
The Theory of Interacting Deductions

and its

Application to Operational Semantics

Andrew Wilson

Doctor of Philosophy
University of Edinburgh

1996

i

In memory of my father who died after a courageous struggle with a long illness,
and to my mother who struggled with him. You taught me faith, hope, love and

perseverence, thank you.

iii

iv

Not a single truth has ever been discovered without people
first talking utter rot a hundred times or perhaps a hundred
thousand times.
— Razumikhin, in Dostoyevsky’s “Crime and Punishment”.

v

vi

Abstract

This thesis concerns the problem of complexity in operational semantics def-
initions. The appeal of modern operational semantics is the simplicity of their
metatheories, which can be regarded as theories of deduction about certain shapes
of operational judgments. However, when applied to real programming languages
they produce bulky definitions that are cumbersome to reason about. The the-
ory of interacting deductions is a richer metatheory which simplifies operational
judgments and admits new proof techniques.

An interacting deduction is a pair (F, I), where F is a forest of inference trees
and I is a set of interaction links (a symmetric set of pairs of formula occurrences
of F), which has been built from interacting inference rules (sequences of standard
inference rules, or rule atoms). This setting allows one to decompose operational
judgments. For instance, for a simple imperative language, one rule atom might
concern a program transition, and another a store transition. Program judgments
only interact with store judgments when necessary: so stores do not have to be
propagated by every inference rule. A deduction in such a semantics would have
two inference trees: one for programs and one for stores.

This introduces a natural notion of modularity in proofs about semantics. The
proof fragmentation theorem shows that one need only consider the rule atoms
relevant to the property being proved. To illustrate, I give the semantics for
a simple process calculus, compare it with standard semantics and prove three
simple properties: nondivergence, store correctness and an equivalence between
the two semantics.

Typically evaluation semantics provide simpler definitions and proofs than
transition semantics. However, it turns out that evaluation semantics cannot be
easily expressed using interacting deductions: they require a notion of sequential-
ity. The sequential deductions contain this extra structure. I compare the utility
of evaluation and transition semantics in the interacting case by proving a simple
translation correctness example. This proof in turn depends on proof-theoretic
concerns which can be abstracted using dangling interactions . This gives rise to
the techniques of breaking and assembling interaction links. Again I get the proof
fragmentation theorem, and also the proof assembly theorem, which allow respec-
tively both the isolation and composition of modules in proofs about semantics.
For illustration, I prove a simple type-checking result (in evaluation semantics)
and another nondivergence result (in transition semantics).

I apply these results to a bigger language, CSP, to show how the results scale
up. Introducing a special scoping side-condition permits a number of linguistic
extensions including nested parallelism, mutual exclusion, dynamic process cre-
ation and recursive procedures. Then, as an experiment I apply the theory of
interacting deductions to present and prove sound a compositional proof system
for the partial correctness of CSP programs.

vii

Finally, I show that a deduction corresponds to CCS-like process evaluation,
justifying philosophically my use of the theory to give operational semantics. A
simple corollary is the undecidability of interacting-deducibility. Practically, the
result also indicates how one can build prototype interpreters for definitions.

viii

Acknowledgments
First and foremost, a big thank you to my supervisor Kevin Mitchell for his

painstaking help and advice. Thanks are also due to Gordon Plotkin, Bob Tennant,
Robin Milner and Colin Stirling who have variously belonged to my supervision
committee, and given helpful suggestions.

Thanks are also due to my officemates Pietro Cenciarelli and Alex Simpson,
and to my flatmate Julyan Elbro for their friendship and their comments on early
drafts. Thanks also to Saif, Pietro and Alex for making my office days very
pleasant, and similarly to Dave Aspinall and all my friends in the LFCS.

Thanks to the Science and Engineering Research Council (now EPSRC) for
funding the first three years of my thesis. Thanks also to my mum and the
Department of Computer Science which allowed me to scrape a living teaching
after the three years had expired.

Finally, I could not have survived a project of this magnitude without the
support and care of my family and my friends, of which I have too many to
acknowledge by name individually. You know who you are. But especial thanks to
my closest friends, Andrew, Douglas and David, and to my flatmates Dave, Julyan,
Doug and Dan who put up with the bad times. Thanks also to the members of
Mayfield-Salisbury church, and especially the three families who over the years all
but adopted me: the Jamiesons, the Simpsons and the Vandersteens. Thanks also
to Lt. Heather Chambers and the boys of the 3rd Edinburgh Company, The Boys’
Brigade who boosted my flagging spirits during those long depressing months.
Finally, thanks to my TEAM co-leader Helen Hopwood who made running TEAM
much less stressful than it should have been.

ix

x

Declaration
This thesis was composed by myself. The work reported herein, unless otherwise
stated, is my own.

Andrew Wilson

xi

Table of Contents

1. Defining Programming Languages 1

2. Interacting Deductions 13

2.1 Preliminaries . 14

2.2 Interacting deductions . 16

2.2.1 Examples . 17

2.2.2 I-deductions have no dependency loops 18

2.2.3 DLF helps characterize the I-deductions 19

2.3 An Example . 22

2.3.1 Comparative Semantics . 23

2.3.2 Extending the semantics . 25

2.3.3 Reasoning about semantics 27

2.4 Fragments of deductions . 28

2.5 Examples . 30

2.5.1 Extending a nondivergence proof 30

2.5.2 A modular proof about stores 32

2.5.3 An equivalence theorem . 34

2.6 Chapter summary . 37

3. Evaluation Semantics and Sequential Deductions 39

3.1 Sequential composition in evaluation semantics 41

3.1.1 Cutting intermediate states 41

3.1.2 Control stacks (or continuations) 43

3.1.3 Coding . 46

3.1.4 Conventions . 46

3.1.5 Solution . 47

3.2 Sequential deductions . 48

3.2.1 Examples . 51

xii

Table of Contents xiii

3.2.2 QI-deductions have no sequencing loops 51

3.2.3 SLF helps characterize the QI-deductions 52

3.2.4 Coding QI-deduction into I-deduction 54

3.3 An evaluation QI-semantics for P(;) 55

3.4 An example: translation correctness 57

3.4.1 The translation . 58

3.4.2 The transition semantics proof of correctness 58

3.4.3 Tree Pruning and partial deductions 60

3.4.4 The evaluation semantics proof of correctness 62

3.4.5 Appraisal (equivalence, nondeterminism, nontermination) . . 65

3.5 Chapter Summary . 68

4. The content of interaction 69

4.1 DQI-deduction . 72

4.1.1 Structures, Histories and Binary Assemblies 72

4.1.2 Deduction . 75

4.1.3 Coding QI-deduction into DQI-deduction 79

4.2 Proof Fragmentation . 81

4.2.1 The interaction reflection theorem 82

4.2.2 The Proof Fragmentation Theorem 83

4.2.3 An example: Type checked processes do not fail 84

4.2.4 Proof fragmentation is not always enough 86

4.3 Proof Assembly . 87

4.3.1 Example: Terminating processes type-check 90

4.3.2 Example: Another nondivergence proof 91

4.4 Chapter summary . 93

5. A Semantics and Logic for CSP 95

5.1 A Definition of CSP . 95

5.1.1 Syntax and informal semantics 95

5.1.2 Static Semantics . 97

5.1.3 Auxiliary Definitions: Stores 98

5.1.4 Dynamic semantics . 98

5.2 Some alternative features . 103

5.2.1 Nested Parallelism . 103

5.2.2 Shared Variables . 104

Table of Contents xiv

5.2.3 Dynamic process creation 105

5.2.4 Pre-emption . 105

5.2.5 Multicasting . 106

5.2.6 Procedures . 106

5.3 An Application: Program Verification 109

5.3.1 A Hoare Logic for the partial correctness of CSP 112

5.3.2 An example partial correctness proof 115

5.3.3 Soundness of the Hoare Logic 116

5.3.4 Appraisal . 124

5.4 Chapter Summary . 127

6. The process calculus interpretation 129

6.1 Preliminaries . 130

6.1.1 On formula occurrences . 130

6.1.2 The process calculus . 131

6.1.3 Well-terminating processes 132

6.1.4 Formalising scoping . 132

6.2 The interpretation . 133

6.2.1 The interpretation is sound 136

6.2.2 The interpretation is complete 142

6.2.3 The reverse interpretation 148

6.3 Some consequences . 148

6.3.1 Sequencing is not primitive 148

6.3.2 Deducibility is undecidable 148

6.3.3 Models . 149

6.4 Chapter Summary . 150

7. Conclusions 151

7.1 The theory of interacting deductions 151

7.2 Application to operational semantics 153

7.3 Further work . 154

7.3.1 Scope Extrusion . 154

7.3.2 Static semantics . 155

7.3.3 More Extensions . 155

7.3.4 The relationship to Linear Logic 157

Table of Contents xv

A. Languages of operational judgments 161

A.1 A formal definition of language . 161

A.2 Algebras and operational semantics 162

B. The correctness of CSP 165

B.1 A Structural Operational Semantics of CSP 166

B.1.1 The Labelled transition system 166

B.2 Stage one: from interleaving to true concurrency 167

B.3 Stage two: from ordinary to interacting transition rules 171

B.4 Stage three: from interacting transitions to evaluations 174

B.4.1 The other direction: from evaluations to transitions 179

Glossary xvi

Glossary of notations

SETS (see, e.g., [End77])
X, Y : arbitrary sets
∩: intersection
∪: union
⊆: subset
\: set difference
∈: membership
∅: empty set
℘: powerset

MULTISETS (see figure 2–2 on
page 35)

RELATIONS
R: arbitary binary rela-

tions, or labelled binary rela-
tions (p. 72)

R∗: transitive closure
R[: delabeling (“flattening”) a la-

beled relation
R◦: symmetric closure of labeled

relation

NUMBERS
m,n: arbitary naturals
i, j, k: arbitrary indices
N: the set of natural numbers
Z: the integers

SEQUENCES (page 30)
Xω: set of countable, possibly

empty sequences of elements
from X

s: arbitrary sequence
ε: empty sequence

s · s′: sequence concatenation
|s|: the length of s

dom s: the indices of s
s(i): the ith element of s

FUNCTIONS
f, g: arbitrary functions

0: the empty function 0 : ∅ → ∅
f : X → Y : total function
f : X ⇀ Y : partial function
f : X ↔ Y : bijection
dom f : the domain of f
im f : the image of f
f ⊕ g: function overwriting: (f ⊕

g)x = g(x) if x ∈ dom g, oth-
erwise f(x)

f � X: restrict domain of f to
dom f ∩X

LOGIC
φ, χ, ψ: arbitrary formulae
⊃: implication
∧: conjunction
∨: disjunction
¬: negation

∀x.φ: universal quantification
∃x.φ: existential quantification

LANGUAGE
L: arbitrary language

A,B,C, . . .: arbitrary formulae and
formula occurrences

Ai: formula occurrence with posi-
tion explicit

θA: instantiation of A by substi-
tution θ

FV (A): the free variables of A
A ≡ B: occurrences A and B match

(i.e., they are occurrences of
the same formula).

+A,−A: formula perceptions
(p. 70)

X±: set of perceptions of formulae
in X

Glossary xvii

INFERENCE RULES
a: arbitrary rule atom (p. 15)
θa: instance of atom with respect

to θ
r: arbitrary rule
θr: instance of rule with respect

to θ
R: arbitrary rule set

DEDUCTION
T : arbitrary deductive system
T : formula tree
F : formula forest
.F : the preorder of F (p. 18)

O(F): the set of occurrences in for-
est F

(F, I): I-structure (p. 19)
(F, I,@): QI-structure (p. 49)
(F, I,@, D): DQI-structure (p. 72)

Σ: arbitrary structures or deduc-
tions

Π: arbitrary deductions
O(Σ): the set of occurrences in Σ
D(Σ): the set of dangling interac-

tions in DQI-structure Σ
N(Σ): the set of neighbourhoods of

Σ (p. 20)
NΣ(A): the neighbourhood of occur-

rence A in Σ
I(T): the set of deductions of I-

system T
QI(T): the set of deductions of QI-

system T
DQI(T): the set of deductions of

DQI-system T
.Σ: the preorder of structure Σ
<Σ= (.Σ) \ (&Σ)
∼Σ= (.Σ) ∩ (&Σ)

0: empty deduction
⊥: deduction of no information

(p. 61)
Σ ` A1, . . . , An: Σ concludes for-

mula occurrences A1, . . . , An

T ` A1, . . . , An: some T -deduction
concludes A1, . . . , An

T A1, . . . , An: some proper
T -deduction (DQI) concludes
A1, . . . , An (p. 76)

⊗
f X: assembly of a set of struc-

tures (p. 74)
Σ⊗f Π: binary assembly of Σ and Π

(p. 74)
Σ � Π: Π simulates Σ (p. 82)
Σ ' Π: Σ � Π and Π � Σ
B(Σ): result of breaking every inter-

action link in Σ
B(T): result of breaking every inter-

action link in T
FT (X): set of T -fragments of struc-

tures in X

PROCESSES (page 22)
p, q, r : arbitrary processes
Nam: set of names
a, b, c, . . .: arbitrary names
Nam: set of conames of Nam
ā, b̄, c̄, . . . : arbitrary conames
Lab: labels

l: arbitrary label
τ : silent action

Act: action set
α: arbitrary action
0: the null process
|: parallel composition

α.p: action prefix
;: sequential composition

p \X: restriction
≈: weak bisimulation
Ω: set of terminated processes

STORES
σ: arbitrary store

σ(x): value of x in σ
σ[v/x]: updating x to have value v

in store σ

Convention xviii

Convention
In this thesis, I use the following convention to label lemmas, propositions

and theorems. A proposition is either an interesting but not important result
about interacting deductions, or an example proof which highlights some point.
Propositions are numbered m.n where m is the chapter or appendix number, and
n indicates that this is the nth proposition in that chapter or appendix.

A theorem is an interesting result about the theory of interacting deductions,
and is numbered using upper case roman numerals.

A lemma is a separate result used in the proof of a proposition or theorem.
They are labeled m(n) where m is the label of either the proposition or theorem
it helps prove, and n is a lower case roman numeral.

Finally, a corollary is an interesting, but lesser result that is a straightforward
consequence of either a proposition or theorem. Corollaries are labeled mn where
m is the label of either the theorem or proposition from which the corollary follows,
and n is a lower case letter.

xix

Chapter 1

Defining Programming Languages

To learn a foreign language, one has to learn the structure of its sentences, what
they mean, and how they can be used to express one’s thoughts. Similarly, to
learn a programming language, one has to learn the structure of programs, what
they mean, and how one can use them to express one’s algorithms. These three
aspects of language are called syntax , semantics and pragmatics.

Our interest lies in the formal semantics of programming languages. A formal
semantics gives a complete and unambiguous account of the defined language.
Ideally, this has a number of uses. First, it aids the language developer. Writing a
formal semantics forces the designer to fill every hole and resolve every ambiguity
that may have existed in the original conception. It may also improve the design,
highlighting its poorly thought out, or overly complex areas.

Second, a formal semantics can help the implementer. A formal semantics is an
unambiguous compiler specification. The implementer should be able to extract
all the information he needs to implement the language before he starts coding.
Moreover, it may also suggest implementation strategies. Along similar lines, a
formal semantics can also be used as a basis for developing automatic compiler
generators or prototype interpreters, static analyzers and program analysis tools
such as debuggers and execution profilers. It also can be useful for developing
learning tools such as program animators, tutorials and reference manuals.

Third, a formal semantics can help the programmer. Apart from being a
complete and concise reference, and the basis for programming tools, it can be used
to develop logics that help him reason about his software, in particular showing
that it meets a specification.

Fourth, a formal semantics can help the businessman. A formal semantics can
serve as a standard, which can ensure portability of software over platforms. It can
also be used to write unambiguous implementation contracts that will guarantee
such portability.

Ideally. In reality formal semantics (of real languages) are subtle pieces of
mathematics which require substantial effort to write, read and use. They are
prone to mistakes and ambiguities (e.g., [Kah93]). Even so, the attempt to give
a semantics is worthwhile: even a near-perfect semantics can be useful at least
informally, and anyway using a semantics will highlight flaws which can then be
remedied, hopefully without too much renovation.

1

Chapter 1. Defining Programming Languages 2

This raises the question of correctness: how do we know a semantics defines
our language? If it is complete and consistent, it certainly defines something,
but is it the language we are concerned about? We cannot resolve this problem
conclusively: there is always a gap between ideas and their formal expression. The
best we can do is to give a series of different semantics and show that they agree.
This is the proposal of consistent and complementary semantics argued in [HL74]:
the more different (but mutually consistent) semantics we give a language, the
more we can be sure that the language reflects no “irregularity” of a description
method. [HK81] gives complementary semantics to the “Real-Time” language
Tomal.

There are many different ways to give semantics (see [deB69,HL74,MLB76,
Sve86,Gun91] for a survey. See also [Weg76] for a historical survey of programming
languages), but they tend to fall into three categories: axiomatic, denotational and
operational , characterized by their different emphases and hence uses. Axiomatic
semantics (e.g., Hoare Logics [Apt81] and Predicate Transformers [DS90]) describe
programs in terms of the properties (expressible in some assertion language) which
they satisfy. [HW73] gives an example axiomatic semantics for most of Pascal.
Their main use is to facilitate reasoning about programs. To justify such reasoning,
one has to prove the axiomatic semantics sound with respect to some model of the
programming language.

Denotational semantics (e.g., [Sch88]) provide such models: they map programs
to denotations, which are abstract mathematical representations of program be-
haviour. [Mos74] gives a denotational semantics for Algol 60. Every feature of
the language is defined without regard to implementation details. As such they
are very useful for linguistic analysis, and for providing correctness criteria for
other semantics of languages.

Operational semantics (e.g., [Hen90]) describe how an ideal, abstract machine
would simulate the behaviour of a program. [HMT90] gives an operational se-
mantics for Standard ML. Operational semantics are useful to the language
implementer. Since at least the modern kind tend to be mathematically light,
and also programmers tend to understand languages in terms of how a “notional
machine” would execute programs [DBOM81,Ber91], these semantics tend to be
relatively accessible.

The point is that no one semantic formalism does everything well. We need
a variety of different formalisms, first, to be sure that the language we have de-
scribed is the one we intended to describe. Second, to overcome inherent biases
of formalisms to particular kinds of language. For example, traditional denota-
tional semantics uses λ-notation. Both Mosses [Mos91, §18.1], or [Mos90, §6.1] and
Abramsky et al. [AGN94] argue that this biases denotational semantics towards
sequential, functional languages. It is hard to code up and hard to read even con-
ventional imperative or concurrent languages. The third reason is for insurance:
we cannot guarantee that every new linguistic feature will be expressible in the
current framework of choice.

Therefore there is always a need to develop and evaluate new semantic descrip-
tion methods. This thesis concerns a novel approach to specifying operational
semantics. Operational semantics description methods tend to fall into two main

Chapter 1. Defining Programming Languages 3

Description Method Defined languages
Indirect Abstract machines Facile [GMP89]

SMoLCS Ada (Draft) [ABNB+86]
[AR87a,AR87b,SMo]

Evolving Algebras

[Gur91,EA]
C, C++, Occam,
VHDL, Modula-2,
Prolog, Parlog,
Gödel

Action Semantics

[Mos91,AS]
Standard ML,
CML, Amber,
Occam, Pascal,
Joyce

Direct VDL [Weg72] PL/I [LW69,AI75]

W-Grammars Algol 68

[CU73,MLB76] [vWMPK69,vWMP+75]

SOS [Plo81] Esterel [BG92],
Facile [GMP90],
LCS [Ber93b]

Natural Semantics Standard ML [HMT90,MT90],
[Kah87,CEN] Eiffel [ACO93],

Sisal [Jab95,ACW95]

Figure 1–1: Some direct and indirect operational semantics of real languages

categories: indirect semantics which translate programs into a better understood
language, and direct semantics which do not. Our approach gives direct semantics.
We shall compare indirect and direct semantics to see why this is worthwhile.

Operational semantics

Figure 1–1 is the result of a brief survey of operational descriptions of real pro-
gramming languages. By “real” I mean languages which have actually been imple-
mented and used in the programming community. It is probably incomplete, and
therefore possibly misleading, but it does suggest that both kinds of operational
semantics can define real programming languages, more or less equally well.

The reason for the success of indirect semantics is, I think, because we can
always define a sufficiently high-level intermediate language, or abstract machine,
that makes definition easy. The trick is to ensure that the abstract machine is

Chapter 1. Defining Programming Languages 4

also simple enough to be readily understood. Now there are two philosophies for
building such abstract machines. One aims to find a universal abstract machine.
The other tailors abstract machines for each language. Action Semantics fol-
lows the first philosophy, while SMoLCS and Evolving Algebras follow the
second.

The universalist philosophy has the advantage that we only have to under-
stand one machine, which facilitates a large amount of foundational analysis and
tool-building. It has the disadvantage that we have to work hard to ingest the
various notations. For instance, there is an overwhelming amount of action nota-
tion. While it has been carefully designed to write near-english descriptions, to
understand it properly we have to fathom Mosses’s ersatz presentation of struc-
tural operational semantics for it [Mos91, App B.6] because near-english descrip-
tions can be misleading. Another disadvantage is that it provides little insurance
against unforseen linguistic features.

The individualist philosophy does insure against the future, and does not re-
quire prior understanding of an elaborate machine. It does require knowledge of an
abstract machine description method, such as Structural Operational Semantics
for SMoLCS and a simple rewriting system of first-order algebras for Evolv-

ing Algebras. Both are mathematically light and easily understood. Moreover,
they both support the construction of tools: for example, both approaches have
rapid prototyping (see the relevant webpages for details and more examples [SMo,
EA]). Nevertheless, they do require more work per language, and we are less able
to compare different languages or build sufficiently high-quality tools. It is more
economic to research one machine intensively than many different machines.

Digressing a little, the indirect approach is pandemic in semantics. In deno-
tational semantics, we use metalanguages : the traditional λ-notation [Sch88], the
Logic of Computable Functions (LCF) [Sco69], FPC [Plo85] and the computational
metalanguage [Mog90,Mog91,Cen96]. In this situation, metalanguages are conve-
nient notations for manipulating the mathematical structures required to describe
programs. They can also be used to consider denotational definitions abstractly,
for instance the computational metalanguage allows us to plug together modules
to make a variety of combinations of metalanguages.

At the other end of the spectrum, compiler theory uses intermediate code
representations [TS85, ch. 10] because they are free of machine idiosyncrasies,
they facilitate optimizations, they speed up compiler development and improve
portability.

Yet no matter how useful intermediate languages are, ultimately we need a
direct description of the foundations. We have already commented on how simple
the semantic description methods are for foundational abstract machines; the great
achievement is that these same methods can give manageable definitions of real
programming languages too.

Two early examples of direct semantics were VDL (which subsequently became
VDM: see [BJ78] for reasons why) and W-Grammars. The first consisted of
two parts, a translator and an interpreter. The translator was used both to check
grammar and context-sensitive constraints, and also to convert the concrete syntax
of real programs into abstract syntax. The interpreter described how abstract

Chapter 1. Defining Programming Languages 5

syntax representations of programs could evolve over time (in a not dissimilar
way to evolving algebras). The second method used two levels of grammar: one
for context-free aspects and meta-grammars for context-sensitive aspects of the
language. The framework lumped syntax, static semantics and dynamic semantics
together.

Syntax is that part of grammar that concerns the due arrangement of words
or the construction of sentences. It is usually given inductively using EBNF,
but there is a school advocating the use of the simply-typed λ-calculus [PE88] to
represent syntax. Static semantics ensures that programs make sense: for instance,
that everything is correctly typed, or that every identifier is declared. Dynamic
semantics describes the behaviour of sensible programs. Modern semantics tend
to separate the three.

There are two modern direct description methods: Structural Opera-

tional Semantics (SOS) and Natural Semantics. The first describes an
automaton that evaluates programs of the defined language directly. That is, it
specifies an abstract machine which directly manipulates programs. In the tradi-
tion of automata theory [HU79] a SOS is given by a (labelled) transition system:

Definition 1.0 ([Plo81]) A labelled transition system is a quadruple
〈Γ,Ω,Λ,−→〉 where Γ is a set of configurations; Ω ⊆ Γ is the set of
terminal configurations; Λ is a set of labels and −→⊆ Γ×Λ×Γ is the
transition relation, such that

for all γ ∈ Ω, λ ∈ Λ, γ′ ∈ Γ, not(γ λ−→ γ′)

where γ λ−→ γ′ is an abbreviation for 〈γ, λ, γ′〉 ∈−→. A stuck config-
uration γ is any non-terminal configuration such that γ λ−→ γ′ for no
λ ∈ Λ and γ′ ∈ Γ.

The definition of unlabelled transition systems is even easier: we simply
remove every mention of labels from the preceding definition. That is,
a transition system is a triple 〈Γ,Ω,→〉.

The main innovation is that the transition relation is defined inductively on the
structure of programs, thereby permitting the use of structural induction on syntax
to prove properties about transitions. An example of a SOS for the call-by-value
λ-calculus can be found in figure 1–2.

Overall, the framework is mathematically simple, and permits one to describe
the intuitive computation steps of programs easily. A natural semantics is even
simpler: it does not involve a transition system; it simply consists of a set of
syntax-directed rules that relate programs to their attributes (i.e., values, types
or translations). The method is essentially proof-theoretic (see [Kri68,Kri71] for
a survey of proof theory), and a natural semantics can be seen as a Post Sys-
tem [Pra71]. The following definition of natural semantics is based on that defini-
tion of Post System and the informal description given in [Kah87]:

Chapter 1. Defining Programming Languages 6

Abstract syntax
M ::= x | λx.M | MM

where x ranges over V ar, the set of variable identifiers. Let LC be the set of all
λ-calculus terms and V al = V ar ∪ {λx.M | x ∈ V ar,M ∈ LC} be the set of
values, ranged over by v.
SOS

Transition system 〈LC, V al,→〉 where → is defined inductively by:

(λx.M)v →M [v/x]
M →M ′

MN →M ′N
N → N ′

(λx.M)N → (λx.M)N ′

Natural semantics
〈∅, LC, V al,L,R〉, where L = {M ⇒ v | M ∈ LC, v ∈ V al} and R is the set
generated by the schemata

v ⇒ v
M ⇒ λx.M ′ N ⇒ v′ M ′[v′/x]⇒ v

MN ⇒ v

Figure 1–2: Direct semantics for call-by-value λ-calculus

Definition 1.1 A Natural Semantics is a quintuple (E, C,A,L,R) where
E is a set of environments, C is a set of configurations, A is a set of
attributes, L is a language of atomic formulae built over the terms
in E, C and A, and R is a set of inference rules determined as the
instances of a finite number of schemata of the form

A1 · · · An

B

where A1, . . . , An, B are atomic formulae, and B contains no parame-
ters not occurring in {A1, . . . , An}.

Again, it permits proofs about programs via the technique of rule induction. A
natural semantics for the call-by-value λ-calculus can also be found in figure 1–2.

Indirect vs. Direct semantics

Having described indirect and direct semantics it now remains to compare them.
Foundationally, indirect semantics are more complex, but they aim to simplify
definitions using suitably high-level description languages. The proliferation of
indirect definitions of real languages indicates that this goal is successful. The key
issue is how to balance the complexity of metatheories against the complexity of
definitions.

A first indication of the success of a description method is whether or not it
has defined a real language. This is the ultimate purpose of description methods.
However, as Mosses says, the description of one language in any framework could

Chapter 1. Defining Programming Languages 7

merely be testament to the endurance of Man. A better indication is therefore how
prolific a method is: the more definitions we have, the better the method must be.
Regarding this criterion, figure 1–1 suggests that the modern indirect semantics
are better than the direct ones. However, a large number of definitions could in
turn merely be testament to the endurance of a small number of research groups
trying to promote the method. Further, the small number of real definitions may
ultimately be due to the slow uptake of formal methods in industry rather than any
demerit of the method. An even better indication therefore is how widespread a
method is: the more people that use it, the better the method must be. Regarding
this criterion, my experience is that SOS and Natural Semantics are by far
the most popular.

We need to look more closely. The only hard evidence we have are the def-
initions themselves. To say anything meaningful, we must consider specific defi-
nitions. [GK93] gives the semantics of C using evolving algebras. However, this
definition yields a big surprise: the translation from C syntax to evolving algebra
rules is completely informal! This is unsatisfactory because it implies incomplete-
ness. For example, their semantics of the goto statement is simply “move to the
next task”, which is given by the NextTask function. This function is never de-
fined: to do so would require a translator from program text to their task-based
representation. I suspect that if they had to contain formal translators, evolving
algebra definitions would require much more effort and be much less popular.

By contrast, every other approach relates programs to meanings in a completely
formal manner. To compare two different semantic description methods, we need
to see how each method gives meaning to a particular language (e.g., see [MLB76]).
[Wat87] does just that, he compares an action semantics of the core of Standard

ML with its natural semantics [HMT90]. He gives three arguments for why he
favours the action semantics:

1. Action semantics are easier to read, even by the layman.

2. Natural semantics use closures to capture static binding and mutual recur-
sion, which is clumsy.

3. Natural semantics have to propagate stores and environments everywhere,
which impares legibility.

The first argument is easily countered. If we want a superficial understanding of
a language, we can read an informal semantics. This is easier to write (it doesn’t
require knowledge of a pseudo-english grammar) and read (action notation scans
oddly). To obtain a deep understanding of a language we have to invest a lot of
effort anyway, whether to understand action notation or the various techniques
used in natural semantics.

This also counters the second argument. Closures are a standard part of the
natural semantics arsenal. However, we do not even need to use closures — we can
use substitution instead, much like we do in figure 1–2 (see also extended natural
semantics [Han93]).

Chapter 1. Defining Programming Languages 8

The third argument is more interesting. Certainly, natural semantics rules can
be overwhelmed with syntactic notations, e.g., rules (114) and (115) of [HMT90]:

s, E ` exp⇒ ref, s′ s′, E ` atexp⇒ v, s′′ a 6∈ Dom(mem of s′′)
s, E ` exp atexp⇒ a, s′′ + {a 7→ v}

s, E ` exp⇒:=, s′ s′, E ` atexp⇒ {1 7→ a, 2 7→ v}, s′′
s, E ` exp atexp⇒ {} in Val, s′′ + {a 7→ v}

It was precisely to reduce the syntactic clutter of rules that they introduced the
state convention. It permits us to elide states from the presentation of rules by
providing a mechanical way to put them in when needed. Watt claims (p.582)
that this “does not entirely solve this problem; besides, the [convention] is clearly
ad-hoc, and not generally applicable”. This is wrong. In terms of legibility, it
does solve the problem of propagating stores everywhere (except of course where
the store is actually used). Furthermore, the convention is not ad-hoc because the
same mechanism can be used in any semantics whose judgments have the same
structure and where stores behave in the same way (most metatheories of opera-
tional semantics tend to concern the structure of judgments: e.g., Typol [Des88]
and GSOS [BIM88]).

I would say that the problem of syntactic overload has less to do with store and
environment propagation, and more to do with the amount of auxiliary definitions
and notations a language definition requires. Once again, this is the same issue as
the previous two points.

Ultimately, the question of which method gives the clearest semantics is sub-
jective. [MLB76] (which was written by three people) remarks when comparing
four definitions of a simple language, “Each of us found the technique we knew
the best to be the clearest” (p.271). Yet they also remark (p.274) that for formal
semantics to become widely accepted outside Theoretical Computer Science, great
attention must be paid to human engineering, so that the general reader can gain
some benefit from perusing a semantics. Action Semantics has been deliber-
ately engineered in this way. However Natural Semantics judgments are also
readily understandable, for example, “In environment E, program p evaluates to
v” is quite clear.

The state convention is an aid to legibility, but it does not formally alter the
rules. The rules do propagate stores, and when we are proving results, we have to
consider their unabbreviated forms (or at the very least check to see if the rules
match the required shape). Moreover, because rules have to carry around the
state of the entire system, it makes alteration and extension harder. If I want to
introduce a new component to the configurations, I have to rewrite every rule, and
reprove every theorem — even if the extension is orthogonal.

Despite this difficulty, Natural Semantics (and SOS) have virtues too.
For one, their metatheories are very simple, and they permit proofs by induc-
tion. Furthermore, they have proved useful as bases for program analysis and
theories of tool construction. For example, they have been used in theories of
static analysis [Tof87], compiler generation [DJ86], debugging [DS92], program
animation [Ber91] and programming environments [CEN].

Chapter 1. Defining Programming Languages 9

My thesis is that we can reduce the syntactic clutter of their semantic judg-
ments in a formal way while retaining their virtues: an intuitive metatheory and
amenability to simple proofs by induction.

Synopsis

The problem is that semantic rules contain too much information: each judgment
must record the entire state of an abstract machine, even those components which
are not directly relevant to the rule at hand. For instance, suppose we wished
to add stores to the λ-calculus, and wished to modify its SOS. Then the syntax
would become:

M ::= x | λx.M | MM | set α M | get α

where α ranges over a distinguished set of memory locations, Loc. The semantic
rules would become

〈(λx.M)v, σ〉 → 〈M [v/x], σ〉
〈M,σ〉 → 〈M ′, σ′〉
〈MN, σ〉 → 〈M ′N, σ′〉

〈N, σ〉 → 〈N ′, σ′〉
〈(λx.M)N, σ〉 → 〈(λx.M)N ′, σ′〉

〈M,σ〉 → 〈M ′, σ′〉
〈set α M, σ〉 → 〈set α M ′, σ′〉

〈set α v, σ〉 → 〈v, σ[v/α]〉 〈get α, σ〉 → 〈M,σ〉 if M = σ(α)

and where σ, ranging over the set Store of functions V ar ⇀ LC, represents the
state of the store, such that σ[v/x](y) = if y = x then v else σ(y).

Every rule has to be altered to propagate the store, yet only the last two rules
actually interact with it. Every other rule simply passes it around, cluttering up
the syntax and obscuring the essential meaning the rule imparts to the connectives.
The stores have to be propagated everywhere to capture their serial behaviour.

In this example, the interaction between stores and programs is limited to the
set and get connectives. The other connectives do not interfere with the store in
any way. If only we could limit the occurrence of stores to where they were really
needed. That is, we should like to interpret the old rules “in an ambient store”,
and add

set α v → v alter the ambient store get α→ v read the ambient store

The above state convention does this. However, as we have said, it is only a
convention, and in proofs we still have to consider every rule, either in its full
form, or to check that they have the required shape.

We would like to be more formal. When we prove results not concerning the
store, we should like not to mention stores. Similarly, when we prove results solely
about the store, we should like not to mention programs. We want to have two
kinds of transition, one for programs and one for stores. The essential idea is that

Chapter 1. Defining Programming Languages 10

when the program wishes to write to the store then it induces a store transition.
That is, we should like to apply

set α v → v and σ → σ[v/α]

simultaneously. We denote simultaneity of application by drawing a line (an “in-
teraction link”) between the two rules. Therefore we can reuse the old rules which
talk about function application and introduce special rules for the store.

To see how this scheme would work, suppose we want to prove that the first
transition of (λx.M)(set α v) alters the store. The rules show that we first have to
prove that set α v alters the store, and that second, being the argument to λx.M
does not alter that fact.

We apply the two interacting rules for set to obtain the two interacting proof
trees:

set α v → v
−−−−−−−

σ → σ[v/α]

We can then apply the third application rule directly to the program transition
tree to get

(set α v)→ v

(λx.M)(set α v)→ (λx.M)v
σ → σ[v/α]

which again consists of two interacting proof trees, one for the program and one
for the store. Hence the first transition of the program does alter the store.

Throughout this thesis, we shall be concerned to evaluate the practical qualities
of the various proof metatheories we examine. The idea is to study how easy it
is to prove properties about the operational semantics we describe. To avoid
confusion, I shall use the term “deduction” to apply to the interacting proof trees,
and “proof” to refer to the mathematical arguments establishing results about the
deductions.

Chapter 2, “Interacting Deductions”, describes I-deduction, the metathe-
ory of this kind of interacting deduction. It also demonstrates the properties of
I-deductions using a simple process calculus called P. We give it a novel transition
semantics which does not propagate action information. We compare it to two
more standard transition semantics.

We find that the novel semantics is marginally simpler than the standard two.
However, when we add stores to P to yield the language P(:=), the gains are
increased. Again, we do not have to propagate stores everywhere. Moreover, we
also discover that the extension is modular. The new rules for the stores can be
added to each of the three semantics without change.

Section 2.5.1 shows how we can extend a simple proof about the nondivergence
of P processes to P(:=) processes. It shows how much simpler the extension is
in our metatheory than in the standard ones. Section 2.5.2 shows that a simple
proof about store transitions remains true regardless of where they are used. In
this sense, our metatheory permits modular proofs. Both of these examples make
use of the proof fragmentation theorem, which allows us to break proofs about

Chapter 1. Defining Programming Languages 11

I-deductions into proofs about the individual proof-trees. Section 2.5.3 shows how
it can be used to simplify an equivalence proof between our semantics for P and
the most standard one.

Chapter 3, “Evaluation Semantics and Sequential Deductions”, shows
that not only can the I-deductions give transition semantics to P, they can also
give natural semantics-like definitions (henceforth called “evaluation semantics”).
However, P does not have sequential composition. When we add it (to get P(;)) we
find that the evaluation I-semantics become much less perspicuous. Therefore we
alter the metatheory to introduce a notion of sequencing, obtaining QI-deduction.

This turns out to be quite subtle. Sequencing already exists in I-deduction
(otherwise we could not have given P(;) semantics), but not in a convenient form.
The subtlety lies in getting the two forms of sequencing to agree. Once this is
resolved, we proceed to compare how the evaluation semantics of P(;) fares in a
simple translation correctness result with a standard transition semantics.

The results are mixed. We should expect this — in conventional modern op-
erational semantics, SOS fares better than Natural Semantics for concurrent
languages. A main problem is that nonterminating behaviour cannot be expressed
in an evaluation semantics. Another is that it is hard to define notions of pro-
cess equivalence in evaluation semantics, making analysis of nondeterminism dif-
ficult. These are problems owing to the particular nature of the semantic judg-
ments involved (transition versus complete evaluation), and are not overcome in
a QI-system. Thus it is generally not a good idea to use natural semantics-like
judgments to capture the meaning of concurrent languages. A notable exception
occurs in chapter 5 where we use an evaluation semantics in the soundness proof
of a Hoare Logic for the partial correctness of CSP.

Nevertheless, the translation correctness proof is structurally simpler in that
we do not have to perform any subinductions on the length of transition sequences.
Thus we may still be able to use it profitably for proving results about sequential
and deterministic languages.

Both I-deduction and QI-deduction concern systems of inference rules which
do not consider the information shared via particular interactions. Chapter 4,
“The Content of Interaction”, describes a metatheory (DQI-deduction) which
allows formulae to be assigned to particular interactions, denoting the information
which is shared during the interaction.

The definition of DQI-deduction is more naturally inductive than the defini-
tions of I-deduction and QI-deduction. This allows some proofs to proceed directly
by induction on the structure of deductions rather than via the proof fragmentation
theorem. Moreover it introduces another proof technique called proof assembly .
For motivation, we use a simple type-checking example. Proof fragmentation is
enough to show that no type-checked process fails. This technique is insufficient
to show the other direction: that every successful process type-checks. For this
we need proof assembly, which allows us to assemble proofs from proofs about
fragments.

The family of processes based around P are too simple. We need a larger
example to test whether that our semantic method scales up. Chapter 5, “A

Chapter 1. Defining Programming Languages 12

Semantics and Logic for CSP”, gives an evaluation semantics to CSP quite
easily. However, just to be sure that CSP is not pathological, we also examine var-
ious extensions: nested parallelism, communication via shared variables, dynamic
process creation, pre-emption, multicasting and recursive procedures. It turns out
that only pre-emptive primitives cannot be given an evaluation semantics.

To show that the semantics is useful, we introduce a novel one-level composi-
tional Hoare Logic for CSP and prove it sound. Usually one-level compositional
Hoare Logics need to trace communicative histories carefully. Our method does
not. Moreover, the technique is quite general, and should be applicable to other
concurrent languages with little alteration. The soundness proof is also very sim-
ple, using the evaluation semantics for CSP.

Finally, we finish by confirming that our semantic method really is an oper-
ational semantics. The reason that natural semantics are operational is because
the deduction of semantic judgments describes how the program evaluated. It is
well-known that natural semantics can be seen as Prolog [CM84] clauses, and
that in this light yields a prototype interpreter for the defined language [Des84]
(For refinements of the idea, see [And91,DS92].) I believe it is precisely because
the inference rules make an interpreter that a natural semantics is an operational
semantics. (See [Sun84a] for a discussion on meaning via proof theory.) In chap-
ter 6, “The Process Calculus Interpretation”, we show how our interacting
rules can be seen as CCS process definitions to yield prototype interpreters. The
interpretation is quite straightforward, and also allows us to reinterpret process-
calculus results in terms of our proof-theory. For instance, we show that there
is no procedure to decide whether a set of formulae is deducible in an arbitrary
DQI-system.

Chapter 2

Interacting Deductions

In Natural Deduction, an inference tree traces the proof of a theorem. A leaf
is a basic axiom and an internal node an intermediate step. One can imagine a
mathematician reasoning from some basic axioms step by step till he deduces his
result.

We can think of an interacting deduction as the work of a community of math-
ematicians, each trying to deduce his or her own theorem. Again, a leaf is a basic
axiom and an internal node an intermediate step. However, mathematicians also
collaborate, discussing ideas which may be mutually stimulating. Therefore an
interacting deduction also records the fact of collaboration: an interaction link
records the mutual dependency of two simultaneous inference steps.

This chapter is concerned with the basic theory of interacting deductions, and
does not consider the content of interactions (this is considered in chapter 4).
In fact we can still do a lot with this basic theory, where interaction is really
synchronization. We use it to give transition semantics to a simple concurrent
language P, which we compare with more standard approaches. We find that
both semantic definitions and proofs about them become simpler, easier to extend
and more modular.

The key idea is that we do not always have to reason about the entire commu-
nity of mathematicians to understand the work of a particular individual or group
of individuals. Sometimes it is better to think about a fragment of the commu-
nity in isolation. It is from this independence that our improved extensibility and
modularity arise.

The structure of this chapter is as follows. Section 2.1 gives preliminary def-
initions and notations. Section 2.2 inductively defines ordinary interacting de-
ductions, the I-deductions , from sets of I-rules. It also characterizes them ax-
iomatically: in future proofs the axiomatic characterization is more convenient.
Section 2.3 presents an application: a transition semantics for P using the theory
of I-deductions. It shows how one can elide semantic objects from judgments.
Thus judgments become syntactically simpler than their Structured Operational
Semantics counterparts. Another consequence is that semantic definitions become
more extensible, as illustrated by the extension of P to P(:=), a language with
stores.

13

Chapter 2. Interacting Deductions 14

Section 2.4 introduces the technique of proof fragmentation: näıve reasoning
about I-deductions may lead to clumsy proofs of even simple results. Fragmen-
tation is simply a technique to allow reasoning about parts of deductions. For
instance, in the semantics for P(:=), a deduction consists of two interacting trees:
one for process transitions and the other for store transitions. Each tree is a frag-
ment of the overall deduction. To reason about the behaviour of stores, it makes
sense to prove the property using only the fragments of the rules that mention
store transitions. The technique is justified formally by the proof fragmentation
theorem, which can be (very) loosely phrased as

To prove a universal property about fragments of I-deductions, it is
sound to reason over the rule fragments that build them.

Section 2.5 gives three examples of proof fragmentation. The first example
shows how a proof about the termination of P can be extended to a proof about
the termination of P(:=). Thus not only are semantic definitions easier to extend,
proofs about them are easier to extend too. The second example is a proof about
the stores used in the semantics of P(:=). This is simpler than a corresponding
proof in a structured operational semantics because only the rules that mention
stores are considered. It is also modular for the same reason. The last example
uses fragmentation to simplify the proof of equivalence between the I-semantics
and the structured operational semantics.

Many of my foundational definitions are modeled on Prawitz’s work on Natural
Deduction [Pra65,Pra71]. I do not assume that the reader is familiar with it.
However, I hope that those who are will see this work as a natural extension.

2.1 Preliminaries

Languages At the moment I do not want to commit myself to any particular no-
tion of language — I believe that any meaningful notion will suffice. I am not here
concerned with the properties of any particular language; I wish to concentrate
on the structure of deduction. I assume the reader is familiar with the notions of
formula, term, free variables and substitution. Appendix A gives a more formal
account.

I use L to range over languages, A,B,C, . . . to range over formulae and t to
range over terms. I write A ∈ L if A is a formula in language L, and M ∈ L if t
is a term of the language L. I use x to range over variables, FV for the function
that returns the set of free variables of a term or formula and θ for substitutions.
I write θA for the instance of A obtained by applying θ to the free variables of A
(and similarly for terms).

Intuitively, a deduction will be a forest of interacting inference trees where
the interactions are represented as pairs of formula occurrences. The simplest
way I have found to maintain such structures (particularly when defining rule
application) is to introduce an artificial notion of formula occurrence (i.e., a new
datatype) and then build inference trees out of these objects rather than formulae.

Chapter 2. Interacting Deductions 15

To avoid confusion, I shall always use the noun “occurrence” to refer to an artificial
occurrence, and the verb “to appear” to mean “to occur within a structure”.
Of course, no artificial occurrence should actually appear more than once in a
deduction. This trick allows me to avoid defining forests as either multisets or
sequences of inference trees, both of which are problematic.

I use Girard’s device [Gir87, p.29] to represent occurrences. Formally, a formula
occurrence of L will be a pair (A, n) of a formula A ∈ L and a distinguishing tag
n ∈ N. If θA = B I write θ(A, n) = (B, n). If X is a set of formula occurrences, I
shall write θX = {θ(A, n) | (A, n) ∈ X}. Similarly, I write FV (A,m) = FV (A).
I write (A, n) ≡ (B,m) if A = B, in which case I say the two occurrences match
or have the same shape. I say two sets of occurrences X and Y match (written
X ≡ Y) if there exists a bijection f : X ↔ Y such that for all (A, n) ∈ X,
f(A, n) ≡ (A, n).

It is very cumbersome to continually write (A, n) for an occurrence of A. There-
fore, following Prawitz [Pra65, p25], I shall use the letters A,B,C, . . . to range over
formula occurrences as well as formulae. I write A ∈ L if A is an occurrence of
a formula in L. This will afford no confusion most of the time. When I want to
distinguish two different occurrences of the same formula A, I shall not write pairs
explicitly, but use Prawitz’s less intrusive superscript notation: A1 and A2, and so
on. This is not to be confused with my use of subscripts, where A1 and A2 may
be occurrences of different formulae. Thus A1

1 and A2
1 are different occurrences of

A1, and A1
1 and A1

2 are occurrences of different formulae.

Throughout this section I shall assume a fixed L.

Formula Trees A formula tree is either a formula occurrence A or the pair
(X,A) when X is a finite set of formula trees that share no formula occurrences,
and A is a formula occurrence not already appearing in X. While formula trees are
usually built from formulae, I use formula occurrences here because it simplifies
the treatment of interaction later.

A tree T = (X,A) is written graphically in the following way:

X
A or

T1 · · · Tn
A

if X = {T1, . . . , Tn}. I call T1, . . . , Tn the children of T , and say that A is the
root of T (written A = root(T)). The subtree of relation is easily defined as the
reflexive and transitive closure of the “child of” relation.

Formula Forests A formula forest F is a set of formula trees such that no
occurrence appears more than once. I write O(F) for the set of formula occurrences
in F . I write root(F) = {root(T) | T ∈ F}.

Rule atoms Rule atoms are used to build interacting rules. They are just the
ordinary notion of rule (except that I use occurrences in place of formulae to avoid
multisets of premises): a pair (Prem,C) where Prem ∪ {C} is a finite set of

Chapter 2. Interacting Deductions 16

formula occurrences, and each occurrence appears only once. Prem is the set of
premises of the atom, and C is the conclusion. I write θ(Prem,C) for the instance
(θPrem, θC). I write (Prem1, C1) ≡ (Prem2, C2) when I say they also match if
Prem1 ≡ Prem2 and C1 ≡ C2. I use a to range over atoms.

2.2 Interacting deductions

A rule atom establishes how someone can draw a new inference from a set of
previously established facts. An interacting rule establishes how a set of people
can draw new inferences in their work after exchanging ideas with each other. For
now I am not interested in what ideas are shared, or in who shares them (I shall
consider this in chapter 4), so the definition of interacting rule is simply as follows.

I-rules An I-rule is a finite, non-empty set of rule atoms, such that no occurrence
appears more than once. I drop the I- prefix whenever it is clear from the context.
I use r to range over rules.

I write θr for the rule instance obtained by applying θ to its elements. Con-
ventionally, rule instances will also be rules: uninstantiated rules will be rule
schemata or rule templates that generate their instantiations. Two rules match
(written r ≡ r′) if there exists a bijection f : r ↔ r′ such that for all a ∈ r,
f(a) ≡ a. I write a rule with three atoms graphically in the following way:

Prem1

C1
−−−−− Prem2

C2
−−−−− Prem3

C3

where I have arbitrarily ordered the rule atoms. (Note that again I could have
used sequences of atoms instead of sets, but to do so makes life harder.) When I
enumerate the premise set of an atom I shall omit the set brackets. I write other
interacting rules similarly.

I-systems An I-system T is a pair (L,R) where L is a language and R is a set
of I-rules over formulae in L (typically, these will be generated from a finite set of
rule schemata). In the rest of this chapter, I shall sometimes drop the “I” prefix
when convenient.

I-deductions To motivate the definition of I-deduction, consider how our com-
munity of forgetful mathematicians deduce facts. At first, they have nothing until
they write down some immediately obvious facts (an observation about the world,
or an axiom of the formal system they are studying). From then on, at each stage
in the community’s life, there will exist a body of knowledge represented by a for-
est F : the current facts are to be thought of as the roots of F . This is advanced
whenever a group of (one or more) mathematicians (interested in disjoint sets of
facts deduced by F1, . . . , Fn ⊆ F) inspire each other by exchanging ideas, after
which each mathematician is able to draw a new conclusion, C1, . . . , Cn, respec-
tively. (Thus each mathematician uses a rule atom matching (root(Fi), Ci)). At

Chapter 2. Interacting Deductions 17

this point, the premises of the rules have been forgotten: so if a result is required
twice, it will have to be deduced twice. Note that it is possible for some current
facts given by F0 ⊆ F not to be used at a particular step, so these remain available
for the next step.

Definition 2.0 (I-Deduction) The set I(T) of I-deductions of an I-system T is
the least set such that

1. (∅, ∅) ∈ I(T)

2. if (a) (F, I) ∈ I(T) where F = F0 ∪ F1 ∪ . . . ∪ Fn and F0, . . . , Fn are
all disjoint, and

(b)
root(F1)
C1

−− . . .−− root(Fn)
Cn

matches a rule of T such that C1, . . . , Cn are distinct occurrences
not in F , and

(c) I ′ = I ∪ {(Ci, Cj) | 1 ≤ i, j ≤ n}

then (F0 ∪ {F1

C1
, . . . , Fn

Cn
}, I ′) ∈ I(T)

Note that this definition records an interaction by putting interaction links between
every pair of new conclusions. Note also that every new conclusion interacts with
itself. This is done purely for technical convenience: it ensures that I is a reflexive,
symmetric and transitive relation (i.e., an equivalence relation).

For an alternative logical treatment due to Gordon Plotkin, see section 7.3.4.

2.2.1 Examples

Let L be the language consisting of two formulae, A and B. LetR be the following
set of rules:

A B
A A
A −−−−− B B

B

Then we have an I-system T = (L,R), and the following is (the graphical repre-
sentation of) a simple T -deduction:

A
A A
A

A

B B
B B

B

(Technically, I should overline the leaves of this tree to indicate that they are
axiom instances. However, doing this here makes the tree look ugly.) Note that
interaction lines in rules are drawn between the rule atoms, but in a forest, they
are drawn between the conclusions of rule instances in the forest.

The following is not an element of I(T):

A
A A
A

A

B B
B B

B
    ``````̀....

....

....

..

........................

..............................................
.................................................................................



Chapter 2. Interacting Deductions 18

One cannot apply the rules of T systematically to create this structure, even
though it looks as if it were built from the rules. For instance, the dotted re-
gion (called in (non-topological) future terminology a neighbourhood) looks like
an instance of the third rule.

The problem with this structure is that it contains a dependency loop. The
structure contains two instances of the third rule, but each instance depends on
conclusions of the other.

The next two subsections prove two important results about I-deductions. The
first is that they have no dependency loops. The second result shows that in fact
the absence of dependency-loops is a characterizing feature of I-deductions. This
fact both gives us a clearer understanding of what deductions are, and allows us
to reason about deductions more simply than the inductive definition.

2.2.2 I-deductions have no dependency loops

To show that the definition of I-deduction guarantees the avoidance of depen-
dency loops, I characterize the dependencies between formula occurrences using
preorders.

Preorders A preorder over a set X is a reflexive and transitive binary relation
over the elements of X. I use the . symbol to range over preorders. If a . b then
I also write b & a. If a, b ∈ X, I write a < b for a . b and b 6. a, and a ∼ b for
a . b and b . a.

Preorders of deductions Let F be an occurrence forest. I say A is below B
in F (written A .F B) if there exists a tree T ∈ F such that A is the root of a
subtree of T containing B. I say .F is the preorder of F . Actually, .F is also a
partial order, but the preorder of a deduction will not be so in general.

The preorder of a deduction (F, I) is given by

.(F,I)= (.F ∪I)∗

The rationale is that formula occurrences are deduced from both those above them
and those they interact with. I take the transitive closure of .F ∪I to obtain a
preorder, because (for example) A .F B and BIC do not imply A(.F ∪I)C.

Dependency Loop Freeness I say a pair (F, I) is dependency-loop free if the
following condition holds:

For all A,B ∈ O(F ), if A <F B then A <(F,I) B. (DLF)

For motivation, again consider the community of mathematicians. If A <F B then
A must have been deduced after B. Given the definition of .(F,I), this obviously
implies A .(F,I) B. However, if A was deduced after B, then it could not also
have been deduced simultaneously with B — therefore A 6∼(F,I) B. This means



Chapter 2. Interacting Deductions 19

A <(F,I) B. The problem with the non-example on page 17 is that it suggests that
two occurrences were deduced both before and after each other.

Proposition 2.1 Let T be an I-system, and let (F, I) ∈ I(T ). Then (F, I) satis-
fies DLF.

Proof: By induction on the definition of I(T ). The base case is vacuous. For
the induction step, assume that the property holds for (F, I) = (F0 ∪ F1 ∪ . . . ∪
Fn, I), and suppose r = {a1, . . . , an} is a rule instance that can be applied to
make (F ′, I ′) = (F0 ∪ {F1

C1
, . . . , Fn

Cn
}, I ′), where C1, . . . , Cn are the new conclusion

occurrences. Now, pick A,B ∈ O(F ′) such that A <F ′ B. Then B equals no Ci
because it exists above at least one occurrence. Hence B ∈ O(F ). There are two
cases: either A ∈ O(F ) or not. If A ∈ O(F ) then A <(F,I) B by induction and
thus also A <(F ′,I′) B since (I ′ \ I) ⊆ {C1, . . . , Cn}2 cannot relate A and B. If
A 6∈ O(F ) then A .(F ′,I′) B (since A <F ′ B and .F ′⊆.(F ′,I′)). The only way
that B .(F ′,I′) A would be if AI ′B, but as we have seen, AI ′B only if B is a new
occurrence, which it is not. 2

Proposition 2.2 DLF implies that if A ∼(F,I) B then AI B.

Proof: Suppose A ∼(F,I) B. Then there exists a sequence of occurrencesA0, . . . , An

in F such that A1 = A, An = B and for all i = 1, . . . , n − 1 either Ai <F Ai+1

or AiIAi+1. Now, since A ∼(F,I) B, we have for i = 1, . . . , n − 1, Ai ∼(F,I) Ai+1

because
A .(F,I) Ai .(F,I) Ai+1 .(F,I) B .(F,I) A

This in turn means that Ai 6<F Ai+1 by DLF, which means that AiIAi+1 for all
i = 1, . . . , n− 1. 2

2.2.3 DLF helps characterize the I-deductions

The previous proposition showed that no deduction contains any dependency
loops. Dependency loop freeness is an important condition for our intended appli-
cation (it corresponds to the principle that temporal states are not synchronized
with previous states); but it is also important proof-theoretically: DLF helps char-
acterize the set of I-deductions.

Theorem I states this formally. The content of the theorem is that a pair (F, I)
is an I-deduction of the I-system T if it is built from instances of rules in T , and
the preorder .(F,I) satisfies DLF. To show this, I require the notions of I-structure,
I-neighbourhood and how to match rules to neighbourhoods.

I-structure An I-structure (over a language L) is a pair (F, I) where F is a
finite set of finite occurrence trees (with formulae in L) and I ⊆ O(F )× O(F ) is
an equivalence relation. Clearly, every I-deduction is an I-structure. Henceforth,
I shall assume that every pair written “(F, I)” is an I-structure.



Chapter 2. Interacting Deductions 20

I-neighbourhoods Let C be an occurrence in an I-structure (F, I). The neigh-
bourhood of C is the set

N(F,I)(C) = {atom(C ′) | C ′ I C}

and atom(C) = (root(F0), C) when (F0, C) is that subtree which concludes C of
a tree in F . Thus the neighbourhood of an occurrence returns the putative rule
atom that introduces C. Thus the neighbourhood of C in (F, I) is the set of atoms
that either conclude C or are connected to the atom that concludes C by a chain
of interaction links. (Thus the conclusions of a neighbourhood form an equivalence
class of I .) Note that neighbourhoods overlap: the premises of one neighbourhood
must be the conclusions of others. I write N(F, I) for the set of neighbourhoods
in (F, I).

Neighbourhood Ordering The deduction preorder of (F, I) can be lifted to a
preorder over neighbourhoods. The neighbourhood ordering of (F, I) is the relation
≤N(F,I)⊆ N(F, I)×N(F, I) defined by

N1 ≤N(F,I) N2 if for all conclusions A ∈ O(N1)
there exists a conclusion B ∈ O(N2) such that A .(F,I) B

Thus N1 is less than N2 if some (conclusion occurrence in an) atom in N1 occurs
below an atom of N2 in (F, I). The definition stresses conclusion occurrences be-
cause it is the conclusion occurrences that interact.

Proposition 2.3 ≤N(F,I) is a partial order when (F, I) satisfies DLF.

Proof: Reflexivity and transitivity follow from the reflexivity and transitivity
of .(F,I). For antisymmetry, let N1 ≤N(F,I) N2 and N2 ≤N(F,I) N1. We show
N1 = N2. Since N1 ≤ N2 there exist conclusions A1 ∈ O(N1) and A2 ∈ O(N2)
such that A1 .(F,I) A2. Symmetrically, there exist conclusions B2 ∈ O(N2) and
B1 ∈ O(N1) such that B2 .(F,I) B1. Because they are conclusion occurrences,
A1 ∼(F,I) B1 and A2 ∼(F,I) B2. But this means

A1 .(F,I) A2 ∼(F,I) B2 .(F,I) B1 ∼(F,I) A1

which means A1 ∼(F,I) A2 ∼(F,I) B2 ∼(F,I) B1. Thus, by proposition 2.2, DLF
implies that A1I∗A2 and B1I∗B2. Therefore, N1 = N2 by the definition of neigh-
bourhood. 2

Rule matching An I-rule r = {a1, . . . , an} matches a neighbourhood N via
f : O(r)↔ O(N) (written r ≡f N) iff

N = {f(a1), . . . , f(an)}

where f({Pi1, . . . , Pini}, Ci) = ({f(Pi1), . . . , f(Pini)}, f(Ci)), f preserves the shape
of occurrences and Ci is the conclusion of ai (for i = 1, . . . , n).



Chapter 2. Interacting Deductions 21

Theorem I (F, I) ∈ I(T ) if and only if (F, I) is a I-structure satisfying DLF and
every neighbourhood matches a rule of T .

Proof: ⇐: Let (F, I) be a I-structure satisfying DLF and such that every neigh-
bourhood matches a rule of T . Then (F, I) contains a finite number of neigh-
bourhoods. By proposition 2.3, ≤N(F,I) is a partial order. Let ≤ be any total
order containing ≤N(F,I). We use induction on the number n of neighbourhoods
to show that (F, I) ∈ I(T ).

When n = 0 the structure must equal (∅, ∅), which is a member of I(T ) by
definition. When n = k+1, consider (F ′, I ′), the I-structure consisting of only the
k highest (w.r.t. ≤) neighbourhoods of (F, I), i.e., not including those parts of the
least neighbourhood distinct from every other neighbourhood — its conclusions.
Clearly, (F ′, I ′) must satisfy DLF, and every neighbourhood must match a rule
because (F ′, I ′) is contained within (F, I). By induction, (F ′, I ′) ∈ I(T ).

Now, let Nk+1 be the least (w.r.t. ≤) neighbourhood of (F, I). Suppose
it matches rule r = {a1, . . . , an} via f : O(r) ↔ O(Nk+1). Then Nk+1 =
{f(a1), . . . , f(an)}.

Since Nk+1 is a neighbourhood of (F, I) then its premises must also belong to
≤-higher neighbourhoods of (F, I) — i.e., to neighbourhoods in (F ′, I ′). More-
over, these premises must occur as conclusions of (F ′, I ′) since they are premises
to conclusions of (F, I) which do not exist in (F ′, I ′).

Therefore there exist disjoint forests F0, F1, . . . , Fn such that F ′ = F0 ∪ F1 ∪
. . . ∪ Fn and for i = 1, . . . , n, root(Fi) equals the set of premises of f(ai). Thus,
since for all A ∈ O(r), f(A) ≡ A, we have ai ≡ f(ai) = (root(Fi), Ci) for
i = 1, . . . , n. Moreover, from the definition of neighbourhood, f(ai) = atom(Ci),
which means that (Fi, Ci) ∈ F . Therefore

F = F0 ∪ {F1

C1
, . . . , Fn

Cn
}

Also, by the definition of I-structure, the interactions of the neighbourhood must
form an equivalence relation. Thus I = I ′ ∪ {(Ci, Cj) | 1 ≤ i, j ≤ n}.
⇒: By proposition 2.1, we know that every I-deduction satisfies DLF. We

show that every neighbourhood matches a rule by induction on the definition
of I(T ). Case (∅, ∅): vacuous. Case (F, I) being the result of applying r =
{a1, . . . , an} to (F ′, I ′). By induction, every neighbourhood of (F ′, I ′) matches a
rule of T . From the definition of rule application, we have F = F0∪F1∪ . . .∪Fn
where ai ≡ (root(Fi), Ci). The only neighbourhood in (F, I) not in (F ′, I ′) is N
equals

{atom(C1), . . . , atom(Cn)}

From the definition of atom, we have atom(Ci) = (root(Fi), Ci) (which we have
already seen matches ai) for i = 1, . . . , n. Thus if we define f : O(r) ↔ O(N)
such that f(ai) = atom(Ci) we have r ≡f N . 2

From the above, we can formulate a simple correctness principle for I-deductions
based on their graphical representation. If one can trace a loop by following in-
teraction lines and by going down a chain of dependencies in a tree at least once,
then the structure is not an I-deduction. Otherwise, if it is also built out of rules,
it is a deduction.



Chapter 2. Interacting Deductions 22

Throughout the rest of the thesis, I shall use Π and Σ (variously decorated)
to range over deductions. If the set of conclusions of Π is {C1, . . . , Cn}, I write

Π ` C1, . . . Cn. If further Π ∈ I(T ), I write T ` C1, . . . , Cn. I also write Π
A when

Π ` A.

2.3 An Example

This section gives an example I-system drawn from Computer Science. It uses
I-rules to describe the behaviour of a very simple process calculus based on CCS

[Mil89]. The point of this example is both to illustrate the use of I-systems, indicate
some of their properties, and also to motivate the technique of fragmentation. I
compare this definition with a more traditional structured operational semantics
(SOS) [Plo81], and also a semantics given by structured equivalences. I shall refer
to the structured operational semantics as “the SOS”, and the I-system as “the
I-semantics”.

The process calculus is built over an action set Act. Following Milner [Mil89,
p.37], this is built from an infinite set Nam of names. I use a, b, c, . . . to range
over Nam. Names will tend to be english words, but mostly I shall use a, b, c, etc.
By Nam I denote the set of co-names of Nam, which are just the words of Nam
overlined. I use ā, b̄, c̄, . . . to range over conames. I write Lab = Nam ∪ Nam,
ranged over by l. I define complementation · : Lab → Lab by: l̄ = ā if l = a and
l̄ = a if l = ā. The action set Act = Lab ∪ {τ} where τ 6∈ Lab is called the silent
action. I use α to range over Act.

The simple calculus is called P. It can be thought of as the sum-, restriction-,
recursion- and relabelling-free subset of CCS. Sum and recursion can be added
without any problems. We shall consider restriction in section 3.4, and relabelling
in section 7.3. The syntax of P is given by the following grammar:

p ::= 0 | l.p | p|p

where 0 is the process that does nothing and terminates, l.p is the process that
performs an action l from Lab and then behaves as p, and p|q is the parallel
composition of processes p and q. I have disallowed processes of form τ.p for
simplicity.

Non-silent actions describe the effect a process has on its environment, which
will in turn be a collection of parallel processes. I do not describe what each
individual action “is”; for our purposes it is just a name. The crucial point is that
each name has a distinguished partner, or co-name. A communication is said to
occur between a process and its environment if the process performs an action
a, and the environment “absorbs its effect” by performing the opposite action, ā,
simultaneously. When this happens, the joint system of processes performs the
silent action τ .



Chapter 2. Interacting Deductions 23

2.3.1 Comparative Semantics

The following three semantics formalise these ideas in different ways. In the SOS,
when a process performs an action, we decorate the transition relation with the
name of the action. In the I-semantics, when we deduce that a process performs an
action, we must also simultaneously deduce its communicating partner absorbing
its effect. In the structured equivalence setting we cannot deduce the transitions of
a communicating pair of processes separately; an atomic transition is a transition
of a communicating pair of processes.

Structured Operational Semantics of P

It is given by the labelled transition system LTSSOS = 〈P, Act,→,Ω〉 where
→⊆ P×Act×P is the relation defined by (p, α, q) ∈→ if and only if PSOS ` p α→ q
where PSOS is the deduction system (LSOS,RSOS) such that LSOS is the language
of judgments of form p

α→ q and the ruleset RSOS is generated by the following
rule schemata

l.p
l→ p

p
α→ p′

p|q α→ p′|q
q

α→ q′

p|q α→ p|q′
p

l→ p′ q
l̄→ q′

p|q τ→ p′|q′

Thus I have regarded the proof system of a structured operational semantics as
the special case of I-system whose rules are singletons. The last component of the
labelled transition system, Ω, is the set of terminal states of P processes. That is,
it is the least set such that

0 ∈ Ω and p|q ∈ Ω when p, q ∈ Ω

It is not hard to see that the quadruple LTSSOS satisfies the conditions on labelled
transition systems given in definition 1.0.

I-semantics of P

The I-semantics of P is given by the transition system TSI = 〈P,→,Ω〉 where
→⊆ P × P is the relation defined by (p, q) ∈→ if and only if PI ` p → q where
PI is the deduction system (LI ,RI) such that LI is the language of reduction
judgments of form p → q and the ruleset RI is generated by the following rule
schemata:

a.p→ p −−−−− ā.q → q

p→ p′

p|q → p′|q
q → q′

p|q → p|q′
p→ p′ q → q′

p|q → p′|q′

The set of final states, Ω, is as defined above. Note that if I had allowed processes
of form τ.p, I would have required an extra rule τ.p→ p.



Chapter 2. Interacting Deductions 24

Structured Equivalences

The reduction (i.e., unlabelled transition) judgment of PI is not uniquely a feature
of I-semantics. They can also be derived using the technique of structured equiv-
alences in a structured operational semantics. Such a semantics for P is given by
the I-system PCONG = (LI ,RCONG) where RCONG is the set of rules:

a.p | ā.q → p|q
p→ p′

p|q → p′|q
p ∼= p′ p′ → q′ q′ ∼= q

p→ q

and ∼=⊂ P × P (the structured equivalence relation) is defined to be the least
relation satisfying

p ∼= p p|q ∼= q|p p|(q|r) ∼= (p|q)|r

p ∼= q
q ∼= p

p ∼= q

p|r ∼= q|r
p ∼= q q ∼= r

p ∼= r

Note that there is no rule for action prefixing: we do not need to use such a
rule. It is the lack of this rule which prevents the relation from being a structured
congruence.

Note also that this approach does not require a rule for two concurrent tran-
sitions, whereas one is required in the I-semantics. Without such a rule there,
internal communications could not be modeled in an I-deduction. However, this
extra rule makes a significant difference: it permits several communication transi-
tions to occur simultaneously, something not allowed in the other two approaches.
Section 2.5.3 shows this formally.

We could avoid multiple transitions simply by adding action information to
judgments, or by using the structured equivalence approach. In these cases, the
interacting rules would be redundant. Shortly I shall indicate how interacting
rules can be mixed usefully with the standard techniques.

Comparison

For example, let us see how the three systems deduce a transition of the process
a.p|r|ā.q.

PSOS :
a.p

a→ p

a.p|r a→ p|r ā.q
ā→ q

a.p|r|ā.q τ→ p|r|q
PI : a.p→ p

a.p|r→ p|r ā.q→ q

a.p|r|ā.q → p|r|q

PPPP

PCONG : a.p|r|ā.q ∼= a.p|ā.q|r
a.p|ā.q→ p|q

a.p|ā.q|r→ p|q|r p|q|r ∼= p|r|q
a.p|r|ā.q → p|r|q



Chapter 2. Interacting Deductions 25

On Actions The first point of difference between the definitions is that PSOS
judgments contain actions, whereas those of the other two do not. In [San93, ch3],
Sangiorgi shows that reduction judgments (regardless of how they are deduced)
are in general too weak for process algebraic purposes. Reduction bisimulation is
“rather weak; in general it is even not preserved by parallel composition” (p.47).
Moreover, for CCS, reduction congruence coincides with strong bisimulation only
for the divergent-free processes [MS92]. P is too simple to contain divergent pro-
cesses, but this is accidental. Process calculus transitions should contain actions.
PI judgments do not for pedagogic reasons.

On Propagation I could easily add actions to the judgments of PI , however the
point is that they are not required to describe the semantics. The judgments of
PI are syntactically less complex than those of PSOS because action information
does not have to be propagated down inference steps. Nor do we need another
mathematical object (an equivalence relation) to achieve this.

The following sections show how one can avoid the propagation of other pieces
of information too. Avoiding propagation simplifies the syntactic presentation
of judgments, and thus also the statement and proof of theorems about such
judgments. It also admits some modularity in definitions and proofs. The rest of
this chapter is devoted to illustrating these claims.

2.3.2 Extending the semantics

Sometimes the semantics of an extension to a language can be obtained simply
by adding extra rules [FC94]. In some cases, proofs about the language can be
extended simply by adding extra cases for the extra rules. However, some exten-
sions (for instance, features that require the addition of an extra component in the
transition system configurations) require every rule to be rewritten. In this case,
every proof about the base language will have to be rewritten for the extended
language.

I shall show how (using I-systems) a simple extension of P that requires an
extra component in the configuration translates into a simple extension of a proof
about P. The simple extension is to add variable assignment to P, and the extra
component of the configuration is a store. It is well known that stores can be
implemented in process calculi (see, e.g. [Mil89, ch8]), but I add them explicitly
both for pedagogic reasons, and because P is not a real process algebra. The
important point will be that the rules of P are included unchanged in those for
the new language, despite the extra component.

Another important point is that we can apply this extension almost uniformly
to each of PI , PSOS and PCONG without changing any of their rules.

Extending PI with stores Let us call the new language P(:=). Let V ar be
a countably infinite set of variables ranged over by x, V al a set of values ranged
over by v, and let op range over a set of binary operators Op. The grammar of



Chapter 2. Interacting Deductions 26

P(:=) is
e ::= v | x | e op e
p ::= 0 | l.p | p|p | (x := e).p

Let Exp be the set of all expressions.

The semantics of P(:=) requires a global store component. The precise alge-
braic definition of stores σ ∈ Store is given later in figure 5–1. The important
operations are σ(x) which returns the value of x in σ, and σ[v/x] which updates
the value of x to v.

The I-semantics of P(:=) is given by the transition system TS
(:=)
I which

equals 〈P(:=) × Store,→,Ω × Store〉 where 〈p, σ〉 → 〈q, σ′〉 if and only if ei-
ther P (:=)

I ` p → q, σ  σ′ or P (:=)
I ` p → q and σ = σ′. The deduction system

P (:=)
I = (L(:=)

I ,R(:=)
I ) is defined such that L(:=)

I consists of the judgments of the
form p → q, e → v and σ  σ′, and the rules of R(:=)

I are those of RI plus the
rules generated by the following schemata:

v → v x→ v −−−−−
σ(x) = v
σ  σ

e1 → v1 e2 → v2

e1 op e2 → app(op, v1, v2)

e→ v
(x := e).p→ p

−−−−−
σ  σ[v/x]

σ  σ σ  σ′

σ  σ′

where app : Op× V al× V al ⇀ V al is a partial function that returns the value of
applying op to its arguments. Note that the last rule for stores is not a general
transitivity rule. As I show later (proposition 2.10), it limits transitions to write
to the store at most once.

Thus P(:=) is just P plus an assignment action, which is atomic (avoiding
problems of interference). So (x := 0).(p| · · · |p) where p = (x := x+ 1).0 returns
in x the number of copies of p in the program. For example, figure 2–1 gives the
first two transitions of the program (x := 0).(p|p).

Extending PSOS and PCONG with stores The I-semantic rules of P(:=)

reuse those of P. Here I show how to extend the other two systems, reusing their
rulesets. To extend PSOS to P (:=)

SOS = (L(:=)
SOS ,R

(:=)
SOS), we define the language of

judgments L(:=)
SOS to be the set of judgments of form p

α→ q, e→ v and σ  σ′ and
the ruleset R(:=)

SOS to be RSOS plus the rules above for stores and expressions with
one modification. The rule atom for assignment becomes:

e→ v

(x := e).p τ→ p

To extend PCONG, we set L(:=)
CONG = L(:=)

I and R(:=)
CONG to be RCONG plus the

rules above without modification. The only change that has to be made is to the
equivalence relation. Currently ∼=⊆ P×P. We want ∼=⊆ P(:=)×P(:=). We do
not have to change the definition of the equivalence, except insofar as the variables
p and q range over P(:=) instead of P.

By contrast, if I had not used interacting rules, the extension of PSOS and
PCONG would have rewritten every rule in the respective systems to carry around



Chapter 2. Interacting Deductions 27

0→ 0
(x := 0).(p|p)→ (p|p) −−−−− σ  σ[0/x]

x→ 0 1→ 1
x+ 1→ 1

(x := x+ 1).0→ 0
p|p→ 0|p

σ[0/x] σ[0/x] σ[0/x] σ[0/x][1/x]
σ[0/x] σ[0/x][1/x]

� �

�

�
� �
� �

Figure 2–1: P(:=) process transitions of (x := 0).(p|p) where p = (x := x+ 1).0

a store component. (Section 5.2 discusses a similar treatment for environments.)
Thus interacting rules can extend semantics in a more modular fashion than stan-
dard approaches.

2.3.3 Reasoning about semantics

We shall see that reasoning about I-semantics can be more modular too. Suppose
we have a proof using TSI that every P process is nondivergent, and that it pro-
ceeds by induction on the structure of P processes. Then the proof will concern
the rules and judgments of PI. To prove an analogous result for P(:=) we should
only require an extra case for the new production (x := e).p. The rule for this
construct consists of two atoms, one concluding a process reduction judgment, and
another a store transition judgment. Yet the property does not concern store tran-
sitions (stores do not store processes). Every P (:=)

I transition consists of at most
two subtransitions: one process transition and one store transition. For a P(:=)

process to diverge, there must exist an infinite sequence of process transitions.
The proof need only show that no process can be attributed an infinite sequence
of transitions. Therefore the proof need only concern itself with the fragment of
the rule concerning process reduction.

The key notion is “fragment”. We shall see the respective proofs after the defi-
nition of fragment, and the proof of the proof fragmentation theorem (theorem II).



Chapter 2. Interacting Deductions 28

2.4 Fragments of deductions

The idea of fragmentation is quite straightforward. Suppose our community of
mathematicians is cosmopolitan, and we wish to study the work of the Russians
(which is distinguished by the type of facts they deduce). To study them, we have
to screen out the work of everyone else. That is, we must isolate the Russian
contribution to a deduction (their trees) and consider only how teams of Russians
collaborate.

In this section I define rule and deduction fragments. The main result of this
section is the proof fragmentation theorem.

Definition 2.4 (Fragment)
• I-structure (F0, I0) is a fragment of (F, I) if F0 ⊆ F and I0 ⊆ I.

• Rule r0 is a (rule) fragment of rule r if r0 ⊆ r.

• Ruleset R0 is a (ruleset) fragment of ruleset R if R0 contains only fragments
of rules in R.

• I-system (L0,R0) is a (system) fragment of I-system (L,R) if L0 ⊆ L, and
R0 is a fragment of R.

Note that if (F0, I0) is a fragment of (F, I) then I0 ⊆ I ∩ (O(F0) × O(F0)). This
follows both from the definition of fragment and also because I0 ⊆ O(F0)×O(F0)
by the definition of I-structure. Thus a fragment of a structure consists of a subset
of its forest and a subset of the interactions between the isolated trees. I define
the process of taking fragments of I-structures rather than I-deductions because
in general, fragments of deductions in I(T ) will not be deductions in I(T ).

Note also that taking a fragment of a rule does not alter the shape of individ-
ual atoms. Further, if R0 is a fragment of R then R0 need not be a subset of R.
Indeed, as I show in section 2.5, it is even possible that R ⊆ R0 and R0 6= R. I
write (L,R) ⊆ (L′,R′) if L ⊆ L′ and R ⊆ R′.

Proposition 2.5 The relation “is a fragment of” is a partial order over I-structures,
rules, rulesets and systems.

Proof: For I-structures and rules this follows trivially from the fact that ⊆ is a
partial order. For rulesets it follows from the fact that fragments of fragments of
rules are fragments. For systems, it follows because ⊆ is a partial order and “is
a fragment of” is a partial order over rulesets. 2

Proposition 2.6 Let (F0, I0) be a fragment of (F, I). Then if (F, I) satisfies DLF,
so does (F0, I0).

Proof: This follows from the fact that .(F0,I0)⊆.(F,I). 2



Chapter 2. Interacting Deductions 29

The proof fragmentation theorem

We can consider system fragments to be modules. The proof fragmentation the-
orem shows that when we prove universal propositions about the deductions of
modules they will remain true when the modules are composed. For example, we
may show that every Russian deduction satisfies φ. Then the theorem entails that
every Russian fragment of a cosmopolitan deduction will also satisfy φ. Further-
more, as shown in section 2.5.3, it can also be used to simplify proofs within a
module.

To state the theorem, I define the set of T0-fragments of a T -deduction when T0

is a fragment of T . I say that FT0(Π) is the set of fragments of Π such that every
neighbourhood matches a rule instance of T0. I extend this to sets of deductions.
Thus I write FT0(X) =

⋃
Π∈X FT0 (Π)

Theorem II (Proof fragmentation)

I(T0) ⊇ FT0 (I(T )) when T0 is a fragment of T .

Proof: Let Π ∈ FT0(I(T )). Then by proposition 2.6, Π satisfies DLF. By defini-
tion, every neighbourhood of Π matches a rule instance of T0, so by theorem I,
Π ∈ I(T0). 2

This theorem proves that it is sound to reason universally about fragments of
deductions by considering only the rule fragments that build them. Suppose that
φ is a proposition about all T0-deductions. For example, proposition 2.10 concerns
store deductions. Then the proof fragmentation theorem shows that the result
remains true for every T0-fragment of a T -deduction. Thus the store proposition
is true for every store fragment of a P (:=)

I -, P (:=)
SOS- and P (:=)

CONG-deduction.

The proof technique does not extend to other kinds of sentences, such as exis-
tential sentences. Because I(T0) is bigger than FT0(I(T )) what may be shown to
exist in I(T0) may not exist in FT0 (I(T )).

So not every proposition about T0-fragments of T -deductions will be provable
in this way. (That is, it is sound to reason about rule fragments, but in general
it is not complete.) It is not the case that I(T0) ⊆ FT0(I(T )). This is because the
other rule atoms in T may prevent certain T0 rule fragments from being applied.
For example, consider the ruleset consisting of the single rule

A
−−−−− B

C

and consider the fragment consisting of A. The set of deductions over the original
ruleset is empty (we cannot infer B), whereas we do have the deduction A in the
ruleset fragment.

It would be natural to try to find a characterization of the rule sets for which
the inclusion does hold. However, I have not yet managed to do this. Similarly,



Chapter 2. Interacting Deductions 30

one might wish to classify the kinds of propositions one can prove using this proof
technique. Intuitively, we can only prove properties about system fragments that
do not depend on the way the rest of the system interacts with the fragment. In
chapter 4 we see the proof assembly theorem which overcomes this limitation.

2.5 Examples

This section shows how the theory of fragments helps reasoning about P processes.
The first result I shall prove is the promised nondivergence proof of P. I shall then
extend this to obtain a nondivergence proof of P(:=). In a similar vein, I shall also
prove a simple property about stores, which remains true (without modification)
irrespective of the different semantics for P. The section finishes with a proof of
equivalence between LTSSOS and TSI .

Broken deductions and systems Let B(F, I) = (F, ∅) be the result of break-
ing every interaction link in an I-structure. Obviously B(Π) is a fragment of Π.
Similarly, let B(L,R) = (L, {{r0}| r0 ∈ r ∈ R}) be the result of breaking every
interaction link in an I-system. Once again, B(T ) is a fragment of T . For exam-
ple, PB = B(PI) consists of the following rules (note that the two halves of the
communication rule are just instances of each other)

l.p→ p

p→ p′

p|q → p′|q
q → q′

p|q → p|q′
p→ p′ q → q′

p|q → p′|q′

Proposition 2.7 If Π ∈ I(T ) then B(Π) ∈ I(B(T )). 2

2.5.1 Extending a nondivergence proof

In this section, we prove that no P process diverges, and then consider how to
extend the proof to P(:=). The extension is quite straightforward, and requires
less effort when using I-systems than ordinary SOS.

To be precise, we actually prove a non-nontermination proof: that is, that no
process performs an infinite sequence of transitions. (Equivalently, that every pro-
cess either terminates or deadlocks.) This is a stronger result than nondivergence,
because divergence is that special case of nontermination which exhibits no visible
computation. It is quite possible for a nonterminating process to perform work
visibly: for instance it may output an infinite stream of approximations to some
result. However, I use the term “nondivergence” because it is less of a mouthful
than “non-nontermination”.

Sequences I write Xω for the set of countable, possibly empty sequences of
elements from set X. I write ε for the empty sequence. I write sequences using
an associative concatenation operator · (e.g., u · v · . . . · w). I use s to range over
sequences. I regard elements of X as singleton sequences in Xω. I write |s| for



Chapter 2. Interacting Deductions 31

the length of s, dom (s) = {1, . . . , |s|} and s(i) for the ith element of s when
i ∈ dom (s).

For the following proofs, I say that a deduction sequence of PI (PB) is a sequence
of deductions Π1 · . . . ·Πn (for n ≥ 1) such that for i = 1, . . . , n, Πi ` pi → pi+1, for
some p1, . . . , pn+1 ∈ P. I say PI (PB) attributes a deduction sequence Π1 · . . . ·Πn

to p if Π1 ` p→ p′ for some p′ ∈ P.

Proposition 2.8 No process in P diverges.

Proof: If PI attributes a transition sequence to a process p, by definition there
must exist a sequence of deductions that conclude the individual transitions.
Therefore it suffices to consider deduction sequences.

I show by induction on the structure of p that the rules of PB attribute an
at most finite deduction sequence to p. Case p = 0 trivial. Case p = a.q
by induction, q has an at most finite deduction sequence s attributed by PB (let
n be the length of the maximal sequence). Then a.q has a maximal deduction
sequence of length n+ 1: a.q→ q·s which is finite. Case p = q|q0 by induction,
both q and q′ are attributed at most finite deduction sequences, s of length n and
s′ of length m respectively. Then q|q′ will have a maximal deduction sequence
s · s′ of length n+m.

Now, let p ∈ P. Suppose PI attributes an infinite deduction sequence Σ1 ·Σ2 ·
. . . to p. Let Σ′i = B(Σi) for i = 1, 2, . . . be the fragments obtained after breaking
every interaction link. By proposition 2.7 this would be an infinite PB-deduction
sequence attributed to p: contradiction. 2

Extending the proof to P(:=)

Let P (:=)
PROC be that fragment of P (:=)

I containing the process transition and expres-
sion evaluation rule fragments (i.e., not containing the store atoms). Then the
ruleset of P (:=)

PROC contains the ruleset of PI. Furthermore, P (:=)
BPROC = B(P (:=)

PROC)
is just PB plus formulae and rules for expression evaluation and the assignment
rule atom.

To obtain a proof of nondivergence for the processes of P(:=), it suffices to
change every occurrence of PI with P (:=)

PROC and PB with P (:=)
BPROC, in both the

definition of deduction sequence and the body of the proof, and then add the
following case to the induction proof:

Case p = (x := e).q by induction, q has an at most finite sequence s
of transitions attributed by P (:=)

BPROC (let n be the length of the maximal
sequence). Then (x := e).q has a maximal sequence of transitions of
length n + 1: (x := e).q→ q·s which is finite.

Proposition 2.9 No process in P(:=) diverges. 2



Chapter 2. Interacting Deductions 32

There are two aspects to the work of proving theorems. The first aspect con-
cerns the discovery of proofs, and the second concerns the verification of the dis-
covered proof. When I prove theorems I tend to do both simultaneously: I use
my intuitions about what correct proofs are to guide my proof search, and then
at each stage I check to see if I have proved what I think I have proved. In a
mathematical text the proof has already been discovered — but I still have to
check it to believe it (a point of view expounded in [Pol95]). In general, proof
discovery is harder and proof checking is easier.

The above extension is not modular in the sense that we have to check that
the entire extended proof really is a proof. It is modular in the sense that we do
not have to do very much to discover the proof. Because the set of productions
in the grammar of P(:=) contains that of P, our first strategy should attempt to
reuse the inductive cases of the previous proof. Because the ruleset of P (:=)

BPROC

contains that of PB, we should (at least at the first attempt) expect to reuse the
inductive cases altering only the names of the I-systems. And in fact, this is what
I did. The candidate extended proof consists of a substitution of names and an
extra induction case.

By contrast, if I had attempted to extend a nondivergence proof using SOS then
I should have had to rewrite the definition of deduction sequence and the proof
itself to reason about judgments with state information. Moreover, since every
rule mentions stores, we should have to reconsider every case just to see if they
are influenced by the store. So in this sense my approach is more modular than
the SOS approach: I simply extended the old proof without having to reconsider
anything.

To a small extent, my approach will also require less work when the proof for an
extended language requires a different proof strategy than the proof for the original
language. For instance, suppose we subsequently introduce to the grammar an
iterator production ItnC.p where n is a natural number and C belongs to a set of
process constants, and a production for constants C, with the following semantic
rules:

It0C.p → 0 Itn+1C.p → p[ItnC.p/C]

(For the equivalent SOS rules, add τ superscripts to the arrows.) then this calculus
would still be nondivergent, but the induction strategy would have to be altered:
p[ItnC.p/C] is not in general structurally smaller than p (e.g., when p = C), so
one cannot use structural induction. The modified proof would have to alter the
induction hypothesis and reprove every case. (See section 4.3.2 for the proof of a
similar result.) The idea of the new proof would be the same in both approaches,
but the expression of the new proof would be simpler in my approach than in the
SOS approach because of the absence of stores in judgments.

2.5.2 A modular proof about stores

The last section proved a result about P(:=) processes independently of the rules
for stores. This section proves a result about stores independently of the rules
for processes. The proposition is very simple: store transitions update at most



Chapter 2. Interacting Deductions 33

one variable. One consequence of the proposition is that stores do not lose any
information.

The Commentary on Standard ML [MT90, §2.8] presents some theorems on
the evaluation of ML. The first theorem is just “the size of the domain of the store
cannot shrink during evaluation”. However, the proof of this theorem considers
a very large number of rules, many of which do not directly influence the store
but have to carry its state around (although the state and exception conventions
hide this). In each case we have to show that the “carrying around” preserves the
property. Only seven rules actually have to be considered because they directly
concern the store.

One way to simplify the proof would be to formalise the state convention as a
family of metarules, as [HMT90, §6.7]:

s0, A1 ` phrase1 ⇒ A′1, s1 s1, A2 ` phrase2 ⇒ A′2, s2 · · ·
sn−1, An ` phrasen ⇒ A′n, sn
s0, A ` phrase ⇒ A′, sn

and then have one case that proved the “carrying around” result generally, by a
subinduction on n, the number of premises. To check this proof correct, I should
have to check that every “carrying around” rule does indeed match one of the
metarules in the family.

Although ML and P(:=) are different languages, and although the ML se-
mantics is evaluation-style and the one for P(:=) transition-style, the following
proof of the theorem for P(:=) illustrates that I-semantics allow one to cut out
irrelevant cases. There are only three rules that concern the store, and the proof
contains only three cases.

Let SI be the fragment of P (:=)
I consisting of the following rule fragments:

σ  σ σ  σ[v/x]
σ  σ σ  σ′

σ  σ′

The proof fragmentation theorem can be applied to the following proof to show
that every P (:=)

I -, P (:=)
SOS-, and P (:=)

CONG-transition updates the store at most once.

Proposition 2.10 If SI ` σ  σ′ then either σ′ = σ or there exists x ∈ V ar and
v ∈ V al such that σ′ = σ[v/x].

Proof: by induction on the depth of inference of Σ ∈ I(SI) such that Σ ` σ  σ′.
Base cases: by inspection, the lookup rule gives σ′ = σ. The assignment rule
gives σ′ = σ[v/x] for some v and x. Induction step: the case for the propagation
rule follows immediately from the inductive hypotheses: the conclusion has the
same shape as the right hand premise. 2



Chapter 2. Interacting Deductions 34

2.5.3 An equivalence theorem

This section shows that the I-semantics and the SOS of P are equivalent for the
non-deadlocking processes. Once again, the proof uses the proof fragmentation
theorem, but this time not for extensibility or modularity reasons. Instead it sim-
plifies the proof: without fragments, even the easy half becomes very cumbersome.

This is actually a flaw of the definition of I-deduction. It is neither particularly
elegant nor does it support simple inductive reasoning. Instead, (as we shall see) we
always have to recover inductive reasoning using a special kind of fragmentation.
One feels that this special notion of fragment should be somehow embodied in the
definition of deduction; though at the moment it is not obvious how to do it. This
problem will be rectified in chapter 4.

The proofs of the two directions of the equivalence each consist of two parts,
only one of which is interesting. The uninteresting part concerns the problem of
matching the single communication transitions of PSOS to the multiple communi-
cation transitions of PI . The interesting part concerns how interactions correspond
to communication.

To minimise the uninteresting part, I shall introduce an intermediate structured
operational semantics (called PMSOS) which allows multiple communications per
transition and simply state the appropriate equivalence results. These proofs are
not hard, but are tedious. Then I shall prove PMSOS equivalent to PI. Another
advantage of having this intermediate semantics is that it shows very clearly the
difference between SOS and I-semantics in general.

An intermediate semantics

The idea is that each transition judgment can be decorated with a multiset of
labels (collections of silent actions will be represented by the empty multiset.)
Figure 2–2 gives a definition of the multiset operations we shall be using.

Let PMSOS = (LMSOS,RMSOS) where LMSOS is the set of judgments of the
form p

m→ q, and RMSOS is the set of rules generated by:

l.p
{| l |}→ p

p
m→ p′

p|q m→ p′|q
q
m→ q′

p|q m→ p|q′

p
m1→ p′ q

m2→ q′

p|q m→ p′|q′
∃m′ ⊆ (m1 ∩m2).m = (m1 \m′) ∪ (m2 \m′)

The side condition on this last rule is quite complex, but as the following proof
shows, it accurately captures the nature of communication in the I-semantics.
Suppose m1 and m2 are the multiset of visible actions performed by two parallel
transitions. Then there may be some communication between the two, in which
case there will exist some submultiset m′ of actions of m1 whose complementation
will be a submultiset of m2. That is, m′ ⊆ m1 ∩m2. The visible actions of the
combined transition will be the union of the visible actions of m1 and m2 which
have not been communicated, i.e., (m1 \m′) ∪ (m2 \m′).



Chapter 2. Interacting Deductions 35

Here I shall represent multisets m by their characteristic functions: functions from
Lab to N, the set of natural numbers. For each action l, m(l) equals the number
of occurrences of l in the multiset. Then the following operations can be defined:

Empty multiset ∅(l) = 0

Singleton {| l |}(l′) =
{

1 if l = l′

0 ow
Multiset union (m1 ∪m2)(l) = m1(l) +m2(l)
Multiset intersection (m1 ∩m2)(l) = min(m1(l),m2(l))

Multiset difference (m1 \m2)(l) =
{
m1(l)−m2(l) if m1(l) > m2(l)
0 ow

Submultiset m1 ⊆ m2 iff ∀l.m1(l) ≤ m2(l)
Complementation ∀l.m(l) = m(l̄)

Note that complementation is the extension of label complementation to multisets
of labels, and not complementation with respect to some universal multiset. Also,
I shall write {| l1, . . . , ln |} for {| l1 |} ∪ . . . ∪ {| ln |}.

Figure 2–2: Multisets

Proposition 2.11 For all p, p′ ∈ P and l ∈ Lab,

if PSOS ` p l→ p′ then PMSOS ` p
{| l |}→ p′

if PSOS ` p τ→ p′ then PMSOS ` p ∅→ p′

2

A trace t is a sequence of labels. t traces m if for all l, m(l) equals the number of
occurrences of l in t. Note that tmay contain no silent actions. A t-traced deduction
sequence of PSOS is a sequence of deductions consisting of |t| + 1 subsequences,
the first of which concludes a sequence of transitions p0( τ→)∗p1, and the last |t|
concludes a sequence of transitions pi(

τ→)∗
t(i)→ ( τ→)∗pi+1, for some p0, . . . , p|t|+1 ∈ P.

A t-traced deduction sequence is written PSOS ` p0
t→ pn.

Proposition 2.12 For all p, p′ ∈ P and m ∈ NLab, if PMSOS ` p m→ p′ then for
all traces t of m, PSOS ` p t→ p′. 2

The interesting equivalence proofs

The following proofs require a different fragment of PI than the nondivergence
proof. Let PF be the fragment of PI generated by:

a.p→ p −−−−− ā.q → q l.p→ p

p→ p′

p|q → p′|q
q → q′

p|q → p|q′
p→ p′ q → q′

p|q → p′|q′

The difference between PI and PF is the inclusion of the rule l.p→ p. The point is



Chapter 2. Interacting Deductions 36

that PF -deductions can contain both broken and unbroken interaction links. This
allows me to either break or put in interaction links as the proof progresses.

For the proofs, I introduce the following notations. Let Π ∈ I(PF ). Then it
will contain a number of instances of prefix rule instances. I write Π[m] if m is
the multiset of labels l that occur as prefixes in prefix rule instances l.p→ p of Π.
(Thus m records the broken interaction links in Π.) In a straightforward extension
of notation, I write Π[m] ` Γ if Γ is the set of conclusion occurrences of Π[m]. I
say that an occurrence A of (F, I) is noninteracting if for all (A,B) ∈ I , A = B.

Lemma 2.13(i) For all p, p′ ∈ P and m ∈ Nlab, PMSOS ` p m→ p′ if and only if
there exists a Π ∈ I(PF ) such that Π[m] ` p→ p′.

Proof: ⇒: by induction on the depth of inference of p m→ p′. Case l.p
fj l jg→ p:

when we have the PF -deduction l.p→ p[{| l |}].
Case p|q m→ p0|q: this follows from the rule with premise p

m→ p′. By
induction we have Π[m] ` p→ p′. The result follows by applying the appropriate
I-rule to Π to conclude p|q → p′|q. Case p|q m→ p|q0: symmetrical to the last
case.

Case p|q m→ p0|q0: this follows from the rule with the two premises p m1→ p′

and q
m2→ q′. By induction, we have Π1[m1] ` p→ p′ and Π2[m2] ` q → q′ in PF .

Let m′ ⊆ (m1∩m2) be such that m = (m1\m′)∪(m2\m′). Then we can build the
deduction Π3[m] ` p|q → p′|q′ in two steps. First, we add interaction links cor-
responding to the communications specified by m. Let f1 : Lab→ ℘(O(Π1)) be
such that f1(l) isolates m′(l) noninteracting l-communication occurrences in Π1.
Furthermore, let f2 : Lab → ℘(O(Π2)) be such that f2(l) isolates m′(l) nonin-
teracting l̄-communication occurrences in Π2. Then since for all l, m′(l) = m′(l̄),
there exists a family of bijections gl : f1(l)↔ f2(l̄). We set Im to be the reflexive,
symmetric closure of {(A,B) | ∃l.gl(A) = B}, and then add Im to Π1 ∪Π2. The
resulting set of interaction links will still form an equivalence relation because in
PF -deductions, each equivalence class consists of at most two conclusions. The
second step is simply to apply the parallel composition rule to get the result.

⇐: By induction on the depth of inference of Π[m] ` p→ p′. Case l.p→ p:

we get l.p
{| l |}→ p. Case p|q → p0|q: case follows easily by induction. Case

p|q → p|q0: similar.
Case p|q → p0|q0: suppose Π[m] ` p|q → p′|q′. This is inferred from a PF

deduction of p → p′, q → q′. We break all the links between the deductions of
these two conclusions, from which we obtain two PF deductions Π1 ` p → p′

and Π2 ` q → q′. Now suppose the broken links were between pairs of actions
(l1, l̄1), . . . , (ln, l̄n) (for n ≥ 0). Let m′ = {| l1, . . . , ln |}. Then we get Π1[m1 =
m′1 ∪m′] and Π2[m2 = m′2 ∪m′] for some m′1 and m′2 such that m = m′1 ∪m′2.
By induction we get PMSOS ` p m1→ p′ and PMSOS ` q m2→ q′. We can apply the
parallel composition rule to get PMSOS ` p|q m→ p′|q′. 2

Note that even though there is no case for the I-rule a.p→ p—ā.q → q in the
above induction, I still make essential use of its existence in PF . It allows me



Chapter 2. Interacting Deductions 37

to take PI-deductions, and then strip away interaction links at my convenience.
This allows me to identify the interactions between inference trees that have to be
communicated together in PMSOS.

Proposition 2.13 For all p, p′ ∈ P, PMSOS ` p ∅→ p′ if and only if PI ` p→ p′.

Proof: Follows by proof fragmentation and the fact that I(PI) ⊆ FPF (I(PI)).
2

From propositions 2.11, 2.12 and 2.13 it follows that

PI ` p→+ p′ iff PSOS ` p( τ→)+p′

2.6 Chapter summary

The basic theory of interacting deductions introduces the concept of interaction
between groups of inference trees (or mathematicians trying to prove individual
results). An interaction link between two occurrences denotes a synchronization
of ideas. This allowed us to separate the various parts of a semantic judgment
to achieve syntactic simplicity and propagation freeness in semantic rules (sec-
tion 2.3.1). This made it particularly easy to extend semantic definitions (sec-
tion 2.3.2). To exploit this simplification and extensibility in proofs about these
semantic definitions, we needed the proof fragmentation theorem (section 2.4).
This simplified the task of proof extension (section 2.5.1) and improved modu-
larity (section 2.5.2). However, its use in the equivalence result (section 2.5.3)
stemmed from the fact that it is not a simple matter to reason inductively from
the definition of I-deduction. Though easily remedied using fragmentation, it in-
dicates that the definition is not as good as it should be: somehow it ought to
include the notion of fragmentation. We see this in chapter 4.

First though, we have seen how to use a theory of interacting deductions to
give transition semantics. The next chapter asks if we can also give evaluation
semantics.



Chapter 2. Interacting Deductions 38



Chapter 3

Evaluation Semantics and Sequential
Deductions

Evaluation semantics [Hen90] (elsewhere called Natural Semantics [Kah87], Rela-
tional semantics [MT92], Martin Löf-style operational semantics [Abr93] and Big-
Step semantics [Ast91]) enjoy a number of advantages over transition semantics.
They tend to be more concise, less detailed and easier to reason about [Ber91, ch4].
They can also often give more direct semantics to features such as while loops.
Practically, they have been used to give semantics to ML and EML [KST94], as
the basis of theories of program animation [Ber91], execution profiling [San94],
debugging [DS92] and compiler generation [DJ86].

I-systems can describe transition semantics; can they also describe evaluation
semantics? We present an evaluation I-semantics for P which answers this ques-
tion affirmatively. However, P is a very simple language — can we give evaluation
semantics to more complex languages, for example containing sequential compo-
sition? In fact we can, in at least two different general ways. However, neither
approach is easy to understand. Therefore we introduce a notion of sequentiality
into the metatheory of deduction, giving QI-deduction. This is harmless, because
every QI-system can be coded into an equivalent (albeit less perspicuous) I-system.

We obtain an evaluation semantics for P extended with sequential composi-
tion, which is more concise, and more readily comprehensible than a transition
semantics. However, the real test is whether or not the evaluation semantics can
simplify proofs too. We give a simple translation correctness result which verifies
that at least for some applications, it does.

The structure of this chapter is as follows. In section 3.1 we consider how
existing techniques for capturing sequential composition in ordinary evaluation
semantics can be appropriated in I-systems. In section 3.2 we define the QI-
deductions, which are just the I-deductions extended with a notion of sequencing.
We show that QI-systems can be coded into equivalent I-systems. Section 3.3
describes a QI-system for P(;) — P plus sequential composition, and uses it to
discuss various aspects of QI-deduction. Last, section 3.4 compares the pragmatic
value of our evaluation semantics with that of a transition semantics by testing
how easily they can prove a simple translation correctness result.

39



Chapter 3. Evaluation Semantics and Sequential Deductions 40

An evaluation semantics of P

Our language P has a very simple evaluation-style I-semantics PEI :

0
√ p

√

l.p
√ −−−−−

q
√

l̄.q
√ p

√
q
√

p|q√

The judgment p
√

means “p terminates” — i.e., it is equivalent to the sequence of
PI-judgments abbreviated p →∗ q for q ∈ Ω. This can be shown formally, but it
is not important here.

This example illustrates how evaluation semantics can be more concise than
transition semantics. There is just one rule for each combinator. I think it is tidier
than the transition semantics. It also highlights two important points. Consider
the process a.b.0. We get PSOS ` a.b.0 a·b→ 0. That is, the evaluation of a.b.0 will
first perform a and then b and then stop. Now consider the deduction fragment Π
of PQI:

0
√

b.0
√

a.b.0
√

We have a.b.0
√
<Π b.0

√
<Π 0

√
. If we say the action of a judgment l.p

√
is l

then <Π attributes the following sequence of actions to Π: a · b. We can then say
that Π attributes this sequence of actions to the conclusion of Π, a.b.0

√
. The first

point is that the preorder of Π naturally captures the evaluation order of a.b.0.
The second point is that this order is opposite to the order in which the judgments
were deduced.

Adding sequential composition

When we add a sequential composition operator ‘;’ to P, it becomes more difficult
to give an evaluation semantics. Let P(;) be P plus ‘;’. Its grammar is

p ::= 0 | l.p | p|p | p; p
and its SOS transition rules are:

l.p
l→ p

p ∈ Ω q
α→ q′

p; q α→ q′
p

α→ p′

p; q α→ p′; q

p
α→ p′

p|q α→ p′|q
q

α→ q′

p|q α→ p|q′
p

l→ p′ q
l̄→ q′

p|q τ→ p′|q′

Note that the set of terminal states of P(;) is just the set of terminal states of P,
Ω. I call this system P (;)

SOS = (L(;)
SOS,R

(;)
SOS). It is a straightforward extension of

PSOS .
Unfortunately I cannot give an evaluation-style I-semantics to P(;) as simply

as I could give one to P. In the next section, I survey four methods of capturing
sequentiality in standard evaluation semantics. I shall discuss why they are not
appropriate, thereby motivating the introduction of extra sequencing technology
in the meta-theory.



Chapter 3. Evaluation Semantics and Sequential Deductions 41

3.1 Sequential composition in evaluation seman-
tics

This section considers some different ways that sequential composition has been
modeled in evaluation semantics. I call them cutting intermediate states , control
stacks, coding and convention. Each approach either fails or requires complex
judgments. Therefore I argue for a meta-theoretic treatment of sequencing, inde-
pendently of particular semantics.

3.1.1 Cutting intermediate states

The most common way to model sequential composition in an evaluation semantics
is to “cut intermediate states”. If a program phrase exp1 is executed before exp2,
then the machine state immediately after executing exp1 is the state immediately
before executing exp2. The intermediate state is produced and then consumed,
and is not mentioned in (i.e., it is “cut out of”) the overall evaluation judgment
of the composed program exp1; exp2.

This is how sequentiality is captured in The Definition of Standard ML [HMT90].
In ML, sequential composition is a derived form: its semantics is given by the call-
by-value interpretation of function application (defined by the rules in [HMT90,
§6.7]). However, if it did have a rule for sequential composition, it would be
something like:

s, E ` exp1 ⇒ v, s′ s′, E ` exp2 ⇒ v′, s′′

s, E ` exp1; exp2 ⇒ v′, s′′

where E is an environment associating identifiers with their values and s, s′ and
s′′ are store states. A judgment of form s, E ` exp ⇒ v, s′ means that exp is
evaluated in environment E and store s to value v, having changed the state to s′.
In this rule s is the initial state, s′′ the terminal state, and s′ is the intermediate
state that has been cut out of the conclusion.

This technique does not work directly in an I-semantics. P(;) processes do
not interact with stores; but even if they did (e.g., in a similar manner to P(:=)),
cutting intermediate states would not guarantee that the interaction links above
the ‘sequenced’ premises would likewise be sequenced. Suppose our semantic judg-
ments were of form s, p

√
, s′, and meant that p terminated transforming store s to

s′. The proposed rule
s, p
√
, s′ s′, q

√
, s′′

s, p; q
√
, s′′

would not stop the inference trees above the premises interacting. Thus we could
have Π such that Π ` s, a.0; ā.0

√
, s — which is wrong. If a.0 is evaluated before

ā.0, they cannot interact.

One way round this difficulty is to introduce an artificial notion of ‘state’ that
captures the global ordering of interaction links. The following four rules capture



Chapter 3. Evaluation Semantics and Sequential Deductions 42

this:

[κ] 0
√

[κ]
[κ1, n] p

√
[κ′1]

[κ1] l.p
√

[κ′1]
−−−−−

[κ2, n] q
√

[κ′2]
[κ2] l̄.q

√
[κ′2]

if n > max(κ1 ∪ κ2)

[κ] p
√

[κ1] [κ] q
√

[κ2]
[κ] p|q

√
[κ1 ∪ κ2]

[κ] p
√

[κ1] [κ1] q
√

[κ2]
[κ] p; q

√
[κ2]

The sets of natural numbers κ (note I have used κ, n to abbreviate κ ∪ {n}) are
the artificial states. Each member of an artificial state records the timestamp of
an interaction link (a link is timestamped at the communication rule by n). Thus
the evaluation judgment [κ] p

√
[κ′] is intended to mean that “the evaluation of p

commences after the interactions recorded in κ and terminates after the interac-
tions recorded in κ′”. A straightforward proof shows that if [κ] p

√
[κ′] is deduced

in the above system then κ ⊆ κ′. For example, (where I elide set brackets for
legibility)

[1, 2] 0
√

[1, 2]
[1] b.0

√
[1, 2]

[∅] a.b.0√ [1, 2]

[1] 0
√

[1]
[∅] ā.0√ [1]

[1, 2] 0
√

[1, 2]
[1] b̄.0

√
[1, 2]

[∅] ā.0; b̄.0
√

[1, 2]
[∅] a.b.0|ā.0; b̄.0

√
[1, 2]

� �

�
�� �

deduces [∅] a.b.0|ā.0; b̄.0
√

[1, 2], which says that when the process a.b.0|ā.0; b̄.0
executes, it performs two interactions. (The actual numbers 1 and 2 have no
independent meaning.) Thus the above system can sequence interactions correctly.
To show that it enforces sequentiality, consider the following attempted deduction
of [∅] a.b.0|b̄.0; ā.0

√
[κ].

[1, 2] 0
√

[1, 2]
[1] b.0

√
[1, 2]

[∅] a.b.0√ [1, 2]

[2] 0
√

[2]
[∅] b̄.0√ [2]

[1, 2] 0
√

[1, 2]

[2] ā.0
√

[1, 2]

[∅] b̄.0; ā.0
√

[1, 2]
[∅] a.b.0|b̄.0; ā.0

√
[1, 2]

� �

�
�

The problem here occurs at the boxed occurrence: we cannot apply the com-
munication rule here because 1 6> 2. Thus the first example suggests that this
system can sequence evaluations correctly, and the second suggests that it cannot
sequence evaluations wrongly.

A major point is that this approach does not depend in any way on the language
P(;). This is both good and bad. It is good because this means the technique can
be used for any language, which in turn means that the basic theory of interacting



Chapter 3. Evaluation Semantics and Sequential Deductions 43

deductions is powerful enough to give both transition and evaluation semantics to
a wide class of languages.

It is bad precisely because the states are artificial: they are not intuitive seman-
tic objects. The stores of P(:=) are intuitive, because stores occur in implementa-
tions. But the artificial states would correspond to nothing in an implementation.
They are purely declarative. This makes it hard to understand why the technique
works: especially since the timestamps correspond to nothing in the language (in
the communication rule, where does n come from?). In fact, they relate to the
structure of deductions, not to programs.

Moreover, they are bad because they clutter semantic judgments, and have to
be propagated everywhere. They cannot be fragmented away like stores because
their function is to timestamp the interactions of the trees they occur in. We
cannot even appropriate the state convention of [HMT90, §6.7] to aid legibility,
because our language also has concurrency (see section 3.1.4).

Since my aim is to simplify both the presentation of and proofs about opera-
tional semantics, I need a more intuitive semantics for sequential composition that
does not clutter judgments and does not require propagation. Moreover, it seems
proper to separate information about the structure of deductions (meta-theoretic
information) from semantic judgments (object-theoretic information).

3.1.2 Control stacks (or continuations)

An alternative technique is to use a kind of syntactic continuation mechanism, like
the control stacks used in the SECD machine [Lan64]. This is not a widespread
technique, so figure 3–1 gives a simple example: an evaluation semantics for a
stack-based expression evaluator.

This technique requires much more effort than a normal semantics for expres-
sions:

n⇒ n
e1 ⇒ n1 e2 ⇒ n2

e1 op e2 ⇒ app(op, n1, n2)

where the judgments are simpler, more perspicuous, and easier to reason about,
because the semantics is more abstract. The “continuation-style” semantics is
more like an abstract machine. It does not feel like a true evaluation semantics.

This example also underlines the points I made earlier about preorders of
deductions. In the deduction Π of figure 3–1, (1 + 3) was evaluated before 2. Yet
the portion of the evaluation concerning the evaluation of 2 is higher up the tree
than that evaluating (1 + 3). That is,

[(1 + 3), 2,−], ε⇒ 2 <Π [2,−], [4]⇒ 2

So, if we say the action of e · C, S ⇒ n is e (a reasonable thing to do), then
<Π sequences the action (1 + 3) before the action 2. Once again, the preorder
(which is opposite to the order in which judgments are deduced) corresponds to
the evaluation order.



Chapter 3. Evaluation Semantics and Sequential Deductions 44

Let us assume a simple language of expressions:

e ::= n | e op e

where n ∈ Z, and for some set Op of operators, op ∈ Op. The semantic rules for
evaluation are:

ε, n · S ⇒ n
C, n · S ⇒ n
n · C, S ⇒ n

e1 · e2 · op · C, S ⇒ n
e1 op e2 · C, S ⇒ n

C, app(op, n1, n2) · S ⇒ n

op · C, n2 · n1 · S ⇒ n

where C is the control stack, or syntactic continuation of the values on S, the value
stack. app : Op× Z × Z ⇀ Z is a partial function meant to capture the “natural
interpretation” of an expression. Thus app(+, 1, 1) means 2, etc. A judgment
C, S ⇒ n means that the continuation C of S results in value n. It is not hard to
see that in an expression e1 op e2, e1 is evaluated before e2. A simple example is

ε, [2]⇒ 2
[−], [2, 4]⇒ 2
[2,−], [4]⇒ 2

[+, 2,−][3, 1]⇒ 2
[3,+, 2,−], [1]⇒ 2
[1, 3,+, 2,−], ε⇒ 2
[(1 + 3), 2,−], ε⇒ 2
[(1 + 3)− 2], ε⇒ 2

where I have used [a, b, c] as an abbreviation for a · b · c · ε.

Figure 3–1: A simple “continuation-style” evaluation semantics



Chapter 3. Evaluation Semantics and Sequential Deductions 45

Control Stacks and Concurrency

If I tried to use this technique to give semantics to a concurrent language, I would
quickly run into complications owing to concurrency. The overheads would be so
large I would be better using a transition semantics.

However, the situation is greatly improved when using I-systems: we can elide
detail by distributing the control stack across several judgments. The following
semantics is based upon an observation of Pietro Cenciarelli. Here judgments
concern process occurrences, which we denote by pairs (p, n), where p is a process
and n a natural number. The judgments come in two forms: the suspended form
(p, n)

√
(q,m), intended to mean “when activated, process occurrence (p, n) termi-

nates before process occurrence (q,m) commences,” and the active form p
√

(q.m)
which means that this occurrence of p will terminate before occurrence (q,m) be-
gings. Thus (q,m) can be seen as a pointer to the next evaluation judgment in
the distributed control stack. The semantic rules are:

0
√

(0, n) 0
√

(p, n)
−−−−−

(p, n)
√

(q,m)
(p, n)

√
(q,m)

p
√

(q,m)
(p, n)

√
(q,m)

p
√

(q,m)
l.p
√

(q,m)
−−−−−

p′
√

(q′,m′)
l̄.p′
√

(q′,m′)

p
√

(r,m) q
√

(r,m)
p|q
√

(r,m)
p
√

(q, n) (q, n)
√

(r,m)
p; q
√

(r,m) n fresh

(Note that the sequential composition rule looks like it is cutting intermediate
states, but it does not — q is not cut out of the conclusion.) The key rule is the
second one. Its function is to ensure that every parallel process sequenced before
p terminates before p commences. For instance, consider the process (a.0|b.0); c.0.
The I-deduction fragment Π corresponding to its evaluation is:

0
√

(c.0, 2)
a.0
√

(c.0, 2)
0
√

(c.0, 2)
b.0
√

(c.0, 2)
a.0|b.0√(c.0, 2)

....
c.0
√

(0, 1)
(c.0, 2)

√
(0, 1)

(c.0, 2)
√

(0, 1)
(c.0, 2)

√
(0, 1)

(a.0|b.0); c.0
√

(0, 1)

� �

�
�

�

�

The second rule is used twice to deduce the two 0
√

(c.0, 2) judgments. Without it,
the evaluation of a.0 and b.0 could not be deduced. Now, let us say that a judg-
ment is invisible when it occurs as a conclusion of the second rule. Invisible occur-
rences do not correspond to any kind of computation: they just “mark time”. Let
(c.0, 2)

√
(0, 1)3 be the only visible occurrence of (c.0, 2)

√
(0, 1) in the above frag-

ment (i.e., the highest). Then we see that both (a.0
√

(c.0, 2)) <Π ((c.0, 2)
√

(0, 1)3)
and (b.0

√
(c.0, 2)) <Π ((c.0, 2)

√
(0, 1)3). Once again the preorder of Π captures

the evaluation order.

Of course, these rules do not prohibit us from deducing an arbitrary number
of conclusions of form 0

√
p, but since these deductions do not tell us anything

interesting about P(;) we can ignore them.



Chapter 3. Evaluation Semantics and Sequential Deductions 46

Once again, it is straightforward to show that the judgment a.b.0|(ā.0; b̄.0)
√

(0, 1)
is deducible, and that a.b.0|(b̄.0; ā.0)

√
(0, 1) is not. This suggests that the above

system can sequence correctly, and does not sequence wrongly.

This semantics is much simpler than a traditional control stack semantics owing
to the distribution of the stack. If one identifies control stacks with continuations,
one can imagine evaluation semantics for continuation-handling operations such
as call/cc [Cli85,FFHD87]. I have not pursued this topic, but it seems possible.
Though it is not clear how continuations mix with concurrency, one might use this
technique for sequential languages.

This semantics mentions only naturally occurring semantic objects. So in this
sense, it is more natural than the previous semantics. Once again the technique
will work for any language. However, it is quite awkward to have to talk about
process occurrences. (To avoid them we should have to annotate judgments, clut-
tering syntax.) Further, once again, sequencing information has to be propagated
everywhere. Moreover, it is not perspicuous: one has to think quite hard be-
fore one believes this technique works. So even though this style of semantics may
have certain applications (e.g., evaluation semantics for continuation-handling lan-
guages), it is overkill for sequential composition. Everybody understands sequen-
tial composition. It is simple and intuitive. We should like a simple and intuitive
characterization of it.

3.1.3 Coding

A third technique is to code sequential composition using other primitives. For
example, sequential composition is a derived form in ML: it is coded using function
application (appendix A of [HMT90]). However, this only postpones the problem
of defining sequentiality. We still have to model call-by-value application: first
evaluate the function to its primitive form, then its argument, and then evaluate
the body of the function after assigning its parameter to the value of the argument.

It is also coded in Concurrent ML [Rep91b], slightly differently than above,
but again relying on the call-by-value nature of function application.

Similarly, it can be coded in the CCS. Milner [Mil89, §8.1] defines the Before
operator using a special communication protocol of “done” signals. In section 3.4,
I show that P(;) can be coded into P in a similar way. I could say that the
compiler gives the meaning to “;” [Gar63], but there are two difficulties. First,
the compilation is complex, and I should like some way to prove that it is correct.
To do this, I require direct semantics for both P and P(;). Second, not every
language is able to implement sequential composition — for instance, Basic.

3.1.4 Conventions

A fourth technique is to alter the meaning of inference rules by imposing an order
on the premises. An example of this may be found in Berry’s work on program
animation [Ber91]. However, this is usually justified by a convention about in-
termediate states: if there are none, then the order does not matter; otherwise



Chapter 3. Evaluation Semantics and Sequential Deductions 47

the convention is that the premises are ordered according to the order implied by
the intermediate states. In the definition of Standard ML, the state convention
is such an ordering of rule premises. Its function is to simplify the presentation
of rules by eliding state information from judgments (except where rules concern
state explicitly). The conventional ordering allows one to put state information
back in mechanically.

At first sight, this could work: we know how to introduce artificial state infor-
mation to model sequentiality. Moreover, we can do this almost without knowing
anything about the language itself. Our problem is that the premises of a parallel
composition rule cannot be ordered — so we cannot appropriate the state conven-
tion for P(;) unless we can distinguish premises that are to be ordered from those
that are not.

3.1.5 Solution

The previous discussion has led us to conclude that we need an intuitive, but
formal and direct way to capture sequentiality without excluding parallelism. The
problem is that we must sequence the interactions between inference trees. I
introduce a proof-theoretic mechanism to do this.

I introduce some notation first, and formalise its meaning later. The notation
indicates that one premise is “sequenced before” another in a rule:

p
√ I q

√

p; q
√

This rule is intended to say that the evaluation of p must conclude before that
of q commences. The view that evaluation order is opposite to deduction order
suggests that q

√
ought to be deduced before the deduction of p

√
commences.

(Note that the black triangle I is not intended to be read as a logical symbol
such as consequence. The above rule does not contain one premise that says “q

√

is a consequence of p
√

”. The triangle occurs between judgments.)

However,I is not just a side-condition: it adds information. Once an inference
tree has been sequenced before another, the trees that interact with the first must
also be sequenced before those that interact with the second. Therefore, asserting
that one tree must be sequenced before another constrains the way non-local trees
can be sequenced too. The following structure violates this condition:

0
√

a.0
√ I

0
√

b.0
√

a.0; b.0
√

0
√

b̄.0
√ I

0
√

ā.0
√

b̄.0; ā.0
√

(a.0; b.0)|(b̄.0; ā.0)
√

� �

� �



Chapter 3. Evaluation Semantics and Sequential Deductions 48

The left-hand sequencing implies that the tree above ā.0
√

is sequenced before
that above b̄.0

√
. The right-hand sequencing requires them to be sequenced in the

other way.

Therefore, to check that one can apply a sequenced rule to a deduction, one has
to check that it sequences inference trees consistently with every other sequencing.
Obviously we have to know what these other sequences are, which means that
sequencing information ought to be part of the deduction itself.

The next section defines the QI-deductions, or sequential deductions. It begins
by defining what the black triangle (pronounced “is sequenced before”) means
in terms of formula occurrences. It defines the QI-deductions inductively from
QI-rules, and then characterizes them axiomatically.

Q-atoms a Q-atom is a pair (Prem,C) where C is a formula occurrence not
appearing in Prem, and Prem is a set of finite, non-empty sequences of formula
occurrences, such that no occurrence appears more than once. When they occur
as premises of Q-atoms, I write sequences of occurrences A1 · . . . · An graphically
as A1 I . . . I An. If s is a sequence of occurrences, I write θs for the result
of applying θ elementwise. Two sequences of occurrences match if they are of
the same length and they match elementwise. I lift substitution and matching to
Q-atoms in the obvious way.

I write flat(a) for the operation of flattening out the sequencing structure of
atom a:

flat(Prem,C) = (
⋃
{{A1, . . . , An} | A1 · . . . · An ∈ Prem}, C)

and I write @a for the relation “is sequenced immediately before” in a:

A @(Prem,C) B iff ∃s, s′.s · A · B · s′ ∈ Prem

3.2 Sequential deductions

As before, a rule atom establishes how someone can draw a new inference from a
set of previously established facts, and an interacting rule establishes how a set
of people can infer new results after exchanging ideas. Now however, our mathe-
maticians are also interested in when the facts they use were deduced. Specifically,
they want to know if the history of one fact (i.e., its inference tree) was completed
before the history of another was begun. Before I define the QI-deductions, I de-
fine the QI-rules and QI-systems. These are straightforward analogues of I-rules
and I-systems.

QI-rules A QI-rule r is a finite, non-empty set of Q-atoms such that no oc-
currence appears more than once. I write QI-rules graphically in a similar way to
I-rules. Rule substitution and rule matching is defined as before. I write flat(r) for
the result of flattening all the atoms in r, and @r for the union of the sequencing
relations of the atoms in r.



Chapter 3. Evaluation Semantics and Sequential Deductions 49

QI-systems A QI-system T is a pair (L,R) where L is a language and R is a
set of QI-rules over formulae in L. In the rest of this chapter, I shall drop the
“QI”-prefix wherever it does not lead to confusion.

QI-structures We have seen that QI-deductions ought to record the sequencing
constraints imposed by the rules that build them. The simplest way to do this
is to include a sequencing relation @ between formula occurrences, where A @ B
means “A is sequenced immediately before B”. This relation will simply be the
union of the sequencing relations of the rules.

Therefore a QI-structure is a triple (F, I,@) such that (F, I) is an I-structure,
and @⊆ O(F )×O(F ). Henceforth, I shall assume that all triples of shape (F, I,@)
are QI-structures.

Now, suppose (F, I,@) is a QI-structure. The relation @ orders formula occur-
rences, the intention being to sequence the trees above the formula occurrences.
Therefore we define the relation @̂ ⊆ O(F )×O(F ) by lifting @ to trees of occur-
rences in F . It is defined in the following way

A @̂ B iff ∃A′, B′ ∈ O(F ).A′ @ B′ and A′ .F A and B′ .F B

The ·̂ symbolism is meant to suggest the operation of extending the effect of @
up the trees whose roots are related by @. Technically, this symbol should be
subscripted by the forest that contains the relevant trees; but where the context
does not make it clear which forest is intended (e.g., in the proof of theorem III)
the result will always be the same whichever forest in the context is chosen.

Histories The last problem is how to verify that a structure satisfies the se-
quencing constraints imposed by a rule. Specifically, when (F, I,@) is a deduc-
tion, we wish to know when it is consistent to assert that one tree is completely
deduced before another in (F, I,@). Ultimately, this question concerns the order
in which we can apply our rules to build (F, I,@). Therefore, it is natural to use
a notion of deductive history to verify sequencing constraints. If there exists some
history which satisfies all the sequencing constraints then we know that they are
consistent.

A history of (F, I,@) is a function h : O(F )→ N such that for all A,B ∈ O(F ),

if A <F B then h(A) > h(B)
if A@̂B then h(A) > h(B)
if AI B then h(B) = h(A)

The idea is that h timestamps each occurrence according to when it was deduced.
If h(A) > h(B) then A was deduced after B. The first condition simply states
that if A is lower than B then A must have been deduced after B. Similarly, if
A is sequenced before B then (under the view that evaluation order is opposite
deduction order) A is deduced after B. Last, if A and B interact, then they must
have been deduced simultaneously.

Given a history h, it is easy to check if it deduces the tree above A before
that above B. If the tree above A in F is meant to be deduced before that of B,



Chapter 3. Evaluation Semantics and Sequential Deductions 50

then the earliest occurrence above B must be later than A (which is the latest
occurrence in the tree above A). In symbols, I write ĥ(B) > h(A), where

ĥ(B) = min{h(C) | C &F B}

is the time of the earliest occurrence above B. The ·̂ notation is again meant to
symbolise the act of going up the tree above the specified occurrence.

(Using history functions is similar to the idea of using artificial states in the
system of section 3.1.1. Here however, I timestamp formula occurrences, not in-
teraction links.)

QI-deductions Now we can define the QI-deductions. The proposal is to add
a sense of history to our community of mathematicians. When a mathematician
sees a rule with sequenced premises his first task is to check the order in which
the trees concluding the premises were deduced. If A is to be deduced before B,
he wants to know that the history of B did not begin until A was obtained.

Definition 3.0 The set QI(T ) of QI-deductions of T is the least set of triples
(F, I,@) such that

1. 0 = (∅, ∅, ∅) ∈ QI(T )

2. if (a) (F, I,@) and r matches a rule of T such that flat(r) can be
applied to (F, I) to get (F ′, I ′)

(b) There exists a history h of (F, I,@) such that for all (A,B) ∈@r,
ĥ(A) > h(B)

then (F ′, I ′,@ ∪ @r) ∈ QI(T ).

Proposition 3.1 Every QI-deduction has a history.

Proof: by induction on the definition of QI(T ), for QI-system T . Case 1: 0
has the empty history 0 : ∅ → N. Case 2: by induction, (F, I,@) has a history.
Suppose r can be applied to it to make (F ′, I ′,@′). Then there must exist a
history h of (F, I,@) such that for all (A,B) ∈@r, ĥ(A) > h(B). We show that
h′ : O(F ′)→ N is a history of (F ′, I ′,@′) where

h′(A) =
{
h(A) if A ∈ O(F )
1 + max(im h) ow

(Where I assume max(∅) = 0.) First, suppose A <F ′ B. Then either A <F B,
in which case h(A) > h(B) and so h′(A) > h′(B) or B ∈ O(F ) and A 6∈ O(F ),
in which case h′(A) = 1 + max(im h) > h(B) = h′(B). Second, suppose A@̂′B.



Chapter 3. Evaluation Semantics and Sequential Deductions 51

Then either A@̂B or not. If so, then h(A) > h(B), whence h′(A) > h′(B). If
not, then A and B must be sequenced by @r: i.e., there exists A′, B′ such that
A &F A′ and B &F B′ and A′ @r B′. But then, ĥ(A′) > h(B′), and so h′(A) =
h(A) ≥ ĥ(A′) > h(B′) ≥ h(B) = h′(B). Last, suppose AI B. Then either
A,B ∈ O(F ) or A,B 6∈ O(F ). In the first case, h′(A) = h(A) = h(B) = h′(B),
and in the second, h′(A) = h′(B) = 1 + max(im h). 2

3.2.1 Examples

Section 5.1.4 gives an evaluation-style operational semantics for CSP which is a
QI-system. I give some simpler examples here. Let T be the QI-system (L,R)
where L = {A,B,C} and R consists of the following rules:

B C −−−−−C
B B
B
−−−−− B B

B
B I C

A

Then the following diagram is a graphical representation of a simple T -deduction
(F, I,@)

B B
B I C

A

B B
B I C

A

� �
� �

� �

� �

Two examples of triples (F, I,@) which are not QI-deductions are:

A B
C I D

E

F G
H
I

A
B I C

D

�
�

In the first diagram, B ought to precede D through sequencing; yet D ought also
to precede B through interactions and inferences. It tries to sequence occurrences
which are already ordered oppositely. The second diagram tries to strictly order
two trees whose leaves interact. I call these errors sequencing loops because they
attempt to synchronize occurrences which have been strictly sequenced.

3.2.2 QI-deductions have no sequencing loops

Preorders of QI-structures The preorder of a QI-structure (F, I,@) is

.(F,I,@)= (.(F,I) ∪@̂)∗

Proposition 3.2 Let (F, I,@) have history h. Then for all A,B ∈ O(F ), A .(F,I,@)

B implies h(B) ≤ h(A).

Proof: Suppose A .(F,I,@) B. Then there must exist a sequence of occurrences
A1, . . . , An such that A = A1, B = An and for i = 1, . . . , n−1, either Ai <F Ai+1,
Ai I Ai+1 or Ai@̂Ai+1. In each case, h(Ai+1) ≥ h(Ai). The result follows from the
transitivity of ≥ over the naturals. 2



Chapter 3. Evaluation Semantics and Sequential Deductions 52

Sequencing Loop Freeness I say (F, I,@) is sequencing loop free if the follow-
ing condition holds

For all A,B ∈ O(F ), if A <F B or A@̂B then A <(F,I,@) B (SLF)

For motivation, again consider the community of mathematicians. If A <F B or
A@̂B then A must have been deduced after B. Given the definition of preorder,
this obviously implies A .(F,I,@) B. However, if A was deduced after B, then it
could not also have been deduced simultaneously with B — therefore A 6∼(F,I,@) B.
That is, A <(F,I,@) B.

Proposition 3.3 SLF implies DLF.

Proof: Let (F, I,@) be a QI-structure, and let A,B ∈ O(F ) be such that A <F

B. By definition, A .(F,I) B. By SLF, A <(F,I,@) B. Since .(F,I)⊆.(F,I,@) we
get that B 6.(F,I) A because otherwise B .(F,I,@) A contradicting SLF. 2

Proposition 3.4 Let (F, I,@) have history h. Then (F, I,@) satisfies SLF.

Proof: Suppose A <F B. Then A .(F,I,@) B and h(A) > h(B). Now, suppose
in fact B &(F,I,@) A also. Then A ∼(F,I,@) B, from which h(A) = h(B): contra-
diction. Therefore A <(F,I,@) B. Similarly when A@̂B. 2

Proposition 3.5 Every QI-deduction satisfies SLF.

Proof: From propositions 3.1 and 3.4. 2

Proposition 3.6 SLF implies that A ∼(F,I,@) B implies AI∗B.

Proof: Suppose A ∼(F,I,@) B. Then there exists a sequence of occurrences
A0, . . . , An in F such that A1 = A, An = B and for all i = 1, . . . , n − 1 ei-
ther Ai <F Ai+1 or AiIAi+1 or Ai@̂Ai+1. Now, since A ∼(F,I,@) B, we have for
i = 1, . . . , n− 1, Ai ∼(F,I,@) Ai+1 because

A .(F,I,@) Ai .(F,I,@) Ai+1 .(F,I,@) B .(F,I,@) A

This in turn means that both Ai 6<F Ai+1 and Ai
̂6@Ai+1 by SLF, which means

that AiIAi+1 for all i = 1, . . . , n− 1. 2

3.2.3 SLF helps characterize the QI-deductions

Proposition 3.5 showed that every QI-deduction satisfies SLF. To show that SLF is
a defining feature of QI-deduction, I need to define the notions of QI-neighbourhoods
and rule matching.



Chapter 3. Evaluation Semantics and Sequential Deductions 53

QI-neighbourhoods Let A be an occurrence in a QI-structure (F, I,@). Then
the (QI-)neighbourhood of A is the pair N(F,I,@)(A) = (N,@A) where

N = N(F,I)(A)
@A=@ ∩(O(N) ×O(N))

Let N(F, I,@) be the set of neighbourhoods in (F, I,@).

The dependency preorder of a QI-deduction Π can be lifted to a preorder
≤N(Π)@ N(Π)×N(Π) over QI-neighbourhoods in exactly the same way that the de-
pendency preorder for I-structures can be lifted to a preorder of I-neighbourhoods.
By the same reasoning as proposition 2.3 we get

Proposition 3.7 ≤N(F,I,@) is a partial order when (F, I,@) satisfies SLF. 2

Proposition 3.8 Let (F, I,@) satisfy SLF. Then it has a history.

Proof: We construct a history. By proposition 3.7, the QI-neighbourhoods of
N(F, I,@) can be partially ordered. Let ≤ be any total order containing this
partial order. Then we define h(A) = i if N(A) is the ith neighbourhood of
≥ (i.e., the total order reversed). To show that this satisfies the conditions,
let A <F B. Then N(A) < N(B), by definition of the partial order. Then
h(B) > h(A). The other two cases are similar. 2

Rule matching A rule r matches a neighbourhood (N,@) via f : O(r)↔ O(N)
(written r ≡f (N,@)) iff

(a) flat(r) ≡f N
(b) @= { (f(A), f(B)) | (A,B) ∈@r}

Theorem III (F, I,@) ∈ QI(T ) if and only if (F, I,@) is a QI-structure satisfy-
ing SLF and such that every neighbourhood matches a rule of T .

Proof: ⇐: Let (F, I,@) be a QI-structure satisfying SLF and such that every
neighbourhood matches a rule of T . Then (F, I,@) contains a finite number of
neighbourhoods. By proposition 3.7, ≤N(F,I,@) is a partial order. Let ≤ be any
total order containing ≤N(F,I,@) and Nn < Nn−1 < . . . < N1 be the neighbour-
hoods of N(F, I,@) ordered by ≤. Thus Nn is the lowest neighbourhood, and N1

the highest.
I show by induction on the number n of neighbourhoods that (F, I,@) belongs

to QI(T ). When n = 0, the case is trivial. When n = k+1, let (F ′, I ′,@′) be the
QI-structure consisting only of the ≤-highest k neighbourhoods (i.e., Nk, . . . , N1).
Obviously, it will satisfy SLF and every neighbourhood will be a rule of T . Thus
by induction, (F ′, I ′,@′) ∈ QI(T ).



Chapter 3. Evaluation Semantics and Sequential Deductions 54

Consider the k + 1-the neighbourhood (N,@0). It matches rule r. By a
similar argument to that of theorem I, we can show that (F, I) is the result of
applying flat(r) to (F ′, I ′). It remains to show that the sequencing constraints are
satisfied. By proposition 3.8, (F, I,@) has history h. So, letA @0 B. ThenA @ B
by the definition of neighbourhood, and so for all C &F A, C@̂B and therefore
h(C) > h(B). In particular, min{h(C) | C &F A} > h(B), i.e., ĥ(A) > h(B).
Therefore, (F, I,@) is a member of QI(T ).
⇒: Let (F, I,@) ∈ QI(T ). By prop 3.5, it satisfies SLF. It remains to show

that every neighbourhood matches a rule of T . We show the result by induction
on the definition of (F, I,@). The base case is vacuous. For the induction step,
suppose every neighbourhood of (F, I,@) matches a rule of T . Suppose r can
be applied to it to yield (F ′, I ′,@′). Now let (N,@N) be the only neighbourhood
of (F ′, I ′,@′) not in (F, I,@). By a similar argument to that of theorem I we
can show that flat(r) matches N via some f : O(r) ↔ O(N). It remains to
show that @N= {(f(A), f(B)) | (A,B) ∈@r}. This follows directly from case 2
of definition 3.0. 2

I cannot form a simple correctness principle for QI-deductions based on their
graphical representation, like I did for I-deductions. One has to mentally “cut out”
sequenced trees and stack them in such a way that if A @ B then the tree above
B is stacked above the tree above A. Then one can use the correctness principle
for I-deductions.

3.2.4 Coding QI-deduction into I-deduction

In section 3.1 I exhibited two different techniques for capturing sequentiality: cut-
ting intermediate states and using distributed control stacks. Both of these tech-
niques could work independently of the details of the language being defined.
This suggests that QI-systems are not more expressive than I-systems — i.e., any
language definable in a QI-system is already definable in an I-system.

To prove this result directly, I could either exhibit a coding of the QI-systems
which used artificial states, or which used distributed control stacks. In the first
case, I would transform a judgment A into judgments of form [κ] A [κ′], and in
the second, I would use judgments of form A before B.

One can do this quite straightforwardly — in fact the translation using artificial
states is reminiscent of the state convention of the definition of Standard ML. The
proof is not very difficult. However, for reasons of space I shall omit such a proof
here. Instead, an even simpler proof goes via the computational semantics of
chapter 6. The proof of the following theorem can be found in section 6.3.1.

Theorem IV For all QI-systems T = (L,R), there exists an I-system T ∗ = (L∗,R∗)
and a family of injective maps fn : Ln → L∗ such that T ` A1, . . . , An if and only
if T ∗ ` fn(A1, . . . , An) 2



Chapter 3. Evaluation Semantics and Sequential Deductions 55

3.3 An evaluation QI-semantics for P(;)

We use the theory of QI-deductions to give an evaluation-style semantics to P(;).
Let P (;)

QI be the QI-system consisting of judgments of form p
√

(where p ∈P(;))
and the following four QI-rules.

0
√ p

√

a.p
√ −−−−−

q
√

ā.q
√ p

√
q
√

p|q√
p
√ I q

√

p; q
√

Once again, the evaluation semantics is more concise than the transition semantics.

The remainder of this section will be spent confirming that the rule for p; q
really does define it to be the sequential composition of p and q. I do this by
showing it accords with the sequentiality given by prefixing. The translation of
P(;) into P given in section 3.4 will further confirm these rules correct. First I
confirm that the semantics does sequence correctly, and second that it does not
sequence incorrectly.

The following example suggests that p; q can sequence p before q by giving
the deduction of the judgment (a.0; b.0)|(ā.b̄.0)

√
. Since ā must be communicated

before b̄, this will show that the rules allow a.0 to be evaluated before b.0. Let Π
be the structure

0
√

a.0
√ I

0
√

b.0
√

a.0; b.0
√

0
√

b̄.0
√

ā.b̄.0
√

(a.0; b.0)|(ā.b̄.0)
√

� �

It is not hard to check that Π is a deduction. For instance, b.0
√
6.Π a.0

√
, and

a.0
√

is sequenced before b.0
√

. Intuitively, one can cut out the tree above b.0
√

and place it above the tree above a.0
√

without introducing any sequencing loops.

The next example suggests that the rule for p; q
√

only sequences p
√

before
q
√

. Consider the process (a.0; b.0)|(b̄.ā.0). The only QI-structure that is com-
posed of P (;)

QI rules and which concludes (a.0; b.0)|(b̄.ā.0)
√

in isolation is (F, I,@):

0
√

a.0
√ I

0
√

b.0
√

a.0; b.0
√

0
√

ā.0
√

b̄.ā.0
√

(a.0; b.0)|(b̄.ā.0)
√

�
�

� �

But this is not a QI-deduction. We have a.0
√@̂b.0√ and also a.0

√ ∼(F,I) ā.0
√
>F

b̄.ā.0
√ ∼(F,I) b.0

√
(i.e., b.0

√
<(F,I,@) a.0

√
). This contradicts SLF.

An evaluation semantics for P(:=,;)

Section 2.3 (page 25) showed that transition rules for variable assignment and
lookup could be added to those of P in a modular way. They can also be added



Chapter 3. Evaluation Semantics and Sequential Deductions 56

to the evaluation semantics in a modular way:

v  v x v −−−−−
σ(x) = v
σ  σ

e1  v1 e2  v2

e1 op e2  app(op, v1, v2)

e v I set(x, v) I p
√

(x := e).p
√

set(x, v)
−−−

σ  σ[v/x]
σ  σ′ I σ′  σ′′

σ  σ′′

Thus in the QI-system for P(:=,;), the rule for sequential composition does not
mention stores. We do not need the state convention of [HMT90] to aid legibility.
They felt the need to remove stores from rules, but could not — so they used a
syntactic convention to abbreviate rule elaboration. When my rules do not concern
stores, they do not mention them. There is no need to hide irrelevant details.

Note that the cut rule for stores differs from the one given in SI (page 33).
There I wished transitions to write to the store at most once. However, over the
course of its entire evaluation, a program will typically write to the store more
than once. Therefore we require a different cut rule for stores.

When interactions occur

The auxiliary judgment set(x, v) is used to ensure that the store is updated only
after the appropriate value has been obtained. The “obvious” rule

e v I p
√

(x := e).p
√ −−−−

σ  σ[v/x]

does not capture the behaviour of assignment. To see why, consider the program
(x := x + 1).0, evaluated in the store σ, where σ(x) = 1. We would expect to
apply the rule to this program and update the store to become σ′ where σ′(x) = 2.
Instead, we get

σ  σ σ  σ[2/x]

x 1 1 1
x+ 1 2

(x := x+ 1).0
√

�

�
To which we cannot apply the cut rule on stores to yield a two-conclusion deduction
of (x := x + 1).0

√
, σ  σ[2/x]. The rules of sequencing order the store write

before the store read. This is not the behaviour of assignment.

So what is it about the above rule that makes it wrong and my rule right?
It is the time during the evaluation of assignment when the store is updated.
Intuitively, the store is updated after the expression has been evaluated and before
the rest of the program has begun to be evaluated. In my rule, the set judgment
ensures this. The “obvious” rule attempts to update the store even before the
expression has been evaluated!

This raises the following question: given an interacting rule for an evaluation
semantics, at which part of the specified evaluation does the interaction occur?
That is, in a hypothetical rule

p′1 ⇒ v′1
p1 ⇒ v1

−−−−− p′2 ⇒ v′2
p2 ⇒ v2



Chapter 3. Evaluation Semantics and Sequential Deductions 57

at which point does the interaction occur? There are two natural choices. One
choice is to say that the interaction occurs before the evaluation of p1 and p2. The
other is to say that it occurs after them.

In fact, for I-deduction, the interpretation varies between particular semantics
(i.e., it is not important proof-theoretically). The semantics PEI (page 40) only
makes sense when the interaction occurs prior to the evaluation specified by the
premises. It is also the interpretation of interaction required by the distributed
control stack semantics of section 3.1.2 for P(;).

We can also find semantics for P(;) in which the interactions are interpreted
to occur after the premises. However, for P(;), these are highly artificial, and are
harder to understand than any of the ones previously encountered.

The point is that I-deduction does not commit us to interpret interaction as
occurring before or after the evaluations described by the premises. By contrast,
QI-deduction commits us to interpret interaction as occurring before the evalua-
tions specified by the premises. This can be seen using the rules of P (;)

QI. Consider
the deduction of (a.0; b.0)|(ā.b̄.0)

√
on page 55. As far as sequencing is concerned,

the interaction of a and ā occurs before that of b and b̄. But this means that the
interaction of the rule

0
√

a.0
√−−−−−−

b̄.0
√

ā.b̄.0
√

must occur before the interactions of b̄.0
√

.

We could easily have defined sequencing to fix the other interpretation — it
would not have affected the range of languages to which we can give semantics.
I chose to fix interaction to occur before premise evaluation both to make the
semantics of P(;) simple, and also to make the computational interpretation of
deduction in chapter 6 straightforward.

3.4 An example: translation correctness

It is well-known that sequential composition can be coded in CCS. In [Mil89, §8.1],
Milner codes sequential composition using restriction and relabelling, of which we
have neither. One can work around this lack, but to do so requires more effort: the
translation is more complex, and a fancier notion of bisimulation is required which
only compares suitably restricted behaviour. Since the aim of this section is to
compare the proofs of some result in the evaluation and transition style semantics,
and the result we are going to prove is that sequential composition can be coded
in P, we might as well save work and add restriction to P(;) and P. We do not
include relabelling because first we do not need it (for P(;) simple subsititution
sufficies) and because second it is harder to capture in an evaluation semantics
(see section 7.3.3).

The structure of this section is as follows. First, we define the translation.
Then, in section 3.4.2 we use transition semantics of P(;) plus restriction to define
the notion of correctness, and then to prove the translation correct with respect



Chapter 3. Evaluation Semantics and Sequential Deductions 58

to it. Section 3.4.4 uses evaluation semantics to define the notion of correctness
and proves the translation correct with respect to it. It is clear that the evaluation
semantics proof involves less work.

The notion of correctness is that the translated process is (almost) weakly
trace equivalent to the original one. By almost, I mean that every trace of the
translated process will have an extra terminal action. We do not use bisimulation
equivalence because it is hard to define in the evaluation semantics. (See [VG90] for
a survey of different process calculus equivalences.) We should not expect to define
an equivalence finer than a trace equivalence when our semantics considers only
complete evaluations. Nevertheless, bisimulation and trace equivalence coincide
for deterministic languages. [Ber89] argues that in practice many (if not most)
programs are deterministic, so perhaps this is not such a great problem for practical
programming languages.

3.4.1 The translation

Let me define the function Λ(p) : P(;)→ Lab inductively over the terms of p:

Λ(p) =


∅ if p = 0
{l} ∪ Λ(q) if p = l.q
Λ(q) ∪ Λ(q′) if p = q|q′ or p = q; q′

Let done and done be new actions to P(;). Then I define the translation using
the following inductively defined function

c(0) = done.0 c(l.p) = l.c(p)

p′ = c(p)[d1/done] q′ = c(q)[d2/done] d1, d2, d1, d2 6∈ Λ(c(p)|c(q))
c(p|q) = (p′|q′|d1.d2.done.0) \ {d1, d2}

p′ = c(p)[b/done] q′ = c(q) b, b̄ 6∈ Λ(c(p); c(q))
c(p; q) = (p′|b.q′) \ {b}

where p\L is the restriction combinator. Informally, it means that p may perform
no action in the set of actions L. Therefore, if p can perform such an action, the
process can only proceed if this action can be absorbed internally.

The idea here is that every process p is translated into a process p′ which
“behaves the same as” p, except that it includes a special final action, done. Let
Done be the process done.0.

3.4.2 The transition semantics proof of correctness

Restriction The standard transition semantic rule for restriction is
p

α→ p′ α 6∈ L ∪ L̄
p \ L α→ p′ \ L

These should be added to the rest of the rules on page 40 to obtain the semantics
for P(;) plus restriction.



Chapter 3. Evaluation Semantics and Sequential Deductions 59

The equivalence I say p is weakly trace-equivalent to q (written p ' q) if for all
p′ and traces t such that p t→ p′ there exists a q′ such that q t→ q′ and vice-versa.
Extending notation from page 35, p t→ Ω means that there exists a sequence of
transitions pi(

τ→)∗
t(i)→ ( τ→)∗pi+1, for some p1, . . . , p|t|+1 ∈ P(;) and p|t|+1 ∈ Ω. The

following are useful properties of trace equivalence:

Proposition 3.9

(i) if p ' q then α.p ' α.q
(ii) if p1 ' p2 and q1 ' q2 then p1|q1 ' p2|q2

(iii) l.(p; q) ' (l.p); q
(iv) (p1; p2); p3 ' p1; (p2; p3)

Proof: (i): Let α.p t→ p′. Then t = α · t′ and so q t′→ q′ (as p ' q), which means
that α.q t→ q′. The reverse direction is symmetric.
(ii): Let p1|p2

t→ p′1|p′2. Then there must exist traces t1 and t2 such that p1
t1→ p′1

and q1
t2→ q′1 which when combined (according to the above deduction sequence

of p1|p2) form t. Therefore there exist p′2 and q′2 such that p2
t1→ p′2 and q2

t2→ q′2.
Then we can zip up t1 and t2 in the same way as we had before to get p2|q2

t→ p′2|q′2.
A fully formal proof would require induction on the length of the deduction
sequence of p1|p2. Again the reverse direction is symmetric.
(iii) and (iv): even simpler. 2

Well-terminating processes We appropriate from [Mil89] the concept of well-
termination. A process p is well-terminating if for every p′ and t, p t→ p′ implies
that t(i) = done for no i ∈ dom t and t(|t|) = done implies that p′ ' 0.

Proposition 3.10 For every p ∈P(;), c(p) is well-terminating.

Proof: By induction on the structure of p. Case 0: c(0) = done.0 is obviously
well-terminating. Case l.q: by induction c(q) is well-terminating. Since l 6= done
(because we added done to the set of actions specifically for the translation)
the result is obviously true. Case p|q: by induction, c(p) and c(q) are well-
terminating. Suppose c(p|q) is not. Then there must exist a trace t and process
r such that c(p|q) t→ r and either for some i ∈ dom t, t(i) = done or t(|t|) = done
but p′|q′ 6' 0. The first case is impossible since p and q are well-terminating. To
show that the second case is impossible, let t = t′ · done. We show by induction

on the length of t that r ' 0. Subcase n = 1: then c(p)[d1/done] d1→ Ω and

c(q)[d2/done] d2→ Ω. But then r = Ω|Ω|0 ' 0. Subcase n = k + 1: then let
c(p|q) l→ r′

t→ r. Suppose (l · t)(|l · t|) = done. Then t(|t|) = done. Now what
form has r′? Since l 6= done, one of p or q must make an l-labelled transition to
p′ or q′. Therefore one of c(p) or c(q) must make a transition to a process trace
equivalent to c(p′) or c(q′). Therefore r′ must be trace equivalent to either c(p′|q)
or to c(p|q′). Given this fact, and the fact that t has length k, induction tells us
that r ' 0. Case p; q: by induction c(p) and c(q) are well-terminating. Now
let c(p; q) t→ r. Then either c(p)[b/done] t→ p′ in which case t has the required



Chapter 3. Evaluation Semantics and Sequential Deductions 60

properties by induction. Alternatively, c(p)[b/done] t1·b̄→ Ω and b.c(q) b·t2→ r, where
t = t1 · t2. Certainly for no i ∈ dom t is t(i) = done (this follows by induction).
Also, if t(|t|) = done then t2(|t2|) = done, which means that r ' 0 by induction.

2

Proposition 3.11 For all p ∈P(;), p;Done ' c(p).

Proof: By induction on the structure of p. Case 0: trivial. Case l.p: triv-
ial. Case p|q: By induction, p;Done ' c(p) and q;Done ' c(q). By propo-
sition 3.9(ii) we get p;Done | q;Done ' c(p)|c(q). Now Let t be a trace of
(p|q);Done. Then either it is a trace of p|q or its final action is done. In the
first case, it is also a trace of p;Done | q;Done and therefore also of c(p)|c(q)
and therefore also of c(p)[d1/done] | c(q)[d2/done] since both c(p) and c(q) are
well-terminating and t contains no done action. Hence t is also a trace of c(p|q).

Suppose however, t(|t|) = done. Let t = t′ ·done. Then t′ is a trace of p|q. We
can project the transition sequence creating trace t′ into transition sequences of
p and q, with traces t1 and t2. Moreover, p t1→ Ω and q

t2→ Ω. Therefore t1 · done
is a trace of c(p) and t2 · done is a trace of c(q). Therefore, t1 · d1 is a trace of
c(p)[d1/done] and t2 · d2 is a trace of c(q)[d2/done]. Therefore, by reconnecting
the transition sequences, we get t′ · done is a trace of c(p|q) by induction on the
length of the transition sequence generating t′.

The reverse direction is symmetric.
Case p; q: Suppose t is a trace of (p; q);Done. Then it is also a trace of

p; (q;Done). Either t is a trace of p or t = t′ · t′′ where t′ is a trace of p such
that p t→ Ω and t′′ is a trace of q;Done. In the first case, t is also a trace of c(p)
and since it does not contain done and c(p) is well-terminating, it is also a trace
of c(p)[b/done] when b 6∈ Λ(c(p)), and therefore also a trace of c(p; q). In the
second case, t′ · b̄ is a trace of c(p)[b/done] and b · t′′ is a trace of b. · (q). Since
c(p) is well-terminating, then t′ · t′′ is also a trace of c(p; q).

In the reverse direction, let t be a trace of c(p; q). Then we can split it into
traces t′ of c(p)[b/done] and t′′ of b.c(q). Since c(p) is well-terminating, b̄ can
only be the last action of t′. If b̄ is not the last action of t′ then t′′ must be empty.
Therefore t′ is a trace of c(p) not containing done, and therefore also of p, and
therefore also of p; (q;Done). If b̄ is the last action of t′, then b must be the first
action of t′′ (given that b is restricted in c(p; q)). Therefore t′′ is also a trace of
b.q;Done. Let t1 be such that t′ = t1 · b̄, and t2 be such that t′′ = b · t2. Then
p

t1→ Ω, and so t1 · t2 = t must be a trace of p; q. 2

3.4.3 Tree Pruning and partial deductions

One of the problems in using evaluation semantics to give meaning to processes
is that they do not specify aberrant behaviours well. This means that we cannot
say anything about the partial behaviour of a program before it deadlocks (for
example). This is important. Consider the process t= (l.p) \ {l}. It is trivially
deadlocking, and so obviously t √ should be undeducible. However, consider the



Chapter 3. Evaluation Semantics and Sequential Deductions 61

process a. t. We cannot say anything about this process either, even though it
performs action a first.

Because of this, we cannot use evaluation semantics to define a trace equiv-
alence. Of course, trace equivalence belongs to the transition semantics view of
processes, but it seems we cannot define anything similar for evaluation semantics.
And if we cannot say anything about abberant behaviours, we cannot check that
two processes “behave the same”.

One solution to this problem is to use a pruning rule. This rule is of form X
where X can be instantiated to any judgment. (Of course, this assumes that our
language of judgments permits this kind of instantiation.) I call this the deduction
of no information (written ⊥) because it allows us to deduce things from thin air.
Using it, we get the following partial deduction of a.t:

⊥
t
a.t

which has one visible occurrence (a.t), and one instance of the deduction of no
information ⊥ `t.

Strict pruning As chapter 6 shows, a deduction can be seen as an evaluation of
a process. What does ⊥ mean in this light? It means that the evaluation has been
interrupted. In the above example, evaluation would halt when the deadlocking
process t was encountered. However, if a process halts, no process sequenced after
it can proceed. I.e., whenever some occurrence has been pruned, every occurrence
sequenced after it must likewise be pruned. I call this strict pruning. Let me
write P (Π) for the set of occurrences of Π which are conclusions of instances of
the pruning rule.

Given a QI-structure it is easy to determine the pruned occurrences: simply
look at the leaves of the trees, and check if they can be deduced by axioms. If
they cannot, then they are pruned. However, this leaves us with a problem. We
want to say that everything sequenced after a pruned ocurrence is also pruned;
but it could easily be that such an occurrence is actually an axiom instance, and
therefore not pruned. It will, however, be a leaf. Formally then, the strict pruning
condition can be stated

for all A,B ∈ O(F, I,@), if A ∈ P (F, I,@) and A(@̂)∗B then B is a leaf

Note that these definitions do not concern the semantics of P(;) — they can be
equally well be applied to any semantics. Therefore the notion of trace equivalence
which we shall define is applicable to any (concurrent) language specified in this
way, and the method which we use to prove the equivalence can be adopted for
these languages.

When T is a system of interacting rules, I write QI⊥(T ) for the set of partial,
strictly pruned deductions of T .



Chapter 3. Evaluation Semantics and Sequential Deductions 62

3.4.4 The evaluation semantics proof of correctness

To ease readability in this section, I shall abbreviate judgments of form p
√

to p.
Let P (;)

QF be the system obtained after including the rule to P (;)
QI :

p

l.p

(cf. the I-system PF on page 35.) I say a visible occurrence of a deduction is an
occurence of l.p which does not interact with any other occurrence, and which is
not pruned. I write V (Π) for the set of visible occurrences of Π.

Restriction To capture restriction in our evaluation semantics, we introduce
the following scoping side-condition. Let Π be a QI-deduction, let X be a subset
of the set of conclusions of Π and let L ⊂ Lab. Then X scopes L in Π if for all
A,B ∈ O(Π) and l ∈ L,

(i) if l.p ∼Π l̄.q and l.p &Π X then l̄.q &Π X
(ii) for all l.p ∈ V (Π), if l.p & X then l 6∈ L ∪ L̄

where A &Π X means that A &Π B for some B ∈ X. Thus if X scopes L in Π,
then either both ends of an L-labelled interaction must occur above X or both
ends must not. We write the side-condition graphically

P1 · · · Pn L P
C e.g., restriction:

p
L

p \ L

to mean that {P1, . . . , Pn} scopes L in whatever deduction the rule atom is applied
to. In a deduction, we draw a box around the scoped trees. Throughout the rest
of this section, I shall write the name of the system P (;)

QF extended to include
restriction P .

The equivalence First I define an equivalence between deductions. I write
Π ' Σ if there exists a function f : V (Π) ↔ V (Σ) such that for all l.p ∈ V (Π),
f(l.p) = l.q for some q, and for all A,B ∈ V (Π)

A .Π B iff f(A) .Σ f(B)

It says that if l.p is ordered before (or simultaneously with) l′.q in Π, then we get
an occurrence l.p′ occurring before (or simultaneously with) an l′.q′ in Σ. The
following two propositions are straightforward (but tedious) to prove:

Proposition 3.12 Let Π,Π1,Π2,Σ,Σ1,Σ2 ∈ QI(P) have single conclusions. Then

if Π ' Σ then
Π
p

l.p
'

Σ
q

l.q

if Πi ' Σi for i = 1, 2 then
Π1
p

Π2
q

p|q
'

Σ1
p′

Σ2
q′

p′|q′

2



Chapter 3. Evaluation Semantics and Sequential Deductions 63

Now we can define the equivalence between processes. We write p ' q if for all Π
such that Π ` p, there exists a Σ ` q such that Π ' Σ and vice-versa. This can
be seen as a trace equivalence.

Well-terminating processes Once again, we must define the notion of well-
terminating process. p is well-terminating if for every deduction Π ` p, (1) for no
q is done.q ∈ V (Π), and (2) if done.q ∈ V (Π) then q ' 0 and for all A ∈ V (Π),
A .Π done.q.

Proposition 3.13 For every p ∈P(;), c(p) is well-terminating.

Proof: by induction on the structure of p. Case 0: The only complete deduction
is:

0
Done

which has only one visible occurrence, done.0. This is obviously well-terminating.
Case l.p: Let Π ` c(l.p) be such that

Π =
Π′
c(p)
l.c(p)

by induction, c(p) is well-terminating, so for no q is done.q ∈ V (Π) and l.p .Π

done.q if done.q ∈ V (Π) because then it must be a member of V (Π′), from which
we also get q ' 0. Case p|q: Let Π ` c(p|q) consist of the three subdeductions
Π1 ` c(p)[d1/done], Π2 ` c(q)[d2/done] and Π3 ` d1.d2.done.0. Now by induction,
c(p) and c(q) are well-terminating, so the two parts of well-terminatedness are
satisifed by Π1[done/d1] ` c(p) and Π2[done/d2] ` c(q). They are obviously true
of Π3. Therefore, since in Π, d1 and d2 are restricted, they must be connected
to their partners in Π3 by an interaction link. But this means that every visible
occurrence in Π1 and Π2 precedes the only occurrence of done.0, in Π3. Case p; q:
Let Π ` c(p; q) consist of the two deductions Π1 ` c(p)[b/done] and Π2 ` b.c(q).
By induction, c(p) and c(q) are well-terminating, so therefore Π1[done/b] must
satisfy the two properties of well-terminatedness, and so must Π2. Therefore b̄.q
is preceded by every visible occurrence in Π1 and q ' 0. Since b is restricted, the
occurrence of b̄ · 0 must be linked to b.c(q) in Π, so therefore, the occurrence of
done.0 in Π2 must be preceded by every other visible occurrence in Π. 2

In the following proof, when Π1,Π2 are single-conclusioned, let me write Π1 I Π2

for
Π1
p I

Π2
q

p; q

This proof also depends on a result proved in section 4.2.1.



Chapter 3. Evaluation Semantics and Sequential Deductions 64

Corollary VIIa Let Σ1 and Σ2 be QI-structures whose formulae are those of P
such that Σ1 ' Σ2. If Σ1 is the result of breaking interaction links in Σ′1 then there
exists a Σ′2 such that Σ′1 ' Σ′2 and Σ2 is the result of breaking interaction links of
Σ′2.

Proposition 3.14 For all p ∈P(;), p;Done ' c(p).

Proof: By induction on the structure of p. Case 0: trivial. Case l.p: trivial.
Case p1|p2: let Π ` (p1|p2);Done. Then breaking the interaction links

between them, we obtain three smaller deductions: Π1 ` p1, Π2 ` p2 and Π3 `
Done. Now by induction, p1;Done ' c(p1) and p2;Done ' c(p2). Therefore, we
obtain partial deductions Σ1 ` c(p1) and Σ2 ` c(p2) such that Π1 I Π3 ' Σ1

and Π2 I Π3 ' Σ2. Now, there are two cases, depending on whether or not Π3

deduces Done by the pruning rule or not. If so, then neither Σ1 nor Σ2 will have
a done-labelled visible occurrence. Therefore, when Σ3 = ⊥, we obtain Σ′ equal
to

Σ1[d1/done]
c(p)′

Σ2[d2/done]
c(q)′

c(p)′ | c(q)′
Σ3

d1.d2.Done

c(p)′ | c(q)′ | d1.d2.Done {d1,d2}

c(p|q)

where c(p)′ is an abbreviation of c(p)[d1/done] and c(q)′ is an abbreviation of
c(q)[d2/done]. By proposition 3.12, Σ′ ' Π′ where Π′ is the parallel composition
of Π1 and Π2. By corollary VIIa we can reflect the pattern of interaction links
between Π1 and Π2 in Π to between their corresponding occurrences in Σ1 and
Σ2 in Σ′, to yield Σ such that Σ ' Π.

The second case, when Π3 6= ⊥ implies that P (Π1) = P (Π2) = ∅ by strict
pruning. Therefore, Σ1 and Σ2 must be deductions of c(p) and c(q). And there-
fore, when Σ3 is the deduction

0
done.0
d2.done.0
d1.d2.done.0

We construct Σ as above, except that before we reflect the pattern of interactions
between Π1 and Π2 between Σ1 and Σ2, we also add interaction links between
d1.0 of Σ1 and d1.d2.Done of Σ3 and also between d2.0 of Σ2 and d2.Done of Σ3.
Once again, Σ ' Π.

The reverse direction is symmetrical.
Case p1; p2: Let Π ` (p1; p2);Done. Then Π sequences Π3 ` Done after

Π2 ` p2 which in turn is sequenced after Π1 ` p1. There are two cases. In the
first case, Π2 = Π3 = ⊥. By induction, p1;Done ' c(p1). Therefore we obtain a
Σ1 ` c(p1) such that Π1 I ⊥ ' Σ1. This means that Π1 ' Σ1. This means that



Chapter 3. Evaluation Semantics and Sequential Deductions 65

done.0 is not a visible occurrence of Σ1. Therefore, we can build Σ equal to

Σ1
c(p)[b/done]

⊥
b.c(q)

c(p)[b/done] | b.c(q)
{b}

c(p; q)

and it is easy to see that Π ' Σ, because the only visible occurrences of Π occur
in Π1, and the only visible occurrences of Σ occur in Σ1. The second case is
when Π2 6= ⊥. This must mean that Π1 contains no pruned occurrences, because
otherwise Π2 = ⊥. Then by induction, we get Σ1 ' (Π1 I ∆) (where ∆ is a
complete deduction of Done) and Σ2 ' (Π2 I Π3). Then we construct Σ

Σ1
c(p)[b/done]

Σ2
c(q)
b.c(q)

c(p)[b/done] | b.c(q)
{b}

c(p; q)

where we have placed an interaction link between the occurrence of b.0 in Σ1[b/done]
and b.c(q) in Σ2. It is not hard to see that Σ ' Π. 2

3.4.5 Appraisal (equivalence, nondeterminism, nontermi-
nation)

Perhaps the most obvious lesson is that evaluation semantics are restrictive in the
kinds of equivalences they can define. We have seen a trace equivalence which
is fairly natural. However, it is well known that trace equivalence can equate
possibly deadlocking processes with non-deadlocking processes. Failures equiva-
lence [Hoa85], or equivalently testing equivalence [dNH84], appears to be the weak-
est equivalence which does not confuse deadlocking and deadlock-free processes.
Can we give an evaluation semantics characterization of it?

A failure is a pair (t, X) where t is a trace and X is a set of actions none of
which a process having this failure will be able to respond to after t. The problem
is that this requires the notion of intermediate state, something which evaluation
semantics do not express naturally1. So whereas we probably could characterize
failures equivalence, it would not be very natural (nevertheless we shall shortly
see another, more natural way to characterize deadlock in evaluation semantics).

Another difficulty is that in order to capture partial traces, we had to introduce
extra machinery to prune deductions strictly. Neither of these ideas are hard, but

1Note added in Proof: for an alternative approach, see [PR96]



Chapter 3. Evaluation Semantics and Sequential Deductions 66

their use seems to subtract from the conceptual simplicity of evaluation semantics.
But then again, we do not use transition semantics ‘neat’ either — we have to
define what weak traces are using the notions of deduction sequences and silent
action, neither of which are required in the evaluation semantics.

Nonetheless, in terms of the actual proof, once the problem of partiality has
been overcome, and the idea of “deduction as trace” has been accepted, we do
notice a reduction in complexity. The proofs of propositions 3.10 and 3.11 re-
quire nested inductions on the length of transition sequences which are missing
in the corresponding evaluation semantics proofs (of propositions 3.13 and 3.14
respectively).

The problem of Angelic nondeterminism

Actually, strict pruning is more than a technique to capture a notion of trace in
evaluation semantics. By providing a uniform treatment of “interrupted” eval-
uations, the pruning rule has potential to describe deviant behaviour naturally,
such as escape features. In section 5.1.4, we use it to describe a propagation-free
characterization of self-abortion.

It also solves the problem of angelic nondeterminism. Consider the instantly
deadlocking process t. We saw that without pruning, we could not deduce a.t √

(quite rightly, since a.t does not terminate successfully), but more, we could not
say anything about its behaviour. Thus when we have a nondeterministic choice
operator +, an evaluation semantics can only give meaning to and reason about
the successful choices. An example of this problem occurs in the completeness
proofs for total correctness Hoare Logics (e.g., see [NN92, p.197]).

Nontermination

In fact, the pruning rule is based on the pruning judgments of [Mit94] (of form p⇒
⊥ for some program p) where he uses them to handle nontermination. However,
the judgment form p ⇒ ⊥ does not distinguish nonterminating, divergent and
deadlocked behaviours. It simply means “p may (or may not) exhibit unsuccessful
behaviour”. The same is true in my system: the judgment p

√
says nothing about

whether or not p terminates successfully.

However, we do much better when we look at the Heyting semantics of a
judgment. Let me write T (A) for the set of T -deductions of A. Then we obtain
a very natural partial order v over P⊥(p

√
):

Π1 v Π2 iff .Π1⊆.Π2

For example, we obtain the following chain of deductions in P⊥(a.p|ā.q√):

⊥
a.p|ā.q

√ v
⊥

a.p
√ ⊥

ā.q
√

a.p|ā.q
√ v

⊥
p
√

a.p
√

⊥
q
√

ā.q
√

a.p|ā.q√
v

⊥
p
√

a.p
√
−−−

⊥
q
√

ā.q
√

a.p|ā.q√
v · · ·



Chapter 3. Evaluation Semantics and Sequential Deductions 67

This looks similar to the bottom-up method of constructing deductions, related
to the tableaux method [Sun84b,Und95,MP93]. In fact, given the strict pruning
condition, it also corresponds to an evaluation order for processes.

Now, if X is a chain of elements of P⊥(p
√

) then we say it has a limit if there
exists a deduction Π ∈ P⊥(p

√
) such that .Π=

⋃
Σ∈X .Σ. Let me write limX for

the set of limits of chains in X. Then we can distinguish different behaviours of p:

p may terminate if P(p
√

) 6= ∅
p may deadlock if limP⊥(p

√
) 6= P(p

√
)

p might not terminate if there exists a limitless chain in P⊥(p
√

)

Note that the presence of limitless chains means that v is not a complete partial
order. To obtain a complete partial order, one needs to introduce a notion of
infinite (or non well-founded) deduction.

Coinductive definitions

The interpretion of p
√

as “p terminates successfully” is due to the inductive
definition of QI-deduction. If it were coinductively defined [MT92,Sch95,Tof87]
(i.e., we take the greatest fixed point interpretation of the inference rules [Acz77])
then nonterminating evaluations could be represented by non-well founded QI-
deductions, or codeductions. Non-well founded codeductions are not finite and
therefore cannot be QI-structures, but it is not hard to define a notion of structure
which may contain infinitely deep trees. The codeductive interpretation of p

√
is

“p does not deadlock”.

However, when I tried this (for an extension of P(;) which introduced nonter-
mination), I discovered problems with sequencing, related to the problems [Sch95]
notes when using infinitely deep trees to give an evaluation semantics for a simple
applicative language. There, a judgment has form ρ ` e ⇓ v intended to mean “in
environment ρ, e evaluates to v”. But if e does not terminate, one can codeduce
ρ ` e ⇓ v for any v. Therefore what the judgment actually means is “in environ-
ment ρ, it is not the case that e doesn’t evaluate to v”. This is not useful. So in
both his and my situations, there are too many codeductions.

[Sch95] solves the problem by constraining the set of acceptable deductions.
The basic idea is that if one can codeduce ρ ` e ⇓ v for any v, then the only
acceptable codeduction for e concludes ρ ` e ⇓ ⊥ where ⊥ is the least-defined value
familiar from denotational semantics. I managed to transfer this idea to my setting,
but it was not particularly simple. I tried to use this theory of codeductions to
prove the correctness of a coding for sequential composition in the nonterminating
case. I gave up because the proof techniques became sophisticated, and idea of the
proof became obscured by detail. I concluded that a transition semantics (whether
ordinary or interacting) would be much better. Perhaps codeduction could be used
usefully in [Sch95]’s setting of abstract interpretation.



Chapter 3. Evaluation Semantics and Sequential Deductions 68

Representativity

The translation correctness example has indicated that the statement and proof
of the correctness of the compilation of P(;) into P is structurally simpler us-
ing an evaluation semantics than a transition semantics. The question is how
representative the example is: the translation is very simple.

However, my example is representative in that no matter how complex the
compiler is, each direction of the correctness proof will always entail a simulation
proof. Also, the example used every feature of QI-rules. More complex languages
like CSP can also be expressed using QI-systems. Therefore, I should expect
that even though the individual rules may be more complex, the kinds of rea-
soning involved in a correctness proof will remain the same. Last, I believe that
the example is representative in that evaluation semantics are less detailed than
transition semantics, and the correctness result does not require the extra detail.

3.5 Chapter Summary

We saw that the basic theory of interacting deductions was powerful enough to
capture sequential composition, and in at least two language independent ways.
Hence the theory is powerful enough to give evaluation semantics to a wide variety
of programming languages. Moreover, it managed to give a simple treatment of
control-stack semantics.

However, though both methods were general, they were not perspicuous. There-
fore we added a notion of sequencing to the metatheory, purely to make represen-
tation easier. It does not affect the range of languages we can give semantics to.
The presentation of P(;) was much simpler in the evaluation semantics than in
the SOS. However, the issue was not so clear regarding the translation correctness
proof. The structure of the evaluation semantics proof was simpler than that of
the transition semantics proof, but it required extra machinery to deliver the par-
tial deductions. Moreover, all that gave us was a trace equivalence: it was hard
to see how to define other equivalences.

On the other hand, the pruning technique is not ad-hoc: it provides us with a
general way of talking about aberrant behaviours of programs: deadlock, nonter-
mination and escaping.



Chapter 4

The content of interaction

So far deductions have recorded interactions using pairs of occurrences. This
approach merely records that an interaction occurred. It does not record what
the interaction was about. In this chapter we shall consider a notion of deduction
that includes this extra information.

The result, DQI-deduction, is more elegant than both I- and QI-deduction.
Moreover, it supports not only proof fragmentation, but also a dual technique
called proof assembly , illustrated with a type-checking example and another non-
divergence proof (section 4.3). In short it improves the modular treatment of
systems (in particular semantic definitions) and proofs about them.

However, the primary purpose of DQI-deduction is to provide a finer (and
more accessible) account of QI-deduction. The need is clear. First, the definition
of QI-deduction is not particularly elegant. Second, we have been forced to define
concepts in the semantics which are more properly concepts of the structure of
deductions. For example, the visibility of occurrences (defined in section 3.4.4)
depends solely on whether or not the occurrence would interact in a deduction. For
another example, the proof of proposition 3.14 (just like the proof of lemma 2.13(i))
uses the technique of breaking and then reassembling interaction links between
the children of an inference tree: something which could be done generally. The
problem with definition 3.0 is that it does not support this kind of reasoning easily.

To achieve this finer account in a general way implies that we should enrich the
structure of deduction again to include the notion of what it is for an interaction
link to be broken.

Observations about the environment

What does it mean for an interaction to be broken? In our leading illustration, the
community of mathematicians, “breaking” would suggest that communication is
cut off (e.g., between the Russians and the Americans). This is a good analysis of
what happens during fragmentation. However, the idea is too strong for the proof
technique of breaking and reassembling interaction links. There we break links in
order to restrict our field of view (say to the Russians). Reassembly means that
once we have studied the Russians we are then interested in how they interact

69



Chapter 4. The content of interaction 70

with the Americans. Thus breaking an interaction link only means that we are
not currently interested in both halves of the interaction.

For example, the KGB might be interested in the activities of Russian mathe-
maticians, but not their American colleagues. They would tape all of the interna-
tional conversations, but would not care about American work. Similarly, the CIA
might be interested in American mathematicians, but not Russian ones. Only the
UN might be interested in both: having taped every conversation between the two
countries from both ends, it is in the unique position of being able to reconstruct
the entire history of interaction between the two countries, simply by matching
up the taped conversations.

So a broken, or better, dangling interaction link is just the perception of an
interaction from one side. The content of the interaction, the conversation or flow
of ideas, is shared by both parties, although they will perceive it in opposite ways:
Russians hear what Americans say, and vice-versa.

Therefore, a dangling interaction is formally a pair (A, α) where A is a formula
occurrence and α is a perception of a formula: a pair (A, s) where A is a formula
denoting the content of an interaction (for technical simplicity later on, I shall
assume that it takes the form P (t1, . . . , tn) for some n-ary predicate letter P ) and
s ∈ {+,−} is the polarity of the perception. I write +A for (A,+) and −A for
(A,−). It does not matter what + and − “mean”; it is enough that they denote
opposite perceptions. I shall write +A = −A and −A = +A. Last, if X is a set
of formulae, I write X± for the set of perceptions of formulae.

Hypotheses about the environment

Thus we can view α as an observation about the environment in which the relevant
mathematician works. However, we can also view it as a hypothesis: the perception
α is a hypothesis of A. The crucial point here is that a Russian will perceive α
only if an American simultaneously percieves ᾱ — i.e., when an interaction occurs
between them. An interaction link is formed when two dangling interactions (A, α)
and (B, ᾱ) are assembled. (The slogan is assembly is discharge: section 4.3). Just
as in Natural Deduction, a formula is properly deduced only when there exist no
undischarged hypotheses — i.e., no dangling interactions. Therefore, the process
of deduction must consist of rule application (inference) and assembly (hypothesis
discharge).

Rules and the principle of meaningful communication

Since we are incorporating assembly into the definition of deduction, the simplest
definition of L-labelled DQI-rule is the pair (a,D), where a is a Q-atom, and D
is a finite set of perceptions of L-formulae. Finiteness ensures that deductions are
finite objects. Conceptually, it corresponds to the fact that mathematicians can
only share a finite number of ideas at any point in time: if they can only share
what they have deduced, and at each point in time they can have deduced only a
finite amount of information, they cannot talk about an infinite number of facts.



Chapter 4. The content of interaction 71

Since an interaction is an exchange of ideas, the objects of discourse must be fa-
miliar to both parties. In a rule schema, the objects of discourse are represented by
the free variables of the perceived interaction (or interaction hypothesis). There-
fore, since objects of discourse must be familiar to both parties, every free variable
in a perception must either appear in the rule atom (i.e., be used in the inference)
or in another perception (in which case the rule is relaying this information). I
call this the principle of meaningful communication. Formally, it is expressed:

for all α ∈ D,FV (α) ⊆ FV (a) ∪
⋃
{FV (β) | β ∈ D, β 6= α}

Semantic rules will tend to observe this principle naturally.

I write DQI-rules graphically as

P1 . . . Pn
C D

It will often be convenient to write sets of rules as if they were connected via some
pattern of interaction links. Thus I should write

Prem1

C1

A
−−−− Prem2

C2
for

Prem1

C1
+A and

Prem2

C2
−A

for example. As a further convention, given that A = P (x1, . . . , xn) in a rule
schema, I shall often abbreviate A above a pseudo-interaction link to P . The idea
in this case is that the variables are just those used or relayed by both parties on
either side of the link.

DQI-systems A DQI-system is a pair (L,R), where L is a language and R is
a set of L-labelled DQI-rules which mention only formulae in L.

To illustrate the following definitions, we give a DQI-system P (;)
DQI = (L(;)

DQI ,R
(;)
DQI)

where L(;)
DQI = L(;)

QI∪{comm(a) | a ∈ Nam}, and R(;)
DQI is the set of rules generated

by:

0
√ p

√

a.p
√

comm(a)
−−−−

p
√

ā.p
√ p

√
q
√

p|q
√ p

√ I q
√

p; q
√

where given our convention, the communication rule is really the two rules

p
√

a.p
√ +comm(a)

p
√

ā.p
√ −comm(a)



Chapter 4. The content of interaction 72

4.1 DQI-deduction

4.1.1 Structures, Histories and Binary Assemblies

Labelled binary relations Let X be a set and L a set of labels. Then a
labelled binary relation R is a subset of X × L × X. I say R is symmetric if
(A, α,B) ∈ Y implies (B, ᾱ, A) ∈ Y . The symmetric closure of R, written R◦ is
the set R ∪ {(B, ᾱ, A) | (A, α,B) ∈ R}. I write R[ = {(A,B) | ∃α.(A, α,B) ∈ R}
for the flattening of R to a binary relation.

For example, when we come to assemble two opposite dangling interactions
in a DQI-structure, the interaction link will be represented by a pair of triples
(a.p
√
,+comm(a), ā.q

√
) and (ā.q

√
,−comm(a), a.p

√
).

DQI-structures

An L-labelled DQI-structure is a quadruple (F, I,@, D) where F is a formula forest,
I ⊆ O(F ) × L × O(F ) is symmetric, @⊆ O(F ) × O(F ) and D ⊆ O(F ) × L is
finite. I shall use Σ to range over structures. If Σ = (F, I,@, D), I write D(Σ) for
D, the set of its dangling interactions. Two structures are disjoint if they share
no common occurrences. The union of two disjoint structures is just the pointwise
union of the data in the quadruples.

For example, the following is a graphical representation of a DQI-deduction
built out of the previous ruleset:

0
√1

a.0
√

0
√2

ā.0
√ I

0
√3

b.0
√ +comm(b)

ā.0; b.0
√

a.0|(ā.0; b.0)
√

�
�

Where F is the singleton set containing the tree of occurrences, @= {(ā.0
√
, b.0
√

)},
I = {(a.0√,+comm(a), ā.0

√
), (ā.0

√
,−comm(a), a.0

√
)} and D is the singleton

set containing only (b.0
√
,+comm(a)).

Note that being (F, I,@, D) a DQI-structure does not imply that (F, I,@)
is a QI-structure: apart from being labelled, I is only symmetric and not an
equivalence relation. This is a consequence of the decision to take a finer view
of interaction than “everybody interacts with everybody else”. The QI-structure
corresponding to (F, I,@, D) is (F, (I [)∗,@).

Preorders Dangling interactions do not add extra dependency information, so
the preorder of a DQI-structure (F, I,@, D) is just the analogue of the preorder
for QI-structures:

.(F,I,@,D) = .(F,(I[)∗,@) = (.F ∪I [ ∪ @̂)∗



Chapter 4. The content of interaction 73

Histories

Let Σ = (F, I,@, D) be a DQI-structure. Then h : O(Σ) → N is a history of Σ if
for all A,B ∈ O(Σ),

if A <F B then h(B) > h(A)
if A@̂B then h(B) > h(A)
if AI B then h(B) = h(A)

It is easy to show that if h is a history of Σ and A .Σ B then h(B) ≥ h(A) (simply
consider the path of occurrences from A to B in Σ).

For example, the following is a history of the above deduction:

A a.0|(ā.0; b.0)
√

ā.0; b.0
√

a.0
√

ā.0
√

0
√2 b.0

√
0
√3 0

√1

h(A) 6 5 4 4 3 2 1 0

And note that this history does indeed correspond to a possible sequence of rules
applications to build the deduction.

Proposition 4.0 Σ has a history iff Σ satisfies SLF.

Proof: Similar to that of propositions 3.4 and 3.8. 2

Assemblies

We want to take a set of structures and connect their dangling interactions to-
gether. To do this we must specify which dangling interactions are to be assembled.
A connector is a function that maps dangling interactions to their intended part-
ners. Of course, this means that a connector should be involutive. However, we
also want to ensure that we do not introduce a sequencing loop. The easiest way
is to use a history: if two dangling interactions can be synchronized in a history
then they can be connected.

Connectors A connector of a DQI-structure Σ with respect to a history h :
O(Σ) → N is an involution f : H ↔ H (where H ⊆ D(Σ)) such that for all
(A, α) ∈ H, f(A, α) = (A′, ᾱ) for some A′ 6= A, and h(A) = h(A′). I write⊗

fH = {(A, α,B) | (A, α) ∈ H, f(A, α) = (B, ᾱ)}◦

Whenever f is a connector for Σ. Extending notation, I say that a connector of a
set of disjoint structures is a connector for the union of the structures.

The above example has only one connector: the empty one. However, sup-
pose its interaction link was broken, i.e., that I = ∅ and D contained three el-
ements (a.0

√
,+comm(a)), (ā.0

√
,−comm(a)) and (b.0

√
,+comm(b)). Then we

should have another connector f : H ↔ H where H contains the two elements
(a.0
√
,+comm(a)) and (ā.0

√
,−comm(a)), and

f(a.0
√
,+comm(a)) = (ā.0

√
,−comm(a))

f(ā.0
√
,−comm(a)) = (a.0

√
,+comm(a))



Chapter 4. The content of interaction 74

This is a connector with respect to the history given on the previous page. In this
case,

⊗
f = {(a.0

√
,+comm(a), ā.0

√
), (ā.0

√
,−comm(a), a.0

√
)} which is just the

set I of the original deduction. If b = a, then we would have another possibility,
of connecting ā.0

√
to b.0

√
, but this would require a different history because

h(ā.0
√

) 6= h(b.0
√

).

Assembly The assembly of a DQI-structure Σ = (F, I,@, D) with respect to a
connector f (written

⊗
f Σ) is the quadruple (F, I ′,@, D′) where

I ′ = I ∪⊗f (dom f)
D = (D \ dom f)

In what follows, whenever I write
⊗
f Σ, I shall assume that f is a connector of Σ

with respect to some history h. Extending notation again, I say that the assembly
of a set of disjoint structure with respect to a connector is just the assembly for
the union of the structures (i.e.,

⊗
f{Σ1, . . . ,Σn} =

⊗
f (Σ1 ∪ . . . ∪ Σn)).

Proposition 4.1
⊗
f (Y ∪ {⊗gX}) =

⊗
f⊕g(X ∪ Y )

Proof: Since dangling interactions can be assembled only once, we get dom g ∩
dom f = ∅ and im g ∩ im f = ∅. Since there is no interference between the two
connectors we can easily combine them. The result, f ⊕ g is involutive because
f and g are, maps perspectives into their opposite perspectives because f and g
do and satisfies the history requirement because f and g do. 2

Proposition 4.2 Let Σ satisfy SLF. Then
⊗
f Σ satisfies SLF.

Proof: Since Σ satisfies SLF, it has a history (proposition 4.0). Now, by the
definition of connector, we know that for some history of Σ, for all (A, α), (A′, ᾱ) ∈
dom f such that f(A, α) = (A′, ᾱ), that h(A) = h(A′). But this means that h is
also a history of

⊗
f (Σ): if (B, β,B′) is an interaction in

⊗
f (Σ) then either it is

an interaction of Σ, in which case h(B) = h(B′), or it belongs to
⊗
f (dom f). But

then, f(B, β) = (B′, β̄), and so h(B) = h(B′) again. The other two properties
of histories follow because we do not alter the trees or sequencing relations of Σ.
Therefore by proposition 4.0,

⊗
f Σ satisfies SLF. 2

Binary Assembly A special case is the assembly of two disjoint structures to-
gether. This is called binary assembly . A binary assembly of two disjoint structures
Σ1 and Σ2 only adds links between the two structures, as specified by a binary
connector . Formally, a binary connector of Σ1 and Σ2 is a connector of {Σ1,Σ2}
such that

for all (A, α) ∈ (dom f ∩D(Σi)), f(A, α) ∈ D(Σ3−i)



Chapter 4. The content of interaction 75

for i = 1, 2. (Note that when i = 1, 3− i = 2 and vice-versa.) I write Σ1 ⊗f Σ2

for
⊗

f{Σ1,Σ2} when f is a binary connector. Binary assembly is used in the
definition of deduction because it does not satisfy the absorption propery of full
assembly (proposition 4.1). If we need to assemble n structures together, we have
to use n − 1 binary connectors. This allows us to determine a unique size for
deductions, which in turn facilitates proofs by induction on the size of deductions.

For example, consider the two deductions

0
√

a.0
√ +comm(a)

0
√

b.0
√

a.b.0
√ +comm(a)

0
√

b̄.0
√

ā.b̄.0
√ −comm(a)

We cannot apply a binary connector to the second deduction once it has been
connected. Once a deduction has been assembled, there is no way for us (using
binary assembly) to go back and rewire its internals. So again, there are only
two binary assemblies: the empty one, and the one that connects the dangling
interaction (a.0

√
,+comm(a)) to (ā.b̄.0

√
,−comm(a)).

Proposition 4.3 Σ1 ⊗f Σ2 = Σ2 ⊗f Σ1 2

For the following, if g is an injective function with disjoint domain and image, I
say the involutive closure of g is the function g⊕g−1, which I write Inv(g). Binary
connectors will be the involutive closure of an isomorphism between subsets of the
dangling interactions of two structures.

Proposition 4.4 (Σ1 ⊗f Σ2)⊗g Σ3 = Σ1 ⊗f⊕g1 (Σ2 ⊗g2 Σ3)
where gi = Inv(g � D(Σi)) for i = 1, 2.

Proof: First, gi is an isomorphism because g is and because dom (g � D(Σi)) ∩
im (g � D(Σi)) = ∅. The definition of gi shows immediately that it is involutive.
Now gi is contained in g (since g = g−1), so it follows that gi satisfies the properties
of being a binary connector: it connects Σi and Σ3−i. Therefore, as dom f and
dom gi are disjoint, f⊕g1 must be a binary connector too. Now (Σ1⊗f Σ2)⊗gΣ3

equals
⋃
f⊕g{Σ1,Σ2,Σ3}, which equals Σ1⊗f⊕g1 (Σ2⊗g2 Σ3) because (f⊕g1)⊕g2 =

f ⊕ g. 2

4.1.2 Deduction

This section uses the previous notions to define DQI-deduction. All deductions are
DQI-structures. We use histories to capture sequencing, and assembly to model
hypothesis discharge. For an informal account of the process, we return to our
community of mathematicians. Previously, inference steps (rule applications) were
made simultaneously by a group of mathematicians. Now we allow mathematicians
to make individual steps on their own as long as they record what hypotheses they
are using (or what they have perceived about a colleague’s work). What makes
this work is a second kind of inference step: the binary assembly of two deductions.



Chapter 4. The content of interaction 76

Definition 4.5 DQI-deduction Let T be a DQI-system. Then the set DQI(T ) of
DQI-deductions of T is the least set such that:

1. 0 = (∅, ∅, ∅, ∅) ∈ DQI(T ).

2. If Σ1,Σ2 ∈ DQI(T ) then Σ1 ⊗f Σ2 ∈ DQI(T ).

3. If (a) (F, I,@, D) ∈ DQI(T )
(b) There exists a history h of (F, I,@) such that for all (A,B) ∈@r,

ĥ(A) > h(B)
(c) r matches a rule of T such that

flat(r) =
roots(F )

C
Dr

then ({FC}, I,@ ∪ @r, D ∪ {(C, α) | α ∈ Dr}) ∈ DQI(T ).

I write Π ` A1, . . . , An if Π is a deduction with conclusions A1, . . . , An. I also write
T ` A1, . . . , An if Π ∈ DQI(T ). A deduction Π is proper if D(Π) = ∅, in which
case I write Π  A1, . . . , An and T  A1, . . . , An. It is acyclic if the only cycles
of interaction links are of the form (A, α,B), (B, ᾱ, A). A DQI-system is acyclic if
all its deductions are.

The size of deductions This definition is much more elegant than the previous
definitions, because we have not had to apply the several rule atoms at once. Thus
we shall be able to prove results such as proposition 3.14 and lemma 2.13(i) more
directly, without requiring special “fragmented” systems which allowed us to break
interaction links in inductive proofs. To aid inductive proofs, let me define the
size of a DQI-deduction as follows:

size(Σ) =


0 if Σ = 0
1 + max(size(Σ1), size(Σ2)) if Σ = Σ1 ⊗f Σ2

1 + size(Σ1) if Σ =
Σ1

C
D

Note that this is well-defined. As mentioned previously, because we only use
binary assemblies in the definition of deduction, and binary assemblies only add
interactions between deductions (i.e., they assemble no extra interactions within
an argument deduction), it follows that there must exist a fixed number of binary
assemblies within each deduction.

Proposition 4.6 Every DQI-deduction has a history 2

Proposition 4.7 Every DQI-deduction satisfies SLF.

Proof: Straightforward from propositions 4.6 and 4.0. 2



Chapter 4. The content of interaction 77

Characterizing the DQI-deductions

Once again the DQI-deductions are the DQI-structures that satisfy SLF and which
are built only from the appropriate DQI-rules. The following treatment is straight-
forward.

DQI-neighbourhoods We need the notion of DQI-neighbourhood. As usual, I
shall drop the prefix, and simply refer to neighbourhoods. Let A be an occurrence
of a DQI-structure (F, I,@, D). Then its DQI-neighbourhood (written N(A)) is
the triple (N,@N , DN ) where

N = {atom(A)}
@N=@ ∩O(N) ×O(N)
DN = {α | (A, α) ∈ D} ∪ {α | ∃B.(A, α,B) ∈ I}

Thus the DQI-neighbourhood of A is simply the atom that introduces A in F
together with information about how its premises are sequenced and its interac-
tive ability (i.e., the interactions and dangling interactions incident to A in the
structure).

Rule matching I say a rule (a,Da) matches a neighbourhood (N,@, DN ) via
f : O(a)↔ O(N) (written (a,Da) ≡f (N,@, DN )) if

(a) {a} ≡f (N,@N)
(b) Da = DN

Lemma V(i) Let Σ = (F, I,@, D) be an L-labelled DQI-structure, and let Σi =
(Fi, Ii,@i, Di) (for i = 1, 2) be disjoint structures such that F1 ∪ F2 = F , @=@1

∪ @2 and Ii ⊆ I and for all A ∈ D(Σi), NΣi(A) = NΣ(A). Then there exists a
connector f such that Σ =

⊗
f{Σ1,Σ2}

Proof: Let us define Σ′ = Σ1∪Σ2 = (F, I ′,@′, D′). We know that I ′ = I1∪I2 ⊆ I .
Therefore, by the definition of DQI-neighbourhood, D′ = D1∪D2 ⊇ D, otherwise
there would exist a neighbourhood in either Σ1 or Σ2 which had a different
communicative ability from its corresponding neighbourhood in Σ, which is again
impossible.

Let us define X = {(A, α) | ∃B.(A, α,B) ∈ I \ I ′}. We show X = D′ \ D.
First we show X ⊆ D′ \ D. Let (A, α) ∈ X. Then there exists B such that
(A, α,B) ∈ I \ I ′. Therefore (A, α) ∈ DA where NΣ(A) = (atom(A),@A, DA) =
NΣ′(A). Therefore, since (A, α,B) 6∈ I ′, (A, α) ∈ D′. Since (A, α,B) ∈ I ,
(A, α) 6∈ D. Therefore (A, α) ∈ D′ \D. Second we show that D′ \D ⊆ X. Let
(A, α) ∈ D′ \D. Then (A, α) ∈ DA, which means (because (A, α) 6∈ D, that for
some B, (A, α,B) ∈ I \ I ′, i.e., that (A, α) ∈ X.

Therefore, let p : (I\I ′)↔ (D′\D) be the isomorphism defined by p(A, α,B) =
(A, α). To assemble Σ let f : (D′\D)↔ (D′\D) be defined by f = p◦swap◦p−1,



Chapter 4. The content of interaction 78

where swap(A, α,B) = (B, ᾱ, A). Let h be any history of Σ. Then, since
.Σ′⊆.Σ, h is also a history of Σ′. We show f is a connector.

First, f(A, α) = p ◦ swap(A, α,B) = p(B, ᾱ, A) = (B, ᾱ). Second, it is
involutive because swap is involutive. Third, to show that it satisfies the history
property, Let (A, α), (A′, ᾱ) ∈ D′ \ D be such that f(A, α) = (A′, ᾱ). Since
(A, α,A′) is part of an interaction link in h, it follows that h(A) = h(A′).

The last thing to show is that Σ =
⊗
f{Σ1,Σ2}. The only nontrivial things

to check are that
I = I1 ∪ I2 ∪

⊗
f (D′ \D)

D = D \ (D′ \D)

But these follow from the definitions and elementary set-theoretic manipulation.
2

We can strengthen this result: when Ii = I ∩ (O(Fi) × L × O(Fi)) we can show
that the f constructed is in fact binary. This follows because in this case the only
interaction links in I \ I ′ are those that occur between the structures Σ1 and Σ2.

Theorem V Let T = (L,R) be a DQI-system. Then (F, I,@, D) ∈ DQI(T ) if
and only if (F, I,@, D) is an L±-labelled DQI-structure satisfying SLF and such
that every neighbourhood matches a rule of T .

Proof: ⇒: Let Σ ∈ DQI(T ). Then by proposition 4.7, it satisfies SLF. We
show by strong induction on the size n of Σ that every neighbourhood matches
a rule of T . Case n = 0: vacuously true. Case n = k + 1: two subcases.
First, suppose Σ = ⊗fΣ′ where Σ′ = (F ′, I ′,@′, D′) = Σ1 ∪ . . .∪Σn, f : H ↔ H,
and Σi = (Fi, Ii,@i, Di). Then by induction, every neighbourhood of Σi matches
a rule in T . Suppose there exists an occurrence A (say from the Σj part) whose
neighbourhood (N,@N , DN ) does not match a rule of T . Let (N ′,@′N , D′N ) be
its neighbourhood in Σj . By induction, it matches (a,Da). By the definition
of neighbourhood, (N,@N ) = (N ′,@′N), so it must be that DN 6= Da since
(N,@N , DN ) does not match (a,Da). Thus:

D′N = {α | (A, α) ∈ Dj} ∪ {α | ∃B.(A, α,B) ∈ Ij}
DN = {α | (A, α) ∈ D′ \H}

∪ {α | ∃B.(A, α,B) ∈ I ′ ∪ ⊗
f H}

= {α | (A, α) ∈ (Dj \H)} ∪ {α | ∃B.(A, α,B) ∈ Ij ∪
⊗
f H}

since A ∈ O(Σj). But this means that DN = D′N since every dangling interaction
in H becomes half an interaction in

⊗
f H. Contradiction.

Second, Σ =
Σ1

C
D follows easily from induction, and the fact that the rule

introducing C must match that rule applied to Σ1 that made Σ.
⇐: Let Σ = (F, I,@, D) be a DQI-structure satisfying SLF and such that

every neighbourhood matches a rule. We show by strong induction on the number
of occurrences in F that (F, I,@, D) is in DQI(T ). Case n = 0: trivial.
Case n = k + 1: There are two subcases. First, suppose F = {F1

C }. Let



Chapter 4. The content of interaction 79

(atom(C),@C, DC) be the neighbourhood of C, and let it match r via f . By
SLF, there are no interaction links incident to C, so by induction, the structure
Σ1 = (F1, I,@ \ @C, D \DC) is in DQI(T ). Now, since Σ satisfies SLF, then it
satisfies the sequencing constraints of r (i.e., for every history h of Σ, and every
(A,B) ∈@C= {(f(A), f(B)) | (A,B) ∈@r}, ĥ(A) > h(B)) then we can apply
f(r) to Σ1 to obtain Σ. Hence Σ ∈ DQI(T ).

The second subcase occurs when |F | > 1. Then we arbitrarily split it into two
disjoint, nonempty subsets F1 and F2. We define (for i = 1, 2) Σi = (Fi, Ii,@i, Di)
where F = F1 ∪ F2, Ii = I ∩ O(Fi) × L± × O(Fi) and for all A ∈ O(Σi),
NΣi(A) = NΣ(A). Then by induction, Σ1,Σ2 ∈ DQI(T ). By lemma V(i),
we find a connector f such that Σ =

⊗
f{Σ1,Σ2}. Moreover, since Ii = I ∩

O(Fi)×L± ×O(Fi), we can show that f is binary, hence Σ = Σ1 ⊗f Σ2, whence
Σ ∈ DQI(T ). 2

4.1.3 Coding QI-deduction into DQI-deduction

The point of DQI-deduction is to provide a finer and more accessible account of
QI-deduction. This section makes the claim more precise. The following theorem
shows how QI-deduction can be simulated by proper DQI-deduction. To do this
we have to break up QI-rules into DQI-rules such that these new rules only interact
when they are pieces of the same QI-rule.

Encoding rules and rulesets We say a graph G encodes r with respect to L
if G = (r, E) (i.e., its vertices are the atoms of r) and it is both connected and
acyclic, and every edge is labelled uniquely from L. I write aEαa′ if there is an
edge from a to a′ labelled by α. Let us pick one such encoding arbitrarily for each
rule r ∈ R such that no two rules share a label in their encodings. Let us write Gr

for this distinguished encoding of r. Then we say the graph GR encodes R with
respect to L if GR is the union of the distinguished encodings of its rules.

Now, let GR = (V,E), and let ≤ be an arbitrary total order over V . Let me
write a ~Eαa′ if there exists an α-labelled edge from a to a′ and moreover a < a′ in
the total order. Then we define the interactive ability of each atom a of GR as
follows:

Da = {+α | a ~Eαa′} ∪ {−α | a′ ~Eαa}

Then we write R(GR,≤) for the set of rules {(a,Da) | a ∈ V }, the DQI-encoding
of R with respect to the edges of GR and the order ≤.

Encoding QI-systems Let T = (L,R) be a QI-system. Then we say that
a DQI-system T ′ = (L′,R′) encodes T if there exists a set L of formulae dis-
joint from L such that L′ = L ∪ L and there exists an encoding GR of R with
respect to L and a total order ≤ over the vertices of GR such that R′ = R(GR,≤).



Chapter 4. The content of interaction 80

Theorem VI Let T be a QI-system, and let T ′ be a DQI-encoding of it. Then
T ` A1, . . . , An if and only if T ′  A1, . . . , An.

Proof: ⇒: Let T ′ be constructed from T via L, GR = (V,E) and ≤. Suppose
there exists a QI-deduction Σ = (F, I,@). Then we construct a proper DQI-
deduction Σ′ = (F, I ′,@, ∅) such that I = ((I ′)[)∗ by induction on the n, number
of QI-neighbourhoods of Σ. Let 6 be any total order containing the neighbour-
hood ordering of Σ. Case n = 0: trivial. Case n = k + 1:. Consider the
least (with respect to 6) neighbourhood. Let Σ1 = (F1, I1,@1) consist of the
highest (w.r.t. 6) k-neighbourhoods of Σ. Then by induction, we have a proper
deduction Σ′1 = (F1, I ′1,@1, ∅). Let the lowest neighbourhood match r, and let
{(a1, D1), . . . , (an, Dn)} be the set of DQI-rules that encode it, ordered by ≤ (the
total order over the vertices V of GR). We know that the sequencing constraints
of r are satisfied by Σ1, so they will be satisfied by Σ′1 too (because I1 = ((I ′1)[)∗,
hence .Σ1=.Σ′1). We fragment Σ′1 into Π0, . . . ,Πn such that

Σ′1 =
⊗

f{Π0,Π1,Π2, . . .Πn}

(using the absorption property of assembly) and for i = 1, . . . , n, Πi concludes
the premises of ai. Then we can apply each rule (ai, Di) to Πi to yield Π′i. To glue
them back together to get Σ, we must construct another connector, f ′. Suppose
the old connector f : H ↔ H is defined with respect to history h : O(Σ′1) → N.
We construct H ′ by

H ′ = H ∪{(Ci,+α) | atom(Ci) ~Eα atom(Cj)}
∪{(Ci,−α) | atom(Cj) ~Eα atom(Ci)}

(where i, j range over 1 to n). Then we construct f ′ : H ′ ↔ H ′ and h′ : O(Σ′)→
N by

f ′(A, α) =
{
f(A, α) if (A, α) ∈ H
(B, ᾱ) if (A, α) 6∈ H and atom(A) Eα atom(B)

h′(A) =
{
h(A) if A ∈ O(Σ′1)
1 + max(im h) ow

It is straightforward to show that f ′ : H ′ ↔ H ′ and that it is a connector with
respect to h′. Then we glue them together to get Σ′:⊗

f ′{Π0,Π′1,Π
′
2, . . . ,Π

′
n}

which satisfies SLF. It remains to show that Σ′ is proper. Suppose not. Then
there exists a dangling interaction (Ci,+α) (or (Ci,−α), which is a symmetric
case) in Σ′. But then atom(Ci) Eα atom(Cj) which implies that (Cj,−α) exists
in Σ′. This is impossible by the definition of H ′.
⇐: Let Σ = (F, I,@, ∅) be a proper T ′ deduction, and let Σ′ = (F, (I [)∗,@)

be a QI-structure. Obviously it will satisfy SLF, since the preorder of the DQI-
deduction also takes the reflexive and transitive closure of I [. Thus it remains
to show that evey QI-neighbourhood of Σ matches a rule. Let (N,@) be the



Chapter 4. The content of interaction 81

QI-neighbourhood of A in Σ′. It will consist of n ≥ 1 atoms, a1, . . . , an. Each
will be connected by I in Σ′, and no other atom will be connected by I . Let
N1, . . . , Nn be the distinct DQI-neighbourhoods of Σ such that Ni = (ai,@i, Di)
for some @i and Di. Since the atoms in each neighbourhoods are connected,
it must be that for every dangling interaction α ∈ Di there exists ᾱ ∈ Dj (for
i 6= j). But regarding the encoding, this must mean that a1, . . . , an match the
vertices of some connected component of GR (where R is the ruleset of T ). This
means that ({a1, . . . , an},

⋃
i @i) must match a rule of R. The result follows by

theorem V. 2

4.2 Proof Fragmentation

This section is devoted to the theory of fragments of DQI-systems and structures.
In a sense it is simply continuing the work of the last theorem: reinterpreting the
old theory in terms of the new situation. We obtain the interaction replacement
theorem, which justifies the technique of breaking links, proving results and then
reassembling links afterwards. This was required in the proof of proposition 3.14,
and should also be useful in any similar situation. Once again, we have the proof
fragmentation theorem, and we prove one half of a simple type-checking example
(section 4.2.3).

Definition 4.8 (Fragment)

System fragments Let T = (L,R) and T ′ = (L′,R′) be DQI-systems. Then T
is a fragment of T ′ if L ⊆ L′ and R ⊆ R′.

Structure fragments Let Σ = (F, I,@, D) and Σ′ = (F ′, I ′,@′, D′) be DQI-
structures. Then Σ is a fragment of Σ′ if F ⊆ F ′, I ⊆ I ′ and for all
A ∈ O(Σ), NΣ(A) = NΣ′(A).

Thus if Σ is a fragment of Σ′, it contains a subset of the trees of Σ′, exactly
the sequencing constraints of Σ′ restricted to Σ, and while it contains no extra
interaction links, the interactive ability of each neighbourhood is preserved. So in
the following picture Σ′ is not a fragment of Σ because D is able to interact in Σ,
while it cannot in Σ′.

Σ =
A B
C

α
D

E

ᾱF A
H
I

Σ′ =
A B
C

α
D

E

Proposition 4.9 Let Σ be a DQI-structure such that Σ1 and Σ2 are disjoint frag-
ments of Σ such that O(Σ) = O(Σ1) ∪ O(Σ2). Then there exists an f such that
Σ =

⊗
f{Σ1,Σ2}.



Chapter 4. The content of interaction 82

Proof: Since Σ1 and Σ2 are fragments, and O(Σ) = O(Σ1) ∪ O(Σ2), then the
forest of Σ is the union of the disjoint forests of Σ1 and Σ2. Therefore the results
follow from lemma V(i). 2

Proposition 4.10 Let Σ satisfy SLF. Then every fragment of Σ satisfies SLF
too. 2

Proposition 4.11 Every fragment of a DQI-deduction is a DQI-deduction.

Proof: Let T be a DQI-system, let Π ∈ DQI(T ) and let Σ be a fragment of Π.
Then by theorem V, Π satisfies SLF and every neighbourhood matches a rule of
T . By proposition 4.10, Σ satisfies SLF. Furthermore, every neighbourhood of
Σ is a neighbourhood of Π and so it must match a rule of T also. Therefore, by
theorem V, Σ ∈ DQI(T ). 2

4.2.1 The interaction reflection theorem

Proposition 3.14 showed that the coding of a P(;) process as a P process did not
affect the behaviour of the process. To do this, it showed that whenever a process
could be evaluated, its coding could be too with the same behaviour and vice-
versa. In current terminology, having the “same behaviour” meant that the two
“equivalent” deductions could be assembled in the same way to the same context.
Now whereas we could have proved this result specifically for the system P (;)

QF ,
it is more obviously a property which can be proved independently of particular
systems: assembly is a concept belonging to the metatheory of deduction.

In this section, we prove the Interaction reflection theorem. This says that
if we have two structures where the dangling interactive dependencies of one are
“contained” within that of the other, then whenever we assemble the larger one,
we can reflect the pattern of connections of the larger structure in the smaller one
to obtain a parallel assembly.

Simulation Let Σ1 and Σ2 be DQI-structures. Then Σ2 simulates Σ1 (written
Σ1 � Σ2) if there exists an isomorphism f : D(Σ1) ↔ D(Σ2) such that for all
(A, α) ∈ D(Σ1), f(A, α) = (A′, α) for some A′, and for all (A, α), (B, β) ∈ D(Σ1),

if A .Σ1 B then A′ .Σ2 B
′

where f(A, α) = (A′, α) and f(B, β) = (B′, β). We write Σ1 ' Σ2 if Σ1 � Σ2 and
Σ2 � Σ1.

Theorem VII (Interaction Reflection) Let Σ′1 be an assembly of Σ1, and let
Σ2 be such that Σ2 � Σ1. Then there exists an assembly Σ′2 of Σ2 such that
Σ′2 � Σ′1.



Chapter 4. The content of interaction 83

Proof: Suppose Σ′1 =
⊗
f1 Σ1, and that f is a connector with respect to history

h1. let g : D(Σ2) ↔ D(Σ1) be the function that witnesses Σ2 � Σ1. We show
that f2 = g−1 ◦ f1 ◦ g is a connector of Σ2. First, let (A, α) ∈ dom f ′. Then
f2(A, α) = (g−1 ◦ f1)(A′, α) = g−1(B′, ᾱ) = (B, ᾱ) for some A′, B′ ∈ O(Σ1) and
B′ ∈ O(Σ2). Second, f2 must be involutive because f1 is. Third, let h2 be
any history of Σ2. Then we construct histories h′1 and h′2 of Σ1 and Σ2 such that
h′1(A) ≤ h′1(B) if and only if h1(A) ≤ h1(B) and such that for all (A, α) ∈ D(Σ1),
if g(A, α) = (A′, α), h′1(A) = h′2(A′). The method of construction is iterative.
First, we totally order the dangling interactions with respect to the preorder of
Σ1. Then for the ith dangling interaction g(Ai, αi) = (A′i, αi), if h1i(Ai) < h2i(A′i)
then add the difference to every timestamp in h1i greater than or equal to that
of Ai. Then h1i+1 equals the altered h1i, and h2i+1 = h2i. If h1i(Ai) > h2i(A′i)
then we alter h2i in the same way. h1i+1 and h2i are calculated in the symmetric
way to the previous case. h′1 and h′2 are h1n and h2n for the final n.

Now it is easy to show that for all (A, α), (A′, ᾱ) ∈ dom f2 h′2(A) = h′2(A′):
h′2(A) = h′1(A) = h′1(A′) = h′2(A′).

Therefore we get Σ′2 =
⊗
f2

Σ2. It is straightforward to show that Σ′2 � Σ′1
because we have not altered the relative dependencies of the remaining dangling
interactions: we can show simulation using g � D(Σ′2). 2

Application to the translation correctness proof

We complete the proof of proposition 3.14. That proof was an indication of the
way one would like to reason about deductions, and so left out the messy detail
of preserving interactions, which (as we have seen) could be done generally. The
following corollary simply interprets the interaction reflection theorem in terms of
the terminology of section 3.4.4.

Corollary VIIa Let Σ1 and Σ2 be QI-structures whose formulae are those of P (;)
QI

such that Σ1 ' Σ2. If Σ1 is the result of breaking interaction links of Σ′1 then there
exists a Σ′2 such that Σ′1 ' Σ′2 and Σ2 is the result of breaking interaction links of
Σ′2.

Proof: We define an isomporhism between QI-structures and DQI-structures if
they have the same preorder. We define an isomorphism between the visible
occurrences of a QI-structure and the dangling interactions of the isomorphic
DQI-structure, and then the corollary follows naturally. 2

4.2.2 The Proof Fragmentation Theorem

Once again, we define FT (X) for the set of all fragments of DQI-fragments of
DQI-deductions in X that are built from rules only in T .



Chapter 4. The content of interaction 84

Theorem VIII (Proof Fragmentation) Let T ′ be a system fragment of T .
Then DQI(T ′) ⊇ FT ′(QI(T ))

Proof: Let Π ∈ FT ′(QI(T )). Then by theorem V, Π satisfies SLF and by def-
inition every neighbourhood matches a rule of T ′. Hence by theorem V again,
Π ∈ DQI(T ′). 2

4.2.3 An example: Type checked processes do not fail

To illustrate proof fragmentation and motivate the proof assembly technique, we
consider a simple type-checking example. We introduce the notions of value and
type to P (calling the language P(v)). Processes in this language may fail to
terminate successfully in one of two ways: they may deadlock, or attempt to
evaluate an expression with wrongly typed arguments. This latter event I call a
run-time error . If a process exhibits a run-time error, I say it fails.

In the following subsections I introduce the language, its dynamic semantics
and its static semantics. The static semantics simply checks types — the intention
being that a process type-checks if and only if it exhibits no run-time errors. Since
no P process can execute indefinitely, we could also test for deadlock-freeness —
perhaps using a type system like that of [MG95] where types are behaviours (see
also [GS86]). However, testing for deadlock is in general undecidable (seen via a
reduction to the halting problem: consider a program which sequences a trivially
deadlocking process after a possibly nonterminating process) though perhaps one
may be able to decide deadlock-freeness for restricted, but nonetheless interesting,
classes of processes.

We shall be able to prove that no type-checked process fails using proof frag-
mentation. However, we shall not be able to prove that every process which does
not fail type checks in this way. In this case we really have to take account of what
interactions are about. This motivates the technique of proof assembly described
in section 4.3.

The Language P(v)

Consider the langage P(v), a typed value-passing variant of P. It consists of the
following syntax:

p ::= 0 | a!e.p | a?x.p | p|p
e ::= v | x | e op e

where x ranges over the countable set V ar, v over the set V al of integers and
booleans, op over a set of binary integer and boolean operations OP , and a ranges
over the action set A. The grammar of expressions is a straightforward extension
of the expressions of P(:=) (page 25) to include boolean expressions. (We need
at least two types to make type-checking non-trivial.) The grammar defines the
set Exp, ranged over by e.



Chapter 4. The content of interaction 85

Dynamic semantics

The dynamic semantics of P(v) is given by the DQI-system P (v)
QI = (L(v)

QI ,R
(v)
QI)

where L(v)
QI is the set of judgments of form

E V p
√

and E V e v and comm(a, v)

Where E ranges over the set of environments E : V ar ⇀ V al, p ∈P(v), e ∈ Exp,
and v ∈ V al. It is customary to use turnstile notation, E ` p√, for environment
judgments: E is seen as a collection of hypotheses about variables. However, I
already use ` in the metatheory, so I use V instead, because of its connotations
of implication. The ruleset R(v)

QI is given by the following rules:

E V 0
√ E V p1

√
E V p2

√

E V p1|p2
√ E V e v I E V a!v.p

√

E V a!e.p
√

E V p1
√

typof(a) = typof(v)
E V a!v.p1

√
comm(a,v)
−−−−−−−−−− E ′[v/x]V p2

√

E ′V a?x.p2
√

E V v  v E V x E(x)
E V e1  v1 E V e2  v2

E V e1 op e2  app(op, v1, v2)

The partial function app : OP × V al × V al ⇀ V al applies operations to their
arguments. It is not defined when its arguments are wrongly typed.

Static semantics

Let BT = {int, bool} be the set of base types, and Types (ranged over by τ ) be
the least set containing BT and τ1 × τ2 when τ1, τ2 ∈ Types. For base types and
actions, let typof : V al ∪ OP ∪ A → Types assign arbitrary types to actions and
for the base types be such that typof(b) = bool for all booleans b; typof(n) = int
for all integers n; and for operations op, typof(op) = τ1× τ2× τ3 for some τ1, τ2 and
τ3 if and only if for every v1, v2 and v3, if app(op, v1, v2) = v3 then typof(vi) = τi for
i = 1, 2, 3. This fact is used in the proof of lemma 4.12(i). A typing environment
is a function T : V ar → Types. Then I say a P(v) process p (expression e) is
type-checked by type environment T if T V p (for expressions, T V e : τ for some
τ ∈ Types) is deducible in the following system T P:

T V 0
T V p1 T V p2

T V p1|p2

T V e : typof(a) T V p

T V a!e.p

T [typof(a)/x]V p

T V a?x.p T V v : typof(v) T V x : T (x)

T V e1 : τ1 T V e2 : τ2 typof(op) = τ1 × τ2 × τ3

T V e1 op e2 : τ3

We extend the typing judgment to environments, writing E : T when for all
x ∈ dom E, T (x) = typof(E(x)).



Chapter 4. The content of interaction 86

Type-checked processes do not fail

This condition can be stated formally: if T P ` T V p then P (v)
QI ` E V p

√
when

E : T . Note that I do not ask that the evaluation judgment be properly deduced:
that would amount to asserting deadlock-freeness of type-checked processes.

This is a candidate for the proof fragmentation theorem: we can simply break
the communication interaction link, and prove the property by induction on the
size of P (v)

QI -deductions. First, however, we need a lemma attesting that type-
checked expressions do not fail. The expression evaluation fragment does not
involve interaction, so we can prove both directions of this lemma in the usual
manner.

Lemma 4.12(i) For all e ∈ Exp, v ∈ V al, and environments E and T such that
E : T , we have P (v)

QI ` E V e v if and only if T P ` T V e : typof(v). 2

This lemma is the heart of the type checking proof: run-time errors occur when
an operation is applied to wrongly-typed arguments. Nevertheless I do not give
its proof; first because it is so simple the result should not be in doubt, but mainly
because we are more concerned with the way one proves results about interacting
deductions.

Proposition 4.12 Let E : T . Then if T P ` T V p then P (v)
QI ` E V p

√

Proof: by induction on the depth of inference of T V p. Case T V 0: trivial.
Case T V p|q: straightforward induction. Case T V a!e.p: this follows when
T V e : typof(a) and T V p. By lemma 4.12(i), we know that if E V e  v
then typof(v) = typof(a). By induction, E V p

√
. Therefore, E V a!v.p

√
Since

E V e v we can also infer E V a!e.p
√

.
Case T V a?x.p: this follows when T [typof(a)/x] V p. By induction, we

know for all E′ such that E′ : T [typof(a)/x] that E′ V p
√

. In particular, this
will be true in those cases when E′ = E[v/x] and typof(v) = typof(a). Since this
binding of v to x does not appear in E, we can conclude that E V a?x.p

√
is

deducible. 2

4.2.4 Proof fragmentation is not always enough

So we have shown that type-checked processes do not fail. However, the proof of
the result that terminating processes type-check fails at the case for input:

case input: Suppose E V a?x.p and E : T . (We are required to
prove that T V a?x.p is deducible by T P .) Then E[v/x] V p

√
is

deduced by a smaller tree. By induction we know that for all T ′ such
that E[v/x] : T ′, we can deduce T ′ V p. In particular, this is true
when T ′ = T [typof(v)/x] ...

The problem here is that we cannot guarantee that typof(v) = typof(a), which
would allow us to infer that T ′ = T [typof(a)/x], from which we could deduce
T V a?x.p. Yet the other half of the communication rule guarantees typof(a) =



Chapter 4. The content of interaction 87

typof(v): therefore the case for the input rule must follow when the rule fragment
is known to be part of a P (v)

QI -deduction.

4.3 Proof Assembly

We could not prove that terminating processes type-check because the case for
input required more information than was contained in the premises to the input
rule atom:

E′[v/x]V p2
√

E′ V a?x.p2
√ −comm(a, v)

Specifically, we wanted to know that typof(a) = typof(v). The object of study of
this chapter is the content of interaction. In the type-checking proof, we know that
typof(a) = typof(v) holds in proper deductions. Therefore, whatever the content
of the interaction labelled comm(a, v) is, it must imply that typof(a) = typof(v).

At this point the idea that dangling interactions are hypotheses becomes useful.
We simply view −comm(a, v) as a hypothesis about the environment that the
deduction occurs within. Then, in the proof, whenever we see a −comm(a, v)
dangling interaction, we simply hypothesize that comm(a, v) implies typof(a) =
typof(v). We have already noted that the case for the output rule will guarantee
this. So whenever we see +comm(a, v), we have to view this as an obligation to
prove that comm(a, v) implies typof(a) = typof(v).

Assembly is Discharge

Thus labels are interpreted as propositions and dangling interactions mark interac-
tion hypotheses and interaction guarantees. The slogan is Assembly is Discharge:
assembling a hypothesis with its guarantee will discharge the hypothesis.

The idea is borrowed from the world of parallel program verification [Jon83].
There the goal is to prove results about processes compositionally. This is achieved
by using sets of rely and guarantee conditions (elsewhere called assumption and
commitment conditions [ZdBdR83]) which encapsulate the relevant information
about the interactive behaviour of a process and its environment.

The proof fragmentation theorem enables one to reason about deduction frag-
ments using system fragments. The proof assembly theorem enables one to compose
proofs of fragments “in parallel” to obtain a result about deductions.

The proof assembly theorem

In this section, we assume that formulae of a language have tree structure, and we
write them P (M1, . . . ,Mn) where P is the principal syntactic constructor of the
formula and M1, . . . ,Mn are the subformulas or terms that occur as children of
the formula. So, for example, the evaluation judgment of P(v) would be written
(· V ·

√
)(E, p). We say a judgment is atomic if its arguments are all terms.



Chapter 4. The content of interaction 88

Operational semantics judgments and interaction labels by convention, are atomic.
Therefore, we shall restrict our discussion to atomic judgments: this makes the
treatment very easy.

Of course, this restricts the following notion of proof assembly to those se-
mantics which use a standard tree notion of syntax for judgments and programs.
However, since the aim of the restriction is to allow a straightforward notion of
formula interpretation, I believe that the technique could be extended to other
notions of syntax (e.g., higher-order abstract syntax [PE88,Han93]) straightfor-
wardly, given a suitable notion of interpretation.

Interpretation Let T = (L,R) be a DQI-system, and let Jn be the set of all
judgment constructors P that have n arguments in L. Then an interpretation of
T is a family of functions In : Jn → ℘(Ln). Thus an interpretation maps each
judgment constructor J to a set of n-tuples of terms and formulae. That is, the
interpretation returns the extension of the property the formula represents. In the
example above, the interpretation of comm would be the set of pairs (a, v) such
that typof(a) = typof(v).

If I is an interpretation, and Σ is a DQI-structure, then Σ is I-consistent with
respect to a judgement P if for all (A,±P (t1, . . . , tn)) ∈ D(Σ), (t1, . . . , tn) ∈ In(P ).

On Hypotheses and Guarantees Let X be a set of DQI-structures, and I
an interpretation. Then a judgment constructor P is guaranteed in X if for all
Σ ∈ X, Σ is I-consistent with respect to P . Dually, P is hypothesized in X if there
exists a Σ ∈ X such that Σ is I-consistent with respect to P . For a non-empty
set X, if P is guaranteed in X it is also hypothesized. Thus in a given proof
(which will determine the interpretation) about T we can determine which labels
are hypotheses and which are guarantees. If the inverse of every hypothesis is a
guarantee then we shall be able to use the technique of proof assembly.

Relative guarantees We want to be able to say that something is guaranteed
when certain hypotheses hold. In notation reminiscent of [Sti88,MC81], I write
X |=I [H] φ [G] where φ is some formula, and H and G are sets of formula
perceptions if for all Σ ∈ X, if Σ is I-consistent with respect to every constructor
in H, then it is also I-consistent with respect to the constructors in G. Thus
H can be seen as a set of hypotheses, and G a set of guarantees. Obviously,
X |=I [H] φ [G] implies X |=I [H ′] φ [G′] when H ⊆ H ′ and G′ ⊆ G. X |=I φ
abbreviates X |=I [∅] φ [∅].

Parallel proofs Let T1 and T2 be disjoint fragments of T , and suppose φ1 is
a property about T1-deductions, and φ2 a property about T2-deductions. Then I
write X |=I [H] φ1 ∧ φ2 [G] if under the hypotheses H, G is guaranteed and φ1

is true about every T1-fragment of structures in X, and φ2 is true about every T2

fragment.



Chapter 4. The content of interaction 89

Theorem IX (Proof Assembly) Let T be an acyclic DQI-system and I be an
interpretation of T . Let T1, . . . , Tn (for n ≥ 1) be disjoint fragments of T , such
that T1 ∪ . . . ∪ Tn = T and DQI(Ti) |=I [Hi] φi [Gi]. Then if

⋃n
i=1Hi ⊆

⋃n
i=1 Gi

then QI(T ) |=I φ1 ∧ . . . ∧ φn

Proof: Let Σ ∈ QI(T ) and let Σ1, . . . ,Σn be fragments of Σ such that Σi is the
Ti fragment of Σ, and such that Σ is the assembly of them all. We know that if Σ
is I-consistent with respect to Hi then both Σi satisfies φi and Σi is I-consistent
with respect to Gi. Thus we have to show that Σi is I-consistent with respect to
the labels in Hi.

Suppose not. Then there exists P ∈ Hi and (A,±P (M1, . . . ,Mn)) ∈ D(Σi)
such that (M1, . . . ,Mn) 6∈ In(P ). Since Σ is proper there must exist a Σj

(i 6= j) with a dangling interaction (B,∓P (M1, . . . ,Mn)) that is assembled
with (A,P (M1, . . . ,Mn)). Now, since

⋃n
i=1 Hi ⊆

⋃n
i=1Gi, ∓P ∈ Gj . Since

(M1, . . . ,Mn) 6∈ In(P ), then there exists in turn a P ′ ∈ Hj such that Σj is
not I-consistent with respect to P ′. By similar reasoning, we find an infinite
chain of dangling interactions in Σ1 ∪ . . .∪Σn such that the dangling interaction
is not consistent with its label’s interpretation. Since T is acyclic, this must mean
that there exists an infinite number of dangling interactions in Σ1 ∪ . . .∪Σn, and
hence an infinite number of interactions in Σ. But this is impossible because
deductions can contain only a finite number of interactions. 2

The next section shows how proof assembly can be used to prove that termi-
nating processes type-check. However, this is a result stated and proved using
evaluation semantics. We cannot use the proof assembly theorem so easily for
a result about a transition semantics, which will concern sequences of deductions
(section 4.3.2). Proof fragmentation can be used either for transition or evaluation
semantics, so it is only natural to expect a form of proof assembly for sequences
of deductions. The following corollary is such a form.

Proof assembly for sequences of deductions

Given an interpretation I of T , we say that a sequence of T -deductions is I-
consistent if all of its elements are. Then, if X is a set of sequences of deductions,
we write X |=I [H] φ [G] if for all s ∈ X, if s is I-consistent with respect to H
then it is also I-consistent with respect to G, and φ is true about s.

Let T ′ be a fragment of T , and let s be a T -deduction sequence. Then I
say that s′ is a T ′-fragment of s if |s′| = |s| and for all i ∈ dom s, s′(i) is the
T ′-fragment of s(i).

Let T1 and T2 be disjoint fragments of T , and φ1 is a property about T1-
deduction sequences, and φ2 a property about T2-deduction sequences. Then I
write X |=I [H] φ1 ∧ φ2 [G] if under the hypotheses H, G is guaranteed and φ1

is true about every T1-fragment of sequences in X, and φ2 is true about every T2

fragment.



Chapter 4. The content of interaction 90

Corollary IXa (Proof assembly for sequences) Let T be an acyclic DQI-
system and I be an interpretation of T . Let T1, . . . , Tn (for n ≥ 1) be disjoint
fragments of T , such that T1 ∪ . . .∪ Tn = T and DQI(Ti)ω |=I [Hi] φi [Gi]. Then
if
⋃n
i=1 Hi ⊆

⋃n
i=1 Gi then QIω(T ) |=I φ1 ∧ . . . ∧ φn

Proof: Let s ∈ QIω(T ). We show by transfinite induction on n that every Ti-
fragment of a prefix of s of length n is I-consistent with respect to Hi. Case
n = 0: vacuous. Case n = k + 1: By induction, the result holds for the
deductions s(1) to s(k). It is trivial to show that under the hypothesis Hi that
si(k+ 1) is I-consistent with respect to Hi, guaranteeing Gi. By proof assembly,
every Ti-fragment of s(k + 1) is I-consistent with respect to Hi. Case n = ω:
if not, there must exist a finite k for which the k-prefix fails the property. This
is contradicted by induction.

Therefore, if we have an s ∈ QIω(T ) failing to satisfy φ1 ∧ . . .∧ φn then there
must be some Ti such that the Ti-fragment of s fails to satisfy φi. But this can
only happen when s is not I-consistent with respect to Hi, which we have just
seen is impossible. 2

4.3.1 Example: Terminating processes type-check

To illustrate this theorem, we prove the other half of the type-checking theorem,
that type-checking is sufficient. Here the input rule hypothesizes that the content
of the interaction comm(a, v) implies that typof(a) = typof(v), and that the output
rule guarantees this consequence.

Proposition 4.13 For all p ∈ P(v), and environments E, T such that E : T , we
have that P (v)

QI ` E V p
√

if and only if T P ` T V p.

Proof: We prove that if E : T then P (v)
QI0 ` E V p

√
iff T P ` T V p, under

the interaction hypothesis that −comm(a, v) implies typof(a) = typof(v), and
guaranteeing that +comm(a, v) implies typof(a) = typof(v). Then the result will
follow by the proof assembly theorem.

by induction on the depth of inference of E V p
√

. Case E ⇒ 0
√

: triv-
ial. Case E ⇒ p|q√: straightforward induction. Case E ⇒ a!v.p

√
: this

follows when E V p
√

and typof(a) = typof(v) (which guarantees the interaction
hypothesis). We know that T V v : typof(v), so therefore T V v : typof(a). By
induction we know T V p. Therefore, T V a!v.p.

Case E ⇒ a!e.p
√

: this follows from E V e  v and E V a!v.p
√

. By
lemma 4.12(i) we know that T V e : typof(v). By induction we know that
T V a!v.p, which means typof(a) = typof(v). Therefore T V e : typof(a), and so
T V a!e.p.

Case E V a?x.p
√

: this follows from E[v/x] V p
√

. By induction, we
know for all T ′ such that E[v/x] : T ′ that T ′ V p. In particular, this is true when
T ′ = T [typof(v)/x]. By the interaction hypothesis, T [typof(v)/x] = T [typof(a)/x].
Therefore T V a?x.p. 2



Chapter 4. The content of interaction 91

A similar result would be to extend P(:=) with types, and show that only
correctly typed processes could evaluate. There the problem is to ensure that the
store maintains correct typing. Thus we get two parallel subproofs: one proof for
the P(:=) programs, and the other for stores. They depend on each other: the
program proof relies on the store proof to maintain correct typing, and guarantees
that everything it sends the store is correctly typed. The store proof relies on
the program proof to send it correct information, and guarantees that it outputs
correct information.

Thus we obtain two kinds of proof dependency: the usual “functional” depen-
dency of the proof for processes on the proof for expressions, and the “interactive”
dependency between the proof for stores and the proofs for expressions and pro-
cesses. The next section illustrates an interactive dependency between subproofs
of a nondivergence result.

4.3.2 Example: Another nondivergence proof

In this section, we apply the technique of proof assembly to show that our process
calculus P extended with the iterators of section 2.5.1 preserves the nondivergence
property of P. In order to use the proof assembly theorem we need some kind of
interaction between two different fragments. Therefore we shall treat the iterator
constants as process variables which have to be looked up in the store. Thus
to prove the nondivergence result, we shall assemble a proof concerning process
transitions and a proof concerning the contents of the store.

Let P(it) be the language with the grammar

p ::= 0 | l.p | p|p | ItnC.p | C

where n ∈ N and C is a member of Const, a countable set of process constants.

The dynamic semantics is given by the transition system TSI = 〈P(it),→,Ω〉
where Ω is the same set of final states as for P and →⊆ P(it) × P(it) is the
relation defined by (p, q) ∈→ if and only if P (It)

I ` p → q where P (It)
I is the

DQI-system (L(It)
I ,R(It)

I ) such that L(It)
I consists of the following judgments

p→ q σ  σ′ comm(a) write(C, n, p) read(C, p)

where σ, σ′ ∈ ItStore which is the set of stores that bind processes to process



Chapter 4. The content of interaction 92

constants, and the ruleset R(It)
I consists of the following rules:

a.p→ p
comm(a)
−−−−− ā.q → q

p→ p′

p|q → p′|q
q → q′

p|q → p|q′
p→ p′ q → q′

p|q → p′|q′

It0C.p→ 0 Itn+1C.→ p[Cn/C]
write(C,n,p)
−−−−− σ  σ[ItnC.p/Cn]

C → p
read(C,p)
−−−−− σ(C) = p

σ  σ

Note that this semantics is quite reckless: it takes no account of scoping. There
may be two iterators of C, and if they are executed in parallel then one iterator
will overwrite the other. We could simply state a static condition to exclude such
processes. Then a nicely bound process would be such that no constant was bound
more than once, and every constant occurs bound. However, while nice binding
makes sense, it does not affect the nondivergence proof.

Thus this system is just the system PI extended with labels and with rules for
iterators and constants. To aid induction, we define the size of p inductively as
follows:

|p| =


1 if p = 0 or p = Cn
1 + |q| if p = l.q
1 + max(|q1|, |q2|) if p = q1|q2

1 + n|q| if p = ItnC.q

Let me say that a process is finite if it can be attributed no infinite deduction
sequence. Then the nondivergence proof for processes becomes:

Lemma 4.14(i) For all processes p, under the hypothesis that read(C, q) implies
that q is finite, then p is finite, and write(C, n, p) is guaranteed to imply that ItnC.p
is finite.

Proof: By strong induction on n = |p|. Case n = 1: then there are three
subcases, when p = 0, when p = C and when p = It0C.q. The first follows
because 0 is attributed no transition sequences; the second from the interaction
hypothesis; the third is trivial. Case n = k + 1: There are three sub cases.
First, p = l.q: trivial. Second, p = q1|q2: follows from similar reasoning
to that in proposition 2.8. Third, p = Itm+1C.q: This is the interesting
case. Since |ItmC.q| < |Itm+1C.q|, we know by strong induction that ItmC.q
is finite. Thus we have guaranteed the condition on write(C,m, q). Since also
|Itm+1C.q| > |q[Cm/C]|, we know by induction that q is finite, and so therefore
neither is p. 2

I say a deduction sequence attributed to the empty store empty binds finitely
if for every prefix of the deduction sequence ending in σ, every constant bound in
σ is bound to a finite process.



Chapter 4. The content of interaction 93

Lemma 4.14(ii) Under the interaction hypothesis that write(C, n, p) implies that
ItnC.p is finite, then every deduction sequence attributed to the empty store binds
finitely, and read(C, p) is guaranteed to imply that p is finite.

Proof: by transfinite induction on the length n of prefixes of deduction sequences
attributed to the empty store. Case n = 0: vacuous. Case n = k+1: suppose
not. Let s be the sequence that does not bind finitely. By induction, we know that
the k-length prefix of s binds finitely, so it must be the last store which violates
the property. Consider then the last transition: σ  σ′. There are two cases.
Either it is the result of a read transition, in which case σ′ = σ (and therefore the
read condition is guaranteed), or it is the result of a write transition, in which
case σ′ = σ[ItnC.p/Cn]. In the first case, σ′ cannot violate the property because
σ does not. In the second, we know by the interaction hypothesis that Cn is
bound to a finite process, and we know σ satisfies the invariant. Contradiction.

Case n = ω: suppose not. Then there must exist a finite first point when
the invariant was violated. By induction this is impossible. 2

Proposition 4.14 No process in P(it) diverges.

Proof: This follows by the assembly of lemmas 4.14(i) and 4.14(ii) (and of course
also by the corollary to the proof assembly theorem). 2

4.4 Chapter summary

We extended the treatment of interacting deduction to include an analysis of the
content of interaction. Intuitively, this is that which is discussed when two ideas
are shared. The result was a more elegant and usable definition, constructed from
the two notions of rule application (inference) and interaction assembly (assump-
tion discharge). We obtained the proof fragmentation theorem again, which allows
us to ignore contexts of trees, and also the dual proof assembly theorem which
allows us to build proofs from proofs concerning individual trees. We saw a sim-
ple evaluation-semantics type-checking example, and also a transition-semantics
nondivergence proof.



Chapter 4. The content of interaction 94



Chapter 5

A Semantics and Logic for CSP

To date my examples have all been extensions of a trivial process calculus P.
However, this is not a convincing programming language. Communicating Se-

quential Processes (CSP) [Hoa78] is the canonical imperative parallel pro-
gramming language. CSP is widely used in the analysis of concurrent algorithms,
and is also the core of the language Occam [Wex89].

In this chapter I give an evaluation semantics for CSP and consider various
extensions. There are many different dialects of CSP: I base this account on
Plotkin’s [Plo83], explaining differences as I proceed. The major difference is the
syntactic simplicity of the judgments.

I also give a compositional Hoare Logic for the partial correctness of CSP and
prove it sound with respect to my semantics. This Hoare Logic uses the method of
invariants to establish communicative relationships between processes, but unlike
other compositional systems, it does not make use of traces.

Section 5.1 describes the syntax and semantics of our version of CSP, which
allows top-level parallel composition only. Section 5.2 describes six different alter-
native features: nested parallelism, communication via shared variables, dynamic
process creation, pre-emption, multicasting and recursive procedures. Section 5.3
presents a Hoare Logic for the partial correctness of CSP, and proves it sound.

5.1 A Definition of CSP

5.1.1 Syntax and informal semantics

The abstract syntax of CSP is given by the following EBNF grammar.

programs:
p ::= R :: c | p ‖ p

commands:
c ::= x := e | skip | abort | c; c | if g fi | do g od | R?x | Q!e

guarded commands:
g ::= b⇒c | g [] g

expressions:
e ::= v | x | e op e

95



Chapter 5. A Semantics and Logic for CSP 96

The grammar defines the sets Prog of programs, Com of commands, GCom of
guarded commands and Exp of expressions where x ranges over a set V ar of
variables, b over a set BExp ⊆ Exp of boolean expressions, op over the set of
operators {+,−,×,÷, <,≤} and P , Q and R over a set Pid of process identifiers.

Plotkin ignores expressions. We do not because here the treatment of reading
and writing variables is important.

Informal semantics

A CSP program is the parallel composition of a collection of sequential processes.
Processes do not communicate via shared variables (as in, e.g., Concurrent

Pascal [BH83] and Modula [Wir83]). Instead, they communicate via hand-
shaking (or synchronized message-passing), where two processes synchronize, one
to send data, and the other to receive it.

Handshaking is not via named channels (as in CCS [Mil89], Concurrent

ML [Rep91a], Occam [Wex89] and later versions of CSP [Hoa85]), but by explict
addressing. Thus if a variable is shared by two processes, it must remain constant.
Each process is identified by a name and communication occurs when a process
Q directs output to process R, and R simultaneously receives it from Q. For this
scheme to work, each name must refer to a unique process. This is ensured by
the static semantics of CSP (which also requires that no process may write to a
shared variable) found in section 5.1.2.

The relevant commands are: R!e to evaluate e and send its value to process
R; Q?x to input a message from Q and store it in variable x; R :: c to declare the
process R to have sequential body c and p0 ‖ p1 to execute p0 and p1 in parallel.

The sequential processes are based on the programs of Dijkstra’s Guarded

Command Language [Dij76] augmented with the commands for input and out-
put. The syntax is specified in the command, guarded command and expression
syntactic categories.

Expression evaluation is straightforward. Constants evaluate to themselves,
variables are looked up in the store, and operations are applied to their arguments
in the standard way. Unlike [Plo83], expressions (and hence guarded commands)
never raise an error.

A guarded command is either primitive (b⇒ c where b is the guard of c) or
the alternative composition of two guarded commands (g0 [] g1). The primitive
guarded command is Plotkin’s concurrent variant of Dijkstra’s guarded command,
b→ c. Dijkstra’s command only permits c to be executed if b is true; otherwise
it fails. In an alternative composition, only one of the true-guarded commands is
selected. If every guard is false then the composition fails as a whole.

Plotkin’s strongly guarded command b⇒c only permits c to be selected if both
b evaluates to true and c can proceed (i.e., it is not blocked waiting to communi-
cate). The point of this is to allow external processes to determine which command
is selected. If the first action of each command c1, . . . , cn is a communication, and
the guards b1, . . . , bn all evaluate to true then the alternative composition of b1⇒c1

up to bn⇒cn will select one of the commands that can successfully communicate at



Chapter 5. A Semantics and Logic for CSP 97

selection time. Note that if no true-guarded command can proceed, the guarded
command blocks until such time as one can. It does not fail. Thus a guarded
command will either fail if no guard is true, block, or select a command.

The command skip does nothing. The sequential composition c0; c1 of c0 and
c1 executes c0 first and then c1 after c0 has finished. abort stops the execution
of the entire program signalling an error. The conditional if g fi selects and
executes a true-guarded command that can proceed from g. If g fails, an error has
occurred and the command aborts the program. The repetition command do g od
repeatedly executes the guarded command g until it fails.

5.1.2 Static Semantics

We mentioned above that the static semantics for CSP consisted of two conditions:
no two processes should share a name, and processes may only share read-only
variables. Another important property is the well-typedness of expressions. I
could present a separate deduction system for the static semantics, in the manner
of [Plo83]; however to do so would distract attention — it would not be used in
what follows.

Instead, we shall add a suitable side condition to the parallel composition rule
of the dynamic semantics. This side condition depends on the functions FV (c),
WV (c) and A(p) that return the variables occurring in c (or p), the variables
written to by c (or p), and the agent names given bodies in p respectively. They
are defined by the following tables.

v x e1 op e2

FV ∅ {x} FV (e1) ∪ FV (e2)
WV ∅ ∅ ∅

Expressions

x := e skip abort c0; c1 if g fi do g od
FV {x} ∪ FV (e) ∅ ∅ FV (c0) ∪ FV (c1) FV (g) FV (g)
WV {x} ∅ ∅ WV (c0) ∪WV (c1) WV (g) WV (g)

The sequential component

P?x Q!e p0 ‖ p1 R :: c
FV {x} FV (e) FV (p0) ∪ FV (p1) FV (c)
WV {x} ∅ WV (p0) ∪WV (p1) WV (c)
A − − A(p0) ∪A(p1) {R}

The concurrent component

b⇒c g0 [] g1

FV FV (b) ∪ FV (c) FV (g0) ∪ FV (g1)
WV WV (c) WV (g0) ∪WV (g1)

The guarded command component



Chapter 5. A Semantics and Logic for CSP 98

sorts: Store, IV ar, BV ar, V ar, V al
functions: empty : Store

·[·/·] : Store× V al× V ar→ Store
·(·) : Store× V ar→ V al

metavars: σ, σ′, . . . , σ0, σ1, . . .
equations: empty(x) = 0 if x ∈ IV ar

empty(x) = ff if x ∈ BV ar
σ[v/x](x) = v
σ[v/x](y) = σ(y) if y 6= x

Figure 5–1: Algebraic definition of stores

5.1.3 Auxiliary Definitions: Stores

The semantics of CSP requires a store. Let IV ar be a countable set of integer
variables and BV ar be a disjoint countable set of boolean variables. Then a store
maps elements of V ar = IV ar∪BV ar to elements of the set V al of values (ranged
over by v), consisting of both the integers n and the booleans b. The set Store
(ranged over by σ) is defined algebraically in figure 5–1 such that σ(x) returns the
value of x in σ, and σ[v/x] updates the value of x to v. A good introduction to
algebraic definitions is [Wec92].

5.1.4 Dynamic semantics

This section gives an evaluation DQI-semantics of CSP. The main purpose of
this section is to demonstrate that the techniques established in previous chapters
scale up to a larger semantics. Note that in appendix B we outline the proof of
an equivalence result (proposition B.12) between the following evaluation seman-
tics and a more traditional structural operational semantics. This theorem helps
both to explain the nonstandard evaluation judgments and also to improve our
confidence that the following semantic definition really does define CSP.

The abortion-free fragment

The dynamic semantics for the abortion-free fragment of CSP can be found in
figure 5–2. Let us call the abortion-free fragment CSP. The rules are very concise
because the judgments have minimal structure. The following table describes the
intended meaning of the abortion-free judgments.



Chapter 5. A Semantics and Logic for CSP 99

Judgment Intended meaning
R : e→ v agent R evaluates e to v
R : c agent R performs c successfully
R : g agent R evaluates guard g successfully
R ∗ g agent R fails to evaluate guard g
p the agents of p co-operate successfully

σ  σ′ the agents transform store σ to σ′

Once again, we require two extra judgments: R : set(x, v) and R : out(Q, v). The
need for these was discussed in section 3.3 in the context of the language P(;,:=).
Figure 5–3 illustrates the evaluation of a simple CSP program.

Aborting programs

The most straightforward way to capture abortion is to use propagation rules, in
much the same way as exceptions are propagated in the definition of Standard
ML. This increases the number of rules — for each ordinary rule with n premises,
n extra propagation rules are required. To aid legibility of the definition, the
authors introduce an exception convention (see [HMT90, §6.7]) to minimise the
number of rules they have to write.

We can use this technique to capture abortion as follows (we shall give another
technique which avoids propagation shortly). We use the following judgments:

Judgment Intended meaning
p† the agents of p aborted
R † c agent R aborted while running c
R † g agent R aborted while evaluating guard g

The rules can be found in figure 5–4. We use abortion contexts to cut down the
number of propagation rules required. These are based on the evaluation contexts
of [FFHD87] in transition semantics. Their use is cosmetic: when proving results
about languages defined with evaluation contexts, we still have to unwind the
definition of “context”, which may require an extra lemma.

Our abortion contexts are defined by the following grammar:

G ::= [·] | G [] g | g [] G
A ::= [·] | A; c | if G fi | do G od

Aborting parallel programs is an interesting problem. Hoare [Hoa78, p.668]
simply says that “the parallel command terminates successfully only if and when
[the processes] have all successfully terminated”. This is a loose specification: the
semantics of abort may be either to kill every process simultaneously or to wait
until the other processes have terminated (which may not happen).

The second choice is more natural from an implementer’s point of view, and
is the semantics given in figure 5–4. It is also easier to express in an evaluation
semantics (unlike the transition semantics of [Plo83], where it is marginally easier
to express the former).



Chapter 5. A Semantics and Logic for CSP 100

Rules for expressions

R : v → v R : x→ v
lookup
−−−−−− σ  σ σ(x) = v

R : e1 → v1 R : e2 → v2

R : e1 op e2 → app(op, v1, v2)

Rules for the sequential component

R : e→ v I R : set(x, v)
R : x := e R : set(x, v)

assign
−−−−− σ  σ[v/x]

R : c0 I R : c1

R : c0; c1

R : g
R : if g fi

σ  σ′ I σ′  σ′′

σ  σ′′

R : g I R : do g od
R : do g od

R ∗ g
R : do g od R : skip

Rules for guards

R : b→ tt I R : c
R : b⇒c

R : b→ ff
R ∗ b⇒c

R : g0

R : g0 [] g1

R : g1

R : g0 [] g1

R ∗ g0 R ∗ g1

R ∗ g0 [] g1

Rules for the concurrent component

R : out(Q, v)
comm
−−−−− Q : R?x

assign
−−−−− σ  σ′[v/x]

R : e→ v I R : out(Q, v)
R : Q!e

R : c
R :: c

p0 p1

p0 ‖ p1
FV (p0) ∩WV (p1) = FV (p1) ∩WV (p0) = A(p0) ∩A(p1) = ∅

Figure 5–2: Evaluation semantics rules for the abortion-free fragment of CSP



Chapter 5. A Semantics and Logic for CSP 101

R : 1 1 I R : set(x, 1)
R : x := 1 I

R : x 1 I R : out(Q, 1)
R : Q!x

R : (x := 1;Q!x)
R :: (x := 1;Q!x)

Q : R?y
Q :: (R?y)

R :: (x := 1;Q!x) ‖ Q :: (R?y)

σ  σ[1/x] I σ[1/x]  σ[1/x]
σ  σ[1/x] I σ[1/x]  σ[1/x][1/y]

σ  σ[1/x][1/y]

�

��

�

�

�

�

� �

�

Note that the interaction links are flowing behind the upper inference tree.

Figure 5–3: Evaluation of a simple program

Rules that generate abortion

R † abort
R ∗ g

R † if g fi

Rules that propagate abortion

R : c0 I R † c1

R † c0; c1

R : g I R † do g od
R † do g od

R : b→ tt I R † c
R † b⇒c

R † c
R †A[c]

R † c
R :: c†

p0† p1

p0 ‖ p1†
p0 p1†
p0 ‖ p1†

p0† p1†
p0 ‖ p1†

Figure 5–4: Abortion rules for CSP



Chapter 5. A Semantics and Logic for CSP 102

Propagation-free abortion rules

We can model self-abortion (and I think also exceptions) without the use of prop-
agation rules. Instead we use the strictly pruned deductions of section 3.4.3. The
main observation is that in a sequential process, the leaves of an evaluation de-
duction after an aborting command are sequenced. Therefore, if we ensure that
aborting commands can only be deduced using the pruning rule, everything se-
quenced after an abort will be pruned too (in a strictly pruned deduction). That
is, the program sequenced after the aborting command will not be evaluated.

Figure 5–5 contains the rules. The special formula “abort” cannot be deduced
by any rule except pruning. We use the formula “aborted” to indicate that abor-
tion has occurred. The scoping of the abort signal ensures that we cannot ignore
this indicator.

Note that it makes use of the scoping condition borrowed from section 3.4.4.
It has to be redefined for the current context:

Let Π be a DQI-deduction, let X be a set of copremises of Π and let L be a set
of formula perspectives. Then X scopes L in Π if for all A,B ∈ O(Π) and α ∈ L,

(i) if AIαB and A &Π X then B &Π X
(ii) D(Π) ∩ (O(Π)× L) = ∅

where Iα is the set of α-labelled interactions of Π, and A &Π X means that
A &Π B for some B ∈ X. Thus if X scopes L in Π, then either both ends of an
L-labelled interaction must occur above X or both ends must not. Again we write
the side-condition graphically

P1 · · · Pn L P
C

to mean that {P1, . . . , Pn} scopes L in whatever deduction the rule atom is applied
to. In a deduction, we draw a box around the scoped trees.

For these rules to make sense, we have to stress that the pruning rule is used
only to terminate aborted programs. That is, for each program p, we take the
deductions to be the limits of the chains in CSP (†)

⊥ (p). These deductions will also
include deadlocking evaluations, and other stuck states. The following deduction
is an example, where g1 = tt ⇒skip and g2 = tt ⇒abort:

tt → tt I R : skip
R : tt ⇒skip

R : g1 [] g2 I

tt → tt I

⊥
abort

R : abort
R : tt ⇒abort
R : g1 [] g2 I

⊥
R : do g1 [] g2 od

R : do g1 [] g2 od

R : do g1 [] g2 od aborted
K

R :: do g1 [] g2 od†

$

�



Chapter 5. A Semantics and Logic for CSP 103

abort
R : abort

abort
−−−−− aborted

R ∗ g I abort
R : if g fi

abort
−−−−− aborted

R : c aborted
K

R :: c†
R : c

K

R :: c

p0† p1

p0 ‖ p1†
p0 p1†
p0 ‖ p1†

p0† p1†
p0 ‖ p1†

Where K = {abort}. These rules are added to the rule of CSP⊥ except for the old
naming rule, which is replaced by the two naming rules above. Call the resulting
system CSP (†)

⊥ .

Figure 5–5: Propagation-free abort rules for CSP⊥

5.2 Some alternative features

We consider ways of capturing the semantics of six different alternative features,
intended to capture different aspects of concurrent languages. It turns out that
four extensions require the scoping side-condition.

The alternative features are: • Nested parallelism
• Shared variables
• Dynamic Process Creation
• Pre-emption
• Multicasting
• Recursive Procedures

5.2.1 Nested Parallelism

If a program has nested parallelism it means that the parallel composition operator
can occur arbitrarily deeply in a program, not just at the top level. The simplest
way to introduce this is to add an extra production to the syntax of commands:

c ::= . . . | [p]

Where p ∈ Prog. The major difficulty is one of scope. If we can name processes
arbitrarily then we can introduce holes in the scope of namings, where a parallel
composition nested in R may include another process named R. Within that
nested composition, all communications naming R will refer to the inner process.
Outside it, all communications naming R will refer to the outer process. For
instance, consider the two programs

R :: [Q :: R!1 ‖ R :: Q?x] ‖ Q :: skip
R :: [Q :: skip ‖ R :: Q?x] ‖ Q :: R!1



Chapter 5. A Semantics and Logic for CSP 104

the first will not deadlock, whereas the second will. This means that the obvious

rule for [p], namely
p

R : [p] , is not sufficient — it would not force the second

example to deadlock. There is no notion of scoping. Therefore we use the scoping
side-condition. p

AGENTS(p)

R : [p]

where AGENTS(p) = {comm(R,Q, v) | v ∈ V al and R ∈ A(p) or Q ∈ A(p)} is
the set of all labels that record a communication with an agent defined in the top
level of p.

5.2.2 Shared Variables

CSP communicates by message-passing. The alternative way to communicate is
via shared variables. This requires mutual exclusion primitives such as semaphores
[Dij65] or monitors [Hoa74]. Concurrent Pascal [BH83], Modula [Wir83],
and the communication paradigm Linda [BCGL88] use shared variables to com-
municate.

It is easy to introduce shared variables to our semantics: we drop the “no shared
variable” condition from the static semantics. To add mutual exclusion primitives
is harder. Mutual exclusion is the function of the await command [OG76]:

await b then c

where c does not contain a nested await , communication or parallel composition.
When a process attempts to execute an await command, it is delayed until b is
true. Then c is executed as an indivisible action. If a number of processes are
awaiting b, only one may proceed when b is true. The evaluation of b is treated
as if it were part of the indivisible action c. This implies some kind of scheduling
mechanism, but we do not need to build one into the semantics.

One can use this primitive to code semaphores. If s is a binary semaphore
(a variable with value 0 or 1) then the operations P (s) (wait until s is free, i.e.,
s = 0, and then grab it) and V (s) (signal that s is free) can be coded:

P (s) await s = 0 then s := 1
V (s) s := 0

The await command is not intended as a practical programming language feature:
it is too powerful to be implemented efficiently. But it does embody all the relevant
semantic features of mutual exclusion and synchronization. The semantic rule for
await is given by:

R : b→ tt I R : c σ  σ′
STORE

R : await b then c
atomic
−−−−− σ  σ′

Where STORE is the set of all assign and lookup labels. That is,

STORE = {assign(x, v) | x ∈ V ar, v ∈ V al}∪
{lookup(x, v) | x ∈ V ar, v ∈ V al}



Chapter 5. A Semantics and Logic for CSP 105

The scoping condition forces every store interaction of the evaluation of b and the
execution of c to be with the inference tree above the σ  σ′ premise of the await
rule atom. No outside process can interfere with this internal store tree. When
c has finished, the outer, world copy of the store is altered (in one step — i.e.,
atomically) according to how the atomic action altered it.

5.2.3 Dynamic process creation

The next feature we wish to consider is dynamic process creation, such as the
spawn function in Concurrent ML [Rep91b]. In the version of CSP with nested
parallelism, if the parallel composition of a number of processes is composed se-
quentially before c (say), then c will only be executed after all of the processes
have terminated.

The behaviour of spawn is different. Once a process has been spawned the
spawning process can proceed immediately, executing concurrently with the new
process. One does not usually find parallel composition and spawn together in
a language, so this “extension” is not really an extension. Instead, we remove
parallel composition from our language, and add a spawn command, to get:

p ::= R :: c
c ::= · · · | spawn (Q, c)

Where Q ∈ Pid. For the dynamic semantics, we introduce a special thread judg-
ment to provide a place where spawned processes can be evaluated:

thread(X) R : spawn (Q, c) −−−−
Q : c thread(X \ {Q})

thread(X ∪ {Q}) R 6∈ X

The judgment thread(X) is simply a space-filler, where X denotes the set of process
identifiers not in use. The condition X∪{Q} in the conclusion of the second atom
of the second rule ensures that Q is not already being used, and X \ {Q} ensures
that no other process can use it.

5.2.4 Pre-emption

A control feature is pre-emptive if it can influence the behaviour of another process.
Common pre-emptive features are interruption, restart , checkpointing, alternation
(all in [Hoa85, §5.4]), abortion and suspension (in [Ber93a]).

[Ber93a] distinguishes two forms of pre-emption: must pre-emption where the
parallel processes are pre-empted instantaneously and may pre-emption where the
pre-emption may be delayed for an arbitrarily large period of time. This latter
form of pre-emption is the only one which can be defined in CSP or CCS, because
they have no intrinsic notion of time. In chapter 6 I show that the computational
semantics of DQI-deduction is (a subset of) the CCS. This implies that we cannot
use our system of evaluation semantics to model must pre-emption, and therefore
languages like Esterel [BG92].



Chapter 5. A Semantics and Logic for CSP 106

5.2.5 Multicasting

Multicasting is sending a message to a collection of named processes. It is a gener-
alisation of the point-to-point communication paradigm we have been considering
so far. It is a restriction of broadcasting which sends a message to every process.
We extend the syntax of CSP commands to become

c ::= · · · | 〈Pidlist〉!e
Pidlist ::= Pid | Pid, P idlist

Intuitively,R : 〈Q1, . . . , Qn〉!ewill evaluate e and send it to each processQ1, . . . , Qn

simultaneously. (Of course there is a static condition: no process ought to multicast
to itself.) We use the structure of DQI-systems in an essential way to give us a
collection of building bricks, out of which we can build chains of communications.

R : e→ v I R : ms(Q1, . . . , Qn, v)
R : 〈Q1, . . . , Qn〉!e

R : ms(Q1, . . . , Qn, v)
ms(R,Q1, . . . , Qn, v)

ms(R, x1, . . . , xi−1, Qi, . . . , Qn, v)
1 ≤ i ≤ n
Qi : R?xi

ms(R, x1, . . . , xi, Qi+1, . . . , Qn, v)

ms(R, x1, . . . , xn, v)
σ  σ[v/x1] . . . [v/xn]

Broadcasting (e.g. [Pra91,Pra93]) could be implemented in a similar manner,
but it requires that the semantic rules maintain a central record of nonterminated
processes. This is a problem in its own right.

5.2.6 Procedures

We introduce procedures and block structure to CSP. Let Proc be a set of pro-
cedure names (ranged over by π). Then we extend the grammar of commands to
include three new constructs:

c ::= . . . | proc π(x) is c | π(e) | var x = v in c

The first defines a procedure π with parameter x (it is a straightforward extension
to handle many parameters) to have body c. The second calls procedure π with
argument the value of e. The third declares variable x to have initial value v with
scope c.

Procedures introduce non-local flow-of-control into programs: the definition of
a procedure will not be part of a program’s local structure. Consequently, there
may be a difference in variable bindings when a procedure is defined and when it is
invoked. The question is which binding to look up when running a procedure. The
static binding discipline is to use the define-time variable bindings. The dynamic
binding discipline is to use the call-time variable bindings.



Chapter 5. A Semantics and Logic for CSP 107

A simple store-based approach is no longer sufficient. The reason is one of
scope: a variable may refer to different locations at different times. For instance,
a procedure call may temporarily rebind a variable.

Therefore, modeling the binding disciplines requires both environments and
stores. An environment maps variables to store locations Loc and procedure names
to procedure closures. A closure is either static or dynamic, depending on the
binding discipline. Intuitively, a static closure is a triple 〈x, c, E〉 which parcels
up the formal parameter x, the body c and the define-time environment E (thus
environments and static closures are mutually dependent notions).

Formally, we define the Static Environments , SEnv to be the set
⋃
i∈NSEnvi

where
SEnv0 = V ar ⇀ Loc
SEnvi+1 = SEnvi ∪ (Proc ⇀ V ar × Com× SEnvi)

This scheme is sufficient to allow us to define recursive procedures (and also,
with more work, families of mutually recursive procedures [Mit].) An alternative
approach, using coinduction, is to allow infinite closures that model recursively
defined procedures directly [MT92,Sch95].

A dynamic closure is a pair 〈x, c〉. Formally, we define the Dynamic Environ-
ments, DEnv to be the set

DEnv = (V ar ⇀ Loc) ∪ (Proc ⇀ V ar × Com)

We use E to range over both SEnv and DEnv, and σ to range over stores in
Stores. The definition is the same as in section 5.1.3 except that it maps locations
in Loc to values in V al. We introduce a special judgment to record environments:
R : E means that the environment of process R is E. (In a shared variable context,
the environment would be global like the store.) The rules for the extension of
CSP can be found in figure 5–6, where we have abbreviated labels to their names
for clarity.

The rules depend on the auxiliary definition ENV (R). This is the set of
all environment accessing labels (i.e., the def , call, read and write labels) that
mention R. Its precise definition is similar to that of STORE:

ENV (R) = {def(R, π, x, c) | π ∈ Procs, x ∈ V ar, c ∈ Com}∪
{call(R, π, x, c, E) | π ∈ Procs, x ∈ V ar, c ∈ Com,E ∈ Env}∪
{block(R,E, n, v) | E ∈ Env, n ∈ Z, v ∈ V al}∪
{read(R, x, v) | x ∈ V ar, v ∈ V al}∪
{write(R, x, v) | x ∈ V ar, v ∈ V al}

The main rules are the first two, which deal with procedure definition and
invocation. We have only given one half of these rules: they can be completed to
support static or dynamic binding. The rule fragments for static binding are:

def(R,π,x,c)
−−−−−−− R : E[〈x, c, E〉/π]

R : E

call(R,π,x,c,E′)
−−−−−−− R : E E(π) = 〈x, c, E′〉

R : E



Chapter 5. A Semantics and Logic for CSP 108

R : proc π(x) is c
def(R,π,x,c)
−−−−−−−

R : c R : E[n/x]
ENV (R) n 6∈ dom E

R : call(π, v)
−−−−−−− σ  σ[v/n]

call(R,π,x,c,E)
−−−−−−−

R : e v I R : call(π, v)
R : π(e)

R : c R : E[n/x]
ENV (R) n 6∈ dom E

R : var x = v in c

block
−−−−−−− R : E

R : E
assign
−−−−−−−

σ  σ[v/n]

R : x v
read

−−−−−−−− R : E
R : E

lookup
−−−−−−−− σ(E(x)) = v

σ  σ

R : x v
write

−−−−−−−− R : E
R : E

assign
−−−−−−−−

σ  σ[v/E(x)]

R : out(Q, v) −−− Q : R?x
write
−−−−−−−

Q : E
Q : E

assign
−−−−−−− σ  σ[v/E(x)]

R : E

Figure 5–6: DQI-Rules for recursive procedures and blocks



Chapter 5. A Semantics and Logic for CSP 109

While the rule fragments for dynamic binding are:

def (R,π,x,c)
−−−−−−− R : E[〈x, c〉/π]

R : E

call(R,π,x,c,E)
−−−−−−− R : E E(π) = 〈x, c〉

R : E

This example is quite untidy: it shows that while we can add environments
and procedures “in a modular way”, if we do so, we end up with a mess. It would
probably be better to attach environments to evaluation judgments explicitly,
especially since each process has its own environment.

5.3 An Application: Program Verification

Program verification is an important area of computer science: in the real world,
erroneous programs cause disasters. It follows that “correctness” and “safety”
proofs (i.e., proofs that programs meet some specification) are important.

But programs are complex, which means that reasoning about them will be
complex too. We need to minimise the cost of verification. One way is to reason
in a syntax-directed manner: one inserts assertions about the state of the world
between program statements and shows that the program satisfies them [Flo67].
For instance, if we have a program x := 0; y := 1, we might add assertions

{true} x := 0 {x = 0} y := 1 {x = 0 ∧ y = 1}

which tell us what we know about the store after each atomic step of the program.

The question is how to prove that a program satisfies these assertions. There
is a wide variety of techniques: for instance, weakest preconditions [Dij76], “Hoare
Logics” [Hoa69], specification logic [Rey81], evaluation logic [Pit91], dynamic
logic [Har84], and other modal and temporal logics [Sti92].

We consider a “Hoare Logic” for the partial correctness of CSP programs.
Since our version of CSP does not have full procedures, this approach is “quite
satisfactory” [OPTT95]. (The problem with procedures is that they can introduce
aliasing which means that differently named variables can interfere with each other.
See op. cit. for a full discussion.)

A Hoare Logic is really a deductive system whose judgments relate pre- and
post-conditions to program statements. The judgments are of form {φ} c {ψ}, and
intuitively mean “if φ is true immediately before executing c then ψ is true imme-
diately after”. [Apt81] is a comprehensive survey of Hoare Logics for sequential
while-languages. [Hoo86] is a survey of deductive systems for partial correctness
of CSP.

There are three main points motivating this application. First, it is an example
application: we can use (a modified form of) CSP to prove the rules of the Hoare
Logic sound. Second, it is distinct from previous Hoare Logics because it is an



Chapter 5. A Semantics and Logic for CSP 110

DQI-system in its own right. Third, because it is a DQI-system, it demonstrates
an application of our work outside the sphere of operational semantics.

To illustrate the method, we consider the ubiquitous greatest common divisor
algorithm, as implemented by the program GCD:

i := m;
j := n;
do i > j ⇒ i := i− j

[]j > i ⇒ j := j − i
od

The program is intended to run in the situation where both m and n are constants
greater than zero. We have to prove that when started in this situation, the
program will terminate such that i = j = gcd(m,n). That is, we want to prove

{m > 0 ∧ n > 0} GCD {i = j = gcd(m,n)}

Figure 5–7 gives our deductive system for CSP. For the moment, we ignore the
concurrency rules, and use the sequential system to prove the above program
correct. The deduction is too big to write on the page, so instead we give the
following proof outline [AO91] which can be thought of as a flattened deduction:

{m > 0 ∧ n > 0}
i := m;

{m > 0 ∧ n > 0 ∧ i = m}
j := n;

{m > 0 ∧ n > 0 ∧ i = m ∧ j = n}
{gcd(i, j) = gcd(m,n)}

do i > j ⇒ {gcd(i− j, j) = gcd(m,n)}
i := i− j

{gcd(i, j) = gcd(m,n)}
[]j > i ⇒ {gcd(i, j − i) = gcd(m,n)}

j := j − i
{gcd(i, j) = gcd(m,n)}

od
{gcd(i, j) = gcd(m,n) ∧ i = j}

The proof depends on the well-known fact about the greatest common divisor:

i > j ∧ gcd(i, j) = gcd(m,n) ⊃ gcd(i− j, j) = gcd(m,n)

In the following we shall abbreviate proof outlines to record only the essential
information.

Verifying concurrent programs

Verifying concurrent programs is much harder. The reason is that one often wants
to verify relationships that hold between processes. In a strictly compositional
system (such as [MC81] or [ZdBdR83]) one has to break global relationships of



Chapter 5. A Semantics and Logic for CSP 111

processes into invariant properties of communication. It is not clear how to break
global relationships of distributed algorithms such as the distributed GCD algo-
rithm [AO91].

Levin and Gries’s proof system for CSP [LG81] splits the verification pro-
cess into two halves. First, one proves properties about the sequential processes
in isolation. Second, one proves an interference freedom result (in the spirit of
Owicki-Gries’s method [OG76]) to show that no process inadvertently falsifies the
assertions of another process. CSP processes do not share variables, but in this
system they can share the auxiliary variables (so one can prove global relationships
using global auxiliary variables). The main problem here is that the interference
freedom test “if approached mechanically, is an awesome task” [LG81, p291]. To
reduce the work, one has to structure one’s program and choose assertions care-
fully.

Apt et al.’s proof system [AFdR80] also splits the verification process into
two halves. However, it forbids even auxiliary variables to be shared between
processes. Again first, proofs about the sequential processes are done, and then
global relationships are established second (the “co-operation proof”). This ap-
proach handles global relationships naturally. However, the co-operation proof also
involves a large amount of work, having to consider every syntactically matching
pair of communication commands.

These approaches are not compositional, and so are not suited to aid program
development. The advantage of strictly compositional proof systems are that one
knows if one’s program is correct as soon as one has a proof outline for the program.
Therefore one can develop one’s programs in a modular manner.

The deductive system in figure 5–7 is compositional, belonging to the school
of [ZdBdR83], yet is inspired by the rules of [AFdR80]. We shall use it to deduce
that a simple set partitioning program is correct.

A Set Partitioning program

This is taken from [AFdR80], and assumes that CSP is extended to include sets
of integers and operations for manipulating them. The modifications required to
the semantics are trivial.

Given two disjoint sets of integers S and T , the problem is to partition S ∪ T
into S ′ and T ′ such that |S| = |S ′| and |T | = |T ′| and max(S ′) < min(T ′). The
solution is given in the following program SP = p1 ‖ p2, where p1 and p2 are

Q1 :: mx := max(S);
Q2!mx; S := S \ {mx};
Q2?x; S := S ∪ {x};
mx := max(S);
do mx > x⇒

Q2!mx; S := S \ {mx};
Q2?x; S := S ∪ {x};
mx := max(S);

od

and Q2 :: Q1?y; T := T ∪ {y};
mn := min(T );
Q1!mn; T := T \ {mn};
do true⇒

Q1?y; T := T ∪ {y};
mn := min(T );
Q1!mn; T := T \ {mn};

od



Chapter 5. A Semantics and Logic for CSP 112

respectively. Intuitively, processes p1 and p2 own S and T respectively. The
program repeatedly swaps the greatest element of S and the least element of T
until the greatest element of S is less than the least element of T .

5.3.1 A Hoare Logic for the partial correctness of CSP

Our deductive system is similar to Misra and Chandy’s system in that it is compo-
sitional and uses rely and guarantee conditions. It does not require an interference-
freedom or co-operation proof. It is dissimilar in that it does not use trace vari-
ables. It is similar to Levin and Gries’s system in that a special class of auxiliary
variables called views can be shared between communicating processes. Last, it is
similar to Apt et al.’s system in that no auxiliary variable can be used globally.

In the following, I assume a first-order language L of assertions with equality
and sets over V ar ranged over by φ, χ, ψ. I use the symbols ∧ for conjunction and
⊃ for implication. Let TrL be the set of true sentences of L (perhaps described
by some other deductive system). Let FV : L → ℘(V ar) be a function which
returns the set of program variables contained in an assertion. Similarly, I use the
function FV defined in section 5.1.2 that returns the set of variables mentioned
in a program fragment.

The rules in figure 5–7 are mostly similar to those of [LG81,AFdR80]. (I leave
their dependence on the set TrL implicit.) The rule for do-loops uses the following
auxiliary function

Gu(g) =
{
b if g = b⇒c
Gu(g1) ∨Gu(g2) if g = g1 [] g2

The main difference lies with the concurrent rules. One feature is that the rule for
parallel composition is quite simple. Another is that the rules for communication
have dangling interactions. Each dangling interaction is labelled with a special
formula that expresses an invariant property of the communicated information.

Views When process R transmits the value of expression e to Q, we say that
Q has a view of the value of e in R. Now R knows what Q’s view of e will be
since it sent it. Thus there exists a natural class of information which is shared
between communicating processes. We model this information using a special class
of auxiliary variables called views, which may be altered only at communication,
and which are shared between communicating processes.

However, views will not be related to particular expressions (i.e., data) but to
particular occurrences of output commands in the program (i.e., locations). The
reason is that expressions may play different roles at different parts of a program,
whereas each part of a program plays one well-defined role, established by its pre-
and post- conditions in a proof outline. The “role” of a location in a particular
deduction is formalised by a special property called the communication invariant .
This is the information that is shared with a communicating process about the
actual message. In fact, it can be thought of as an abstract message.



Chapter 5. A Semantics and Logic for CSP 113

Actually, it is more convenient to identify sets of locations that play the same
role, and associate communication invariants with sets of locations. For instance,
in our example program, process p1 sends the maximum element of S from two
locations. It makes sense and simplifies reasoning to have one view of the maximum
element of S.

In what follows, I use u, w to range over sets of occurrences of output commands
in programs, and I shall annotate programs to indicate how output occurrences
are referred to in proofs. I write u for the view of u.

Counters The proof technique works by associating invariant properties to each
view. The proof outline at the output command occurrence u ought to guarantee
that the invariant property holds of u. Then the proof outline at an input command
occurrence can rely on that invariant property. But this depends on the fact that
we know which input commands communicate with which output commands. To
do this, we introduce special auxiliary views called counters which return the last
view shared between two communicating processes. Initially, we set the counters
to a special null value, written ⊥. There will be two counters for every pair of
processes: QR records R’s last view of Q (i.e., the last communication from Q to
R) and RQ records Q’s last view of R. These counters have to be maintained by
the communication invariants. As a convention, for every program we use ~RQ for
the set of all occurrences in R that output to Q.

Communication Invariants Typical communication invariants relate old and
new values of views. At the communication rules, we write u′ for the new value
of view u and RQ′ for the new value of the counter RQ. It is a temporary name
used when working out the postcondition of the input rule. It does not itself occur
in any pre- or postcondition. I write ψ\ for the result of de-priming every primed
view or counter in ψ. So, for example, (u′ = 5)\ is u = 5. This operation occurs
in the conclusion of the input rule.

Let V iews be the set of all views and counters. I also assume a function
vw : L → ℘(V iews) that returns the set of views and counters mentioned in an
assertion. Note that views and counters may not appear in a program. Last, I
write V V : L→ ℘(V iews∪ V ar) for the function V V (φ) = FV (φ) ∪ vw(φ).

Rules for Input and Output

The only complex rules are the ones for input and output. The output rule is
simpler, so we explain it first. All it has to do is show that the precondition implies
the postcondition and guarantees the appropriate communication invariant. The
main difficulty is that we have to update the appropriate view and counter. Since
this is like an assignment, we borrow the “backward assignment” idea and write

φ = ψ[e/u][u/RQ]

where φ is the precondition, ψ the postcondition, u the relevant location and the
communication sends e from R to Q. This is straightforward. To guarantee the



Chapter 5. A Semantics and Logic for CSP 114

Rules for the sequential component

{φ} skip {φ}R {φ[e/x]} x := e {φ}R

{φ} c1 {ψ}R {ψ} c2 {χ}R
{φ} c1; c2 {χ}R

{φ} g {ψ}R
{φ} if g fi {ψ}R

{φ} g {φ}R
{φ} do g od {φ ∧ ¬Gu(g)}R

Rules for guards

{φ ∧ b} c {ψ}R
{φ} b⇒c {ψ}R

{φ} g1 {ψ}R {φ} g2 {ψ}R
{φ} g1 [] g2 {ψ}R

Rules for the concurrent component

+CI
−−−−−

φ = ψ[e/u][u/RQ] φ ⊃ CI(u)[e/u′][u/RQ′]

{φ} u : Q!e {ψ}R

−CI
−−−−−

∀u ∈ ~QR. φ ∧ CI(u) ⊃ ψ[u′/x] ∧QR, u 6∈ V V (ψ)

{φ} Q?x {ψ\}R

{φ} c {ψ}R
{φ} R :: c {ψ}

{φ1} p1 {ψ1} {φ2} p2 {ψ2}
{φ1 ∧ φ2} p1 ‖ p2 {ψ1 ∧ ψ2}

Logical rules

φ ⊃ φ′ {φ′} c {ψ′} ψ′ ⊃ ψ
{φ} c {ψ}

φ ⊃ φ′ {φ′} p {ψ′} ψ′ ⊃ ψ
{φ} p {ψ}

Figure 5–7: A Hoare Logic for the partial correctness of CSP



Chapter 5. A Semantics and Logic for CSP 115

communication invariant, we need values for the temporary new view u′ and new
counter RQ′. But since we are sending the message, we know both these values:
e and u respectively. Thus we show

φ ⊃ CI(u)[e/u′][u/RQ′]

The input rule is more complex because we do not know the values of the new
view and new counter. These have to be supplied by the communication invari-
ant. However, we do not know which communication invariant gives the right
answers. Therefore for soundness, we have to check that the postcondition follows
from the conjunction of the precondition and each communication invariant. This
would be restrictive were it not for the counters. Suppose the communication is
from R to Q. The precondition to the input rule should know what the current
value of the counter RQ is. Then every communication invariant CI(u) which as-
serts a different value for this counter will contradict the precondition, from which
anything (in particular the desired postcondition) follows. The correct communi-
cation invariant will entail the desired postcondition naturally. The idea is related
to Lamport’s at predicates [LS84].

Once again, we have to fiddle with the primed views and counters. For each
viewable location u we show two things. First that

φ ∧ CI(u) ⊃ ψ[u′/x]

which allows the postcondition to contain references to the variable x which re-
ceives the information (in particular it allows us to prove the important fact x = u′

trivially). Second that

φ ∧ CI(u) ⊃ RQ, u 6∈ V V (ψ)

which is really a condition on the kinds of postcondition we allow. Essentially, this
ensures that when we deprime ψ to adopt the new values of the view and counter
we do not conflict with the old values.

5.3.2 An example partial correctness proof

In this section, we show SP to be partially correct using our Hoare Logic. We
simply prove the result: it will be appraised in section 5.3.4. The bulk of the
proof concerns the deduction of p1, and we need an auxiliary variable T ′ in p1
that represents p1’s view of T in p2. To keep T ′ up to date we need auxiliary
communications of T . The bodies of the two processes become:
Q1 :: Q2?T ′;

mx := max(S);
Q2!mx; S := S \ {mx};
Q2?x; S := S ∪ {x};
Q2?T ′;
mx := max(S);
do mx > x⇒

Q2!mx; S := S \ {mx};
Q2?x; S := S ∪ {x};
Q2?T ′;
mx := max(S);

od

and Q2 :: Q1!T ;
Q1?y; T := T ∪ {y};
mn := min(T );
Q1!mn; T := T \ {mn};
Q1!T ;
do true⇒

Q1?y; T := T ∪ {y};
mn := min(T );
Q1!mn; T := T \ {mn};
Q1!T ;

od



Chapter 5. A Semantics and Logic for CSP 116

We label the output occurrences Q2!mx in p1, u; the two occurrences of Q1!mn in
p2, w1; and the three occurrences of Q1!T in p2, w2. The communication invariants
are
CI(u) = Q1Q2 ∈ {⊥, u} ∧ Q1Q2

′ = u
CI(w1) = Q2Q1 = w2 ∧ Q2Q1

′ = w1 ∧ w1
′ ≤ u

CI(w2) = Q2Q1 ∈ {⊥, w1} ∧Q2Q1
′ = w2 ∧ (Q2Q1 = ⊥ ⊃ w2

′ = T0)
∧ (Q2Q1 = w1 ⊃ w2

′ = w2 ∪ {u} \ {w1})

The abbreviated proof outline for the modified forms of p1 and p2 can be found
in figures 5–8 and 5–9 respectively. Applying the parallel composition and conse-
quence rules, we get

{|S| = n1 > 0, |T | = n2 > 0, S = S0, T = T0, S ∩ T = ∅}
SP

{S ∩ T = ∅, S ∪ T = S0 ∪ T0, max(S) < min(T )}
Which is the desired result.

5.3.3 Soundness of the Hoare Logic

The above proof only works if the proof rules are valid — i.e, if they make sound
inferences from sound premises. [Sti88,Apt83] prove validity for Hoare Logics of
concurrent languages using a transition-style operational semantics. [ZdRvEB85]
proves validity for their Hoare Logic of DNP (a CSP variant) with respect to
a denotational semantics of process traces. In this section, we sketch a proof of
the validity of our Hoare Logic with respect to a modification of our evaluation
semantics CSP .

The meaning of programs and all that

The soundness proof is going to be split into two: one half for the sequential com-
ponent and one half for the concurrent component. In this subsection we modify
CSP to incorporate a semantic account of views and counters. We also define some
auxiliary notations and definitions including an important interference-freedom
property of deductions. Last we define the meaning of a program to be the set of
all interference-free deductions of the program.

Views and Counters in CSP The required modification to CSP is slight. It
consists of two changes. In the following I shall use u, w to range over occurrences
of output commands, and I shall write u : Q!e if Q!e is occurrence u in the overall
program. Let us extend the function vw to range over commands and programs:
let vw(c) (or vw(p)) return the set of views of output occurrences in c (or p). Let
V V = FV ⊕ vw as before.

First, we replace the rules for communication with the following:
R : e→ v I R : out(Q, v, u, σ)

R : u : Q!e
R : in(Q, x, v, u, σ)

R : Q?x

R : out(Q, v, u, σ)
out(R,Q,v,u,σ)
−−−−−−

σ  σ[v/x][v/u][u/RQ]
in(R,Q,x,v,u,σ)
−−−−−−

Q : in(R, x, v, u, σ)



Chapter 5. A Semantics and Logic for CSP 117

{|S| = n1 > 0, S = S0, S ∩ T ′ = ∅, T ′ = T0, Q2Q1 = Q1Q2 = ⊥}

Q1 :: Q2?T ′; {. . .w2 = T0, Q2Q1 = w2}

mx := max(S); {. . .mx = max(S)}

u : Q2!mx; {. . .mx = u, Q1Q2 = u}

S := S \ {mx};
{. . . S 6= S0, S ∩ (T0 ∪ {u}) = ∅, S ∪ (T0 ∪ {u}) = S0 ∪ T0}

Q2?x; {. . . x = w1 ≤ u, Q2Q1 = w1}

S := S ∪ {x};
{. . . S ∩ (T0 ∪ {u} \ {w1}) = ∅, S ∪ (T0 ∪ {u} \ {w1}) = S0 ∪ T0}

Q2?T ′;

{. . . T ′ = w2, S ∩ T ′ = ∅, S ∪ T ′ = S0 ∪ T0, Q2Q1 = w2}

mx := max(S);

do mx > x⇒ {LI1}

u : Q2!mx; S := S \ {mx};
{. . . ,mx = u, Q1Q2 = u,

S ∩ (T ′ ∪ {u}) = ∅, S ∪ (T ′ ∪ {u}) = S0 ∪ T0}

Q2?x; S := S ∪ {x};
{. . . x = w1 ≤ u, Q2Q1 = w1,

S ∩ (T ′ ∪ {u} \ {w1}) = ∅,

S ∪ (T ′ ∪ {u} \ {w1}) = S0 ∪ T0}
Q2?T ′;

{. . . T ′ = w2, S ∩ T ′ = ∅, S ∪ T ′ = S0 ∪ T0,

Q2Q1 = w2}
mx := max(S); {LI1}

od

{|S| = n1 > 0, S ∩ w2 = ∅, S ∪ w2 = S0 ∪ T0, max(S) = w1, . . .}

Where LI1 is the loop invariant:

LI1 : |S| = n1 > 0, T ′ = w2, x = w1, Q2Q1 = w2,

S ∩ T ′ = ∅, S ∪ T ′ = S0 ∪ T0, max(S) = mx ≥ x

Figure 5–8: An abbreviated proofoutline for p1



Chapter 5. A Semantics and Logic for CSP 118

{|T | = n2 > 0, T = T0, Q1Q2 = Q2Q1 = ⊥}
Q2 :: w2 : Q1!T ; {. . .Q2Q1 = w2, w2 = T0}

Q1?y; {. . .Q1Q2 = u, y = u}
T := T ∪ {y}; {. . .T = w2 ∪ {u}, |T | = n2 + 1}

mn := min(T ); {. . .mn = min(w2 ∪ u)}

w1 : Q1!mn; {. . .w1 ≤ u, Q2Q1 = w1}
T := T \ {mn}; {. . . T = (w2 ∪ {u) \ w1}, w1 < min(T )}

w2 : Q1!T ; {. . . T = w2, Q2Q1 = w2}
do true⇒ {LI2}

Q1?y; {. . .Q1Q2 = u, y = u}
T := T ∪ {y}; {. . .T = w2 ∪ {u}, |T | = n2 + 1}

mn := min(T ); {. . .mn = min(w2 ∪ u)}

w1 : Q1!mn; {. . .w1 ≤ u, Q2Q1 = w1}
T := T \ {mn}; {. . .T = (w2 ∪ {u) \ w1}, w1 < min(T )}

w2 : Q1!T ; {LI2}
od

{|T | = n2, T = w2, min(T ) > w1}

Where LI2 is the loop invariant

|T | = n2, T = w2, min(T ) > w1, Q1Q2 = u, Q2Q1 = w2

Figure 5–9: An abbreviated proofoutline for p2



Chapter 5. A Semantics and Logic for CSP 119

There are three differences. First, the judgment R : out(· · ·) has been extended
to contain more variables. Second, we have a new judgment R : in(· · ·) which also
includes variables not in the input command. These extra variables are used when
hypothesizing and guaranteeing communication invariants. The third change is
that the store judgment has been extended to update views and counters and
also altered to interact with both the input and output commands. (Thus in this
system every interaction involves the store.) Formerly, it did not interact with the
output atom. This is to facilitate reasoning about the shared views and counters.

The second change is to add a null store transition:

σ  σ

This alteration is done purely to simplify the following definitions and proofs. For
convenience, let us also call this modified system CSP (this brooks no confusion:
we never refer to the old system in this section).

Assertions and stores Let |=⊆ Store × L be a relation such that σ |= φ if
the values of variables (or views) in σ satisfy the assertion φ (i.e., substituting the
variables in φ with their values in σ returns a sentence in TrL). Technically, the
relation should be subscripted by TrL, but we omit this to ease clutter.

Interference Freedom: programs and commands Intuitively, a deduction
Π is interference free over a set of views (output occurrences) and variables X if no
element of X is altered in the store by a process outside Π. That is, every update
of an element of X must be sanctioned by an interaction link in Π. That is, the
behaviour of the program fragment of Π with respect to that part of the store
pertinent to X is fully specified by the deduction. For assignment and lookup,
this means that there can be no assign or lookup dangling interactions in Π that
mention variables in X. However, since both sides of a communication interact
with the store, we can allow one of the interactions to dangle; though if Π contains
the output command, then it cannot be the out link, and if it contains the input,
it cannot be the in link.

Therefore we say a CSP-deduction Π is interference-free with respect to a set
of variables and output occurrences X (written ΠXX) if for all (A, α) ∈ D(Π),

(i) FV (α) ∩X = ∅
(ii) vw(α) ∩X = ∅ or α = ±in(· · ·)

Condition (i) asserts interference freedom on variables; condition (ii) states that
either no relevant view occurs, or if it does, it occurs in an input link. (Note that if
Π contains both input and output commands of an interaction then condition (i)
will ensure that the input link is intact, and (ii) that the output link is intact.)

Proposition 5.0 Let Σ ` σ  σ′ be interference-free with respect to X. Then
for all φ such that V V (φ) ⊆ X, if σ |= φ then σ′ |= φ.

Proof: Straightforward induction on size(Σ). 2



Chapter 5. A Semantics and Logic for CSP 120

Accessible views and variables The assertions of a sequential process may
refer to any variable in that process. We want to ensure that if a command does
not mention certain variables or views, then their values will remain untouched.
So, whenever we reason about the meaning of a command, we shall want to talk
about those deductions that are interference-free with respect to the entire set of
views and variables in the sequential process. We define

Acc(R, p) =


V V (c) if p = R :: c
∅ if p = Q :: c and R 6= Q
Acc(R, p1) ∪ Acc(R, p2) if p = p1 ‖ p2

For the set of views and variables accessible by process R in p.

The meaning of commands and programs The meaning of a command
(program) will be the set of all its deductions which are interference-free over the
variables accessible by the command (program). Thus the meaning of a command
c belonging to process R in program p is defined to be the set

M(R,p)[c] = {Π ∈ DQI(CSP) | Π ` R : c, σ  σ′ and ΠXAcc(R, p)}

We really need to restrict attention to the deductions which are interference-free on
Acc(R, p). It is not enough to assert interference-freedom for the views and vari-
ables of the particular program fragment c, because the pre- and post-assertions
of c may refer to any view or variable accessible to R.

The meaning of a program p

M[p] = {Π ∈ DQI(CSP) | Π ` p, σ  σ′and ΠXV V (p)}

The meaning of Hoare Triples is easily defined by

|=(R,p) {φ} c {ψ} iff
for all Π ∈M(R,p)[c], if Π ` R : c, σ  σ′ and σ |= φ then σ′ |= ψ

|= {φ} p {ψ} iff
for all Π ∈M[p], if Π ` p, σ  σ′ and σ |= φ then σ′ |= ψ

The meaning of a Hoare triple can be paraphrased “for every deduction fragment
of c (or p) interference-free on every variable or view in c (or p), such that φ holds
before executing it, ψ holds afterwards”.

Notes on Communication Invariants In the following, let us write `CI(R,p)
{φ} c {ψ} if the Hoare triple is provable in the above system, when c is a command
occurrence of R in p, and the communication invariants are given by CI : V iews→
L. Moreover, we say a set of deductions X is CI-input correct if for all Π ∈ X,
for all occurrences of form R : in(Q, x, v, u, σ) ∈ O(Π), σ |= CI(u)[v/u′][u/QR′].
Similarly, we say a set X of deductions is CI-output correct if for all Π ∈ X, for
all occurrences of form R : out(Q, x, v, u, σ) ∈ O(Π), σ |= CI(u)[v/u′][u/RQ′].



Chapter 5. A Semantics and Logic for CSP 121

A convenient notation and related results

To aid the following proof, we use the following notation. Let Π1 ` A1, σ  σ′

and Π2 ` A2, σ′  σ′′. Then we write Π = Π1 I Π2 if Π is the deduction

Π1 Π2

A1, σ  σ′ A2, σ′  σ′′

A1 I A2

A3

σ  σ′ I σ′  σ′′

σ  σ′′

�
���

PPPPPPPPPq

���������)

@
@@R

Note that in CSP , A3 is uniquely determined by A1 and A2. We extend the
notation: if Σ1 ` σ  σ′ and Σ2 ` σ′  σ′′ we write Σ1 I Σ2 for the deduction of
σ  σ′′ with children Σ1 and Σ2 in sequence.

Proposition 5.1 (Store Reshuffling) Let Σ ∈ DQI(CSP) be such that Σ `
σ  σ′. Let X ⊆ D(Σ) be upwards closed with respect to .Σ. Then there exists
a store σ′′ and CSP-deductions Π1 ` σ  σ′′ and Π2 ` σ′′  σ′ such that
X = D(Π2) and Σ ' (Π1 I Π2).

Proof: By induction on n = |X| × size(Σ). Case n = 0: Two cases: either
|X| = ∅ or size(Σ) = 0. We set

Π1 = Σ
Π2 =σ′  σ′

and Π1 =σ  σ
Π2 = Σ

respectively. In both cases, the other conditions are satisfied trivially. Case
n > 0: We have Σ = (Σ1 I Σ2) where Σ1 ` σ  σ′′ and Σ2 ` σ′′  σ′. There
are two cases. First, either X ⊆ D(Σ2), in which case by induction there exists
Π21 and Π22 such that Σ2 ' (Π21 I Π22) and D(Σ2) = D(Π22). Then we set
Π1 = (Σ1 I Π21) and Π2 = Π22, and the conditions follow trivially.

Second, X ∩D(Σ1) 6= ∅ (in which case D(Σ2) ⊆ X as X is upwards closed).
Let Y = X ∩D(Σ1). Clearly X = Y ∪D(Σ2). By induction, there exists Π11 and
Π12 such that Σ1 ' (Π11 I Π12) and Y = D(Π12). Then we set Π1 = Π11 and
Π2 = (Π12 I Σ2), and the conditions follow trivially. 2

Proposition 5.2 Let Π ` A3, σ  σ′ be a CSP deduction such that A3 is intro-
duced by a rule atom instance with premises A1 I A2. Then there exist σ′′ and
CSP-deductions Π1 ` A1, σ  σ′′ and Π2 ` A2, σ′′ σ′ such that Π = Π1 I Π2.

Proof: (Sketch) essentially, the command judgment occurrence A3 is deduced
from the deduction concluding A1 and A2. We want to split the tree concluding
σ  σ′ into two subtrees concluding σ  σ′′ and σ′′  σ′, such that the first
subtree interacts only with the tree concluding A1 and the second interacts only
with that concluding A2. The precise details of how this is done are tedious.



Chapter 5. A Semantics and Logic for CSP 122

Briefly: first we break every interaction link of Π. Second, we isolate the set of
dangling interactions that used to interact with the tree concluding A2. Then
we take its upper closure (with respect to <Π) and apply proposition 5.1 to
build the two desired subtrees. Reassembly is easy because proposition 5.1 alters
neither the set of dangling interactions above the store tree, nor the relative
dependencies between the dangling interactions. Therefore, one can apply the
interaction reflection theorem using the identity function to get the result. 2

Soundness for commands

Lemma 5.3(i) If `CI(R,p) {φ} c {ψ}R andM(R,p)[c] is CI-input correct then |=(R,p)

{φ} c {ψ}R and M(R,p)[c] is CI-output correct.

Proof: By induction on the depth of inference of ` {φ} c {ψ}. We shall only
give the cases for input, output and sequential composition: all the rest follow
by simpler arguments.
Case {φ} Q?x {ψ}R. Let Π ∈M(R,p)[Q?x] be such that Π ` R : Q?x, σ σ′

and σ |= φ.
The bottom-most command rule in Π will be the input rule. This depends

on the premise R : in(Q, x, v, u, σ0) for some store σ0. By CI-input correctness,
σ0 |= CI(u)[v/u′][u/QR′] (♠).

Now, since Π is interference-free on all variables and views accessible to R,
this means that any writes to x in the store must be marked by an interaction
link between the appropriate store transition formula occurrence and command
evaluation formula occurrence. But in Π, the only formula occurrence the store
can interact with is R : in(Q, x, v, u, σ0). Let

out(Q,R,v,u,σ0)
−−−−−−

σ0  σ0[v/x][v/u][u/QR]
in(Q,R,x,v,u,σ0)
−−−−−−

R : in(Q, x, v, u, σ0)

for some σ0 be this single instance of the input rule in Π. By interference
freedom, we know that this rule instance is the only one that can change an
accessible variable or view. Therefore, since σ |= φ so also σ0 |= φ (propo-
sition 5.0). By ♠, we get σ0 |= φ ∧ CI(u)[v/u′]. Together with the premise
to the input rule, we get σ0 |= (ψ[v/x])[v/u′][u/QR′]. Since u,QR 6∈ V V (ψ),
we get σ0 |= (ψ[v/x])[v/u′][u/QR′]\, i.e., σ0 |= (ψ\)[v/x][v/u][u/QR]. Therefore
σ0[v/x][v/u][u/QR] |= ψ\. Last, by interference-freedom (and proposition 5.0) we
know that no other variable or view accessible to R in p is altered in Π. Therefore
σ′ |= ψ\.

Case {φ} u : Q!e {ψ}. Let Π ∈ M(R,p)[Q!e]. Then Π `(R,p) R : Q!e, σ  σ′′

and σ |= φ. From the premises of the Hoare rule, σ |= ψ[e/u][u/RQ] and also
(by modus ponens), σ |= CI(u)[e/u′][u/RQ′]. Now R : Q!e is inferred from R :
e → v and R : out(Q, v, u, σ0) for some σ0 (sequenced in that order). Therefore,
σ |= ψ[v/u][u/RQ] and σ |= CI(u)[v/u′][u/RQ′]..



Chapter 5. A Semantics and Logic for CSP 123

By interference freedom (and proposition 5.0), we know that Π must contain
an instance of the rule fragment

R : out(Q, v, u, σ0)
out(R,Q,v,u,σ0)
−−−−−−

σ0  σ0[v/x][v/u][u/RQ]
in(R,Q,x,v,u,σ0)
−−−−−−

Moreover, it also follows from interference freedom that since R : Q!e does not
write to any variables of R, the accessible variables will remain untouched. The
only accessible view altered is u, and we know how that is altered. Therefore, for
every σ0 mentioned in Π, since σ0 |= φ, we know σ0 |= CI(u)[v/u′][u/RQ′]. Thus
Π is CI-output correct.

We also know σ0 |= φ, and so also trivially σ0[v/u][u/QR] |= ψ, and so also
by interference freedom (and proposition 5.0), σ′ |= ψ.

Case {φ} c1; c2 {ψ}. If `(R,p) {φ} c1; c2 {ψ} then it was inferred from `(R,p)

{φ} c1 {χ} and `(R,p) {χ} c2 {ψ} for some cut-formula χ.
Let Π ∈ M(R,p)[c1; c2] be such that Π `(R,p) R : c1; c2, σ  σ′ and σ |= φ. By

proposition 5.2, we can find σ′′ and two deductions Πi ∈ M(R,p)[ci] for i = 1, 2,
such that Π1 ` R : c1, σ  σ′′ and Π2 ` R : c2, σ′′  σ′ such that Π = Π1 I Π2.
Now, if M(R,p)[c1; c2] is CI-input correct, so must M(R,p)[ci] be, since the input
occurrences of c1; c2 is the union of the input occurrences of c1 and c2.

Therefore, by induction, |=(R,p) {φ} c1 {χ} and |=(R,p) {χ} c2 {ψ}. Therefore,
whenever σ |= φ, we get σ′′ |= χ and so σ′ |= ψ. Similarly,M(R,p)[c1; c2] will be
CI-output correct because M(R,p)[c1] and M(R,p)[c2] are. 2

Soundness of Programs

Lemma 5.3(ii) If ` {φ} p {ψ} and M[p] is CI-input correct then |= {φ} p {ψ}
and M[p] is CI-output correct.

Proof: by induction on p. Case p = R :: c: the result follows from lemma 5.3(i).
Case p = p1 ‖ p2: let Π ∈ M[p1 ‖ p2] be such that Π ` p1 ‖ p2, σ  σ′ and
σ |= φ1 ∧ φ2. We remove the bottom parallel composition rule to get Π0 `
p1, p2, σ  σ′. Now, let Π1,Π2 be the fragments of Π0 such that Πi ` p1, σ  σ′

and ΠiXV V (pi), for i = 1, 2. Thus, the only interaction links broken to get Πi

are the links between the store trees and the tree concluding p3−i (for i = 1, 2).
Now we get Πi ∈ Mp′[pi] (i = 1, 2). Therefore, by induction, we get |=

{φi} pi {ψi} (for i = 1, 2). That is, if σ |= φi then σ′ |= ψi. Since σ |= φ1 ∧ φ2,
we get σ′ |= ψ1 ∧ ψ2. 2

The previous lemma shows that the deductive system is sound for programs
whenever the meaning of a command is CI-input correct. This condition can only
be guaranteed in the context of the entire program. To complete the soundness
proof, we simply have to show that CI-input correctness is guaranteed by CI-
output correctness.



Chapter 5. A Semantics and Logic for CSP 124

We say p ∈ Prog is whole if every process identifier mentioned in p is bound to a
process in p. Then interference-freedom implies that for whole p,M[p] ⊆ QI(CSP)
(essentially because every output occurrence viewed in p will occur in p.)

Proposition 5.3 If ` {φ} p {ψ} then |= {φ} p {ψ} when p is whole.

Proof: Suppose ` {φ} p {ψ} where p is whole. By lemma 5.3(ii), if M[p] is
CI-input correct, then |= {φ} p {ψ} and M[p] is CI-output correct.

Now, since M[p] ⊆ QI(CSP), if we break every in- and out-labelled inter-
action of every deduction in M[p] to get X, we have X ⊆ DQI(CSP). Then
input- and output-correctness correspond to the following interaction hypotheses
and guarantees:

(1) +out(R,Q, v, u, σ) : σ |= CI(u)[v/u′][u/RQ′] guaranteed
(2) −out(R,Q, v, u, σ) : σ |= CI(u)[v/u′][u/RQ′] hypothesized
(3) +in(R,Q, v, u, σ) : σ |= CI(u)[v/u′][u/RQ′] guaranteed
(4) −in(R,Q, v, u, σ) : σ |= CI(u)[v/u′][u/RQ′] hypothesized

(1) is guaranteed by output correctness. (3) is guaranteed under the hypothesis of
(2). Hypothesizing (4) allows us to prove the first half of input-correctess. Thus
we have the following result: for all Π ∈ DQI(CSP), under the above interaction
hypotheses, if Π ∈ X and `CI {φ} p {ψ} then if Π ` p, σ  σ′ and σ |= φ then
σ′ |= ψ and the above guarantees are guaranteed. By proof assembly, we can
discharge the interaction hypotheses and guarantees to get soundness. 2

5.3.4 Appraisal

The first thing to notice is that the actual proof system for the Hoare Logic did
not make much use of the dangling interactions. They only seemed to remove the
need to propagate the communication invariant everywhere. This is reminiscent
of the convention employed in [ZdBdR83] to avoid propagating their assumption
and commitment conditions.

The burden of proof

The most obvious thing about the partial correctness proof of section 5.3.2 was
that although there were two processes which performed roughly equal amounts
of work, the burden of the proof fell on one process (see figure 5–8). The role of
the other process was to maintain communication invariants (and to show that
w1 < max(T )).

Thus the proof technique seems to enforce a master-slave paradigm on the
processes: the bulk of the proof is performed in the master, and the slaves simply
fill in the appropriate gaps. This was acceptable for our example SP, but it is more
difficult for programs such as the distributed greatest common divisor program
DGCD given in [AO91]. Here we wish to find the common divisor of n numbers.



Chapter 5. A Semantics and Logic for CSP 125

We build a ring of identical processes, each of which owns one of the variables. At
each step of the algorithm each process either sends its value to the next processor
or accepts a value of the previous one. It then adjusts its value accordingly.

To prove this correct, I had to postulate a special observer process which at
each step read the values from each processor and showed that the set of all the
values satisfied a global invariant condition. (That is, at each step, the gcd of all
the values equalled the gcd of the original values.)

The most obvious problem is that if we modify the communicative behaviour of
the processes to continually pass around important values, how do we know if the
original program is correct? In our example, it should be clear that the auxiliary
communications do not upset the original communications, but this might not
always be so evident.

I believe that with more work this problem could be circumvented in a straight-
forward manner. One solution might be to “piggy-back” the auxiliary communi-
cations on top of existing communications. One would send tuples of views, each
of which would have to be broken into their consituents by the communication
invariant at the input commands.

More speculatively, we might rectify the anomalous distribution of work in a
proof by introducing global communication invariants. The idea here would be to
introduce a special “broadcasting” primitive (purely for auxiliary communications)
to access the global invariant. The idea would be that each view of a broadcasting
location would be globally accessible. Associated to each broadcast view would
be a global invariant. Each broadcast would have to show that it maintained the
invariant. It is unlike the input and output rules in that the global views would
be accessible everywhere in the proof outline. That is, the global invariant would
have to be propagated everywhere. However, at the moment, this is an idea I have
not pursued very far.

Of this and other Hoare Logics

Another point of interest is that our Hoare Logic for CSP is very simple. It is
simpler than the systems of Apt et al. [AFdR80] and Levin and Gries [LG81] in
that it is a compositional, one-level system. It is more compositional than that
of Lamport et al. [LS84], in that our invariants are decomposed at the parallel
rule. Last, it is simpler than those of Misra and Chandy [MC81] and Zwiers
et al. [ZdBdR83,ZdRvEB85] because it does not use trace variables. However, I
think we could easily maintain trace variables manually for those programs whose
correctness proof requires them (e.g., rebound sorting [Oss83, §4]).

The soundness proof

The soundness proof was very simple. It required a minimal number of con-
cepts. Structurally, it was just an assembly of a simple inductive proof. However,
somewhat ironically, the proof could have been even simpler if we had not frag-
mented the store and program judgments. Since CSP processes do not interfere



Chapter 5. A Semantics and Logic for CSP 126

via shared variables, we could have used traditional natural semantics judgments
of form R : c, σ ⇒ σ′ and p, σ ⇒ σ′. Most of the rules would have been straight-
forward — the only two interesting cases would have been the communication and
parallel composition rules:

R : Q!v, σ1⇒ σ1[v/u][u/RQ]
comm
−−−−−−

Q : R?x, σ2 ⇒ σ2[v/x][v/u][u/RQ]

p1, (σ � V V (p1))⇒ σ1 p2, (σ � V V (p2))⇒ σ2

p1 ‖ p2, σ ⇒ σ1 ⊕ σ2

Where σ � X is an operation to restrict the domain of the store, and σ1⊕σ2 is an
operation to overwrite σ1 with σ2. These would have to be defined algebraically.

In this setting we would not have needed to prove propositions 5.1 and 5.2. The
fact that at least the first proof is modular is irrelevant. Thus we have seen a case
where fragmentation is not always useful. However, the technique we have seen
would be applicable for soundness proofs of Hoare Logics for concurrent languages
with shared variables.

Proving Deadlock-freeness

One important property we should like to prove about CSP programs is that
processes are deadlock-free. I do not currently know how we could prove this
directly within our Hoare Logic, since it is a property of the system as a whole.
[AFdR80] prove deadlock-freeness by extending their two-level proof system to
reason about the set of all blocked states of a program. Deadlock-freeness follows
when every blocked states fails a global invariant test. It is not clear how to do
this compositionally: [MC81] say it is impossible.

Total Correctness

However, given such a technique we can alter the Hoare Logic in a standard way
to prove the total correctness of CSP programs. Following [Apt83], we say a
program is totally correct if it is partially correct, terminates, does not abort, and
is deadlock-free. We know how to obtain partial correctness proofs. Termination
(or more properly, non-nontermination) can be achieved with a modification of
the repetitive rule:

φ(0) ⊃ ¬Gu(g) φ(n+ 1) ⊃ Gu(g) {φ(n+ 1)} g {φ(n)}R
{∃n.φ(n)} do g od {φ(0)}R

Non-abortion can be proved by altering the alternative composition rule:

φ ⊃ Gu(g) {φ} g {ψ}R
{φ} if g fi {ψ}R



Chapter 5. A Semantics and Logic for CSP 127

Relative completeness (in the sense of Cook)

I do not know if our Hoare Logic is complete relative to the set of true sentences
of the assertion language L. If it is not, I would be surprised if we could not
rectify the situation by adding some extra logical rules and rules for manipulating
auxiliary variables — every other Hoare Logic seems to have them.

I think such a completeness proof would follow using the standard technique of
strongest postconditions. The strongest postcondition of a program and precondi-
tion SP (p, φ) is such that σ |= SP (p, φ) if and only if

∃σ′.σ′ |= φ ∧ ∃Π ∈M[p].Π ` p, σ′  σ

This would require an assertion language sufficiently expressive to code the se-
mantics. (For instance the language of Peano arithmetic.) Then the completeness
proof would proceed in two steps. First, to show that if |= {φ} p {ψ} then
SP (p, φ) ⊃ ψ, and second to show that for all p and φ, ` {φ} p {SP (p, φ)}. This
should follow by induction on the structure of programs.

5.4 Chapter Summary

This chapter uses interacting deductions to give a semantics to CSP. The point
was to show that we could extend our techniques to less trivial languages, and
to more usable proofs. We considered how to model various different concurrent
features in the evaluation semantics setting, mostly with success. One interesting
feature was that we could give propagation-free rules for abortion.

We saw in section 5.2.4 that evaluation semantics is not well suited to specifying
pre-emptive primitives. Also, we saw that it is not well suited to features that
operate on a snapshot of the entire system of processes (e.g., broadcasting and
global abort).

An important lesson was that modularity may sometimes be achieved at the
expense of other desirable properties of semantics. We saw this twice. First, in
section 5.2.6, we gave a modular semantics for recursive procedures. (That is,
we added the rules for procedures to CSP without changing any of the original
rules.) The result was a mess. One feels that environments ought to be bound
closely to judgments. Second, in the soundness proof of the Hoare Logic, because
we separated the store judgments from the program judgments, we had to do
more work, both in defining the notion of interference-freedom, and also in having
to prove proposition 5.1. Neither would have had to have been done if we had
not fragmented rules. (Of course this example is mitigated by the fact that the
fragmented stores could be useful in other contexts.)

Another lesson, gleaned from section 5.2 was that the scoping condition was
ubiquitous.

Finally, in section 5.3, we saw a very simple Hoare Logic for the partial cor-
rectness of CSP. This in itself is an achievement. (There were some difficulties,
but future work should solve them.) One nice feature was that despite the above



Chapter 5. A Semantics and Logic for CSP 128

reservations, its soundness proof was very easy using the evaluation semantics and
proof assembly. In fact the above reservations suggest that the proof could be
made even easier.



Chapter 6

The process calculus interpretation

So far I have only given a syntactic account of interacting deductions. Now I
intend to give a semantic account. This account is intended to explain why we
can call DQI-systems like CSP operational semantics. This chapter shows that
the computational content of an interacting deduction is a set of traces of some
CCS-like process. Using Heyting’s idea that the meaning of a formula is the set
of its deductions, the meaning of an “evaluation” judgment like “R : c” is a set of
evaluations of a process corresponding to R : c. In this sense CSP is an operational
semantics.

On a more practical level, the result indicates that in principle we can use
process calculus simulators (e.g., languages like Pict [PT95], or tools such as
the Concurrency Workbench [CPS89,CWB] or similar [IP91], perhaps with
some modification) to build prototype interpreters for languages from semantic
definitions. This is similar to the way that Typol systems use Prolog to build
prototypers for Natural Semantics definitions [Des84].

In fact process evaluation is a semidecision procedure which is a natural ana-
logue to the tableaux method. Another corollary of this result is that we can
obtain suitable models for deductive systems.

We can also go in the reverse direction, and show that every evaluation of a
CCS process corresponds to the deduction of a certain formula. A corollary is
that there is no procedure that decides if a set of occurrences is deducible in an
arbitrary DQI-system.

The heart of this chapter is section 6.2 which contains both the interpretation
and its soundness and completeness results. Section 6.1 describes the relevant
preliminaries, and section 6.3 explores the aforementioned consequences.

129



Chapter 6. The process calculus interpretation 130

6.1 Preliminaries

6.1.1 On formula occurrences

The heart of our semantic theorem depends upon the close association of a formula
in a deductive system with a process constant defined in some corresponding sys-
tem of equations. A technicality is that deductions concern formula occurrences.
There is no formal notion of constant occurrences in process calculus, because one
can easily distinguish different occurrences of a constant in a term according to
their positions in the (abstract syntax tree of the) term.

There is no notion of position in a set — that is, sets are not rigid objects.
Therefore, in order to map sets of formula occurrences into process terms which
are rigid, I introduce a total order over the set of all formula occurrences of a
language that will distinguish one enumeration of any set of occurrences.

Let �L be a total order over the formulae in L. (For brevity we omit the sub-
script L: it will always be clear which language is intended.) When our language is
defined algebraically from a finite number of constructors — as one would expect a
language of operational judgments to be — some kind of gödelnumbering [Men79]
of the terms and formulae will provide this total order. A crucial point is that the
gödelnumbering function is primitive recursive, which means that the total order
over formulae is decidable.

I lift � to be an order on formula occurrences and formula perspectives. In
chapter 2 I said that a formula occurrence was a pair (A, n) where A is a formula
and n is a natural number. Thus the total order � over occurrences is just the
lexicographic order over pairs (A, n):

(A, n) � (A′, n′) iff A � A′ or (A = A′ and n ≤ n′)

I write A � B if A � B and A 6= B.

The total order � over formula perspectives is obtained by ignoring the sign
information:

(A, s) � (A′, s′) iff A � A′

Thus both +A � −A and vice-versa. This property is required on page 136 when
I define an order over D(Π) from a history of Π. It is important that connectable
dangling interactions are assigned equal position in that order: this is used in the
proof of lemma X(i) (specifically, near the middle of page 138).

As a convention, unless otherwise stated, whenever I write Π ` A1, . . . , An

I also mean A1 � . . . � An. Also, when I write sets of premise occurrences
{P1, . . . , Pn} or perspectives {α1, . . . , αn} I shall also assume that they are ordered.
This is unproblematic except when both +A and −A are perspectives dangling
from the same occurrence. In that case, I order +A before −A. (Such a case seems
unnatural in practice, and it cannot occur in acyclic systems.)



Chapter 6. The process calculus interpretation 131

6.1.2 The process calculus

For the interpretation we use CCS extended with sequential composition. In fact,
we shall use the Before operator defined by Milner [Mil89, ch 8]. For this to work,
our interpretation must use his well-terminating processes. Throughout, I assume
that the reader is familiar with the theory of CCS.

Syntax Like P, CCS is built over an action set Act. This is built from an
infinite set Nam of names, ranged over by a, b, c, . . .. Nam denotes the set of co-
names of Nam (distinct from Nam), ranged over by ā, b̄, c̄, . . .. The set of labels
is Lab = Nam ∪Nam, ranged over by l. I define complementation · : Lab→ Lab
by: l̄ = ā if l = a and l̄ = a if l = ā. The action set Act = Lab ∪ {τ} (and is
ranged over by α) where τ 6∈ Lab is called the silent action.

Last, let C range over a countable set Const of process constants. Then the
syntax of CCS is given by

p ::= 0 | α.p | p|p | p \M | p[f ] |
∑
i∈I

pi | C

For some index set I and function f : Act → Act such that for all l ∈ Lab,
f(l̄) = f(l) and f(τ ) = τ . I use p and q to range over CCS processes.

Semantics The constructors have their usual meanings: inaction, prefixing, par-
allel composition, restriction, relabelling, summation and constants. Technically,
the semantics is given by a labelled transition system LI∆ = 〈CCS, Act,→,Ω〉
where ∆ : Const ⇀ CCS gives the constant bindings and Ω is the least set such
that

0 ∈ Ω p \M ∈ Ω when p ∈ Ω
p|q ∈ Ω when p, q ∈ Ω p[f ] ∈ Ω when p ∈ Ω∑

i∈I
pi ∈ Ω when every pi ∈ Ω

And the labelled transition relation is defined by (p, α, q) ∈→ iff C∆ ` p α→ q,
where the system C∆ = (L,R) and L is just the language of labelled transition
judgments and R consists of the following rules:

α.p
α→ p

p
α→ p′

p|q α→ p′|q
q
α→ q′

p|q α→ p|q′

p
α→ p′ q

ᾱ→ q′

p|q τ→ p′|q′
pj

α→ p′ j ∈ I∑
i∈I pi

α→ p′
∆(C) α→ p′

C
α→ p′

p
α→ p′ α 6∈M ∪M
p \M α→ p′ \M

p
α→ p′

p[f ]
f(α)→ p′[f ]

I say a deduction sequence s is a sequence of C∆-deductions, and I write s : p t→ p′

if s = Σ1 · . . .·Σn, and Σ1 ` p α1→ p1; for all 1 < i ≤ n, Σi ` pi−1
αi→ pi; t = α1 · . . .·αn

and pn = p′; and no occurrence appears more than once in the sequence.



Chapter 6. The process calculus interpretation 132

6.1.3 Well-terminating processes

We use a slightly different definition from that of page 59: we use Milner’s original
definition to reuse as many of his results as possible.

A process p is well-terminating if, for every derivative p′ of p, p′ done→ is impos-

sible, and also if p′ done→ then p′ ∼ done.0.

Proposition 6.0 If p is well-terminating and p α→ p′ then p′ is well-terminating.
If also p ∼ q then q is well-terminating. 2

We define the following combinators:

Done
def= done.0

p;q def= (p[done 7→ b] | b.q) \ {b}
p‖q def= (p[done 7→ d1] | q[done 7→ d2] |

d1.d2.Done + d2.d1.Done) \ {d1, d2}

where b, d1 and d2 are new names.

Proposition 6.1 If p and q are well-terminating, so are p;q and p‖q. 2

Proposition 6.2

p;(q;r) = (p;q);r p‖q = q‖p p‖(q‖r) = (p‖q)‖r
Done;p ≈ p Done‖p ≈ p

where = (respectively ≈) denotes CCS observation congruence (respectively, equiv-
alence) [Mil89, ch 7]. 2

6.1.4 Formalising scoping

My intention is to relate the scoping side-condition of section 5.2.1 to restriction
in CCS. This means that when I interpret rules I shall need to interpret such
side-conditions too. This in turn means that I need a formal way to represent
scoping. The following is meant to capture it in a simpleminded manner.

SDQI-rules An X-scoped SDQI-rule is a triple (a,D, sc) where (a,D) is a DQI-
rule and sc ⊆ X is the set of labels which its premises are meant to scope. Thus
scoping is restricted to rule atoms. This means that the await rule in section 5.2.2
is no longer acceptable. However, it can be rewritten into the following acceptable
form:

R : scope.await(b, c, σ, σ′)
R : await b then c −−−− σ  σ′

R : b→ tt I R : c σ  σ′
STORE

R : scope.await(b, c, σ, σ′)



Chapter 6. The process calculus interpretation 133

Where STORE is as defined in section 5.2.2. Thus we have split the previous
definition into two parts.

An SDQI-system is a pair (L,R) where L is a language of formulae, and R is
a set of L-scoped SDQI-rules mentioning only formulae in L.

Definition 6.3 (SDQI-deduction) Let T be a SDQI-system. Then SDQI(T )
is the least set of quadruples (F, I,@, D) such that

1. 0 = (∅, ∅, ∅, ∅) ∈ SDQI(T ).

2. If Σ1,Σ2 ∈ SDQI(T ) then Σ1 ⊗f Σ2 ∈ SDQI(T ).

3. If (a) (F, I,@, D) ∈ SDQI(T ) and (a,Da, sc) matches a rule of T such
that (a,Da) can be applied to (F, I,@, D) to yield (F ′, I ′,@′, D′) and

(b) D ∩ (O(F )× sc±) = ∅

then (F ′, I ′,@′, D′) ∈ SDQI(T )

Thus an SDQI-deduction is just a DQI-deduction that has satisfied some scop-
ing constraints. I say that a deduction Π is proper if D(Π) = ∅.

6.2 The interpretation

Let (L,R) be a DQI-system. The interpretation is going to assign to each formula
A ∈ L a well-terminating process A such that A is deducible if and only if A
reduces silently to a terminal state (i.e., its only visible action being done).

Thus our interpretation bears some resemblence to the quantifier-free case of
Gödel’s functional interpretation of Heyting Arithmetic (HA) [Göd58]. (The Di-
alectica interpretation is also explained clearly in [HS86, Chapter 18].) In the
quantifier-free case, logical formulae A (with free variables x1, . . . , xn) are inter-
preted by programs A∗ such that if A is provable in HA then for all closed programs
X1, . . . , Xn, A[X1/x1, . . . , Xn/xn] beta-reduces to 0̄ (the church numeral zero).

However, the resemblance ends there. Gödel’s interpretation is for a specific
proof-system (for extensions to other systems see [Tro73]), and it proceeds by in-
duction on the structure of the formula being interpreted. We shall be interpreting
arbitrary SDQI-systems T , and therefore do not have an inductive structure of
formulae to work with. Instead, we use the idea that the meaning of a formula is
captured by the rule that introduces it [Sun84a]. We define the interpretation of
T -formulae directly from the structure of the T -rules.

We are going to interpret rules as process constant bindings. A rule is seen
as a procedure for establishing its conclusion. Formulae correspond to process
constants. Therefore, a rule will typically be bound to a restriction of some parallel
composition (‖) of sequenced process constants. Now, for this to make sense, every
process constant mentioned in a rule interpretation ought to be bound to some
process. This corresponds to the proof-theoretic condition that every premise of



Chapter 6. The process calculus interpretation 134

a rule is potentially deducible (i.e., there exists some rule which concludes it). I
call these systems sensible.

There are situations where unsensible systems are useful: for instance, the
propagation-free rules for abortion in section 5.1.4 were unsensible. But there we
had the pruning rule to restore sensibility. In this section I shall only interpret sen-
sible systems, which give rise to well-terminating processes. Pruning corresponds
to unnatural, premature termination, which suggests a different treatment. In the
interests of simplicity, I shall not provide such a treatment. Nevertheless, if one so
desires, one can regard the pruning rule as an ordinary rule with a lot of instances.

Let us fix an arbitrary SDQI-system T = (L,R), and occurrence ordering �.
We lift � to order sets of occurrences: X1 � X2 if (minX1) � (minX2) (where
minX is the minimum occurrence of X with respect to �).

We define an injection · : L → Const that maps formulae to process constants.
We extend · to occurrences: (A, n) = A.

We interpret T as a set of CCS constant bindings ∆T in the following way.
Each rule atom is interpreted as a process that forms a partial definition of the
constant associated to its conclusion. Then we define each conclusion with the
sum of the bodies that partially define it (so if there are three rules concluding C,
process constant C will be defined as the sum of three bodies).

When D is a set of actions, let me write

D.p =
{
τ.p if D = ∅
α1. · · · .αn.p if D = {α1, . . . , αn}

(remembering the convention that α1, . . . , αn lists the elements of D using the
fixed order). For sequences of occurrences, let me write A1 · . . . · An for A1; . . . ;An.
Then the interpretation of an SDQI-rule is given by

(({P1, . . . , Pn}, C), D, sc) = D.(P1‖ . . .‖Pn) \ sc

and by convention, the parallel composition of zero processes is simply Done, the
null well-terminating process.

Rule systems to constant bindings Finally, let R(C) be the set of rules in
R that conclude C. Then, we define the constant binding environment by ∆T as
follows:

∆T (C) =
∑

r∈R(C)

r

Some examples

For example, I give the interpretation of the QI-system P (;)
QI, the I-system PSOS

and the await rule. I abbreviate the interpretation by giving only equation
schemes. Technically there should be different constants for different instantiations



Chapter 6. The process calculus interpretation 135

of process variables p and q. I label the communication interactions comm(a) when
a is the name of the communicating action.

0
√ def= τ.Done

a.p
√ def= +comm(a).p

√

ā.p
√ def= −comm(a).p

√

p|q√ def= τ.(p
√‖ q√)

p; q
√ def= τ.(p

√
; q
√

)

a.p
a→ p

def= +comm(a).Done
ā.p

ā→ p
def= −comm(a).Done

p|q α→ p′|q def= τ.p
α→ p′

p|q α→ p|q′ def= τ.q
α→ q′

p|q τ→ p′|q′ def= τ.(p α→ p′ ‖ q ᾱ→ q′)

As a more complex example, I give the schema for the interpretation of the mod-
ified await rule atom:

R : await b do c
def= +atomic(σ, σ′).R : scope.await(b, c, σ, σ′)

R : scope.await(b, c, σ, σ′) def= τ.((b→ tt ;R : c) ‖ σ  σ′) \ STORE

The next result is that the interpretation binds every constant to a well-
terminating process. Now well-terminating process need not terminate, therefore
we are showing a safety property: no process terminates without signalling done
first. This can be seen as a consistency result.

Proposition 6.4 Let T be a sensible SDQI-system. Then every constant in ∆T
is bound to a well-terminating process.

Proof: Say a set X ⊆ dom ∆T checks out if for all C ∈ X,

(1) FV (∆T (C)) ⊆ X
(2) if every C ′ ∈ FV (∆T (C)) is well-terminating, then so is ∆T (C)

We show by coinduction on the definition of the relation checks out that dom ∆T
checks out. Let C ∈ dom ∆T and p = ∆T (C). (1) FV (p) ⊆ dom ∆T by the
sensibility of T . (2) Then p =

∑
r∈R(C) r. Suppose every C ′ ∈ FV (p) is well-

terminating. To show p is well-terminating, we must show that every choice
is well-terminating. Let q be one such choice. Then q = D.(Done) \ sc or
q = D.(P1‖ . . .‖Pn) \ sc (for n ≥ 1). In the first case, q is well-terminating
because Done is well-terminating, restriction preserves it, and so does prefixing
with D, because done, done 6∈ D by definition. In the second, the same result
holds because we know that restriction, D-prefixing and the ; and ‖ operators
preserve well-termination. 2

Relating deductions and transition sequences

We are going to relate the deductions of a sensible SDQI-system T to terminating
transition sequences of ∆T processes. The interesting point is that the order of
the non-silent actions is related to the order of the dangling interactions given by



Chapter 6. The process calculus interpretation 136

some history. In fact, we use histories to sequentialize .Π (where Π ∈ SDQI(T ))
and obtain a linear order of the dangling interactions.

Let h be a history of Π. Then we define a lexicographic order over D(Π):
(A, α) ≤h (B, β) if

h(A) > h(B) or (h(A) = h(B) and α � β)

Let Π ∈ SDQI(T ) have history h. Let s be a C∆T -deduction sequence. We
say s traces Π via h if there exists an injective function f : D(Π)→ dom (s) such
that

if (A, α) ≤h (B, β) then f(A, α) ≤ f(B, β)
for all (A, α), act(s(f(A, α))) = α
for all i ∈ dom (s) \ im f, act(s(i)) ∈ {τ, done}

where act(Σ) = α if Σ ` p α→ p′ for some p, p′. The first condition says that traces
must respect the historical order of dangling interactions. The second states that
every undischarged formula perspective is an action in the trace. The third states
that the only non-done actions in the trace are undischarged formula perspectives.

For convenience, we label the C∆-deductions that conclude with an instance of
the communication rule Communication deductions.

6.2.1 The interpretation is sound

Figure 6–1 defines a partial function sub which strips out the evaluation transition
sequence of an immediate subprocess of p|q. (This is called projection in [Bes83])
If s : p|q α→∗ Ω then sub(1, s) : p α→∗ Ω and sub(2, s) : q α→∗ Ω are the evaluations
of the processes on the left and right of the parallel composition respectively.

Let h and h′ be histories. Then we say h subsumes h′ if dom h′ ⊆ dom h and for
all A,B ∈ dom h′, h′(A) ≤ h′(B) if and only if h(A) ≤ h(B). That is, one history
subsumes another if it preserves the timestamping relationship between common
formula occurrences. This timestamping relationship is used to determine the
order in which we compute the transitions of the interpreting process.

Lemma X(i) (Assembly) Suppose we have a deduction sequence s of p1|p2
t→

Ω, and suppose for i = 1, 2 that projection si of s of pi
ti→ Ω that there exists a Πi

with history hi such that si traces Πi via hi. Then there exists a binary connector
g of Π1 and Π2 and a history h of Π = Π1⊗g Π2 such that s traces Π via h and h
subsumes h1 and h2.

Proof: let fi : D(Πi)→ dom (si) be the appropriate functions that show how si
traces Πi via hi. We construct g according to the communications between s1 and
s2 in s. Let inji : dom (si) → dom (s) be the injective function such that for all
j ∈ dom (si), O(si(j)) ⊆ O(s(inji(j))). That is, inji maps the index of deduction
Σ of si to the index of the deduction in s that contains Σ: i.e., from that which
it was projected. Since projection preserves the relative order of deductions, it
is easy to show that inji is order-preserving too. Also, if inj1(i) = inj2(j) then
the deductions s1(i) and s2(j) were children of a communication rule in s. So we



Chapter 6. The process calculus interpretation 137

sub(x, ε) = ε

sub

 1,
Σ

p
α→ p′

p|q α→ p′|q
· s

 =
(

Σ
p

α→ p′

)
· sub(1, s)

sub

 1,
Σ

q
α→ q′

p|q α→ p|q′
· s

 = sub(1, s)

sub

 1,
Σ1

p
α→ p′

Σ2

q
ᾱ→ q′

p|q τ→ p′|q′
· s

 =
( Σ1

p
α→ p′

)
· sub(1, s)

sub

 2,
Σ

q
α→ q′

p|q α→ p|q′
· s

 =
( Σ

q
α→ q′

)
· sub(2, s)

sub

 2,
Σ

p
α→ p′

p|q α→ p′|q
· s

 = sub(2, s)

sub

 2,
Σ1

p
α→ p′

Σ2

q
ᾱ→ q′

p|q τ→ p′|q′
· s

 =

(
Σ2

q
ᾱ→ q′

)
· sub(2, s)

Figure 6–1: The partial function sub : {1, 2} × I(C∆)∗ ⇀ I(C∆)∗



Chapter 6. The process calculus interpretation 138

define Hi = {f−1
i (j) | ∃k.inji(j) = inj3−i(k)} to be the set of dangling interactions

of Πi which are to be connected by g. Then g : (H1 ∪H2)↔ (H1∪H2) is defined
by

g(A, α) = f−1
3−i(inj−1

3−i(inji(fi(A, α))))

when (A, α) ∈ D(Πi). It is straightforward to show that this is involutive. How-
ever, we still have to show that it is a connector of Π1 ∪Π2 with respect to some
history h. If it is a connector, then it is obviously binary.

First note that g(A, α) = (A′, ᾱ). This follows because if s(inji(fi(A, α))) is
a communication of two transitions, then one transition must be labelled α and
the other ᾱ. Since s3−i must contain the other transition, it must be labelled ᾱ.
Therefore if inj3−i(f3−i(A′, β)) = inji(fi(A, α)) then β = ᾱ by the properties of
fi and f3−i.

Next, suppose that g(A, α) = (A′, ᾱ), g(B, β) = (B′, β̄), and h1(A) ≤ h1(B).
We want to show that (A, α) ≤h (B, β) implies f(A, α) ≤ f(B, β). There are
two cases. First, suppose h1(A) < h1(B). Then (B, β) <h1 (A, α) and so
fi(B, β) < fi(A, α). Therefore inji(fi(B, β)) < inji(fi(A, α)) which in turn means
inj−1

3−i(inji(fi(B, β))) < inj−1
3−i(inji(fi(A, α))), and so (B′, β̄) <h2 (A′, ᾱ), and so

h2(A′) < h2(B′). When h1(A) = h1(B) the reasoning is similar, except that we
have to consider the relative order of α and β. The result goes through because
the relative order between perspectives is not affected by taking complements..

With this in mind, we can construct a history of Π1 ∪ Π2 such that for all
A,B ∈ O(Πi), hi(A) ≤ hi(B) iff h(A) ≤ h(B), and if g(A, α) = (A′, ᾱ) then
h(A) = h(A′). These properties will ensure that g is a connector with respect to
h.

This is achieved by an iterative method, where we consider each element
(A, α) of H1 (mapped to (A′, ᾱ) of H2) in turn and add displacements in
the appropriate places to ensure h(A) = h(A′). We define a sequence of
histories h0, . . . , hn where n = |H1| = |H2| and h0 = h1⊕h2. We order
the elements of H1 according to ≤h1 . To construct hi+1, we consider
the i + 1-th dangling interaction (Ai, αi) of H1, and its mate (Bi, ᾱi)
in H2. Suppose hi(A) < hi(B). Then we compute the difference d
between the two, and alter hi+1 by:

hi+1(A) =
{
hi(A) if A ∈ O(Π2) or hi(A) ≤ hi(Ai)
hi(A) + d otherwise

When hi(B) < hi(A) we compute hi in the symmetric way. It is not
hard to see that hi+1 subsumes hi. We set h = hn.

Thus g is a connector of Π1 and Π2 with respect to h. Let Π = Π1⊗g Π2, then h
is a history of Π.

We have to modify h again to ensure that dangling interactions unrelated in
Π are ordered by h according to the positions of their corresponding transition
deductions in s. This will show that s traces Π via the modified history.

Once again, we use a displacement adding argument. We define f :
D(Π) → dom (s) by f(A, α) = inji(fi(A, α)) when (A, α) ∈ D(Πi). f
induces a total order over the dangling interactions of Π: if f(A, α) <



Chapter 6. The process calculus interpretation 139

f(B, β) then the transition corresponding to (A, α) occurs earlier in
s than that of (B, β). Note that no two dangling interactions of Π
will be assigned equal positions in s: by our construction, every pair
of dangling interactions with equal positions in s were connected by
g. So let us order the dangling interactions (A1, α1), . . . , (An, αn) such
that f(Ak, αk) < f(Ak+1, αk+1) for all k = 1, . . . , n−1. Then we define
a sequence of histories h0, . . . , hn by h0 = h and for each i + 1, let
1 ≤ ki+1 ≤ i be the least index such that such that f(Aki+1 , αki+1) ≥
f(Ai+1, αi+1) . If it does not exist, then hi+1 = hi. Otherwise, let
d = 1 + hi(Ai+1)− hi(Aki+1) and

hi+1(A) =
{
hi(A) if hi(A) < hi(Aki+1)
hi(A) + d ow

A simple inductive proof shows that for all i, hi is a history of Π, hi+1

subsumes hi and for 1 ≤ k, k′ ≤ i, (Ak, αk) ≤hi (Ak′, αk′) if and only if
f(Ak, αk) ≤ f(Ak′ , αk′).

It is now straightforward to show that s traces Π via hn. The first condition,
that (A, α) ≤hn (B, β) if and only if f(A, α) ≤ f(B, β) is the result of the
aforementioned inductive proof.

For the second condition, since (A, α) ∈ D(Π), (A, α) 6∈ dom g. Therefore,
s(inji(fi(A, α))) is not a communication deduction. Therefore act(s(inj(fi(A, α))))
equals act(si(fi(A, α))) which in turn equals α by the main induction. Finally,
for the third condition, let j ∈ dom (s) \ im f . Suppose act(s(j)) 6∈ {τ, done}.
Then s(j) cannot be a communication deduction, so there must be an i such that
act(sub(i, s(j))) = act(s(j)). But this must mean that there exists a k such that
si(k) = sub(i, s(j)), which means that act(si(k)) 6∈ {τ, done}. But then, by in-
duction, that means there must exist an (A, α) ∈ D(Πi) such that fi(A, α) = k.
Since s(inji(k)) is not a communication deduction, (A, α) is not connected to
anything by g, so therefore f(A, α) = inji(k) = j. Contradiction. 2

The following result is an easy corollary of the above. Let us extend the notion of
projection to ‖. We define two auxiliary functions, unlabel, unrestrict : I∗(C∆) ⇀
I∗(C∆) to remove the relabelling and restriction rules that occur as the lowest rule
in each deduction of a sequence.

unlabel(ε) = unrestrict(ε) = ε

unlabel

 Σ
p
α→ p′

p[f ]
f(α)→ p′[f ]

· s
 = Σ · unlabel(s)

unrestrict

 Σ
p
α→ p′

p \ L α→ p′ \ L
· s

 = Σ · unrestrict(s)

Then when s is a deduction sequence of p‖q, we define

sub(i, s) = unlabel(sub(i, unrestrict(s)))



Chapter 6. The process calculus interpretation 140

The proof of the following result is easy.

Lemma X(ii) Suppose p1 and p2 are well-terminating, and we have a deduction
sequence s of p1‖p2

t→ Ω, and suppose for i = 1, 2 that projection si of s of pi
ti→ Ω

that there exists a Πi with history hi such that si traces Πi via hi. Then there
exists a binary connector g of Π1 and Π2 and a history h of Π = Π1 ⊗g Π2 such
that s traces Π via h and h subsumes h1 and h2.

Proof: By well-termination, s1 and s2 will perform only one done action, and
no done actions. Let s′ be the deduction sequence of p1|p2 obtained from the
projection p1[done 7→ d1] | p2[done 7→ d2] of s simply by removing the evident
relabelling operators from each deduction. Then s1 and s2 are projections of
s′. By lemma X(i), we find the binary connector g and the history h such that
Π = Π1⊗gΠ2 is traced by s′, and h subsumes h1 and h2. Let f : D(Π)→ dom(s′)
be the witnessing function.

It remains to relate the original sequence s to Π. We use the witnessing
function f again. Then we already know the first property is satisfied. Now,
consider act(s(f(A, α))). Since α labels a dangling interaction, it is neither silent
nor done. Therefore it is not restricted nor a relabelling of done by [done 7→ di].
This means that act(s(f(A, α))) = act(s′(f(A, α))) = α. Last, let i ∈ dom (s) \
im f . Then either i ∈ dom(s′)\im f or not. If so, then act(s′(i)) ∈ {τ, done}. But
given the definition of s′, this means that act(s(i)) ∈ {τ, done} too (relabelling
and restriction do not affect τ actions, and if done is relabelled to di, then the
restriction forces it to communicate with d1 in s, which means that act(s(i)) = τ .)
If not, then it can only be an done action: the last action of s. 2

Lemma X(iii) (Sequencing) Suppose p1 and p2 are well-terminating and that
we have a deduction sequences s of p1;p2

t→ Ω, and suppose for i = 1, 2, there
exists a deduction Πi and a history hi of Πi such that si = sub(i, s) traces Πi via
hi. Then there exists a history h of Π = Π1⊗0 Π2 such that s traces Π via h, and
h subsumes h1 and h2.

Proof: Given the definition of the ; operator and by well-termination we find
that s is s′1 · Σ · s′2, where s′1 is just s1 all of whose deductions have had an extra
rule applied to convert p1’s transitions into p|b.q’s transitions. Similarly, s′2 is s2

modified to make p2’s transitions transitions of Ω|p2, and Σ is the communication
of the b and b actions. We define

h(A) =
{
h2(A) if A ∈ O(Π2)
h1(A) + 1 + max(im h2) if A ∈ O(Π1)

(it is easy to see that h subsumes h1 and h2). To show that s traces Π via h, we
define f : D(Π)→ dom (s) by

f(A, α) =
{
f1(A, α) if (A, α) ∈ D(Π1)
f2(A, α) + |s1| if (A, α) ∈ D(Π1)



Chapter 6. The process calculus interpretation 141

Once again, there are three things to show. First, suppose (A, α) ≤h (B, β).
Then either both (A, α) and (B, β) belong to D(Πi). By hypothesis, fi(A, α) ≤
fi(B, β), and so f(A, α) ≤ f(B, β). If (A, α) ∈ D(Π1) and (B, β) ∈ D(Π2) then
f1(A, α) ≤ |s1| + f2(B, β). The other two properties follow almost immediately
given that the sequence s effectively appends s2 after s1. 2

Theorem X (Soundness) Let s be a deduction sequence of A1‖ . . .‖An
t→ Ω.

Then there exists a deduction Π ` A1, . . . , An with history h such that s traces Π
via h.

Proof: by induction on the length of s Case |s| = 0: We have Π = 0. Case
|s| = k + 1: by strong induction on n: Case n = 1: here the first transition
must involve the expansion of the constant A1:

Σ
p
α1→ p′∑

r∈R(A1)

r
α1→ p′

A1
α→ p′

Let r = D.(P1‖ · · · ‖Pm) \ sc. Either D = ∅, in which case α1 = τ or D =
{α1, . . . , αk}, so r = α1. · · · .αk.(P1‖ · · · ‖Pm) \ sc. Then s = Σ1 · . . . · Σk · s′
where Σi records the prefix transitions of αi. Let s′′ be s′ after removing the
lowermost restriction rules: s′′ is a deduction sequence of P1‖ · · ·‖Pm t′′→ Ω where
t = α1 · . . . · αk · t′′ if D 6= ∅ and t = t′′ if D = ∅.

Let s1, . . . , sm be the projections of s′′ such that si is a deduction sequence of
pi

ti→ Ω. Suppose pi = Ai1; . . . ;Aiki. Then by repeated application of lemma X(iii)
we obtain Πi ` Ai1, . . . , Aiki with history hi such that si traces Πi via hi. By
repeated application of lemma X(ii) we obtain Π′′ ` A11, . . . , Amkm with history
h′′ such that s′′ traces Π′′ via h′′. We also know that no element of t′′ is contained
within sc (since every deduction of s′ has the restriction rule applied to it).
Therefore, D(Π′′) ∩ (O(Π′′) × sc±) = ∅ by the definition of tracing. We know
that h′′ subsumes each of its component histories. Therefore the sequencing

constraints can be satisfied. Thus we can apply the rule
P1 · · · Pm

C D to Π′′ to
yield Π ` C. We then define h to be the history of Π such that h(A) = h′′(A) if
A ∈ O(Π′′) and h(C) = 1+max(im h′′) otherwise. Since the dangling interactions
hanging off C will be ordered according to �, as are the prefixed actions of ∆(C),
it is easy to show that s traces Π via h.

Case n > 1: by induction and the application of lemma X(i). 2



Chapter 6. The process calculus interpretation 142

6.2.2 The interpretation is complete

The following lemma contains the heart of the proof. It shows the correspondence
between the assembly of deductions and the communication of processes. It is
quite lengthy, but not at all difficult.

Lemma XI(i) (Interleaving) Suppose for all histories hi of Πi there exists a
deduction sequence si of pi

ti→ Ω that traces Πi via hi (for i = 1, 2). Then for all
g, there exists a t and a deduction sequence s of p1|p2

t→ Ω that traces Π1 ⊗g Π2

via some history h.

Proof: Let h be a history of Π. Let i = 1, 2. Then h � O(Πi) is a history of
Πi. Suppose Πi ` Ai1, . . . , Aini. Then by induction we get a deduction sequence
si of pi

ti→ Ω that traces Πi via hi (and h) for some ti. Let fi be the associated
injective functions.

We construct a deduction sequence s of p1|p2
t→ Ω. To obtain the result we

may have to reorganize the parallel composition (for instance it is possible that
p1 = A11| . . . |A1n1 and p2 = A21| . . . |A2n2 and A1j 6� A2k for some j and k).
This is quite trivial: it follows from the commutativity and associativity of | with
respect to strong bisimulation [Mil89, Proposition 4.8].

We are going to interleave s1 and s2 with respect to h. First we must
isolate those actions of si which will communicate with s3−i. Now there are
m = |dom g|/2 pairs of interaction links between Π1 and Π2, and so there shall
be m pairs of deductions from s1 and s2 which will communicate.

These are specified by the binary connector g. Let

{ci1, . . . , cim} = {fi(A, α) | (A, α) ∈ (D(Πi) ∩ dom g)}

be the set of indices of si which correspond to the dangling interactions of Πi

which are connected by g. Now, it follows immediately from the definition of
connector that if g(A, α) = (A′, ᾱ) and g(B, β) = (B′, β̄) then (A, α) ≤h (B, β) if
and only if (A′, ᾱ) ≤h (B′, β̄). This means that for 1 ≤ j ≤ m, c11, . . . , c1m1 occur
in s1 in the same order as c21, . . . , c2m2 occur in s2. Thus to build s, we shall apply
the communication rule to deductions s1(c1j) with s2(c2j). This works because
connectors also map formula perspectives into their opposite perspectives. Now
we can describe the interleaving of the two sequences. Let us assume that the
deductions of s1 · s2 are disjoint, and let X be the set of these deductions. Then
we define the following relation. We say Σ1 � Σ2 if and only if there exists
i, j, k, (A, α) and (B, β) such that

(1) Σ1 = si(fi(A, α)), Σ2 = sj(fj(B, β)) and (A, α) ≤h (B, β) or
(2) Σ1 = si(j), Σ2 = si(k) and j ≤ k

We write Σ1 ≺ Σ2 if Σ1 � Σ2 and not Σ2 � Σ1. We write Σ1 � Σ2 if both Σ1 � Σ2

and vice-versa. Now � is a preorder: reflexivity follows trivially. Transitivity
follows by a straightforward case analysis. It is not a partial order because for
each 1 ≤ j ≤ m, c1j = (A, α) and c2j = (B, ᾱ) implies that (A, α) =h (B, ᾱ)
because h(A) = h(B) by the definition of connector and ᾱ � α and vice-versa.



Chapter 6. The process calculus interpretation 143

ILpq(ε, ε) = ε

ILpq(ε,
(

Σ
q
α→ q′

)
· s) =

 Σ
q
α→ q′

p|q α→ p|q′

 · ILpq′(ε, s)

ILpq(
(

Σ
p
α→ p′

)
· s, ε) =

 Σ
p
α→ p′

p|q α→ p′|q

 · ILp′q (s, ε)

ILpq(
(

Σ
p
α→ p′

)
· s1,

(
Σ

q
β→ q′

)
· s2) =



 Σ
p
α→ p′

p|q α→ p′|q

 · ILp′q (s1,Σ2 · s2) if Σ1 ≺′ Σ1

 Σ

q
β→ q′

p|q α→ p|q′

 · ILpq′(Σ1 · s1, s2) if Σ2 ≺′ Σ2

 Σ
p
α→ p′

Σ

q
β→ q′

p|q τ→ p′|q′

 · ILp′q′(s1, s2) if Σ1 �′ Σ2

Figure 6–2: Interleaving two interacting sequences

Therefore s1(c1j) � s2(c2j). Now, let �′ be any extension of � such that for all
Σ1,Σ2 ∈ X,

Σ1 �′ Σ2 or Σ1 �′ Σ2 or Σ2 �′ Σ1

if Σ1 �′ Σ2 then Σ1 � Σ2

Thus it is a total order which preserves the order of �, and which adds no new
equalities. Then we define the interleaving of s1 and s2 with respect to �′ to be
ILp1

p2
(s1, s2) where ILpq(s1, s2) is defined in figure 6–2.

Note that from what has gone before, in the last case, Σ1 �′ Σ2 implies
Σ1 � Σ2 which implies that for some i, (A, α) and (B, β) that si(fi(A, α)) = Σ1

and s3−i(f3−i(B, β)) = Σ2 and g(A, α) = (B, β), whence ᾱ = β as g is a connector.
Thus act(Σ1) = α and act(Σ2) = ᾱ and so we can apply the communication rule.

Finally we show that s traces Π via h. Let f : D(Π) → dom (s) be defined
by f(A, α) = j where if (A, α) ∈ D(Πi) then O(s(j)) ⊇ O(si(fi(A, α))). To show
injectivity, suppose f(A, α) = f(B, β) = k and (A, α) 6= (B, β) where (A, α) ∈
D(Πi) and (B, β) ∈ D(Πj). Then O(s(k)) ⊇ O(si(fi(A, α)) and O(s(k)) ⊇
O(sj(fj(B, β))). From the definition of s, s(k) is built from one or two deductions
in X. In the first case, si(fi(A, α)) = sj(fj(B, β)) from which i = j and so
(A, α) = (B, β) by the injectivity of fi. Contradiction. In the second case, s(k)
concludes a τ transition. But then by the translation, this only occurs when
(A, α) is connected to (B, β) which means that the two do not occur in D(Π),
and hence do not appear in the domain of f . Contradiction.

Second, let (A, α), (B, β) ∈ D(Π) be such that (A, α) ≤h (B, β). Sup-
pose (A, α) ∈ D(Πi) and (B, β) ∈ D(Πj). Then we know that si(fi(A, α)) �′
sj(fj(B, β)), and therefore the first deduction will occur earlier in s than the
second. Hence f(A, α) ≤ f(B, β).



Chapter 6. The process calculus interpretation 144

Third, we show act(s(f(A, α))) = α. From the definition of s, there must exist
a j such that O(s(f(A, α))) ⊇ O(sj(fj(A, α))). By induction, act(sj(fj(A, α))) =
α. The result follows from the definition of s: act(s(f(A, α))) = act(sj(fj(A, α))).

Fourth and last, we have to show that for all i ∈ dom (s) \ im f , act(s(i)) ∈
{τ, done}. Suppose not: let i ∈ dom (s)\ im f be such that act(s(i)) 6∈ {τ, done}.
Then from the definition of s, there must exist a j and k such that O(s(i)) ⊇
O(sj(k)), and moreover, since act(sj(k)) 6= τ , it cannot be a communication
deduction. By induction, k = fj(A, α) for some (A, α) ∈ D(Πj). Since s(k) is
not a communication of two deductions, it must be that (A, α) 6∈ dom g and so
(A, α) ∈ D(Π), which means by the definition of f that i ∈ im f . Contradiction.

2

Lemma XI(ii) Suppose for all histories hi of Πi there exist well-terminating pro-
cesses pi and deduction sequences si of pi

ti→ Ω that traces Πi via hi (for i = 1, 2).
Then for all g, there exists a t and a deduction sequence s of p1‖p2

t→ Ω that
traces Π1 ⊗g Π2 via some history h.

Proof: By lemma XI(i), we obtain a t, an h and a deduction sequence s that
traces Π = Π1 ⊗g Π2 via h. We construct a deduction sequence of p1‖p2

t′→ Ω
which also traces Π via h. Since p1 and p2 are well-terminating s performs exactly
two done actions, one of which must occur at the end. We construct the deduction
sequence s′ = par(s, d1.d2.Done + d2.d1.Done). The function par is defined in
figure 6–3. We have to show that s exists par is well-defined. This follows by
induction on the length of prefixes of s. The shortest possible length of s must
be two, when it performs the two done actions. A simple check shows that s′

exists in this case. If the size is k+ 1, then induction tells us that k-length prefix
of s′ exists. Consider the k+ 1th deduction. By symmetry there are three cases,
given by the three cases in figure 6–3. The first and third case are trivial. The
second case is the most interesting: it exists if r can perform the d1 transition.
Suppose it cannot. r is a derivative of d1.d2.Done+ d2.d1.Done, so the only case
when it cannot make a d1 transition is if it has already performed one. But this
is impossible, because s1 only performs one done action by well-terminatedness,
hence the k-prefix of s cannot have performed it. By induction then, s′ exists.

The last thing to do is construct s′′ by appending a deduction to perform the
last done action of p‖q. An easy induction shows that s′′ traces Π via h. 2

Let Π1, . . . ,Πn be a set of disjoint deductions, and let Π =
⊗

0{Π1, . . . ,Πn}.
Then a history h of Π sequences Π1, . . . ,Πn in Π if for all 1 ≤ i < j ≤ n, for all
A ∈ O(Πi) and B ∈ O(Πj), h(B) > h(A).

Lemma XI(iii) (Sequencing) Suppose that for all histories hi of Πi ` Ai (for
i = 1, . . . , n) there exists a deduction sequence si of Ai

ti→ Ω that traces Πi via hi.
Then for all histories h that sequence Π1, . . . ,Πn in Π =

⊗
0{Π1, . . . ,Πn} there

exists a deduction sequence s of A1; . . . ;An
t→ Ω that traces Π via h for some t.



Chapter 6. The process calculus interpretation 145

Let λ1 be the relabelling function [done→ d1] and λ2 be the function [done→ d2].
Last, let us write p‖rq for the process (p[λ1] | q[λ2] | r) \ {d1, d2}.

par(ε, r) = ε
par(Σ · s, r) = Σ′ · par(s, r′)

where Σ′ and r′ are defined by cases as follows.

When Σ =
Σ

p
α→ p′

p|q α→ p′|q
, Σ′ =

Σ
p
→
α p′

p[λ1]
α→ p′[λ1]

p[λ1] | q[λ2]
α→ p′[λ1] | q[λ2]

(p[λ1] | q[λ2] | r) α→ (p′[λ1] | q[λ2] | r)

pkrq
α→ p′krq

r′ = r

where α 6= done, and so λ1(α) = α. When α = done then

Σ′ =

Σ
p
→
α p′

p[λ1]
d1→ p′[λ1]

p[λ1] | q[λ2]
d1→ p′[λ1] | q[λ2]

Σ′

r
d1→ r′

(p[λ1] | q[λ2] | r) τ→ (p′[λ1] | q[λ2] | r)

pkrq
τ→ p′krq

The cases for when q makes the transition are symmetric. Last, when

Σ =
Σ1

p
α→ p′

Σ2

q
ᾱ→ q′

p|q τ→ p′|q′
Σ′ =

Σ1

p
α→ p′

p[λ1]
α→ p′[λ1]

Σ2

q
ᾱ→ q′

q[λ2]
ᾱ→ q′[λ2]

(p[λ1] | q[λ2])
τ→ (p′[λ1] | q′[λ2])

(p[λ1] | q[λ2] | r) τ→ (p′[λ1] | q′[λ2] | r)

pkrq
τ→ p′krq

′

r′ = r

Figure 6–3: The definition of par : I∗(C∆) ⇀ I∗(C∆)



Chapter 6. The process calculus interpretation 146

Proof: If A ∈ O(Πi) and B ∈ O(Πj) where i < j then h(A) > h(B). Therefore
for all (A, α) ∈ D(Πi) and (B, β) ∈ D(Πj), (A, α) <h (B, β). Let qi be the
terminal state of pi, and λ be the relabelling function that acts as the identity
everywhere except at done, where λ(done) = b. Then we construct s to be
s′1 · . . . · s′n where for each i and j ∈ dom (si),

s′i(j) =

si(j)

p
α→ p′

p[λ]
λ(α)→ p′[λ]

p[λ]|b.(Ai+1; . . . ;An)
λ(α)→ p′[λ]|b.(Ai+1; . . . ;An)

p;Ai+1; . . . ;An
λ(α)→ p′;Ai+1; . . . ;An

q1| . . . |qi−1|p;Ai+1; . . . ;An
λ(α)
→ q1| . . . |qi−1|p;Ai+1; . . . ;An

(The exception is the s′n, which does not use the relabelling function λ), and
s′i(|si|+ 1) is the deduction

Σ1

p[λ]
b→ qi b.(Ai+1; . . . ;An)

b→ Ai+1; . . . ;An

p[λ]|b.(Ai+1; . . . ;An)
τ→ qi|Ai+1; . . . ;An

p;Ai+1; . . . ;An
τ→ qi|Ai+1; . . . ;An

q1| . . . |qi−1|p;Ai+1; . . . ;An
τ→ q1| . . . |qi|Ai+1; . . . ;An

We show that s traces Π via h. Define f : D(Π) → dom (s) by f(A, α) =
fi(A, α) +

∑i−1
j=i |sj |. There are three properties of f to show. First, suppose

(A, α) ≤h (B, β). There are two cases. First, suppose (A, α), (B, β) ∈ D(Πi)
for some i. Then by induction fi(A, α) ≤ fi(B, β), and so f(A, α) ≤ f(B, β).
Second, suppose (A, α) ∈ D(Πi) and (B, β) ∈ D(Πj) where i 6= j. Then by the
definition of ≤h, h(A) > h(B) and so i < j. Thus f(A, α) < f(B, β).

Second, we get act(s(f(A, α))) = act(si(fi(A, α))) = α by the construction
and induction. Third, we know that for all i ∈ dom (s) \ im f , act(s(i)) ∈
{τ, done}, from induction. 2

Theorem XI (Completeness) For all Π ∈ SDQI(T ), if Π ` A1, . . . , An then
for every history h of Π, there exists a C∆T -deduction sequence s of A1‖ . . .‖An

t→
Ω that traces Π via h for some t.

Proof: By induction on the depth of inference of Π. Case Π = 0: we set
s = ε, which is a deduction sequence attributed to 0. Case Π = Π1 ⊗g
Π2: follows immediately from lemma XI(ii). Case Π =

Π0

sc

C
D : Let Π′ `

A1, . . . , An, and let h be a history of Π. Let r be the rule applied to Π1 to achieve
Π. Sequencing: consider the premises of r: P1, . . . , Pm. Suppose O(Pi) =
{Ai1, . . . , Aini} where the occurrences are ordered according to their sequencing.
Then by the associativity and commutativity of binary assembly (propositions 4.3
and 4.4), Π′ can be assembled from Π11 ` A11, . . . , Πmnm ` Amnm by:

Π1 ⊗g1 (Π2 ⊗g2 (· · · (Πm−1 ⊗gm−1 Πm) · · ·))



Chapter 6. The process calculus interpretation 147

where Πi = Πi1⊗gi1 (Πi2⊗gi2 (· · · (Πi(ni−1)⊗gi(ni−1) Πini) · · ·)). Now, by induction,

for all i, j and histories hij of Πij, we get deduction sequences sij of Aij
tij→ Ω that

traces Πij via hij . Now since we can apply the sequencing constraints specified
by P1, . . . , Pm, it follows that there can be no interactions between any deduction
in {Πi1, . . . ,Πimi}. This means that gi1 = gi2 = . . . = gini = 0 for each i.
Therefore, Πi =

⊗
0{Πi1, . . . ,Πini}. By lemma XI(iii), we get for all histories hi

that sequence Πi1, . . . ,Πini in Πi a deduction sequence si of Ai1; . . . ;Aini
ti→ Ω

that traces Πi via hi. By definition, history h of Π must satisfy the sequencing
constraints imposed by r, and therefore h � O(Πi) will sequence Πi1, . . . ,Πini in
Πi. Therefore, by lemma XI(i) for every history h of Π restricted to Π′, we know
that there exists a deduction sequence s′ of P1‖ . . .‖Pm t→ Ω that traces Π′ via
h.

Restriction: let f : D(Π′) → dom (s′) be the associated injective function.
Now, from the definition of deduction, we know D(Π′)∩(O(Π′)×sc) = ∅. There-
fore by the properties of f , for no Σ ∈ s′, act(Σ) ∈ sc. Thus we can construct a
deduction sequence s′′ of (P1‖ . . .‖Pm)\sc t→ Ω simply by applying the restriction
rule to each deduction in s′. Moreover, s′′ traces Π′ via h.

Prefixing: Let D = {α1, . . . , αn}. (By convention, α1 � α2 � . . . � αn).
Thus we obtain a deduction sequence s′′′ by prefixing the following deduction
sequence to s′′:

α1.α2. · · · .αn.p
α1→ α2. · · · .αn.p · α2.α3. · · · .αn.p

α2→ α3. · · · .αn.p · . . . · αn.p
αn→ p

Where p = (P1‖ . . .‖Pm) \ sc. Constants: last we construct the deduction
sequence s:

s′′′(1)

p
α1→ p′∑

r∈R(C)

r
α1→ p′

C
α1→ p′

· s′′′(2) · . . . · s′′′(|s′′′|)

where p′ is the right-hand side of the conclusion of s′′′(1). It should be clear from
the interpretation that D.(P1‖ . . .‖Pm)\sc is one of the summands of C in E(T ).

Last, we have to show that s traces Π via history h. Since s′′ traces Π′ via h
there must exist an injective function f ′′ : D(Π′) → dom (s′′) with the required
properties. We construct an injective function f : D(Π)→ dom(s) with the three
properties. Let f(C, αn) = n and f(A, α) = f ′′(A, α)+m when A ∈ O(Π′), where
m = 1 if D = ∅ or m = n if D = {α1, . . . , αn}. m counts the number of elements
stuck on the front of s′′ in the construction of s. Now there are three things to
show. First, let (A, α), (B, β) ∈ D(Π) be such that (A, α) ≤h (B, β). If both are
also in D(Π′) then the result follows by induction: f ′′(A, α) +m < f ′′(B, β) +m.
If neither are, then A = B = C and α � β (but not vice-versa). Then α = αi
and β = αj where i < j. Hence f(A, α) < f(B, β). Otherwise, suppose that
(A, α) = (C, αi) and (B, β) ∈ D(Π′). Then f(A, α) = i and f(B, β) > m ≥ i.

The other two properties are even more straightforward by induction and the
construction of s. 2



Chapter 6. The process calculus interpretation 148

6.2.3 The reverse interpretation

We can also go in the reverse direction, and show that every CCS constant envi-
ronment ∆ corresponds to a DQI-system T∆ such that whenever process p reduces
to 0, T∆ ` f(p) for some translation function f . The difficult approach would
be to attempt to translate the constant equations in ∆ into inference rules. This
could be done. However, the easy way is just to add a cut rule

p
t1→ p′′ p′′

t2→ p′

p
t1·t2→ p′

to the theory C∆. This translation is obviously correct. In the following, define
the function f by f(p, t, p′) = p

t→ p′.

Theorem XII For every ∆ : Const ⇀ CCS there exists a DQI-system T∆ =
(L∆,R∆) and a function f : CCS × Act∗ × CCS ⇀ L∆ such that p t→ p′ if and
only if T∆ ` f(p, t, p′) 2

6.3 Some consequences

6.3.1 Sequencing is not primitive

It is easy to show that sequencing is not primitive. Let T be any QI-system, and
T ∗ an equivalent DQI-encoding. Then C∆T ∗ is an I-system. Let us extend it to D
by adding judgments of form p

√
and rules

p
done→ Ω
p
√ p

τ→ p′ p′
√

p
√

Then we get that T ` A1, . . . , An if and only if T ∗  A1, . . . , An if and only
if there exists a C∆T ∗ -deduction sequence of A1‖ . . .‖An

done→ Ω, if and only if
D ` A1‖ . . .‖An

√
. Therefore, if we define T ∗ = D and the family of functions fn

such that fn(A1, . . . , An) = A1‖ . . .‖An

√
we obtain

Theorem IV For all QI-systems T = (L,R), there exists an I-system T ∗ = (L∗,R∗)
and a family of injective maps fn : Ln → L∗ such that T ` A1, . . . , An if and only
if T ∗ ` fn(A1, . . . , An) 2

6.3.2 Deducibility is undecidable

The previous proof has the side-effect that for every p and every i, j ≥ 1, every
well-behaved (with respect to Act) terminating trace of p performs signal ai as
its last action. We can use this fact to help prove that there is no procedure for
deciding if a formula is deducible in an arbitrary DQI-system. The proof goes



Chapter 6. The process calculus interpretation 149

via a reduction from the question “is a trace t a trace of process p?”, which is
undecidable in CCS. From the interpretation, we know that Π ` A1, . . . , An if
and only if there exists a deduction sequence s of A1‖ . . .‖An

t·done→ Ω for some t.
When t = α1 · . . . · αm (for m ≥ 0), this means that A1, . . . , An is deducible iff
t · done is a trace of A1‖ . . .‖An.

Theorem XIII There is no procedure to decide whether or not an arbitrary trace
t is a trace of an arbitrary CCS process p.

Proof: By a reduction from the halting problem for Turing Machines. 2

Theorem XIV Let T be an arbitrary DQI-system. Then there is no procedure
that decides whether or not a set of occurrences is deducible or properly deducible
in T .

Proof: Suppose not, i.e., that there is such a decision procedure. Then we con-
struct a decision procedure to test whether a given trace is a trace of a given
process given some constant environment ∆. Let t ∈ Act∗ and p ∈ CCS. Then
there must exist a p′ such that p t→ p′ in ∆. By theorem XII, this is true iff
there exists an f such that T∆ ` f(p, t, p′). By supposition, this is decidable.
Contradiction. 2

Corollary XIVa There is no procedure to decide whether a given set of formulae
is deducible in a given I-, QI- or SDQI-system.

Proof: There cannot be such a procedure for SDQI-systems because the DQI-
systems can be easily coded as SDQI-systems: we simply scope every rule by
the empty set. By theorem VI, we have that QI-deduction is just proper DQI-
deduction. By theorem IV, this in turn implies that there is no descision proce-
dure for I-deduction either. 2

6.3.3 Models

Another consequence of the interpretation is that we can use models of CCS to
give a model-theoretic account of our notion of deduction, and therefore estab-
lish a model-theoretic account of the formulae of particular systems. For exam-
ple, we have event structures [Win82,Win88,NPW81]. For other kinds of models,
see [WN94].

What does our interpretation actually interpret? There are two related an-
swers. The first is that it interprets deductions: a deduction is a terminating



Chapter 6. The process calculus interpretation 150

transition sequence (or an evaluation) of a particular process. Thus a denota-
tional semantics of a deduction would be a trace, or set of traces of a particular
process. The denotation of a formula A (via the Heyting semantics) would then
be the set of all traces of the process A.

The second answer is that it interprets formulae directly: the meaning of for-
mula A is the process A. Here, a denotational semantics for CCS (e.g., using
labelled event structures [Win82]) gives a denotation to formulae directly: a for-
mula is a labelled event structure.

Another model is the synchronization tree. If we attempt to evaluate process
A, we are attempting to find a deduction of A. Thus the synchronization tree of
a process corresponds to the tableaux of a formula. The idea that the tableaux
method for a deductive system gives its computational semantics is also found
in more standard proof theory. Underwood [Und95] uses tableaux in this way to
give semantics to intuitionistic predicate logic: “a bounded tableau search proce-
dure can be interpreted as the computational content about prefixes of (possibly
infinite) Kripke countermodels”.

6.4 Chapter Summary

We have seen that DQI-deduction corresponds to the termination of CCS pro-
cesses. This is philosophically appealing: it confirms that evaluation semantics
judgments really do concern process evaluation. We can also reinterpret standard
results about CCS as results about DQI-deduction. For instance, the undecidabil-
ity of termination for CCS programs implies the undecidability of DQI-deduction.
Moreover, we can use process calculus tools to manipulate deductions.



Chapter 7

Conclusions

In this thesis I have investigated a way of improving the pragmatics of operational
semantics. Particularly, I have presented a way of decreasing the syntactic com-
plexity of and improving the modularity of both semantic definitions and proofs
about them. I achieved this by increasing the functionality of the notion of deduc-
tion. Thus I have traded off the complexity of the metatheory with the complexity
of semantic definitions. However, the increase in complexity of the metatheory has
been slight, and the result corresponds to a well-understood notion of computation.
This seems a small price to pay.

7.1 The theory of interacting deductions

Standard proof theories are all essentially functional in flavour. An inference rule is
seen as a function that delivers a proof of some result given proofs of its arguments.
One strand of this thesis has been to ask what a concurrent flavour of proof theory
would look like.

The basic theory The novel idea was to introduce the notion of interaction
between inference trees. Thus a deduction would be a forest of interacting infer-
ence trees. In the basic theory of interacting deductions, a deduction would be
represented by a pair (F, I), where F is the forest and I the interactions — pairs
of formula occurrences. We saw that they obeyed a simple temporal property, that
one cannot interact with a previous state. Deductions were built from simple in-
teracting rules: finite sets of ordinary rules, each of which are meant to be applied
to different parts of the forest simultaneously.

We saw that we could indeed improve the modifiability and modularity of
definitions and proofs using the proof fragmentation theorem, which allows one to
isolate those parts of a deduction relevant to the result at hand.

Extensions We saw some simple examples based upon a transition semantics.
We gave some evaluation semantics too. However, to do so simply we needed to
introduce a notion of sequentiality into the metatheory. The result, the theory of

151



Chapter 7. Conclusions 152

sequential deductions was easily codable in the basic theory. It simply provided a
way to give evaluation semantics easily.

We also saw the method of pruning deductions. This was introduced to re-
cover the notion of trace from the evaluation semantics. We also saw that it
could be used for a number of purposes, for instance to characterize possible dead-
lock and nontermination, and to provide propagation-free abort rules. Another
proof-theoretic feature used to capture various different semantic features was the
scoping side-condition.

The feeling is that although the basic theory is expressive enough, sometimes
simple features are so cumbersome to express that we need to add extensions
(“tweaks”) to the basic theory for the sake of simplicity. Whereas the notions of
sequencing, pruning and scoping are straightforward, one wonders if they cover
everything. Perhaps we shall need an infinite progression of ever more refined
tweaks.

The fact that we require tweaks suggests that our proof theory is not quite
right for our application. On the other hand, the fact that these tweaks seem to
be ubiquitous suggests that we have discovered a standard repertoire of semantic
techniques.

The content of interaction The basic theory is certainly flawed on two counts.
First, when we wished to prove results by induction on the depth of inference of
inference trees, we could not use the definition of deduction directly: we had
to fragment deductions manually to obtain the individual trees. This occurred in
proofs about both transition and evaluation semantics. Second, sometimes we had
to develop a semantics-specific notion of visible occurrence to aid our proofs. In
fact, the notion of visibility was actually a property of the structure of particular
deductions than the semantics. An occurrence was visible if it should have been
part of an interaction link, but was not. So we introduced the notion of dangling
interaction, which gave a formal treatment of the content of interactions.

This extension proved fundamental. It achieved an elegant and usable defi-
nition of deduction which — like Natural Deduction — included the notions of
inference (rule application) and the mechanism of assumption and discharge (as-
sembly). This refinement of deduction also gave rise to the technique of proof
assembly , which was dual to proof fragmentation. Fragmentation showed how we
could break deductions to reason about individual parts. Assembly showed how
we could construct proofs about deductions from proofs of individual parts.

What deductions are Last, we saw that our resultant theory was not ad hoc:
the computational semantics of a deductive system was a set of CCS constant
definitions. Formulae corresponded to processes and deductions corresponded to
terminating evaluations of processes. In this framework, we saw that dangling
interactions were just action prefixes (and thus assembly was communication),
scoping was restriction, sequencing was sequential composition and pruning was
just unfinished evaluation.



Chapter 7. Conclusions 153

CCS is well-understood and foundational in the theory of concurrency. There-
fore the correspondence between CCS and interacting deductions lends credence
to our belief that we have a metatheory suitable for giving semantics to concurrent
languages. It is also philosophically attractive for at least two other reasons. First,
in terms of our application, it showed that since deductions were process evalua-
tions, then evaluation judgments really were about evaluation. Second, it allows
us to reinterpret results about CCS in our setting. For example, we saw that
deducibility was undecidable. Another result was the reinterpretation of models
of processes as models of deduction. Practically, the correspondence also suggests
how we may use process calculus simulators to provide prototype interpreters for
languages.

7.2 Application to operational semantics

Our initial examples concerned transition semantics of a simple process calculus
P. We saw that we did not need to propagate action information to obtain a
definition of processes. However, we also saw some limitations of not doing so:
we could not limit the number of interactions to one per transition, and anyway
action information is very useful in process calculus applications.

Nevertheless, propagation-freeness can be useful. We saw that we could add
a notion of store to the various semantics of P almost uniformly. Moreover we
obtained a modular proof about the stores which held true without alteration for
each of the semantics.

We then considered evaluation semantics. We saw that we could give evaluation
semantics, but not in as simple a way as we might like. Along the way we discovered
a distributed control-stack semantics which could be useful for languages with first-
class continuations.

We introduced the notion of sequentiality to permit simple presentations of
evaluation semantics. The resulting evaluation semantics of P(;) (P extended
with sequential composition) was much more concise than the standard opera-
tional semantics. However, the results were not so clear in the example translation
correctness result. Negatively, the only equivalence easily definable in the evalu-
ation semantics was a trace equivalence (and even then we needed the notion of
pruning). This equivalence is acceptable for deterministic languages, and indeed
many “real” programs are deterministic. Positively, we saw that the evaluation
semantics proof was less structurally complex than the transition semantics proof.
It contained no subinductions on the length of transition sequences.

We saw another, more positive use of evaluation semantics in the soundness
proof of our Hoare Logic for the partial correctness of CSP. The evaluation judg-
ments were ideally suited to interpret Hoare triples {φ} p {ψ} which concern the
effect of the evaluation of p. The proof was easy, and it could have been made
even easier if we had not fragmented stores from evaluation judgments!

We also considered how many different linguistic features we could capture in
an evaluation semantics. Most of the features we considered could be captured:



Chapter 7. Conclusions 154

shared variables, dynamic process creation, nested parallelism, multicasting and
procedures. This latter case showed that while we could add procedures in a
modular fashion, the result was a mess. In particular, it feels as if environments
ought always to be bound to program judgments.

One kind of feature we cannot expect to model are pre-emptive actions that
must occur instantaneously. Another kind of feature we cannot model easily are
those that require a snapshot of the entire system (e.g., broadcasting).

7.3 Further work

In the body of the thesis, we noted several possible avenues of further research.
Chapter two suggested that we might be able to make a more careful analysis of
the kinds of propositions provable via proof fragmentation (and in retrospect also
proof assembly). Perhaps there are further techniques to be discovered. Chapter
three suggested that the coinductive notion of deduction might be useful in the
field of abstract interpretation [CC77,Sch95] for concurrent languages. Chapter
five noted some improvements to our Hoare Logic. Last, chapter six suggested
that we could use process calculus simulators to implement semantic definitions,
and also to describe models of deduction.

In addition, there are at least four other topics which suggest themselves:
scoping, static semantics, exploration of further proof-theoretic extensions and
the relationship to linear logic.

7.3.1 Scope Extrusion

Our scoping side-condition corresponds to CCS-like restriction. However, there
are languages (such as the π-calculus [MPW92], Concurrent ML [Rep91a])
which require a more liberal kind of scoping, which permits scope-extrusion, where
scoped channels may be communicated out of scope.

We have stressed the idea that deduction order is opposite to evaluation order.
To this way of thinking, scope extrusion (at least for the appropriate variant of P)
is not a problem: when we come to apply the (appropriate variant of) the scoping
condition, we shall already know how the scoped channels have been used, and
therefore we can widen the forest of trees which are scoped to include those parts
of those trees to which scope has been extruded.

For functional languages, where the evaluation judgment can return a value
(including a channel) the situation becomes more complex. There scope can be
extruded in two ways: first by communication, and second by function value. For
example, channel x in x will return channel x, even though it will be out of scope
whenever it is subsequently used.

To capture scope extrusion in this setting would require a finer notion of judg-
ment and preorder between judgments. For instance, an evaluation judgment
would be split into a simple kind of sequent: A⇒ B, where A was an expression



Chapter 7. Conclusions 155

and B its value. The point here would be that the meaning of dependency would
alter. If A⇒ B occurred above A′ ⇒ B′ in a forest F , then A′ would precede A,
and both A and B would precede B′. Thus evaluation would be seen as “going up”
the left-hand side of judgments and “going down” the right-hand side. To capture
scope extrusion, we would have to scope left-hand sides only, and ensure that every
occurrence that came after it in the preorder obeyed the scoping conditions. Of
course, we should always have to make sure that rules applied subsequently which
used a scoped channel did not violate the required condition.

7.3.2 Static semantics

In this thesis we have concentrated primarily on the use of interaction in dynamic
semantics. It seems harder to use interaction usefully in static semantics. One
exception would be name servers. In the definition of Standard ML, the static
semantics have to pass around the set of currently generated type names so that
whenever a new name is required (e.g., rules (19) and (20) on page 25), it is
guaranteed not to clash with a previous choice of name.

Another way to capture this idea of “generativity” would be to include special
“fresh” judgments:

fresh(α)
−−−−−

free.names(X \ {α})
free.names(X ∪ {α}) free.names(X)

The idea would be that each invocation of the fresh judgment would pick a different
name from the global set of free names. Of course, such a scheme would require
that only one name server existed per deduction.

7.3.3 More Extensions

Relabelling

We consider the use of scoping to extend P with relabelling. The syntax is ex-
tended to get P([f ]):

p ::= · · · | p[f ]

where f : A → A is a relabelling function (see section 6.1.2). The simplest way
to model CCS-like relabelling would be to propagate the relabelling function f
upwards, and apply it directly at the communication rule, for instance as in:

p
√
f

a.p
√
f

−−−−
q
√
g

b̄.q
√
g

f(a) = g(b)

However, we can also find DQI-rules which avoid propagation. These make use
of dangling interactions in an essential way. The idea is that each communication
signal is routed through a series of “relabelling stations” until it is received.

p
√

a.p
√ +comm(p, a)

q
√

ā.q
√ −comm(p, a)

Rel(q, f)
Rel(q, f)

−comm(p, a)
+comm(q, f(a))

p
√

Rel(p, f)
REL(p,f)

p[f ]
√

Rel(p, f)



Chapter 7. Conclusions 156

Where REL(p, f) = {comm(q, a) | q ∈ P([f ]), p 6= q, a ∈ Act}. The label
comm(p, a) is meant to denote that the action a has been performed, and is as-
sociated with the process p. This process tag is meant to distinguish different
occurrences of the same relabelling function, e.g., so that p[f ][f ] is guaranteed to
relabel every action of p via f twice.

Once again, we have found that the evaluation semantics of a straightforward
concurrency primitive is not so straightforward. One obvious proposal would be
then to extend the metatheory of deduction to contain relabelling. At first glance,
this appears quite attractive. First, it would not ruin our interpretation of de-
duction — relabelling is already a feature of CCS. Second, it would improve the
modularity of DQI-deduction again: e.g., we might be able to reuse the algebraic
definition of stores for some other storage device.

However, it is hard to see what relabelling corresponds to logically. If Roger
participated in a discussion about A, then his interlocutor was not discussing f(A)
(unless f is the identity of course). Talk of “translation functions” is fatuous: one
cannot guarantee +A with −¬A. The lack of a deduction-theoretic explanation of
relabelling is a serious obstacle to its institution in the meta-theory of deduction.

Metatheories ad nauseam

We introduced sequencing into the metatheory of deduction because although
we could capture sequential composition in an evaluation semantics I-system, we
could not capture it simply. We have also seen several other similar proposals.
For example, we have the above relabelling proposal. Another example is the
sequent-style rules for scope extrusion. Another concerns the propagation-free
abort rules which made use of pruning rules. The problem here is that the result
was not neat. We might be tempted to introduce the notion of escaping into our
metatheory, perhaps using the idea of continuation proof [Und93, §5.3.5]).

There are two questions that concern this drive for better metatheories of
evaluation semantics. The first is how many different extensions such a philosophy
would need. At some point we have to draw the line and say “this is our theory of
deduction”. To some extent I have done this already: the fact that the theory of
interacting deductions corresponds to the well-known calculus CCS suggests that
we have a reasonable notion of deduction which is expressive enough.

The second question concerns the pragmatic value of such a philosophy. The
law of diminishing returns tells us that the more we tweak our metatheory the
less gains we shall achieve. We have already seen that evaluation semantics has
limited value for concurrency: the only equivalence we can talk easily about is
trace equivalence. This suggests that it is not a suitable medium for analysing
nondeterminism. Of course, that is not to say that evaluation semantics for con-
currency has no merit. Similarly, more complex theories of deduction (provided
they are comprehensible) may also have meritorious applications.

There will always be semantic features that are hard to express in metatheories
that are not tailored to express them. Perhaps one solution to the problem might
be to consider a universe of metatheories of deduction and their relationships,



Chapter 7. Conclusions 157

perhaps in a manner similar to Moggi’s use of monads for modularity in deno-
tational semantics [Mog91]. Maybe Milner’s work on action calculi and control
structures [Mil,MRP] is a suitable framework.

7.3.4 The relationship to Linear Logic

Our notion of deduction is inherently linear: each formula occurrence in a de-
duction is the conclusion of one rule and the premise of at most one rule. In
this section we consider the relationship between linear logic [Gir87,Gir89] and
interacting deductions. It turns out that I-deduction is fairly easy to characterize
in linear logic, using just tensor product and linear implication. QI-deduction is
harder to characterize: it requires two tensors, one commutative and the other
non-commutative. There does not seem to be any simple logical account of DQI-
deduction.

A logical treatment of I-deduction The following account is a logical per-
spective of I-deduction owing to Gordon Plotkin. Let Γ,∆ range over multisets
of formulae (see figure 2–2 for a formal account of multisets). In this context, I
write Γ,∆ for the multiset union of Γ and ∆ and 1 for the empty multiset. Then
we define ` ∆ inductively using the following rules:

` 1

` Γ1, . . . ,Γn,∆
` A1, . . . , An,∆

when
{

Γ1

A1
, . . . ,

Γn
An

}
is an I-rule.

Thus ` Γ if and only if Γ is deducible in the ambient system of rules. This
characterization is logically straightforward, but it is not amenable to the technique
of fragmentation.

Now, if we code multisets of formulae Γ = A1, . . . , An by the intuitionistic

linear formula φΓ = A1 ⊗ . . . ⊗ An, and we code rules r = {
Γ1

A1
, . . . ,

Γn
An
} by the

formula
φr = (φΓ1 ( A1)⊗ . . .⊗ (φΓn ( An)

Then I believe that ` Γ (under ambient rules r1, . . . , rn) if and only if !φr1, . . . , !φrn `
φΓ is provable in intuitionistic linear logic. Apart from helping us to understand
I-deduction better, another consequence of this result would be to use linear logic
programming languages such as Forum [Mil94] or Lolli [HM94] or others [Milar]
to build prototype interpreters. Perhaps also it could inspire a coherence-space
semantics [GLT89].

A logical treatment of QI-deduction The main problem in giving a simple
inductive account of QI-deduction is that sequencing and rule application are not
distinct operations. In our definition, we chose to say that premises were sequenced
after conclusions (given that the evaluation order seems to be opposite to deduction



Chapter 7. Conclusions 158

order). Any definition of QI-deduction must take this into account. I cannot think
of a simple way to do this here, although I can for the DQI-deductions.

The main problem in giving a logical account is that we require two tensors:
one commutative tensor as before and one non-commutative tensor for sequencing.
Retoré [Ret93] studied such a linear logic, introducing the précède tensor < which
was both self-dual (i.e., (A < B)⊥ = (A⊥ < B⊥)) and in-between tensor and par:
A ⊗ B ( A < B and A < B ( A....................................................

........................................... B. Reddy [Red93b,Red93a] uses this work
to help him develop a logic for reasoning about state in imperative programming
languages. Here, sequent calculus contexts correspond not to multisets but to
partially-ordered multisets . Reddy writes the non-commutative tensor �. Using
his sequent calculus LLMS, we could code a Q-atom

P11 I . . . I P1n1 · · · Pm1 I . . . I Pmnm
C
as

[(P11 � . . . � P1n1)⊗ . . .⊗ (Pm1 � . . . � Pmnm)]( C

I do not know, but I think it would not be hard to prove that in this setting QI-
deducibility corresponded to provability in LLMS. I do not know of a logic pro-
gramming language that could be used to build prototype interpreters, although
we may be able to appropriate Retoré’s coherence space semantics for models.

A logical treatment of DQI-deduction We have suggested that I-deducibility
can be captured in intuititionistic linear logic and QI-deducibility can be captured
in the more exotic linear logic model of state. However, it is not clear what
kind of logic could capture DQI-deduction. The problem is that it is not clear
how to treat dangling interactions and assembly. One solution might be to use
a classical linear logic (i.e., introduce linear negation). This would use linear
negation to distinguish opposite perspectives of dangling interactions, which would
be treated as logical hypotheses. Thus we may have a sequent calculus style
presentation of DQI-deduction (in much the same way that we can get sequent
calculus style presentations of natural deduction [Sun84b]). For this we need
a grammar of contexts which allows arbitrarily deep nesting of sequential and
parallel composition of formulae:

Γ ::= 1 | A | Γ,Γ | Γ; Γ
Γ[·] ::= [·] | Γ,Γ[·] | Γ[·],Γ | Γ; Γ[·] | Γ[·]; Γ

and the following rules:

` 1
Γ ` ∆ Γ′ ` ∆′

Γ; Γ′ ` ∆; ∆′
Γ ` ∆ Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′

Θ ` Γ
D; Θ ` A when Γ

A D is a DQI-rule.

Γ[A,A⊥] ` ∆
Γ[1] ` ∆

Γ[(Γ1; ∆1) , (Γ2; ∆2)] ` ∆
Γ[(Γ1,Γ2) ; (∆1,∆2)] ` ∆



Chapter 7. Conclusions 159

plus rules for the commutativity and associativity of ‘,’, the associativity of ’;’ and
the unity of 1. There are three interesting rules. The first is the coding of DQI-
rules: this rule clearly shows how rule application corresponds to sequencing. The
left hand side of the conclusion, D; Θ shows that interactions occur before premises
are evaluated. The other choice, represented by Θ;D, shows that interactions
occur after premise evaluation.

The other two interesting rules are the assembly rules (the left-hand side rules).
The first “assembles” one interaction link. The second schedules interaction links.

We could, perhaps, use higher-order linear formulae to encode the sequents
Γ ` ∆ as φΓ ( φ∆ (where φΓ is some suitable encoding of context Γ). But then it
is hard to see how to code rules: how do we distinguish rule premises and dangling
interactions?



Chapter 7. Conclusions 160



Appendix A

Languages of operational judgments

In this appendix, we give a brief account of the notion of languages of terms and
formulae. In section A.1 we give an axiomatic description. In section A.2 we give
an algebraic account, and sketch its use in operational semantics.

A.1 A formal definition of language

This definition comes from [Gar95]. A (many-sorted) language L is a quintuple
(S, L, V, FV, sub) where S is a set of sorts, L is an S-sorted family of sets of for-
mulae (ranged over by A,B,C, . . .), V is an S-sorted family of sets of variables
that appear in L (ranged over by x, y), FV : L> →℘(V>) is an S-sorted function
that returns the free variables of a formula, and sub : (V → L) → L → L is a
function that applies a substitution θ : V → L to a formula, such that

1. If A ∈ Ls then (sub θ A) ∈ Ls
2. If x ∈ Vs then (sub θ x) = θsx
3. sub id = idL
4. (sub θ0) ◦ (sub θ1) = (sub θ3) where for x ∈ V>, θ3x = sub θ0 (θ1x)
5. FV (x) = {x}
6. FV (sub θ A) =

⋃
x∈FV (A) FV (θx)

7. If θ0 � (FV (A)) = θ1 � (FV (A)) then sub θ0 A = sub θ1 A

We abbreviate sub θ A by θA, and the composition of substitution θ1 after θ0 by
θ1θ0. If L is a language, we write A ∈ L if A is a formula of L. Similarly, we often
treat L as if it were just a(n S-sorted) set of formulae.

161



Appendix A. Languages of operational judgments 162

A.2 Algebras and operational semantics

An operational semantics consists of a language of judgments that relate to the
evaluation of programs, and a set of rules that build proofs of these judgments. In
this section, we describe how one can use many-sorted algebraic signatures with
equations to specify an arbitrary language of judgments.

A judgment consists of some evaluation symbol (e.g., ⇒) and one or two ma-
chine configurations. That is, a judgment will be a term of the algebraic signature
(i.e., an element of the term algebra).

A configuration consists of a program and a machine state, which may be com-
posed of various different entities (e.g., a store, an environment or an input-output
buffer). For want of a better term, we call these entities machine components.

We summarize Wechler’s [Wec92, ch4] account of Σ-algebras here. The reader
familiar with universal algebra may safely skip this section. We use it only to de-
scribe judgment-formulae and the notions of substitution and instantiation which
make up the notion of language described in section 2.1. Further details can be
found in [Coh65,Grä79,GB90,ST99].

Sorted families of sets Let S be a set of sorts, and X a set. Then an S-sorted
family of subsets of X is a function F : S → ℘(X). For s ∈ S, we write Fs for
F (s). We also define F> =

⋃
s∈S Fs. When F and G are S-sorted families of sets,

an S-sorted function from F to G (written f : F → G) is an S-sorted family of
sets of functions fs : Fs→ Gs. When F is an S-sorted family of sets, the identity
function idF is the S-sorted family of identity functions: ids : Fs → Fs.

When S is a set, an S-sorted (or S-indexed) family A of sets of type T is a
function A : S → ℘(T ). We write As for the set of type T corresponding to sort
s. We define the union, intersection, powerset operations over indexed families of
sets pointwise. E.g., (A ∪ B)s = As ∪ Bs. We use ℘fin for the finite powerset
operation.

Σ-Algebras. A (many sorted) algebraic signature Σ is a pair 〈S, F 〉 where S is
a set of sorts, and F is an S∗ × S-sorted family of sets of function names. We
abbreviate f ∈ Fs1,...,sn,s as f : s1 · · · sn → s. When n = 0 we write f : s and f is
said to be a constant .

A Σ-algebra is a pair 〈A,F 〉 where A is an S-sorted set and F is a family of
operations such that each operation symbol f : s1 · · · sn → s of Σ is realized as an
operation fA : As1 × · · · × Asn → As.

An algebraic signature Σ defines a set of Σ-terms that may be constructed from
metavariables and function names. Let Σ = 〈S, F 〉 be an algebraic signature, let
V be an S-sorted family of countably infinite sets of metavariable universes, and
X an S-sorted set of metavariables from V . Then, for s ∈ S, we say TΣ(X)s is
the set of terms of sort s with metavariables in X. It is defined inductively:

• if x ∈ Xs then x ∈ TΣ(X)s



Appendix A. Languages of operational judgments 163

• if f ∈ Fs1,...,sn,s and t1, . . . , tn are in TΣ(X)s1 , . . . , TΣ(X)sn respectively, then
f(t1, . . . , tn) ∈ TΣ(X)s.

The set of terms TΣ(X) forms the term-algebra over X whose operations are just
the term constructors. We define the ground terms to be members of the set TΣ(∅)
which is written TΣ.

A substitution θ is an S-sorted family of total functions such that θs : Xs →
TΣ(X)s. The θ-instance of term t is given by the recursively defined function
Is : (X → TΣ(X))→ TΣ(X)s → TΣ(X)s:

• Is θ x = θs(x) when x ∈ Xs

• Is θ f(t1, . . . , tn) = f(Is1 θ t1, . . . , Isn θ tn) when f : s1 · · · sn → s.

For brevity, we write θt for Is θ t.
We show how Σ-algebras with equations can describe the syntax of program-

ming languages, the structure of and operations over machine components, and
hence the structure of semantic judgments.

Program Syntax We use Σ-algebras to give the syntax of programming lan-
guages. The sorts are the syntactic classes and the operations the productions of
a grammar. For instance, the simple language with grammar

e ::= x | n | e0 + e1

c ::= x := e | c1; c2

is represented by the algebra with sorts S = {e, c, V ar,Z} where V ar is a set of
variable names and Z is the set of integers, and functions

+ : e× e→ e
:=: V ar × e→ c
; : c× c→ c

The set of terms over this signature corresponds to the set of syntax trees
of the language, which may contain metavariables. One does not usually iden-
tify non-identical terms, although it can sometimes be useful to do so (see, for
example [Mil91, p25]).

Machine components We use many-sorted algebraic signatures with equations
to define the various components that record the state of an interpreter. We use
equations to define various primitive operations over them. For example, simple
stores can be defined by the following signature:

srts: Store, V ar,Z
fns: empty : Store

·[·/·] : Store× Z × V ar→ Store
·(·) : Store× V ar→ Z

metavars: σ, σ′, . . . , σ0, σ1, . . .
eqns: empty(x) = 0

σ[n/x](x) = n
σ[n/x](y) = σ(y) if y 6= x



Appendix A. Languages of operational judgments 164

Many sorted equations Given an algebraic signature Σ, an equation of sort s
is a triple 〈X, t0, t1〉 usually written ∀X(t0 = t1) or just ∀x1 : s1, . . . , xn : sn.t0 = t1
when xi ∈ Xsi for all i = 1, . . . , n, or even t0 = t1 when the universal quantification
of the variables is understood.

We can consider a set of equations E as a family Ē of ℘fin(V )-indexed family
of S-sorted families E(X) of sets E(X)s = {(t0, t1) | ∀X(t0 = t1) ∈ Es}.

A clone congruence R is a family of S-sorted families of relations R(X) where
Xs is a finite subset of Vs for all s, which are congruences invariant under α-
conversion. The full details are in [Wec92, §4.1]. The importance of clone
congruences come from the generalized Birkhoff criterion for equational theories :
A set E of equations is an equational theory (i.e., describes some abstract class
of algebras) if and only if Ē is a clone congruence. Of course, not every set of
equations E will describe a clone congruence in this way until we close them with
respect to reflexivity, symmetry, transitivity, congruence and α-equivalence.

The ground equational theory of E, written G(E) is an S-sorted relation such
that G(E)s = {(θt0, θt1) | ∀X(t0 = t1) ∈ Ēs, θ : X → TΣ}. That is, it is the set of
pairs of equal ground terms (terms without variables).

Then the initial semantics T〈Σ,E〉 of 〈Σ, E〉 is the class TΣ/=G(E), where =G(E) is
the clone congruence generated by the ground equational theory of E. The initial
semantics of an abstract syntax (without equations) will be a set of equivalence
classes, each of which being singleton terms (representing programs). The initial
semantics for the store will be sets of equivalence classes of stores and of values.
Each store equivalence class will be singleton since distinct stores are not identified.
For each value (here, integer) there will be an equivalence class containing every
store lookup expression that equals it. So, for instance, the equivalence class of
the value 3 will contain the values 3, σ[3/x](x), σ[3/y][4/x](y) etc.

Directed equations We can read the equations for stores operationally by di-
recting the equations to make a term rewriting system :

∀x : V ar. empty(x)→ 0
∀x : V ar, n : Z, σ : Store. σ[n/x](x)→ n

∀x : V ar, y : V ar, n : Z, σ : Store. σ[n/x](y)→ σ(y) if y 6= x

We do not bother to give the details here: these may be found in [Wec92, §4.1.3].



Appendix B

The correctness of CSP

In this appendix, we outline the main details of an equivalence between the se-
mantic definition of CSP given in chapter 5. This should increase our confidence
that that semantics for CSP is correct.

This equivalence shows how terminating sequences of a cut-down version of
Plotkin’s Structural Operational Semantics for CSP [Plo83] corresponds to the
CSP evaluation judgments. The proof proceeds via three intermediate semantic
definitions. Section B.1 presents the SOS, CSPSOS , which gives an interleaving
semantics. Section B.2 presents a more truly concurrent semantics CSPMSOS,
and indicates their equivalence. Section B.3 presents an interacting transition
semantics, CSPI , and indicates its equivalence with CSPMSOS. These results
mirror those in section 2.5.3. Section B.4 is the main part which shows how an
extenstion of CSPI (called CSPCUT ) relates to CSP.

We shall assume all of the auxiliary definitions presented in chapter 5, as well
as some new ones, defined shortly. In particular, the grammar is as before, as is
the static semantics.

In this appendix, we shall use Plotkin’s convention for abbreviating families of
transition rules (also in [Plo83]. When n ≥ 1,

γ
λ−→ γ1 | . . . | γn

γ′
λ′−→ γ′1 | . . . | γ′n

abbreviates the n rules

γ
λ−→ γ1

γ′
λ′−→ γ′1

· · ·
γ

λ−→ γn

γ′
λ′−→ γ′n

and for m,n ≥ 1,

γ′
λ′−→ γ′1 | . . . | γ′m γ′′

λ′′−→ γ′′1 | . . . | γ′′n
γ

λ−→ γ11 | . . . | γ1n | . . . | γm1 | . . . | γmn

165



Appendix B. The correctness of CSP 166

abbreviates the m× n rules

γ′
λ′−→ γ′1 γ′′

λ′′−→ γ′′1

γ
λ−→ γ11 . . .

γ′
λ′−→ γ′1 γ′′

λ′′−→ γ′′n

γ
λ−→ γ1n

. . .

γ′
λ′−→ γ′m γ′′

λ′′−→ γ′′1

γ
λ−→ γm1 . . .

γ′
λ′−→ γ′m γ′′

λ′′−→ γ′′n

γ
λ−→ γmn

In this appendix, we treat I-systems as special cases of DQI-systems. This is
purely to facilitate the equivalence proof.

B.1 A Structural Operational Semantics of CSP

This section gives a transition semantics CSPSOS for CSP. It is based on Plotkin’s
Structured Operational Semantics for CSP [Plo83], but differs in three ways. First,
the parallel composition of processes occurs only at the top level. Second, because
of this, we have to model partially aborted networks of processes differently. When
one process aborted, Plotkin simply sequenced another abort command after the
rest of the network. Here we use a different trick: we extend the syntax of programs
to include a special “aborted process” production:

p ::= R :: c | p ‖ p | aborted
together with the equations aborted ‖ aborted = aborted. This addition is a
convenience to allow us to represent partially aborted networks of processes.

The third difference is that expressions (and hence guarded commands) cannot
abort.

B.1.1 The Labelled transition system

The following labelled transition systems are required for CSP. We require one
each for expressions, guarded commands, commands and programs. These make
use of the following communication labels.

Communication labels

The first definition comes straight from [Plo83]. To model communication, we
define the set of labels

Λ = {P?v,Q :: P?v,Q!v, P :: Q!v | P,Q ∈ Pid, P 6= Q, v ∈ V al} ∪ {ε}
ranged over by λ. Labels consist of three parts. The first (optional) part denotes
the name of the process that has performed the communication (the agent). The
second denotes the name of the other process involved in the communication.
The third denotes the message that was sent. No label has form P :: P !v (or
P :: P?v). Such labels would correspond to the action of self-communication,
which is impossible for synchronized communication.



Appendix B. The correctness of CSP 167

Configurations

We require four transition systems: one each for the expressions, guarded com-
mands, commands and programs. From the informal account of the semantics of
CSP, an expression configuration can either be an expression waiting to be eval-
uated or its value. A guarded command can either fail or select a command that
can proceed. Selecting a command involves making its first step, which may abort.
Commands may either terminate or abort, as may programs. The following table
expresses this more formally.

Syntactic class (L)TS Terminal Config’ns (Ω) Config’ns (Γ)
expressions 〈Γe,Ωe,−→e〉 V al Exp× Store ∪ Ωe

g’d commands 〈Γg ,Ωg,Λ,−→g〉 Com× Store ∪ Store GCom× Store ∪ Ωg

∪{failure, aborted}
commands 〈Γc,Ωc,Λ,−→c〉 Store ∪ {aborted} Com× Store ∪ Ωc

programs 〈Γp,Ωp,Λ,−→p〉 Store ∪ {aborted} Prog × Store ∪ Ωp

The transition rules can be found in figures B–1 and B–2, where we have dropped
the subscripts from the transition relations.

Before we give the rules for the programs, we describe a partial function over
labels, R :: (·) : Λ ⇀ Λ, which takes a label of form P?v or P !v and adds R :: in
front if R 6= P . If the label is empty, it is undefined — thus {|R :: ε |} = ∅.

R :: (λ) =
{
R :: P?v if λ = P?v and P 6= R
R :: Q!v if λ = Q!v and Q 6= R

Figure B–2 lists the transition rules for programs. We do not discuss them here:
the details are just those of [Plo83].

B.2 Stage one: from interleaving to true concur-
rency

The first step of the equivalence proof is essentially just that of section 2.5.3 —
where we present a transition I-system for CSP, and prove it equivalent to the
previous structured operational semantics. Just as before, this proof is factored
into two: first between CSPSOS and a semantics CSPMSOS which allows multi-
ple communications to occur simultaneously; second, between this intermediate
language and the I-system CSPI . In this section we give CSPMSOS and state
the equivalence with CSPSOS. Modulo some difficulty with stores, it is no more
exciting than before.

The two systems only differ in the rules for programs. Figure B–3 lists the
rules for programs. Again, each program rule is decorated with multisets of labels
from Λ. We define complementation over Λ by

R :: P !v = P :: R?v and R :: P?v = P :: R!v



Appendix B. The correctness of CSP 168

Rules for expressions

〈v, σ〉 −→ v 〈x, σ〉 −→ σ(x)
〈e1, σ〉 −→ v1 〈e2, σ〉 −→ v2

〈e1 op e2, σ〉 −→ app(op, v1, v2)

Rules for guarded commands

〈b, σ〉 −→ tt 〈c, σ〉 λ−→ 〈c′, σ′〉 | σ′ | aborted
〈b⇒c, σ〉 λ−→ 〈c′, σ′〉 | σ′ | aborted

〈gi, σ〉 λ−→ 〈c′, σ′〉 | σ′ | aborted
〈g1 [] g2, σ〉 λ−→ 〈c′, σ′〉 | σ′ | aborted

i = 1, 2

〈b, σ〉 −→ ff
〈b⇒c, σ〉 ε−→ failure

〈g1, σ〉 ε−→ failure 〈g2, σ〉 ε−→ failure

〈g1 [] g2, σ〉 ε−→ failure

Rules for commands

〈skip, σ〉 ε−→ σ 〈abort, σ〉 ε−→ aborted

〈e, σ〉 −→ v

〈Q!e, σ〉 Q!v−→ σ
〈Q?x, σ〉 Q?v−→ σ[v/x]

〈e, σ〉 −→ v

〈x := e, σ〉 ε−→ σ[v/x]
〈c1, σ〉 λ−→ 〈c′1, σ′〉 | σ′ | aborted

〈c1; c2, σ〉 λ−→ 〈c′1; c2, σ′〉 | 〈c2, σ′〉 | aborted

〈g, σ〉 λ−→ 〈c′, σ′〉 | σ′ | failure | aborted
〈if g fi, σ〉 λ−→ 〈c′, σ′〉 | σ′ | aborted | aborted

〈g, σ〉 λ−→ 〈c′, σ′〉 | σ′ | failure | aborted
〈do g od, σ〉 λ−→ 〈c′; do g od, σ′〉 | 〈do g od, σ′〉 | σ | aborted

Figure B–1: SOS transition rules for CSP excluding programs



Appendix B. The correctness of CSP 169

Rules for communication

〈c, σ〉 λ−→ 〈c′, σ′〉 | σ′ | aborted
〈R :: c, σ〉 R::λ−→ 〈R :: c′, σ′〉 | σ′ | 〈aborted, σ〉

〈p1, σ〉 λ−→ 〈p′1, σ′〉 | σ′

〈p1 ‖ p2, σ〉 λ−→ 〈p′1 ‖ p2, σ′〉 | 〈p2, σ′〉
〈p2, σ〉 λ−→ 〈p′2, σ′〉 | σ′

〈p1 ‖ p2, σ〉 λ−→ 〈p1 ‖ p′2, σ′〉 | 〈p1, σ′〉

〈p1, σ〉
Q::P?v−→ 〈p′1, σ′〉 | σ′ 〈p2, σ〉

P ::Q!v−→ 〈p′2, σ〉 | σ
〈p1 ‖ p2, σ〉 ε−→ 〈p′1 ‖ p′2, σ′〉 | 〈p1, σ′〉 | 〈p2, σ′〉 | σ′

〈p1, σ〉
P ::Q!v−→ 〈p′1, σ〉 | σ 〈p2, σ〉

Q::P?v−→ 〈p′2, σ′〉 | σ′

〈p1 ‖ p2, σ〉 ε−→ 〈p′1 ‖ p′2, σ′〉 | 〈p1, σ′〉 | 〈p2, σ′〉 | σ′

Figure B–2: SOS transition rules for CSP programs

Rules for programs

〈c, σ〉 λ−→ 〈c′, σ′〉 | σ′ | aborted

〈R :: c, σ〉 {|R::λ |}−→ 〈R :: c′, σ′〉 | σ′ | 〈aborted, σ〉

〈p1, σ〉 m−→ 〈p′1, σ′〉 | σ′

〈p1 ‖ p2, σ〉 m−→ 〈p′1 ‖ p2, σ′〉 | 〈p2, σ′〉
〈p2, σ〉 m−→ 〈p′2, σ′〉 | σ′

〈p1 ‖ p2, σ〉 m−→ 〈p1 ‖ p′2, σ′〉 | 〈p1, σ′〉

〈p1, σ〉 m1−→ 〈p′1, σ1〉 | σ1 〈p2, σ〉 m2−→ 〈p′2, σ2〉 | σ2

〈p1 ‖ p2, σ〉 m−→ 〈p′1 ‖ p′2, σ′〉 | 〈p1, σ′〉 | 〈p2, σ′〉 | σ′
∗

∗ where ∃m′ ⊆ (m1∩m2).m = (m1 \m′)∪ (m2 \m′) and σ′ = σ⊕ (σ1 � WV (p1))⊕
(σ2 �WV (p2))

Figure B–3: MSOS transition rules for CSP programs



Appendix B. The correctness of CSP 170

Note that these rules make use of the WV function defined in section 5.1.2. It
also makes use of two new functions on stores. These are defined as follows:

σ ⊕ 0 = σ
σ ⊕ (σ′[v/x]) = (σ ⊕ σ′)[v/x]

0 � X = 0
(σ[v/x]) � X = σ � X if x 6∈ X
(σ[v/x]) � X = (σ � X)[v/x] if x ∈ X

The first defines the operation of overwriting one store with another, and the
other restricts a store to consist of only those bindings to variables that belong to
a specified set X.

When the MSOS semantics describes a transition of p, it may write to the
store many times. However, each process in a transition may write to the store at
most once. Since processes do not share variables, this means that each variable
is updated only once. This explains the side condition

σ′ = σ ⊕ (σ1 � WV (p1))⊕ (σ2 � WV (p2))

in figure B–3. We need the following relation

σ1 'X σ2 iff for all x ∈ X. σ1(x) = σ2(x)

and we write σ1 ' σ2 for σ1 'V ar σ2. This allows us to relate the stores obtained
after executing a series of CSPSOS transitions and one CSPMSOS transition. Mod-
ulo this caveat, we obtain the “boring”[sic] proofs again:

Proposition B.0 For all p, p′, σ, σ′, λ, and for each row in the following table, if
CSPSOS deduces the left hand entry, then CSPMSOS deduces the right hand entry.

〈p, σ〉 λ−→ 〈p′, σ′〉 〈p, σ〉 m−→ 〈p′, σ′〉
〈p, σ〉 λ−→ σ′ 〈p, σ〉 m−→ σ′

where in both cases m = {|λ |} if λ 6= ε and m = ∅ otherwise. 2

The other direction requires the notion of t-traced deduction sequences again,
which can be straightforwardly copied from page 35. Then we get

Proposition B.1 For all p, p′, σ, σ′,m and traces t of m, and for each row in the
following table, if CSPMSOS deduces the left-hand entry then CSPSOS deduces the
middle entry such that the right hand-hand entry is true.

〈p, σ〉 m−→ 〈p′, σ′〉 〈p, σ〉 t−→ 〈p′, σ′′〉 σ′ ' σ′′
〈p, σ〉 m−→ σ′ 〈p, σ〉 t−→ σ′′ σ′ ' σ′′

2



Appendix B. The correctness of CSP 171

B.3 Stage two: from ordinary to interacting tran-
sition rules

In this section, we introduce a transition I-semantics for CSP, called CSPI . (Ac-
tually, it is really a DQI-system bu we call it CSPI because the only sequencing
constraints occur in the store rule.) The syntax and static semantics and auxiliary
definitions are as before. The main change lies in the actual transition systems de-
fined. First, they are labelled with process identifiers rather than from Λ. Second,
the transition systems for commands,guarded commands and programs contain an
extra item done in the set of terminal states. This token is intended to represent
successful termination.

The following table lists the transition systems. Note that the sets should be
primed in order to distinguish them from the previous transition systems. We do
not do so here to ease legibility.

Syntactic class (L)TS Terminal Config’ns (Ω) Config’ns (Γ)
expressions 〈Γe,Ωe,−→e〉 V al Exp ⊇ Ωe

g’d commands 〈Γg ,Ωg,Λ,−→g〉 Com ∪ GCom ∪ Ωg

{done , failure, aborted}
commands 〈Γc,Ωc,Λ,−→c〉 {done , aborted} Com ∪ Ωc

programs 〈Γp,Ωp,Λ,−→p〉 {done , aborted} Prog ∪ Ωp

stores 〈Store, ∅, 〉 Store

And for convenience once again, we add some equations for the new done produc-
tion:

done ‖ p = p ‖ done = p done ‖ done = done

In addition to the transition rules found in figures B–4 and B–5, we require
the following rules for stores:

σ  σ
σ  σ′ I σ′  σ′′

σ  σ′′

The first is the dummy transition rule of page 119 and the second is actually the
store composition rule of CSP, found in figure 5–2.

The proofs of equivalence between CSPMSOS and CSPI is almost exactly iden-
tical to that between PMSOS and PI found in section 2.5.3, modulo some difficulty
with stores. In CSPI we have to accept that processes other than those mentioned
in the judgment currently of interest can write to the store; interference freedom
guarantees that they will not affect those parts relevant to the processes at hand.

We label the communication interactions comm(P,Q, v). In the following, we
associate P :: Q!v with +comm(P,Q, v) and Q :: P?v with −comm(P,Q, v).

Let us write Π[m] ` ∆ if m is the multiset of labels of Λ associated to the
communicative dangling interactions of Π, which deduces the set of conclusions
∆. Note that Π may or may not have store dangling interactions. Let us write



Appendix B. The correctness of CSP 172

Rules for expressions

v
P−→ v x

P−→ v −−−−−−− σ(x) = v
σ  σ

e1
P−→ v1 e2

P−→ v2

e1 op e2
P−→ app(op, v1, v2)

Rules for guarded commands

b
P−→ ff

b⇒c
P−→ failure

b
P−→ tt I c

P−→ c′ | done | aborted
b⇒c

P−→ c′ | done | aborted

gi
P−→ c | done | aborted

g1 [] g2
P−→ c | done | aborted

i = 1, 2

g1
P−→ failure g2

P−→ failure

g1 [] g2
P−→ failure

Rules for commands

skip
P−→ done abort

P−→ aborted

e
P−→ v I P : set(x, v)

x := e
P−→ done

e
R−→ v I R : out(Q, v)

Q!e R−→ done

P : set(x, v)−−−σ σ[v/x] R : out(Q, v)−−−R?x Q−→done −−−σ σ[v/x]

g
P−→ c | done | failure | aborted

if g fi
P−→ c | done | aborted | aborted

g
P−→ c | done | failure | aborted

do g od
P−→ c; do g od | do g od | done | aborted

Figure B–4: Transition (Q)I-rules for CSP except programs



Appendix B. The correctness of CSP 173

Rules for programs

c
R−→ c′ | done | aborted

R :: c −→ R :: c′ | done | aborted

p1 −→ p′1 p2 −→ p′2
p1 ‖ p2 −→ p′1 ‖ p′2

p1 −→ p′1
p1 ‖ p2 −→ p′1 ‖ p2

p2 −→ p′2
p1 ‖ p2 −→ p1 ‖ p′2

Figure B–5: Transition I-rules for CSP programs

CSPI [m] ` ∆ if there exists a Π ∈ I(CSPI) such that Π[m] ` ∆, in which case we
shall say [m] ` ∆ is deducible in CSPI .

Then the following propositions are easy to prove by induction and analogously
to proposition 2.13 (although we do not need to use fragmentation).

Proposition B.2 For all e in Exp, v in V al, κ, κ′ in Comm ∪ GComm ∪ Prog
which occur as subphrases of an R-labelled process in p, σ, σ′, σ′′ in Store, m ∈ NΛ,
for each row in the following table, if the left hand entry is deducible in CSPMSOS

then the middle entry is deducible in CSPI such that the condition in the right
hand entry is satisfied.

〈e, σ〉 → v e
R−→ v, σ  σ′ σ′ 'X σ

〈κ, σ〉 m→ 〈κ′, σ′〉 [m] ` κ R−→ κ′, σ  σ′′ σ′ 'X σ′′

〈κ, σ〉 m→ σ′ [m] ` κ R−→ done , σ  σ′′ σ′ 'X σ′′

〈κ, σ〉 m→ aborted [m] ` κ R−→ aborted, σ  σ′ σ 'X σ′

where X = Acc(R, p) if κ is not a program, and X = FV (κ) otherwise. 2

Proposition B.3 For all e in Exp, v in V al, κ, κ′ in Comm ∪ GComm ∪ Prog
which occur as subphrases of an R-labelled process in p, σ, σ′, σ′′ in Store, m ∈ NΛ,
for each row in the following table, if the middle entry is deducible in CSPI then
the left hand entry is deducible in CSPMSOS such that the condition in the right
hand entry is satisfied. 2

In order to take stock of where we are at the moment, we define the full transition
system of CSPI as 〈ΓI ,ΩI ,−→I〉 where ΓI = Γp×Stores, ΩI = {done , aborted}×
Stores and −→I⊆ ΓI × ΓI is defined by

〈p, σ〉 −→ 〈p′, σ′〉 iff CSPI  p −→ p′, σ  σ′



Appendix B. The correctness of CSP 174

Note the use of proper deducibility: it ensures that every alteration to the store
is accounted for, and moreover so is every interaction of the program.

Then so far we have asserted that for all p, p′ ∈ Prog, σ, σ′, σ′′ ∈ Store and
each row in the following table, if CSPSOS (sequentially) deduces the left-hand
entry then CSPI (sequentially) deduces the middle entry such that the right-hand
entry is true. Moreover, if CSPI deduces the middle entry, then CSPSOS deduces
the left-hand entry such that the right-hand entry is true.

〈p, σ〉( ε−→)+〈p′, σ′〉 〈p, σ〉 −→+ 〈p′, σ′〉 σ′ 'FV (p) σ
′′

〈p, σ〉( ε−→)+σ′ 〈p, σ〉 −→+ 〈done , σ′〉 σ′ 'FV (p) σ
′′

〈p, σ〉( ε−→)+aborted 〈p, σ〉 −→+ 〈aborted, σ′〉

B.4 Stage three: from interacting transitions to
evaluations

We introduce yet another intermediate semantics, but this time we simply intro-
duce the following three rules to CSPI :

γ
〈R〉−→ γ′ I γ′

〈R〉−→ γ′′

γ
〈R〉−→ γ′′

g
R−→ done I do g od

R−→ γ

do g od
R−→ γ

c1
R−→ done I c2

R−→ γ

c1; c2
R−→ γ

where γ, γ′, γ′′ ∈ Γc ∪ Γg ∪ Γp and the angle brackets denote options — either the
R labels all exist in a rule instance or they do not. (See the options convention of
the definition of standard ML [HMT90, §4.10].) We shall refer to the first rule as
the “cut” rule, and the system as a whole as CSPCUT . We refer to the last two
rules as evaluation rules, because they are similar to the sequential composition
and repetition rules of CSP . We refer to a deduction as cut-free if it contains
no instance of a cut rule, and eval-free if it contains no instance of an evaluation
rule. CSPI transitions are both cut and eval-free. We can cut sequences of CSPI
transitions together to get eval-free deductions. The key idea behind the follow-
ing proof is that CSP program transitions correspond to cut-free deductions of
terminating transition sequences.

First, we state a cut-elimination result for CSPCUT , which uses the eval rules
to remove cuts. The proof itself is standard, but depends on specialized notions
of cut-formula and degree of cut-formula and deductions.

A cut-formula is the configuration that occurs on the left-hand side of the left-
hand premise of a cut-rule. (This is in contrast with the usual, logical notion of cut-
rule where the cut formula occurs on the right-hand side of the left-hand premise.
The reason for this is that the semantic rules are syntax-directed according to the
left-hand sides of transition rules.) In the above cut rule schema, the cut-formula
is the configuration γ. Note that no cut formula has form done or aborted.



Appendix B. The correctness of CSP 175

Σ1

b
R−→ tt I

Σ2

c
R−→ c′

b⇒c
R−→ c′ I

Σ3

c′
R−→ γ

b⇒c
R−→ γ

 
Σ1

b
R−→ tt I

Σ2

c
R−→ c′ I

Σ3

c′
R−→ γ

c
R−→ γ

b⇒c
R−→ γ

Σ1

gi
R−→ c

g1 [] g2
R−→ c I

Σ2

c
R−→ γ

g1 [] g2
R−→ γ

 

Σ1

gi
R−→ c I

Σ2

c
R−→ γ

gi
R−→ γ

g1 [] g2
R−→ γ

Figure B–6: Elimination rules for guarded commands

The degree of a cut formula A, ∂(A) is defined inductively as follows:

∂(abort) = ∂(skip) = ∂(x := e) = ∂(Q!e) = ∂(Q?x) = 0
∂(if g fi) = ∂(do g od) = 1 + ∂(g)
∂(b⇒c) = 1 + ∂(c)
∂(g1 [] g2) = 1 + max{∂(g1), ∂(g2)}
∂(c1; c2) = 1 + max{∂(c1), ∂(c2)}
∂(R :: c) = 1 + ∂(c)
∂(p1 ‖ p2) = 1 + max{∂(p1), ∂(p2)}

The degree of a deduction is the maximum of the degrees of its cut formulae.

Now we can prove the following result in exactly the same way as one would
prove an ordinary cut-elimination theorem (see, e.g., [GLT89, ch 13]), using the
elimination rules found in figures B–6, B–7, B–8 and B–9.

Proposition B.4 If CSPCUT ` p −→ p′ then there exists a CSPCUT -deduction
of degree 0 which also deduces it. 2

An important consequence of a deduction being cut-free is that it will contain
no instance of either of the rules

p1 −→ p′1
p1 ‖ p2 −→ p′1 ‖ p2

p2 −→ p′2
p1 ‖ p2 −→ p1 ‖ p′2

because these are elminated by the second rule (and its symmetric counterpart)
in figure B–8.



Appendix B. The correctness of CSP 176

Σ1

c1
R−→ c′1

c1; c2
R−→ c′1; c2 I

Σ2

c′1
R−→ γ

c′1; c2
R−→ γ′

c1; c2
R−→ γ′

 

Σ1

c1
R−→ c′1 I

Σ2

c′1
R−→ γ

c1
R−→ γ

c1; c2
R−→ γ′

Σ1

c1; c2
R→ c2 I

Σ2

c2
R→ c′2

c1; c2
R−→ c′2 I

Σ3

c′2
R→ γ

c1; c2
R−→ γ

 

Σ1

c1; c2
R→ c2 I

Σ2

c2
R→ c′2 I

Σ3

c′2
R→ γ

c2
R−→ γ

c1; c2
R−→ γ

Σ1

g
R−→ c

if g fi
R−→ c I

Σ2

c
R−→ γ

if g fi
R−→ γ

 

Σ1

g
R−→ c I

Σ2

c
R−→ γ

g
R−→ c

if g fi
R−→ γ

Σ1

g
R−→ c

do g od
R−→ c; do g od I

Σ2

c
R−→ γ

c; do g od
R−→ γ′

do g od
R−→ γ′

 

Σ1

g
R−→ c I

Σ2

c
R−→ γ

g
R−→ γ

do g od
R−→ γ′

Σ1

c
R−→ c′

R :: c −→ R :: c′ I

Σ2

c′
R−→ γ

R :: c′ −→ γ′

R :: c −→ γ′

 

Σ1

c
R−→ c′ I

Σ2

c′
R−→ γ

c
R−→ γ

R :: c −→ γ′

Figure B–7: Elimination rules for commands and atomic programs



Appendix B. The correctness of CSP 177

Σ1
p1 −→ p′1

p1 ‖ p2 −→ p′1 ‖ p2 I

Σ2
p′1 −→ p′′1

p′1 ‖ p2 −→ p′′1 ‖ p2

p1 ‖ p2 −→ p′′1 ‖ p2

 

Σ1
p1 −→ p′1 I

Σ2
p′1 −→ p′′1

p1 −→ p′′1
p1 ‖ p2 −→ p′′1 ‖ p2

and symmetrically for p2

Σ1
p1 −→ p′1

p1 ‖ p2 −→ p′1 ‖ p2 I

Σ2
p2 −→ p′2

p′1 ‖ p2 −→ p′1 ‖ p′2
p1 ‖ p2 −→ p′1 ‖ p′2

 
Σ1

p1 −→ p′1

Σ2
p2 −→ p′2

p1 ‖ p2 −→ p′1 ‖ p′2
and symmetrically for p2

Σ1
p1 −→ p′1

p1 ‖ p2 −→ p′1 ‖ p2 I

Σ2
p′1 −→ p′′1

Σ3
p2 −→ p′2

p′1 ‖ p2 −→ p′′1 ‖ p′2
p1 ‖ p2 −→ p′′1 ‖ p′2

 

Σ1
p1 −→ p′1 I

Σ2
p′1 −→ p′′1

p1 −→ p′′1

Σ3
p2 −→ p′2

p1 ‖ p2 −→ p′′1 ‖ p′2
and symmetrically for p2

Σ1
p1 −→ p′1

Σ2
p2 −→ p′2

p1 ‖ p2 −→ p′1 ‖ p′2 I

Σ3
p′1 −→ p′′1

p′1 ‖ p′2 −→ p′′1 ‖ p′2
p1 ‖ p2 −→ p′′1 ‖ p′2

 

Σ1
p1 −→ p′1 I

Σ3
p′1 −→ p′′1

p1 −→ p′′1

Σ2
p2 −→ p′2

p1 ‖ p2 −→ p′′1 ‖ p′2
and symmetrically for p2

Σ1
p1 −→ p′1

Σ2
p2 −→ p′2

p1 ‖ p2 −→ p′1 ‖ p′2 I

Σ3
p′1 −→ p′′1

Σ4
p′2 −→ p′′2

p′1 ‖ p′2 −→ p′′1 ‖ p′′2
p1 ‖ p2 −→ p′′1 ‖ p′′2

 

Σ1
p1 −→ p′1 I

Σ3
p′1 −→ p′′1

p1 −→ p′′1

Σ2
p2 −→ p′2 I

Σ4
p′2 −→ p′′2

p2 −→ p′′2
p1 ‖ p2 −→ p′′1 ‖ p′′2

Figure B–8: Elimination rules for parallel composition



Appendix B. The correctness of CSP 178

Σ1

c1
R−→ done

c1; c2
R−→ c2 I

Σ2

c2
R−→ γ

c1; c2
R−→ γ

 
Σ1

c1
R−→ done I

Σ2

c2
R−→ γ

c1; c2
R−→ γ

Σ1

g
R−→ done

do g od
R−→ do g od I

Σ2

do g od
R−→ γ

do g od
R−→ γ

 
Σ1

g
R−→ done I

Σ2

do g od
R−→ γ

do g od
R−→ γ

Figure B–9: Elimination rules for evaluations

Proposition B.5 For each of the rows in the following table, if CSPCUT deduces
the left-hand column, then CSP deduces the right-hand column:

p −→ done p
p −→ aborted p†
c

R−→ done R : c
c

R−→ aborted R † c
g

R−→ done R : g
g

R−→ aborted R † g
g

R−→ failure R ∗ g
e

R−→ v R : e −→ v

Proof: (Sketch) For each case, we take a cut-free deduction of the required
judgment, and then recursively replace each of the above CSPCUT judgments
with their CSP equivalents. 2

The last step in the proof of this direction is to construct the corresponding
CSP-deduction of the store transitions, and then assemble it back together with
the newly constructed constructed program CSP-deduction. This is easily done:
first, it is quite straightforward to notice that every CSPCUT store deduction
is also a CSP-deduction. Second, it is easy to show that the constructed CSP
program deduction is simulated by the original CSPCUT -deduction (shown by rule-
induction, and the fact that the elimination rules actually removes dependencies
between dangling interactions. Therefore we can use the Interaction Reflection
theorem to assemble the program deduction and the store deduction to make a
proper CSP-deduction.

Proposition B.6 For all p, σ, σ′, and each row of the following table, if CSPCUT
properly deduces the left hand column, then CSP properly deduces the right hand



Appendix B. The correctness of CSP 179

column.
p −→ done , σ  σ′ p, σ  σ′

p −→ aborted, σ  σ′ p†, σ  σ′

2

B.4.1 The other direction: from evaluations to transitions

We have outlined how to show that every terminating sequence of transitions of
CSPI corresponds to a CSP evaluation deduction. Now we outline the reverse,
that every CSP deduction corresponds to a terminating sequence of transitions of
CSPI .

This direction is slightly more difficult in that we have to both discover the
individual transitions of each process, and then schedule them. This process is
complicated by the fact that the store interactions of the various processes may be
interleaved, and therefore have to be swapped around to accord with the chosen
scheduling.

Nevertheless, despite this difficulty, the idea of the proof is quite straightfor-
ward: we simply identify those parts of the evaluation deduction that correspond
to a “first transition”, and then peel it off to make one. This peeling is essentially
the cut-elimination process in reverse.

Throughout the rest of this appendix, let Π be a proper CSP-deduction con-
cluding p, σ  σ′. Let us identify it with its cut-free CSPCUT analogue for conve-
nience. Let Πp be the program fragment of Π and Πs be the store fragment. We
assume that the only dangling interactions of Πp are those relating to the store
(i.e., Π is a binary assembly of Πp and Πs), so that communicating commands
are still connected. We use Σ to range over arbitrary deductions, which in the
following will always be trees.

In the following definition, we use the following abbreviations. We write Σ ` Σ′

when Σ′ is obtained from applying a single rule to Σ. We write Σ1 I Σ2 ` Σ when
Σ is the result of applying a single rule with two sequenced premises to Σ1 and
Σ2 in order. Last, we write Σ1 ‖ Σ2 ` Σ when Σ is the result of applying a single
rule with two unsequenced premises to Σ1 and Σ2.

When Σ is not a store deduction, let PP (Σ) be the principal phrase of Σ: the
left-hand side configuration of the single conclusion of Σ. Let us fix program de-
duction Πp. Then we define the first transition of command and guarded command
subdeductions Σ of Πp to be the set first(Σ) defined inductively by

first(Σ) =



O(Σ) if PP (Σ) ∈ {abort, skip, x := e,Q!e,Q?x}
O(Σ) if Σ ` g R−→ failure
first(Σ′) if PP (Σ) ∈ {if g fi, do g od} and Σ′ ` Σ
first(Σ1) if Σ1 I Σ2 ` Σ
O(Σ1) ∪ first(Σ2) if PP (Σ) = b⇒c and Σ1 I Σ2 ` Σ

Note that first(Σ) is upwards-closed with respect to aboveness: any occurrence
strictly above a member of the set is also in the set. We define the downwards



Appendix B. The correctness of CSP 180

closure of first(Σ) to be ↓ first(Σ) = {A | ∃B ∈ first(Σ).A is below B in Σ}. This
is important because it contains all the formulae down which we will propagate
cuts.

Now, let us write Σ1 <Πp Σ2 to abbreviate the condition that there exists
Ai ∈ first(Σi) such that A1 <Πp A2. We get the important result for commands:

Lemma B.7(i) If disjoint subdeductions Σ1 and Σ2 of Πp deduce behaviour about
a guarded command or command, and moreover Σ1 <Πp Σ2 then Σ2 6<Πp Σ1

Proof: Essentially because first(Σ) contains at most one occurrence which inter-
acts with another part of Πp. 2

Then the first transition of deductions of program behaviour can be determined
by

first(Σ) =



first(Σ′) if PP (Σ) = R :: c and Σ′ ` Σ
first(Σ1) if Σ1 I Σ2 ` Σ
first(Σ1) if PP (Σ) = p1 ‖ p2, Σ1 ‖ Σ2 ` Σ and Σ1 <Πp Σ2

first(Σ2) if PP (Σ) = p1 ‖ p2, Σ1 ‖ Σ2 ` Σ and Σ2 <Πp Σ1

first(Σ1) ∪ first(Σ2) if PP (Σ) = p1 ‖ p2 and neither of the above
two cases

Proposition B.7 Let disjoint subdeductions Σ1 and Σ2 of Πp be such that Σ1 <Πp
Σ2 then Σ2 6<Πp Σ1.

Proof: By lemma B.7(i) and induction. 2

We use this relation to schedule the transitions. first(Σ1) and first(Σ2) will
be disjoint since first(Σi) ⊆ O(Σi) and Σ1 and Σ2 are disjoint trees in the cases
for parallel composition above. The only way for an occurrence of first(Σ1) is
via a sequence of interaction links. So if first(Σ1) is sequenced after first(Σ2), it
means that something in Σ1 communicates with a process sequenced after the first
transition of Σ2.

Proposition B.8 For all transition judgments γ
〈R〉−→ γ′ in first(Σ), γ is a sub-

phrase of PP (Σ).

Proof: Essentially because the only rule of CSPCUT in which the left-hand side
of a premise is not a proper subphrase of the left-hand side of the conclusion is
the repetition rule. But the definition of first(Σ) ignores the problematic premise.

2

Let us call a cut-formula the left-hand side of the conclusion of an instance of
the cut rule. This lemma allows us to define the codegree of a cut-formula as the
difference in size between the whole program and the program phrase where the



Appendix B. The correctness of CSP 181

cut occurs: when we come to propagate cuts down the deduction (the process of
“peeling off the first transition”), the codegree will decrease until the cut formula
is the entire program (when it will have codegree zero).

We define the codegree of γ with respect to superphrase γ′, written C(γ, γ′),
inductively:

C(γ, γ′) =



0 if γ = γ′

1 + C(γ, g) if γ′ ∈ {if g fi, do g od}
1 + C(γ, c) if γ′ ∈ {R :: c, c; c′, b⇒c}
1 + C(γ, pi) if γ′ = p1 ‖ p2 and γ occurs in pi
1 + C(γ, gi) if γ′ = g1 [] g2 and γ occurs in gi

We define the codegree of an eval-free CSPCUT deduction Σ to be the maximum
of its codegrees that occur in ↓ first(Σ). (We are only interested in propagating
cuts to peel off the first transition.)

Then the following result can be proved in a similar way to that of proposi-
tion B.4, using the elimination rules found in figures B–6, B–7 and B–8 in reverse.
Note that we choose which parallel composition rules to “unapply” according to
our scheduling. For instance, we unapply the last rule of figure B–8 only when we
know that the first transitions of p1 and p2 belong to the first transition of their
parallel composition in Πp.

Proposition B.9 If CSPCUT ` p −→ p′ then there exists a CSPCUT -deduction
of codegree 0 which also deduces it. 2

In actual fact, given the above definitions, we can also show that if Π′p has codegree
0 then there exists only one cut-rule in ↓ first(Π′p), and moreover it occurs at the
bottom. This follows because after we first introduce cuts by eliminating the eval-
rules from the CSPCUT analogue of the CSP-deduction, there will be exactly one
cut per process whose first transition occurs during the first transition of the whole
program. The process of propagating cuts down programs will merge the cuts of
parallel programs.

Note that the second rule of figure B–8 and its symmetric counterpart actually
introduce cuts, and may therefore increase the codegree. In this case we have to
do a separate proof to reduce this codegree to 0 before we can proceed with the
overall proof. This works because we can only introduce a bounded number of
such cuts.

Another useful property is that the cut propagation rules do not alter the
relative dependencies between the dangling interactions attached to occurrences
in first(Σ), nor to dangling interactions within the rest of Σ. Instead, all it does
is introduce dependencies between these two groups. Thus when we strip away
the single cut rule at the bottom, we shall have a cut-free and eval-free CSPCUT -
deduction (i.e., a CSPI-deduction) corresponding to the first transition of Πp and
another deduction corresponding to all the subsequent transitions, both of which
reflect dependencies of Πp. Hence we shall be able to use the Interaction Reflection
theorem to glue interactions back with the store.



Appendix B. The correctness of CSP 182

The problem with stores

Unfortunately, it is not quite so simple: in an evaluation deduction, transitions
of different processes which are scheduled one after the other may interleave their
store writes (e.g., when evaluating expressions). This small subsection outlines the
way in which we can reshuffle these store transitions to segregate the transistions
induced by the first transition of the program from all the rest.

When X ⊆ O(Σ) and Σ is not a store deduction, we define stores(X) to be the set

{A ∈ O(Πs) | ∃B ∈ X.A ∼Π B}
We define the convex closure of stores(X) in Πs, written stores〈Πs〉(X), to be the
set

{A | ∃B,C ∈ stores(X).B .Πs A .Πs C}
that is, the set of all store transitions that occur interleaved with those associated
with X. What we want in order to peel off the store transitions of the first
transitions of Πp is the situation where

stores(first(Πp)) = stores〈Πs〉(first(Πp))

that is, when there are no extra transitions interleaved with the first ones.

The following proof is not difficult, just tedious. It depends on proposition B.7
and the Store Reshuffling proposition (5.1). It involves repeatedly swapping the
order of store transitions, gradually migrating the unwanted transitions after those
in stores(first(Πp)). The main difficulty is that we have to ensure we do not
introduce any sequencing errors — i.e., that we can still reassemble the altered
store deduction to the original program deduction. This boils down to the fact
that we can only commute the order of two transitions if their respective program
occurrences are unrelated by .Πp. It can be shown that this is the case.

Proposition B.10 Let Π  p, σ  σ′ be a CSPCUT deduction. with fragments
Πp ` p and Πs ` σ  σ′. Then there exists a CSPCUT -deduction Π′s such that
Πp ⊗f Π′s  p, σ  σ′′ where σ′ ' σ′′ and stores(first(Πp)) = stores〈Π′s〉(first(Πp)).

2

We can use the Store Reshuffling proposition to partition the store deduction
Π′s into two pieces, joined by a single cut rule. The first piece contains just those
transitions induced by first(Πp), and the second contains the rest. Again, the inter-
nal dependencies between the interactions of both pieces reflect the dependencies
of Π′s. So therefore, we can simply remove the first piece and use the Interaction
Reflection theorem to assemble it with the first transition.

By repeating this process, we build up a sequence of interactions. Therefore

Proposition B.11 For all p, σ, σ′, σ′′, and each row of the following table, if CSP
properly deduces the left hand column, then CSPCUT properly deduces the middle
column such that the right-hand column is true.

p, σ  σ′ p −→ done , σ  σ′′ σ′ ' σ′′
p†, σ  σ′ p −→ aborted, σ  σ′′ σ′ ' σ′′

2



Appendix B. The correctness of CSP 183

Therefore, we have shown that

Proposition B.12 For all p, σ, σ′ there exists a σ′′, and each row of the following
table, if CSPSOS deduces the left hand column, then CSP properly deduces the
middle column such that the right hand column is true. Moreover, for all p, σ, σ′′

there exists a σ′ such that if CSP properly deduces the middle column then CSPSOS
deduces the left hand column such that the right-hand column is true.

〈p, σ〉( ε−→)+σ′ p, σ  σ′′ σ′ ' σ′′
〈p, σ〉( ε−→)+aborted p†, σ  σ′′

2



Appendix B. The correctness of CSP 184



Bibliography

[ABNB+86] E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fantechi, A. Giovini,
P. Inverardi, E. Karlsen, F. Mazzanti, J. Storbank Pedersen, G. Reg-
gio, and E. Zucca. The draft formal definition of ANSI/MIL-STD
1815 Ada. Deliverable 7 of the CEC MAP project, 1986.

[Abr93] S. Abramsky. Computational interpretations of linear logic. Theo-
retical Computer Science, 111:3–57, 1993. Special issue for MFPS
1990.

[ACO93] I. Attali, D. Caromel, and M. Oudshoorn. A formal definition of the
dynamic semantics of the Eiffel language. In Proceedings of the six-
teenth Australian Computer Science Conference (ACSC’93), 1993.
WWW: http://zenon.intria.fr:8003/croap/centaur/papers.html.

[ACW95] I. Attali, D. Caromel, and A. Wendelborn. From a formal dynamic
semantics of Sisal to a Sisal environment. In Proceedings of the 28th
Hawaiian conference of system sciences (HICSS). IEEE Computer
Society Press, 1995.

[Acz77] P. Aczel. An introduction to inductive definitions. In J. Barwise,
editor, The handbook of mathematical logic, pages 739–782. North-
Holland, 1977.

[AFdR80] K. R. Apt, N. Francez, and W. P. de Roever. A proof system for
communicating sequential processes. ACM Transactions on Pro-
gramming Languages and Systems, 2(3):359–385, 1980.

[AGN94] S. Abramsky, S. Gay, and R. Nagarajan. Interaction cat-
egories and the foundations of typed concurrent program-
ming. In Proceedings of the 1994 Marktoberdorf Summer
School. Springer-Verlag, 1994. Available by anonymous ftp from
theory.doc.ic.ac.uk/papers/Abramsky/marktoberdorf.ps.

[AI75] European Computer Manufacturers’ Association and American Na-
tional Standards Institute. PL/I BASIS/1–12, volume BSR X3.53.
Computer and Business Equipment Manufacturers’ Association,
1975.

[And91] James H. Andrews. Logic programming: operational semantics and
proof theory. PhD thesis, Laboratory for the Foundations of Com-
puter Science, University of Edinburgh, 1991.

185



Bibliography 186

[AO91] K. R. Apt and E-R. Olderog. Verification of sequential and concur-
rent programs. Springer-Verlag, 1991.

[Apt81] K. R. Apt. Ten years of Hoare’s logic: A survey — part 1. ACM
Transactions on Programming Languages and Systems, 3(4):431–
483, October 1981.

[Apt83] K. R. Apt. Formal justification for a proof system for Communicat-
ing Sequential Processes. Journal of the Association for Computing
Machinery, 30(1):197–216, 1983.

[AR87a] E. Astesiano and G. Reggio. Direct semantics for concurrent lan-
guages in the SMoLCS approach. IBM journal of research and de-
velopment, 31(5):512–534, 1987.

[AR87b] E. Astesiano and G. Reggio. SMoLCS driven concurrent calculi. In
Proceedings TAPSOFT’87. Springer-Verlag, 1987. LNCS 245.

[AS] Action semantics home page. WWW,
http://www.daimi.aau.dk/˜thales/as/AS.html.

[Ast91] E. Astesiano. Inductive and operational semantics. In E. J. Neuhold
and M. Paul, editors, Formal Description of Programming Concepts.
Springer Verlag, 1991.

[BCGL88] R. Bjornson, N. Carriero, D. Gelernter, and J. Leichter. Linda,
the portable parallel. Technical Report Research Report 520, Yale
University, 1988.

[Ber89] G. Berry. Real time programming: special purpose or general pur-
pose languages. In G. X. Ritter, editor, Information processing ’89,
pages 11–18. North Holland, 1989.

[Ber91] Dave Berry. Generating program animators from programming lan-
guage semantics. PhD thesis, Laboratory for the Foundations of
Computer Science, University of Edinburgh, 1991.

[Ber93a] G. Berry. Preemption in concurrent systems. In Proceedings
FSTTCS ’93, pages 72–93. Springer-Verlag, 1993. LNCS 761;
WWW: http://cma.cma.fr/ftp/esterel/preemption.ps.gz.

[Ber93b] B. Berthomieu. Programming with behaviours in an ML framework:
the syntax and semantics of LCS. Technical Report LAAS/CNRS
Technical Report 93144, Laboratoire d’Automatique er d’Analyse
des Systèmes du CNRS, Tolouse Cedex, France, 1993.

[Bes83] E. Best. Relational semantics of concurrent programs (with some
applications). In D. Bjørner, editor, Formal Description of Pro-
gramming Concepts – II, pages 431–452. North-Holland, 1983.



Bibliography 187

[BG92] G. Berry and G. Gonthier. The synchronous programming
language ESTEREL: design, semantics, implementation. Sci-
ence of Computer Programming, 19(2):83–152, 1992. WWW:
http://cma.cma.fr/ftp/esterel/BerryGonthierSCP.ps.gz.

[BH83] P. Brinch-Hansen. The programming language Concurrent PAS-
CAL. In E. Horowitz, editor, Programming languages: A Grand
Tour, pages 264–272. Springer-Verlag, 1983.

[BIM88] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced:
preliminary report. In ACM Symposium on the Principles of Pro-
gramming Languages (POPL), volume 15, 1988.

[BJ78] D. Bjørner and C. B. Jones, editors. The Vienna Development
Method: the meta-language. Springer-Verlag, 1978. LNCS 61.

[BJ82] D. Bjørner and C. B. Jones, editors. Formal Specification and Soft-
ware Development. Prentice-Hall International, 1982.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs. In ACM Symposium on the
Principles of Programming Languages (POPL), volume 4, pages 238–
252. ACM Press, 1977.

[CEN] CENTAUR home page. WWW,
http://zenon.inria.fr:8003/croap/centaur/centaur.html.

[Cen96] Pietro Cenciarelli. Computational Applications of Calculi based on
Monads. PhD thesis, LFCS, department of computer science, the
University of Edinburgh, Forthcoming, 1996.

[Cli85] W. D. Clinger et. al. The revised revised report on scheme. Technical
report, Indiana University 174 and MIT Laboratory for Computer
Science 848, 1985.

[CM84] W. F. Clocksin and C. S. Mellish. Programming in Prolog,2nd Edi-
tion. Springer-Verlag, 1984.

[Coh65] P. M Cohn. Universal Algebra. New York, Harper and Row, 1965.

[CPS89] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Work-
bench: A semantics-based verification tool for finite-state systems.
In Proceedings of the Workshop on Automated Verification Methods
for Finite-state Systems. Springer-verlag, 1989. LNCS 407.

[CU73] J. Cleaveland and R. Uzgalis. What every programmer should know
about grammar. Technical report, Dept. Computer Science, Univer-
sity of California, Los Angeles, 1973.

[CWB] Concurrency workbench home page. WWW,
http://www.dcs.ed.ac.uk/packages/cwb.



Bibliography 188

[DBOM81] B. Du Boulay, T. O’Shea, and J. Monk. The black box inside the
glass box: presenting concepts to novices. International Journal of
Man-Machine Studies, 14:237–249, 1981.

[deB69] J. W. deBakker. Semantics of programming languages. Advances in
Information Systems Science, 2, 1969.

[Des84] Th. Despeyroux. Executable specification of static semantics. In
Semantics of data types. Springer-Verlag, 1984. LNCS 173.

[Des88] J. Despeyroux. TYPOL: a formalism to represent natural semantics.
Technical Report Research report 94, INRIA, 1988.

[Dij65] E. W. Dijkstra. Cooperating sequential processes. Technical Report
EWD-123, Technological University, Eindhoven, The Netherlands,
1965. reprinted in [Gen68], pages 43–112.

[Dij76] E. W. Dijkstra. A discipline of programming. Prentice-Hall, 1976.

[DJ86] M. Dam and F. Jensen. Compiler generation from relational se-
mantics. In European Symposium on Programming, pages 1–30.
Springer-Verlag, 1986. LNCS 213.

[dNH84] R. de Nicola and M. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83–133, 1984.

[DS90] E. W. Dijkstra and C. S. Scholten. Predicate calculus and program
semantics. Springer-Verlag, 1990.

[DS92] Fabio Q. B. Da Silva. Correctness proofs of compilers and debuggers:
an approach based on structural operational semantics. PhD thesis,
Laboratory for the Foundations of Computer Science, University of
Edinburgh, 1992.

[EA] Evolving algebras home page. WWW,
http://www.eecs.umich.edu/ealgebras.

[End77] H. B. Enderton. Elements of Set Theory. Academic Press, 1977.

[FC94] M. Felleisen and R. Cartwright. Extensible denotational language
specifications. In TACS ’94. Springer-Verlag, 1994. LNCS 789.

[FFHD86] M. Felleisen, D. P. Friedman, E. Hohlbecker, and B. Duba. Reason-
ing with continuations. Symposium of Logic in Computer Science,
1:131–141, 1986.

[FFHD87] M. Felleisen, D. P. Friedman, E. Hohlbecker, and B. Duba. A syn-
tactic theory of sequential control. Theoretical Computer Science,
52(3):205–237, 1987. Preliminary version in [FFHD86].

[Flo67] R. W. Floyd. Assigning meanings to programs. In Proceedings AMS
Symposium of Applied Mathematics, volume 19, pages 19–31. Amer-
ican Mathematical Society, 1967.



Bibliography 189

[Gar63] J. L. Garwick. The definition of programming languages. In T. B.
Steel Jr., editor, Formal language description languages, pages 139–
147. North-Holland publishing company, Amsterdam, The Nether-
lands, 1963.

[Gar95] P. Gardner. Equivalences between logics and their representing type
theories. Mathematical Structures in Computer Science, 5:to appear,
1995.

[GB90] J. Goguen and R. Burstall. INSTITUTIONS: Abstract model theory
for specification and programming. Technical Report ECS-LFCS-90-
106, LFCS, Edinburgh University, 1990.

[Gen68] F. Genuys. Programming Languages. Academic Press, London,
1968.

[Gir87] J-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[Gir89] J-Y. Girard. Towards a geometry of interactions. In J. W. Gray
and A. Scedrov, editors, Categories in computer science and logic,
volume 92 of Contemporary Mathematics. American Mathematical
Society, 1989.

[GK93] Y. Gurevich and Huggins J. K. The semantics of the C programming
language. In Proceedings of Computer Science Logic (CSL)’92, pages
274–308. Springer Verlag, 1993. LNCS 702. Obtainable by anony-
mous FTP — ftp.eecs.umich.edu:groups/Ealgebras/calgebra.ps.

[GLT89] J-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science 7. Cambridge University
Press, 1989. ISBN 0-521-37181-3.

[GMP89] A. Giacalone, A. Mishra, and S. Prasad. Facile: a symmetric in-
tegration of concurrent and functional programming. International
journal of parallel programming, 18(2):121–160, 1989.

[GMP90] A. Giacalone, A. Mishra, and S. Prasad. Operational and algebraic
semantics for Facile: a symmetric integration of concurrent and func-
tional programming. In ICALP 90 (LNCS 443), pages 765–780.
Springer-Verlag, 1990.

[Göd58] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des
finiten Standpunktes. Dialectica, 12:280–287, 1958. English version
in Journal of Philosophic Logic 9:133–142, 1980.

[Grä79] G. Grätzer. Universal Algebra. Springer-Verlag, 2 edition, 1979.

[GS86] S. Graf and J. Sifakis. A modal characterization of observational
congruence on finite terms of CCS. Information and Control, 68:125–
145, 1986.



Bibliography 190

[Gun91] C. Gunter. Forms of semantic specification. Bulletin EATCS, 45:98–
113, 1991.

[Gur91] Y. Gurevich. Evolving algebras, a tutorial introduction. Bulletin
EATCS, 43:254–284, Feb. 1991.

[Han93] J. Hannan. Extended natural semantics. Journal of Functional Pro-
gramming, 3(2):123–152, 1993.

[Har84] D. Harel. Dynamic logic. In Handbook of philosophical logic vol. II,
pages 497–604. Kluwer academic publishers, 1984.

[Hen90] M. Hennessy. The semantics of programming languages — an ele-
mentary introduction using Structural Operational Semantics. Wi-
ley, 1990.

[HK81] J. L. Hennessy and R. B. Kieburtz. The formal definition of a real-
time language. Acta Informatica, 16:309–345, 1981.

[HL74] C. A. R. Hoare and P. E. Lauer. Consistent and complementary
formal theories of the semantics of programming languages. Acta
Informatica, 3:135–153, 1974.

[HM94] J. S. Hodas and D. Miller. Logic programming in a fragment of in-
tuitionistic linear logic. Information and Computation, 110(2):327–
365, 1994.

[HMT90] R. Harper, R. Milner, and M. Tofte. The Definition of Standard ML.
MIT Press, 1990.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576–580,583, 1969.

[Hoa74] C. A. R. Hoare. Monitors: An operating systems structuring con-
cept. Communications of the ACM, 17(10):549–557, 1974. Erratum
in CACM 18(2), 1975, page 95.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21(8):666–677, 1978.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, 1985.

[Hoo86] J. Hooman. The quest goes on: a survey of proofsystems for par-
tial correctness of CSP. In J. W. de Bakker, W-P. de Roever, and
G. Rozenberg, editors, Current Trends in Concurrency, pages 343–
395. Springer-Verlag, 1986. LNCS 224.

[HS86] J. R. Hindley and J. P. Seldin. Introduction to Combinators and λ–
Calculus. London Mathematical Society Student Texts 1. Cambridge
University Press, 1986. ISBN 0-521-31839-4.



Bibliography 191

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison–Wesley, 1979. ISBN 0-201-
02988-X.

[HW73] C. A. R. Hoare and N. Wirth. An axiomatic definition of the pro-
graming language PASCAL. Acta Informatica, 2:335–355, 1973.

[IP91] P. Inverardi and C. Priami. Evaluation of tools for the analysis of
communicating systems. Bulletin of EATCS, 45:158–185, 1991.

[Jab95] A. Jaber. Spécification de la sémantique dynamique du lanage Sisal.
Technical report, DEA, Université de Nice-Sophia Antipolis, June
1995.

[Jon83] C. Jones. Specification and design of (parallel) programs. In Pro-
ceedings of IFIP, pages 321–332, 1983.

[Kah87] G. Kahn. Natural semantics. In G. Goos and J. Hartmanis, editors,
Proceedings of the Symposium on Theoretical Aspects of Computer
Science. Springer-Verlag LNCS, Vol. 247, 1987.

[Kah93] S. Kahrs. Mistakes and ambiguities in the definition of Standard ML.
Technical Report ECS-LFCS-93-257, Laboratory for the Founda-
tions of Computer Science, University of Edinburgh, 1993. WWW:
http://www.dcs.ed.ac.uk/publications/lfcsreps/EXPORT/93/ECS-
LFCS-93-257/.

[Kri68] G. Kriesel. A survey of proof theory. Journal of Symbolic Logic,
33(3), 1968.

[Kri71] G. Kriesel. A survey of proof theory II. In J.E. Fenstad, editor, Proc.
2nd Scandinavian logic symposium, pages 109–170. North Holland,
1971.

[KST94] S. Kahrs, D. Sannella, and A. Tarlecki. The definition of extended
ML. Technical Report ECS-LFCS-94-300, Laboratory for the Foun-
dations of Computer Science, University of Edinburgh, 1994.

[Lan64] P. Landin. The mechanical evaluation of expressions. Computer
Journal, 6(4):308–320, 1964.

[LG81] G. M. Levin and D. Gries. A proof technique for Communicating
Sequential Processes. Acta Informatica, 15:281–302, 1981.

[LS84] L. Lamport and F. Schneider. The “Hoare Logic” of CSP and all
that. ACM Transactions on Programming Languages and Systems,
6(2):281–296, 1984.

[LW69] P. Lucas and K. Walk. On the formal description of PL/I. Annual
Rev. Automatic Programming, 6(3):105–182, 1969.

[MC81] J. Misra and K. Chandy. Proofs of networks of processes. IEEE
Transactions on Software Engineering, SE-7(4):417–426, 1981.



Bibliography 192

[Men79] E. Mendelson. Introduction to mathematical logic 2nd edition. Van
Nostrand Co., 1979.

[MG95] M. Miculan and F. Gadducci. Modal µ-types for processes. In Sym-
posium of Logic in Computer Science, volume 10, pages 221–231.
IEEE, 1995.

[Mil] R. Milner. Calculi for interaction. WWW:
ftp://ftp.cl.cam.ac.uk/users/rm135/ac9.ps.Z.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil91] R. Milner. The polyadic π-calculus: a tutorial. Technical Report
ECS-LFCS-91-180, The laboratory for the foundations of computer
science, Edinburgh University, 1991.

[Mil94] D. Miller. Forum: a multiple-conclusion specification logic. In Sym-
posium of Logic in Computer Science, pages 272–281, 94. To appear
TCS, and
WWW: ftp://ftp.cis.upenn.edu/pub/papers/miller/tcs95.dvi.Z.

[Milar] D. Miller. A survey of linear logic programming. Newsletter of the
Network of Excellence on Computational Logic, pages –, To Appear.
WWW:
ftp://ftp.cis.upenn.edu/pub/papers/miller/ComputNet95/llsurvey.html.

[Mit] K. Mitchell. Language semantics and implementation. Lecture
notes, The Department of Computer Science, Edinburgh University,
?

[Mit94] K. Mitchell. Concurrency in a natural semantics. Technical Report
ECS-LFCS-94-311, The Laboratory for the Foundations of Com-
puter Science, the University of Edinburgh, 1994. Available via
the WWW: http://www.dcs.ed.ac.uk/lfcsreps/EXPORT/94/ECS-
LFCS-94-311.

[MLB76] M. Marcotty, H. F. Ledgard, and G. V. Bochmann. A sampler of
formal definitions. ACM Computing surveys, 8(2):191–275, 1976.

[Mog90] E. Moggi. An abstract view of programming languages. Technical
Report ECS-LFCS-90-113, Laboratory for the foundations of Com-
puter Science, Edinburgh University., 1990.

[Mog91] E. Moggi. Notions of computations and monads. Information and
Control, 93(1):55–92, July 1991.

[Mos74] P. D. Mosses. The mathematical semantics of Algol 60. Technical
Report PRG–12, Programming research group, University of Oxford,
1974.

[Mos90] P. D. Mosses. Denotational semantics. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science Volume B: Formal



Bibliography 193

Models and Semantics, chapter 11, pages 575–631. Elsevier Science
Publishers, B.V., 1990.

[Mos91] P. D. Mosses. Action semantics. Technical Report DAIMI Fn-48,
Aarhus University, Denmark, 1991. Now published as volume 26
of Cambridge Tracts in Theoretical Computer Science, Cambridge
University Press, 1992.

[MP93] M. C. Mayer and F. Pirri. First order abduction via tableau and
sequent calculi. Bulletin of the IGPL, 1(1):99–117, 1993. WWW:
http://www.mpi-sb.mpg.de:80/igpl/Bulletin/.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
(parts I and II). Information and Control, 100:1–77, 1992.

[MRP] A. Mifsud, Milner R., and J. Power. Control structures I. WWW:
ftp://ftp.cl.cam.ac.uk/users/rm135/cs1.ps.Z.

[MS92] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings of
the 19th International Conference on Automata, Languages and Pro-
gramming (ICALP), pages 685–695. Springer-Verlag, 1992. Lecture
Notes in Computer Science vol. 623.

[MT90] R. Milner and M. Tofte. Commentary on Standard ML. MIT press,
1990.

[MT92] R. Milner and M. Tofte. Co-induction in a relational semantics.
Theoretical Computer Science, 17:209–220, 1992.

[NN92] H. R. Neilsen and F. Neilsen. Semantics with applications: a formal
introduction. John Wiley and sons, 1992.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskell. Petri nets, event structures
and domains, part I. Theoretical Computer Science, 13:85–108, 1981.

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs I. Acta Informatica, 6:319–340, 1976.

[OPTT95] P.W. O’Hearn, A. J. Power, M. Takeyama, and R. D. Ten-
nent. Syntactic control of interference revisited. Electronic
notes in Theoretical computer science, 1, 1995. On the WWW:
http://top.cis.syr.edu/users/ohearn/scir.ps.

[Oss83] M. Ossefort. Correctness proofs of communicating sequential pro-
cesses: three illustrative examples from the literature. ACM Trans-
actions on Programming Languages and Systems, 5(4):620–640,
1983.

[PE88] F. Pfenning and C. Elliott. Higher-order abstract syntax. In SIG-
PLAN ’88 conference on programming language design and imple-
mentation, pages 199–208, 1988.



Bibliography 194

[Pit91] A.M. Pitts. Evaluation logic. In G. Birtwistle, editor, Workshops in
Computing 283. 4th Higher Order Workshop, Banf. 1990, Springer
Verlag, 1991.

[Plo81] G. D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI FN-19, Aarhus University, Denmark, 1981.

[Plo83] G. D. Plotkin. An operational semantics for CSP. In D. Bjørner,
editor, Formal description of programming concepts - II, pages 199–
225. North-Holland publishing company, 1983.

[Plo85] G. D. Plotkin. Denotational semantics with partial functions. Lec-
ture at CSLI Summer School, 1985.

[Pol95] Robert Pollack. The Theory of LEGO, a proof checker for the ex-
tended calculus of constructions. PhD thesis, Laboratory for the
Foundations of Computer Science, University of Edinburgh, 1995.

[PR96] A. M. Pitts and J. R. X. Ross. Process calculus based upon evalu-
ation to committed form. In U. Montanari and V. Sassone, editors,
CONCUR’96: Concurrency Theory, Proc. 7th Int. Conf. Pisa, 1996,
volume 1119 of Lecture Notes in Computer Sceince, pages 18–33.
Springer-Verlag, Berlin, 1996.

[Pra65] D. Prawitz. Natural Deduction. Almquist and Wiksell, Stockholm,
1965.

[Pra71] D. Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor,
Proc. 2nd Scandinavian logic symposium. North Holland, 1971.

[Pra91] K. V. S. Prasad. A calculus of broadcasting systems. In TAP-
SOFT’91 Volume 1:CAAP. Springer-Verlag, 1991. LNCS 493.

[Pra93] K. V. S. Prasad. Programming with broadcasts. In CONCUR ’93.
Springer-Verlag, 1993. LNCS 715.

[PT95] B. C. Pierce and D. N. Turner. Pict: A programming language based
on the pi-calculus, 1995. Compiler, documentation, demonstration
programs, and standard libraries; available electronically
http://www.cl.cam.ac.uk/users/bcp1000/ftp/pict.

[Red93a] U. S. Reddy. Global state considered unnecessary: Semantics
of interference-free imperative programming. In ACM SIGPLAN
Workshop. on State in Programming Languages, pages 120–135.
Technical Report YALEU/DCS/RR-968, June 1993.

[Red93b] U. S. Reddy. A linear logic model of state. Available by anonymous
ftp from theory.doc.ic.ac.uk in /theory/papers/Reddy, 1993.

[Rep91a] J. H. Reppy. CML: a higher-order concurrent language. In Pro-
ceedings of the SIGPLAN’91 conference on programming language
design and implementation, pages 293–305, 1991.



Bibliography 195

[Rep91b] J. H. Reppy. An operational semantics of first-class synchronous
operations. Technical Report TR 91-1232, Dept. Computer Science,
Cornell University, 1991.

[Ret93] C. Retoré. Réseaux et Séquents Ordonnés. PhD thesis, Equipe de
Logique, Departement de Mathematiques, Université Paris, 1993.

[Rey81] J. C. Reynolds. The Craft of Programming. Prentice-Hall Interna-
tional, 1981.

[San93] Davide Sangiorgi. Expressing mobility in process algebras: first-order
and higher-order paradigms. PhD thesis, Laboratory for the founda-
tions of computer science, University of Edinburgh, 1993.

[San94] P. Sansom. Execution profiling for non-strict functional languages.
PhD thesis, Department of Computing Science, University of Glas-
gow, 1994.

[Sch88] D. Schmidt. Denotational Semantics — a methodology for language
development. Wm. C. Brown Publishers, 1988. ISBN 0-697-06849-8.

[Sch95] D. Schmidt. Natural-semantics-based abstract interpretation. In
Proceedings of the second international Static Analysis Symposium
’95, pages 1–18. Springer-Verlag, 1995. LNCS 983.

[Sco69] D. Scott. A type-theoretical alternative to CHUCH, ISWIM,
OWHY, 1969. Later published in Theoretical Computer Science
121:411–440, 1993.

[SMo] The SMoLCS repository. FTP, ftp://ftp.disi.unige.it/pub/smolcs/.

[ST99] D. Sannella and A. Tarlecki. Foundations of algebraic specifications
and formal program development. Cambridge University Press, To
appear, 199?

[Sti88] C. Stirling. A generalization of Owicki-Gries’s Hoare Logic for a
concurrent while language. Theoretical Computer Science, 58:347–
359, 1988.

[Sti92] C. Stirling. Modal and temporal logics. In Handbook of Logic in
Computer Science vol. 2, pages 478–571. Oxford: Clarendon, 1992.

[Sun84a] G. Sundholm. Proof theory and meaning. In D. Gabbay and
F. Guenther, editors, Handbook of Philosophical Logic III. Kluwer
Academic Publishers, 1984.

[Sun84b] G. Sundholm. Systems of deduction. In D. Gabbay and F. Guen-
ther, editors, Handbook of Philosophical Logic I. Kluwer Academic
Publishers, 1984.

[Sve86] E. Svendsen. The professional handbook of the donkey. The donkey
sanctuary, 1986.



Bibliography 196

[Tof87] Mads Tofte. Operational Semantics and Polymorphic Type Infer-
ence. PhD thesis, The Laboratory for the Foundations of Computer
Science, The University of Edinburgh, 1987.

[Tro73] A. S. Troelstra. Metamathematical Investigation of Intuitionistic
Arithmetic and Analysis. Springer-Verlag, 1973. Lecture Notes in
Mathematics 344.

[TS85] J-P. Tremblay and P. G. Sorenson. The Theory and Practice of
Compiler Writing. McGraw-Hill, 1985.

[Und93] J. Underwood. On the computational content of classical sequent
proofs. Technical Report ARO Report 94-1, U.S. Department of
Defense Army Research Office, 1993.

[Und95] J. Underwood. Tableau for intuitionistic predicate logic as metathe-
ory. Technical Report ECS-LFCS-95-321, Laboratory for the Foun-
dations of Computer Science, Edinburgh University, 1995. WWW:
http://www.dcs.ed.ac.uk/lfcsreps/EXPORT/95/ECS-LFCS-95-
321.

[VG90] J. Van Glabbeek. The linear-time branching-time spectrum. In Pro-
ceedings CONCUR 90, pages 278–297. Springer-Verlag, 1990. LNCS
458.

[vWMP+75] A. van Wijngaarden, B. J. Mailloux, J. E. Peck, C. H. A. Koster, and
M. Sintzoff. ALGOL 68 revised report. Acta Informatica, 5:1–236,
1975.

[vWMPK69] A. van Wijngaarden, B. J. Mailloux, J. E. Peck, and C. H. A.
Koster. Report on the algorithmic language ALGOL 68. Technical
Report MR101, Mathematisch Centrum, Amsterdam, The Nether-
lands, 1969.

[Wat87] D. A. Watt. An action semantics of Standard ML. In M. Main,
A. Melton, M. Mislove, and D. Schmidt, editors, 3rd Workshop on
the Mathematical Foundations of Programming Language Semantics,
pages 572–598. Springer-Verlag, 1987. LNCS 298.

[Wec92] W. Wechler. Universal Algebra for computer scientists, volume 25
of EATCS monographs on theoretical computer science. Springer-
Verlag, 1992.

[Weg72] P. Wegner. The Vienna definition language. Computing Surveys,
4(1):5–63, 1972.

[Weg76] P. Wegner. Programming languages — the first 25 years. IEEE
Transactions on computers, pages 1207–1225, Dec 1976.

[Wex89] J. Wexler. Concurrent programming in OCCAM 2. Ellis Horwood
(a division of John Wiley and sons), 1989.



Bibliography 197

[Win82] G. Winskel. Event structure semantics for CCS and related lan-
guages. In Proceedings 9th ICALP, pages 581–576. Springer-Verlag,
1982. LNCS 140.

[Win88] G. Winskel. An introduction to event structures. In Proceedings,
Linear Time, Branching Time and Partial Order in Logics and Mod-
els for Concurrency workshop, pages 364–397. Springer-Verlag, 1988.
LNCS 354.

[Wir83] N. Wirth. MODULA: a language for modular multiprogramming. In
E. Horowitz, editor, Programming languages: A Grand Tour, pages
273–305. Springer-Verlag, 1983.

[WN94] G. Winskel and M. Nielsen. Models for concurrency. Technical Re-
port RS-94-12, BRICS Research Series, May 1994. To appear as a
chapter in the Handbook of Logic in Computer Science.

[ZdBdR83] J. Zwiers, A. de Bruin, and W-P. de Roever. A proof system for
partial correctness of dynamic networks of processes. In Proceedings,
Logics of programs, pages 513–527. Springer-Verlag, 1983.

[ZdRvEB85] J. Zwiers, W-P. de Roever, and P. van Emde Boas. Compositional-
ity and concurrent networks, soundness and completeness of a proof-
system. In International Conference on Automata, Languages and
Programming ’85, pages 509–519. Springer-Verlag, 1985. LNCS 194.


