tu(k) ≤ 1 + 2e2kβkβ lg k.
Let k = 2blg(1/β)c. Note that k ≤ 1/β and k = Ω(1/r). Then

tu(k) ≤ 1 + 2e2 lg(1/β) = O(log(1/r)).

Thus we trade a factor 1/r in the number of steps for log(1/r). This reduces the number
from O∗(n9) to O∗(n7).
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4.2 An even faster simulation

We use the factor M = e−λcr in the calculation of A to ensure that the result is at most
1. However this factor is smaller than necessary. From the subgradient inequality (2), we
have

f(X ′t) ≥ f(Xt) +∇.(X ′t −Xt),

where ∇ is a subgradient at Xt. Now ∇.(X ′t −Xt) ∼ N(0, σ2‖∇‖2) and ‖∇‖ ≤ λ. Thus,
using Lemma 6,

P(∇.(X ′t −Xt) > cλr lnn/
√
n) < n−c

2 lnn/2.

Hence F (X ′t)/F (Xt) ≤ e−cλr lnn/
√
n = M ′, say, with high probability. Let us write A′ =√

M ′F (X ′t)/F (Xt), A0 =
√
M/M ′, and note that A0 >

3
4 is a constant. Then the accept-

ance probability A = A0A′. We write A = A0A′ for the corresponding indicator variables.
Hence we may simulate a step of the original algorithm by first choosing A0 and generating
A′ only if A0 = 1.

Now consider the algorithm which uses only A′. To each step of the modified algorithm
there will be a geometrically distributed number of steps of the original algorithm with
expectation 1/A0. However, observe that it does not matter if we stop at a random time in
the original algorithm provided that it is independent of the random walk and it exceeds
the bound on the coupling time (at least with high probability).

Thus we need not generate the sum of geometrics if the number of steps of the modified
algorithm exceeds the coupling time. Note that the saving in the number steps from
generating this sum (as a negative binomial) would be only a small constant factor, and
we will not consider it here.

Now consider a k-step of the modified algorithm. We use the same notation as in
section 4.1. We have, with high probability, ‖S‖ ≤ cr

√
k, and hence f(Xt + S)− f(Xt) ≤

λcr
√
k. Thus

a ≥ exp(−1
2λcr(k lnn/

√
n+
√
k)) = exp(−1

2β(k lnn/
√
n+
√
k)),

and hence (1− a) ≤ β(k lnn/
√
n+
√
k). With this modification (16) becomes

tc(k) ≤ 2 + eβ(k lnn/
√
n+
√
k)/2tc(1

2k),

from which it follows that

tu(k) ≤ 1 + e2β(k lnn/
√
n+2
√
k)β(k lnn/

√
n+
√
k) lg k.

Hence we may choose k = 2blg(
√
n/β lnn)c, and simulate Ω(

√
n/r) steps of the modified al-

gorithm in O(log(
√
n/r)) k-steps. This reduces the required number of “steps” to O∗(n6.5).

5 Conclusions

We have given a coupling proof for the polynomial-time convergence of a random walk for
generating an approximately uniformly distributed point in a convex body. The argument
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is completely elementary, and does not require any auxiliary proof of an isoperimetric in-
equality, as with the usual approach. On the other hand, the running time of the algorithm
is inferior to the best conductance methods. We obtain mixing time O∗(n6.5), whereas Kan-
nan, Lovász and Simonovits [15] obtain O∗(n5) (and an amortized time for multiple points
which is even smaller). However, the present conductance techniques are the product of
years of refinement. We have drawn on some of these developments, but our proof is a
first attempt using a different approach. It would be surprising if it cannot be improved
further. The present difficulty is the small step size r. We have described modifications
to mitigate this problem, but genuine progress would result from an improvement in the
arguments to allow r to be increased.
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