
Decidability of Bisimulation Equivalence
for Normed Pushdown Processes

Colin Stirling
Department of Computer Science

University of Edinburgh
Edinburgh EH9 3JZ, UK
email: cps@dcs.ed.ac.uk

Abstract

We prove that bisimulation equivalence is decidable for normed
pushdown processes.

1 Introduction

In the classical theory of automata the expressive power of pushdown auto-
mata is matched by context-free grammars. Both accept the same family of
languages, the context-free languages. Concurrency theory requires a more
intensional exposition of behaviour (as language equivalence need not be
preserved in the presence of communicating abstract machines). Many
finer equivalences have been proposed. Bisimulation equivalence, due to
Park and Milner, has received much attention.

Baeten, Bergstra and Klop proved that bisimulation equivalence is de-
cidable for irredundant context-free grammars (without the empty pro-
duction). Within process calculus theory these grammars correspond to
normed BPA processes. Their proof relies on isolating a complex period-
icity from the transition graphs of these processes. Simpler proofs of the
result soon followed which expose algebraic structure.

Caucal and Monfort showed that normed pushdown processes (the pro-
cess analogue of irredundant pushdown automata without ε-transitions)
are strictly more expressive than normed BPA with respect to bisimulation
equivalence. In this paper we prove that bisimulation equivalence is decid-
able for this richer family of processes. However the proof is not easy, and
does not follow immediately from the techniques used for showing decid-
ability of normed BPA. One indication of this is that although the proof of

1



decidability of bisimulation equivalence for BPP (Basic Parallel Processes)
is similar to that for BPA bisimulation equivalence is undecidable for the
pushdown extension to BPP.

2 Normed pushdown processes

Ingredients for describing pushdown processes are a finite set of states
P = {p1, . . . , pk}, a finite set of stack symbols Γ = {X1, . . . , Xm}, a finite set
of actions A = {a1, . . . , an} and a finite family of basic transitions, each of
the form pX

a−→ qα where p and q are states, a is an action, X is a stack
symbol and α is a sequence of stack symbols. A pushdown process is then
any expression pα, p ∈ P and α ∈ Γ∗, whose behaviour (transition graph) is
determined by the basic transitions together with the following prefix rule,
where β ∈ Γ∗:

if pX a−→ qα then pXβ a−→ qαβ

This account follows the presentation of Caucal [8]. It is a slight rede-
scription of classical pushdown automata (without ε-transitions and final
states), as for instance in [20], viewing them as generators instead of as
acceptors.

Example 1 Let P = {p, q, r, s}, Γ = {X} and A = {a, b, c, d}. The family of
basic transitions is

{pX
a−→ pXX, pX

c−→ qε, pX
b−→ rε, qX

d−→ sX, sX
d−→ qε, rX

d−→ rε}

where ε is the empty stack sequence. The transition graph generated by
pX is:

qε
d←− sX d←− qX

d←− sXX d←− qXX
d←− . . .↑ c ↑ c ↑ c ...

pX
a−→ pXX

a−→ pXXX
a−→ . . .↓ b ↓ b ↓ b ...

rε
d←− rX

d←− rXX
d←− . . .

For any n ≥ 0 the transition qXXn
d−→ sXXn is derived from the basic

transition qX d−→ sX using the prefix rule when β is Xn. 2

Example 1 illustrates how a pushdown process may generate an infinite
state transition graph. In the following we are interested in comparing the
behaviour of two pushdown processes. Without loss of generality, we can

2



assume that they are built from the same ingredients P, Γ , A and basic
transitions (as the appropriate disjoint union, with respect to states and
stack symbols, of two pushdown descriptions is a pushdown description).
One notion of behaviour of pα is the language it generates, which is the
set of words {w ∈ A∗ : ∃q ∈ P. pα

w−→ qε} where the extended transitions
w−→ are defined in the usual way. Acceptance is by empty stack instead

of by final state (see [20]). The process pX of Example 1 generates the
language {anbdn : n ≥ 0} ∪ {ancd2n : n ≥ 0}. Any language generated
by a pushdown process is context-free, and for each context-free language
without the empty string there is a pushdown process which generates it.
This remains true under the following restriction. A process pα is normed
if every reachable process with a non-empty stack generates a non-empty
language. (That is, for every qβ such that β 6= ε and pα v−→ qβ for some
v, there is a w and a state r, such that qβ w−→ rε.) Normedness amounts
to irredundancy in the pushdown automaton. In the rest of the paper we
assume this restriction to normed pushdown processes.

Each context-free language without the empty string is also generated
by a normed pushdown process whose state set P contains just one state.
In which case P is superfluous, and the result is a normed context-free
or BPA process (in Greibach normal form). The stack symbols Γ are the
nonterminals and basic transitions have the form X

a−→ α. The prefix rule
is: if X a−→ α then Xβ a−→ αβ. The language generated by a context-free
process α is {w : α

w−→ ε}. There is a standard transformation, see [20],
which translates a normed pushdown process into a normed context-free
process which generates the same language. With respect to languages, the
expressive power of normed context-free processes is the same as normed
pushdown processes.

Concurrency theory is built on a more intensional account of behavi-
oural equivalence than that given by languages (as language equivalence
need not be preserved in the presence of communicating abstract machines).
A pivotal notion, due to Park and Milner, is bisimilarity which is finer than
language equivalence on processes.
Definition 1 A binary relation R between processes is a bisimulation re-
lation provided that whenever (E, F) ∈ R, for all a

if E a−→ E ′ then ∃F′. F a−→ F ′ and (E ′, F ′) ∈ R, and
if F a−→ F ′ then ∃E′. E a−→ E ′ and (E ′, F ′) ∈ R.

Two processes E and F are defined to be bisimulation equivalent, or bisim-
ilar, written E ∼ F, if there is a bisimulation relation R relating them.

The transformation from pushdown processes to context-free processes
does not preserve bisimulation equivalence. In fact, with respect to bisim-
ilarity normed pushdown processes constitute a richer family than normed

3



context-free processes, as shown by Caucal and Monfort [11]. (Independ-
ently [1] proves a variant of this result when introducing the state operator
into process algebra.) Their proof is very elegant, and utilises the canon-
ical graph of a process which is the quotient of its transition graph with
respect to bisimulation equivalence. For instance, the canonical graph for
Example 1 fuses together the pairs of vertices labelledqXn and rX2n for any
n ≥ 0. Normed context-free processes are closed under canonical graphs in
the sense that for each such canonical graph there is a normed context-free
process whose transition graph is isomorphic to it. Normed pushdown pro-
cesses fail to have this property. Caucal and Monfort show that Example 1
is a counterexample, as its canonical graph lacks the regular structure
(as identified by Muller and Schupp [25]) that the transition graph of a
pushdown process must possess: see [6] for further results about canonical
graphs.

Burkart and Steffen provide additional insight into pushdown processes
[4], by showing that, unlike context-free processes, they are closed un-
der Hoare parallel composition with finite state processes (with respect to
bisimilarity). Moreover they demonstrate that the family of pushdown pro-
cesses is the smallest extension of context-free processes with this closure
property.

Baeten, Bergstra and Klop proved that bisimulation equivalence is de-
cidable for normed context-free processes [2, 3]. Simpler proofs were de-
veloped in [7, 15, 22, 17], and [19] showed that there is even a polynomial
time decision procedure. The decidability result was generalized in [14]
to encompass unnormed processes, and then refined in [5] to give upper
bounds. Groote and Hüttel proved that other standard equivalences on
processes (traces, failures, simulation, 2/3-bisimulation etc..,) are all unde-
cidable [16]. Similar results were proved for Basic Parallel Processes, BPP,
which are like context-free processes except that a process expression α is
a multiset∗. Christensen, Hirshfeld and Moller showed that bisimulation
equivalence is decidable for normed BPP [12], and this result was gener-
alised in [13] to include the unnormed case. Hüttel proved that the other
equivalences are undecidable [21].

Decidability of bisimulation equivalence for normed pushdown processes
is harder to show than for normed context-free processes. There are many
reasons for this. First Baeten, Bergstra and Klop’s method is not applic-
able, as normed pushdown transition graphs need not display the period-
icity upon which their proof relies. Secondly, the structural methods in the
simplifed proofs of decidability, which appeal to decomposition and con-
gruence, are not immediately applicable, as it is not clear what are the
components of a pushdown process: a context-free process X1 . . . Xn is built

∗The prefix rule becomes: if X a−→ α then δXβ a−→ δαβ.

4



from the subprocesses Xi, but a process pX1 . . . Xn does not contain Xi as
a pushdown component. Perhaps the clearest indication of the increased
difficulty is that for the pushdown extension of BPP† bisimulation equival-
ence is undecidable, a result due to Hirshfeld (utilizing Jančar’s technique
for showing undecidability of bisimilarity for Petri nets [23]): for details
see the excellent survey [24].

The proof presented below of decidability of bisimulation equivalence
for normed pushdown processes consists of two semi-decision procedures
(for which we are unable to provide a complexity measure). One half of the
proof is easy, as bisimilarity is characterizable using approximants when
processes, such as pushdown processes, are image-finite‡.

Definition 2 The family {∼n : n ≥ 0} is defined inductively as follows

E ∼0 F for all processes E, F
E ∼n+1 F iff for each a ∈ A

if E a−→ E ′ then ∃F′. F a−→ F ′ and E ′ ∼n F ′, and
if F a−→ F ′ then ∃E′. E a−→ E ′ and E ′ ∼n F ′

The following is a standard result.

Proposition 1 If E and F are image-finite then E ∼ F iff ∀n ≥ 0. E ∼n F.

For each n ≥ 0, the relation ∼n is decidable for pushdown processes, and
therefore bisimulation inequivalence is semi-decidable via the simple pro-
cedure which seeks the least i such that pα 6∼i qβ. Therefore we just need
to establish the semi-decidability of bisimulation equivalence. The crux of
this part of the proof is that there is a finite tableau proof of pα ∼ qβ. As
finite proofs can be enumerated, this amounts to a semi-decision proced-
ure. The method generalises the technique developed by the author and
Hüttel [22]. It relies upon exposure of structure within normed pushdown
processes. We introduce a finer equivalence than bisimilarity to ensure a
congruence, and we show that with respect to it pushdown processes can
be taken apart, when extra stack symbols are introduced.

3 Congruence and cancellation

The following two key properties underpin decidability of bisimulation equi-
valence on normed context-free processes:

Congruence : if α ∼ β then αδ ∼ βδ

Cancellation : if αδ ∼ βδ then α ∼ β

†When the prefix rule is: if pX a−→ qα then pδXβ a−→ qδαβ.
‡E is image-finite if for each w ∈ A∗ the set {F : E

w−→ F} is finite.

5



Explicit use of these features can be seen in the decidability proof which
uses tableaux [22]. (A more elegant proof of decidability of bisimilarity ex-
ploits the stronger property of unique prime decomposition, due to Hirsh-
feld [17].) In the more general case, when the restriction to being normed is
lifted, congruence still holds but cancellation fails. However bisimulation
equivalence remains decidable because of a weaker form of cancellation
[14]: if there are infinitely many different δ (with respect to ∼) such that
αδ ∼ βδ then α ∼ β.

Neither of these key properties is true of normed pushdown processes.
A counterexample to congruence is that although qX ∼ rXX in Example 1
of the previous section, qXX 6∼ rXXX. Example 1 also furnishes instances
of failure of cancellation such as rX6 ∼ qXXX but rX5 6∼ qXX. Moreover, the
weaker version of cancellation also fails.

Two pushdown processes can be bisimilar without agreeing on their fi-
nal states when the stack empties: for instance the bisimulation relation
between qX and rXX of Example 1 contains the pair (qε, rε). This explains
why congruence (with respect to stacking) fails for pushdown processes.
However by refining the definition of bisimulation equivalence we can en-
sure a congruence.

Definition 1 A binary relation R on pushdown processes is an a-bisimulation
provided that whenever (pα, qβ) ∈ R, for all a ∈ A

if α = ε then β = ε and p = q, and
if β = ε then α = ε and p = q, and
if pα a−→ p ′α ′ then ∃q′β ′. qβ a−→ q ′β ′ and (p ′α ′, q ′β ′) ∈ R, and
if qβ a−→ q ′β ′ then ∃p′α ′. pα a−→ p ′α ′ and (p ′α ′, q ′β ′) ∈ R.

The “a” stands for “agreeing”, as the first two clauses require final states to
be the same when processes terminate. Two pushdown processes pα and
qβ are a-bisimilar, written pα ≡ qβ, if there is an a-bisimulation relating
them. Note that the earlier two processes qX and rXX are not a-bisimilar.
Later, in this section, we shall relate bisimilarity and a-bisimilarity.

Not surprisingly a-bisimilarity is an equivalence relation, and it is also
a congruence with respect to stacking.

Proposition 1 The relation ≡ is an equivalence relation.

Proposition 2 If pα ≡ qβ then pαδ ≡ qβδ.

A-bisimilarity can also be characterized using approximants.

Definition 2 The family {≡n : n ≥ 0} is defined inductively on pushdown
processes as follows:

6



pε ≡0 pε for any state p, and
pα ≡0 qβ for any p, q, α 6= ε and β 6= ε.
pα ≡n+1 qβ iff pα ≡0 qβ, and for each a ∈ A,

if pα a−→ p ′α ′ then ∃q′β ′. qβ a−→ q ′β ′ and p ′α ′ ≡n q
′β ′, and

if qβ a−→ q ′β ′ then ∃p′α ′. pα a−→ p ′α ′ and p ′α ′ ≡n q
′β ′.

The base relation ≡0 does not include all pairs of pushdown processes. For
example any pair pε, qβ (when p 6= q) is excluded.

Proposition 3 pα ≡ qβ iff ∀n ≥ 0. pα ≡n qβ.

Our next concern is to provide a mechanism for composing and decom-
posing pushdown processes. We extend pushdown descriptions by aug-
menting their stack symbols Γ with a finite family of stack constants W.
Assume that the state set of the pushdown description is P = {p1, . . . , pk}.
Each new stack symbol W ∈W has an associated definition

W
def
= (q1δ1, . . . , qkδk)

where each qi ∈ P, and each δi is a sequence of stack elements, possibly
including constants. However we assume that if δi 6= ε then its first symbol
belongs to Γ . The intention is that for each state pj ∈ P the behaviour of
pjW is that of qjδj, the jth component of the definition of W§. An extended
pushdown process is an expression pα where α = ε or α ∈ Γ(Γ ∪W)∗. Basic
transitions are unaffected, remaining of the form pX

a−→ qα where X ∈ Γ
and α ∈ Γ ∗. However the prefix rule is generalised to

if pX a−→ qα then pXβ a−→ [qαβ]

where bracketing [. . .] is defined as follows:

[piε] = piε, and
[piXβ] = piXβ when X ∈ Γ, and

[piWβ] = [qiδiβ] when W def
= (q1δ1, . . . , qkδk)

Therefore if pα is an extended pushdown process and w ∈ A∗ and pα w−→
qβ then qβ is also an extended pushdown process.

A-bisimilarity remains a congruence in the presence of constants.

Proposition 4 If pXα ≡ qYβ then pXαW ≡ qYβW.

Constants also provide a handle for composing pushdown processes, as il-
lustrated by the next two results whose proofs are routine.
§This selection notation (. . .) for pushdown processes is used in [26, 4].

7



Proposition 5 If W def
= (q1δ1β, . . . , qkδkβ) and V def

= (q1δ1, . . . , qkδk) then
pXαW ≡ pXαVβ.

Proposition 6 If W def
= (q1δ1, . . . , qkδk) and V def

= (r1λ1, . . . , rkλk) and for
each i : 1 ≤ i ≤ k, qiδi ≡ riλi then pXαW ≡ pXαV.

It is time to examine the condition of being normed more carefully.
The norm of a process pα, when α may contain constants, is a k-tuple
(n1, . . . , nk) where each ni ∈ N∪ {⊥}. The component ni is either the length
of a shortest word w such that pα w−→ piε or there is no such word and ni
is the undefined element ⊥. We let n(pα) be the norm of pα, and we let
n(pα)i be its ith component. The restriction to normed processes implies
that at least one entry in a norm is different from ⊥. Let max(pα) be the
maximum defined entry in n(pα) and min(pα) be the least defined entry.
Finally we let D(pα) be the set {i : n(pα)i 6=⊥}. We can now slightly refine
the previous Proposition.

Proposition 7 If W def
= (q1δ1, . . . , qkδk) and V def

= (r1λ1, . . . , rkλk) and for
each i ∈ D(pXα). qiδi ≡ riλi then pXαW ≡ pXαV.

Two useful measures on a pushdown description are now defined. First
M is just greater than the maximum norm of a stack symbol in Γ :

M
def
= 1+ max{max(pX) : p ∈ P and X ∈ Γ }

And second G is the maximum length of a stack sequence on the right hand
side of a basic transition (where | | is “length of”):

G
def
= max{|α| : pX

a−→ qα is a basic transition}

The family of finite constants W is partitioned into two. First are simple
constants. Each has a definition U def

= (q1δ1, . . . , qkδk) where each δi ∈ Γ+
and |δi| ≤MG: constants are not allowed in their definition, and neither is
the empty stack. Up to renaming of constants, there are only finitely many
different simple constants, because of the constraint on their length. We
now come to the first substantive result, where simple constants are used
to provide a format for cancellation.

Lemma 1 If pXα ≡ qβδ and β ∈ Γ+ and max(pX) < min(qβ) and |β| ≤M
then there is a simple U def

= (q1γ1, . . . , qkγk) such that

1. pXUδ ≡ qβδ, and

2. for all i ∈ D(pX). [piα] ≡ qiγiδ.

8



Proof: Suppose pXα ≡ qβδ and β ∈ Γ+ and max(pX) < min(qβ) and
|β| ≤ M. For each i ∈ D(pX) consider a shortest wi such that pX wi−→ piε.
Therefore, pXα wi−→ [piα]. Since pXα ≡ qβδ we know that qβδ wi−→ qiλi and
[piα] ≡ qiλi. However, as max(pX) < min(qβ) it follows that λi = γiδ and
qβ

wi−→ qiγi and γi 6= ε, and as β ∈ Γ+ this means that γi ∈ Γ+. Also because
|wi| < M (and |β| ≤ M) it follows that |γi| ≤ MG. Let U def

= (q1γ1, . . . , qkγk)

where for each i ∈ D(pX) qiγi is determined as above and for each i 6∈
D(pX), qiγi = pX. By definition U is a simple constant, and by construction
2 holds. By induction on n it follows that for any p′α ′ such that α′ ∈ Γ+ and
D(p ′α ′) ⊆ D(pX), p ′α ′Uδ ≡n p

′α ′α. Therefore pXUδ ≡ pXα, which implies
1. 2

The other constants in W are recursive. Each recursive constant has a
definition V def

= (q1λ1, . . . , qkλk), where each λi is either the empty sequence
or of the form λ′

i
V where V is the defining constant and λ′

i
is a non-empty

sequence of stack symbols which may contain simple (but not recursive)
constants. Their first use is to relate bisimilarity and a-bisimilarity. Let
I

def
= (p1ε, . . . , p1ε) be an initial degenerate recursive constant. Clearly the

following holds.

Proposition 8 pXα ∼ qYβ iff pXαI ≡ qYβI.

The second and more substantive use of recursive constants is to provide
a very delicate form of cancellation which turns out to be sufficiently strong
for showing semi-decidability of a-bisimilarity. Simple cancellation, if pαδ ≡
qβδ then pα ≡ qβ, fails as does the more refined notion, if pαδ ≡ qβδ for
infinitely many different δ then pα ≡ qβ. What could be even weaker? The
idea is, roughly speaking, if pαδ ≡ qβδ for infinitely many δ then there
are just finitely many “regular shapes” such that each δ has one of these
shapes, where the notion of shape is captured using recursive constants.
More precisely, we state the exact result.

Lemma 2 Fix pX and qβ assuming that β ∈ Γ+ and |β| ≤M and max(pX) <

min(qβ). There is a finite set of recursive constants V such that for any α
which does not contain recursive constants and for any δ if pXαδ ≡ qβδ

then there is a V def
= (q1λ1, . . . , qkλk) in V such that

1. pXαV ≡ qβV, and

2. for all j ∈ D(pXα) ∪D(qβ). if λj = ε then [pjδ] ≡ [qjδ], and

3. for all j. if λj = λ ′
j
V then [pjδ] ≡ qjλ ′jδ.

We shall prove this result in two stages.

9



The first stage is central, and shows how a family of finite shapes can
be iteratively constructed.

Lemma 3 Fix pXα and qYβ assuming that α and β do not contain recursive
constants. There exists a finite family V of recursive constants such that for
any δ if pXαδ ≡ qYβδ then there is a V def

= (q1λ1, . . . , qkλk) in V such that

1. pXαV ≡ qYβV, and

2. for all i ∈ D(pXα) ∪D(qYβ). if λi = ε then [piδ] ≡ [qiδ], and

3. for all i. if λi = λ ′
i
V then [piδ] ≡ qiλ ′iδ.

Proof: Let ∆ = {δ : pXαδ ≡ qYβδ}. If ∆ is empty then let V be empty,
and the result holds. Otherwise assume a total ordering on the state set
{p1, . . . , pk}, so that pi < pj whenever i < j. We say that the recursive con-
stant V is definitionally equivalent to V ′ if their definitions are the same
except for their occurrences of V and V ′: in which case, for all n ≥ 0,
pXαV ≡n pXαV

′ for any p, X and α.
For each δ ∈ ∆ we define the family {V�

i
: 0 ≤ i ≤ k2} iteratively, so

that for each i properties 2 and 3 hold for V�

i
and property 1 holds when

i = k2. Furthermore, for each i the set {V�
i

: δ ∈ ∆} when quotiented by
definitional equivalence is finite. From this the result follows by taking V

to be the family {V�

k2
: δ ∈ ∆} after quotienting by definitional equivalence.

The element V�

0

def
= (p1ε, . . . pkε). Clearly, both 2 and 3 hold, and the set

{V�

0
: δ ∈ ∆} is a singleton up to definitional equivalence. Assume V�

i
for

0 ≤ i < k2 has been defined, and that both 2 and 3 hold for it, and that
the set {V�

i
: δ ∈ ∆} is finite up to definitional equivalence. If property

1 is also true then let V�
j
, for all j : i ≤ j ≤ k2 be V�

i
. Otherwise V�

i+1 is
constructed as a refinement of V�

i
. As 1 fails there is a least n ≥ 0 such that

pXαV�

i
6≡n qYβV

�

i
, and we know that n > 0. However, we also know that

pXαδ ≡ qYβδ. Hence pXα a−→ [p ′
1
α1] and qYβ a−→ [q1β1] for some a and

p ′
1
α1 and q1β1 such that [p′

1
α1δ] ≡ [q1β1δ] and [p ′

1
α1V

�

i
] 6≡n-1 [q1β1V

�

i
]. The

sequences α1 and β1 do not contain recursive constants. If both α1 and β1
are non-empty then we can obtain a subsequent pair p′

2
α2 and q2β2 such

that [p′
2
α2δ] ≡ [q2β2δ] and [p ′

2
α2V

�

i
] 6≡n-2 [q2β2V

�

i
], and so on. Therefore as

n is finite we must reach a pair p′
j
αj and qjβj such that [p′

j
αjδ] ≡ [qjβjδ]

and [p ′
j
αjV

�

i
] 6≡n-j [qjβjV

�

i
], where αj or βj is empty (and neither contain

recursive constants).
Without loss of generality assume that αj = ε. Let rλ be the entry for p′

j

in V�

i
. There are two cases.

Case 1 λ = ε. Now consider βj. First assume that βj 6= ε. Let V�

i+1 be
V�

i
except that qjβjV�

i+1 is associated with the state p′
j

instead of rε (and

10



throughout the other entries V�
i+1 replaces V�

i
). Clearly properties 2 and 3

hold for V�

i+1 given that they hold for V�

i
. Next assume instead that βj = ε.

Assume that sγ is qj’s entry in V�

i
. There are two subcases. First, γ 6= ε.

Then V�

i+1 is V�

i
except that sγ is associated with p′

j
(and throughout all

entries V�

i+1 replaces V�

i
). Second, γ = ε. If p ′

j
< qj in the total order

on states V�

i+1 is V�

i
except that rε is associated with qj instead of sε, and if

qj < p
′
j

then V�

i+1 is V�

i
except that sε is associated with p′

j
(and in both cases

throughout the other entries V�
i+1 replaces V�

i
). Again clearly properties 2

and 3 both hold for V�

i+1.
Case 2 λ 6= ε, and so λ = λ ′V�

i
. Again consider βj. If βj 6= ε then as

[p ′
j
δ] ≡ qjβjδ by 3 we know that [p′

j
δ] ≡ rλ ′δ, and so rλ ′δ ≡ qjβjδ. However

rλ ′V�

i
6≡n-j qjβjV

�

i
(as [p ′

j
αjV

�

i
] = rλ ′V�

i
). Therefore the proof proceeds as

before by defining further pairs rmλ ′m and qj+mβj+m such that [rmλ
′
m
δ] ≡

[qj+mβj+mδ] and [rmλ
′
m
V�

i
] 6≡n-(j+m) [qj+mβj+mV

�

i
]. Otherwise βj = ε. Let

sγ be the entry for qj in V�

i
. If γ = ε then we proceed as in case 1 above

(with the α and β roles reversed). If γ 6= ε then γ = γ′V�

i
where γ ′ does

not contain recursive constants. By 3 for V�
i

[qjδ] ≡ sγ ′δ and [p ′
j
δ] ≡ rλ ′δ

and therefore rλ′δ ≡ sγ ′δ, and also rλ ′V�

i
6≡n-j sγ

′V�

i
. Therefore again

we define further pairs rmλ ′m and smγ ′m such that [rmλ
′
m
δ] ≡ [smγ

′
m
δ], and

[rmλ
′
m
V�

i
] 6≡n-(j+m) [smγ

′
m
V�

i
]. As n is finite there can only be finitely many

invocations of 3 before V�

i
is updated according to the first case.

The construction of V�
i+1 updates exactly one entry in V�

i
which must be

of the form rε. The update becomes either non-empty or is replaced by an
empty entry from an earlier state in the total order. For each V�

i
the number

of possible different recursive constants V�

i+1 by this construction given that
pXαV�

i
6≡n qYβV

�

i
(with n least) is finite. Consequently the set {V�

i+1 : δ ∈
∆} is finite up to definitional equivalence. Moreover given the regime for
updating, there can be at most k2 updates, and therefore pXαV�

k2
≡ qYβV�

k2
.

2

This takes us to the proof of Lemma 2.

Proof of Lemma 2: Assume pX and qβ where β ∈ Γ+ and |β| ≤ M and
max(pX) < min(qβ). We show the following:
There exists a finite family U of simple constants and a finite family V of
recursive constants such that for any α not containing recursive constants
and for any δ if pXαδ ≡ qβδ then there is a U def

= (r1γ1, . . . , rkγk) in U and a
V

def
= (q1λ1, . . . , qkλk) in V such that

1. pXUV ≡ qβV, and

2. for all j ∈ D(pX). [pjαV] ≡ rjγjV, and

3. for all j ∈ D(pXα) ∪D(qβ). if λj = ε then [pjδ] ≡ [qjδ], and

11



4. for all j. if λj = λ ′
j
V then [pjδ] ≡ qjλ ′jδ.

Lemma 2 now follows because 1 and 2 imply that pXαV ≡ qβV (using
Propositions 5 and 7). Let ∆ = {(α, δ) : pXαδ ≡ qβδ}. If ∆ is empty let
U and V be empty, and the result follows. Otherwise ∆ is non-empty. By
Lemma 1 for each (α, δ) ∈ ∆ there is a simpleU def

= (r1γ1, . . . , rkγk) such that
pXUδ ≡ qβδ and for all j ∈ D(pX). [pjαδ] ≡ rjγjδ. By the construction in
Lemma 1 we know that there are only finitely many such U (as each com-
ponent of their definition is drawn from the set {q′γ ′ : qβ

w−→ q ′γ ′ for |w| ≤
max(pX)}). Let U1, . . . , Ul be the different simple constants. We partition ∆
into sets ∆1, . . . , ∆l such that for each (α, δ) ∈ ∆t, with Ut

def
= (r1γ1, . . . , rkγk),

pXUtδ ≡ qβδ and for all j ∈ D(pX). [pjαiδ] ≡ rjγjδ. By Lemma 3 for each ∆t

there are finitely many recursive V such that pXUtV ≡ qβV and for each
(α, δ) ∈ ∆t one of these recursive constants V def

= (q1λ1, . . . , qkλk) has the
property that [pjδ] ≡ [qjλ

′
j
δ] for all j ∈ D(qβ) ∪ D(pXUt) (where if λj = λ ′V

then λ′
j
= λ ′ and if λj = ε then λ′

j
= ε). Let Vt be this finite family of recurs-

ive constants. The proof is finished if for each (α, δ) ∈ ∆t there is a V ∈ Vt

such that for all j ∈ D(pX). [pjαV] ≡ qjγjV. Using a similar proof method to
that in Lemma 3 we refine this set of recursive constants so that it becomes
true. Let Vt0 be Vt. Take the least n such that there is an (α, δ) ∈ ∆t and
V

def
= (q1λ1, . . . , qkλk) ∈ Vt0 with [pjδ] ≡ [qjλ

′
j
δ] for all j ∈ D(qβ) ∪ D(pXα)

such that [pjαV] 6≡n qjγjV. However we know that [pjαδ] ≡ qjγjδ. There-
fore, by the technique in the proof of Lemma 3 this means that for some
j, [pjV] 6≡0 [q ′λV] and [pjδ] ≡ [q ′λδ] and the jth component of V, qjλj, has
the form rε. We now update V. There are two cases. First if λ 6= ε then
each entry rε in V is replaced with q′λV. If λ = ε then replace each entry
rε with the entry for q′ (which cannot be rε). All other entries in V remain
untouched. Call the resulting constant V′. A small exercise shows that for
any α and β if [pαV] ≡ [qβV] then [pαV ′] ≡ [qβV ′] (and so, in particular,
pXUtV

′ ≡ qβV ′): this is the reason why all entries rε are updated at once.
Let Vt1 be Vt0 with V replaced by V ′. Now keep repeating the procedure.
As with the argument in Lemma 3 the number of possible updates must be
finite (here less than rk2 where r is the number of constants in Vt0). 2

4 Tableaux

Given a pushdown description and two normed processes pα and qβ, the
aim is to show semi-decidability of pα ∼ qβ. If α = ε or β = ε then checking
for decidability is clear. Otherwise the problem reduces to decidability of
pαI ≡ qβI where I is the initial recursive constant. Therefore, we need
to extend the pushdown description with a finite family of stack constants

12



W. As we saw in the previous section we can include all potential simple
constants. For the recursive constants we have no such upper bound (and
hence the reason for semi-decidability). However, besides the initial con-
stant I, we only need to introduce a finite family (see Lemma 2 of the previ-
ous section) for pairs pX and qβ, β ∈ Γ+, and |β| ≤M, and for which there
is an α and a δ such that pXαδ ≡ qβδ.

We complete the decidability result by presenting a tableau proof sys-
tem for a-bisimilarity. The proof system is goal directed, and consists of a
finite set of rules each of the form

Goal
Subgoal

1
. . . Subgoal

n

C

where Goal is what currently is to be proved and the subgoals are what it
reduces to, and C is a possible side condition on the rule application. Each
goal and subgoal has the form pα = qβ (the proof analogue of pα ≡ qβ)
where the constituents are extended normed pushdown processes. Each
rule is backwards sound: if all the subgoals are true then so is the goal.
As we are dealing with infinite state systems there is also the important
notion of when a current goal counts as terminal, for the rules only apply to
nonterminals. Terminal goals are classified as either successful or unsuc-
cessful. A tableau proof for Goal is a finite proof tree, whose root is Goal
and all of whose leaves are successful terminals, and all of whose inner
subgoals are the result of an application of one of the rules to the goal im-
mediately above them. If the successful terminals are true it follows that
the root goal is also true. We show that pXα ∼ qYβ iff there is a tableau
proof for pXαI = qYβI.

The tableau proof rules are presented in Figure 1. There is a cancella-
tion rule CAN which introduces recursive constants and a reduction rule
RED which introduces simple constants: their formulation directly reflects
the important Lemmas of the previous section. The third rule is unfold
UNF: for each transition from pXα there is a corresponding transition from
qYβ, and the resulting pairs become subgoals (and vice-versa). A tableau
is built from proof steps, possibly interspersed with applications of UNF. A
proof step has the form

pXαδ = qβδ
CAN

. . . [qiλ
′
i
δ] = [piδ] . . . pXαV = qβV

RED
. . . [pjαV] = qjγjV . . . pXUV = qβV

UNF
. . .

or when CAN is not applicable, it has the form

13



Cancellation (CAN)

pXαδ = qβδ

[qi1λ
′
i1
δ] = [pi1δ] . . . [qilλ

′
il
δ] = [pilδ] pXαV = qβV

C1

Condition C1:

1. β ∈ Γ+ and |β| ≤M and max(pX) < min(qβ) and |δ| > 1, and

2. V def
= (q1λ1, . . . qkλk) is recursive, and

3. D(pXα) ∪D(qβ) = {i1, . . . , il}, and

4. if λij = ε then λ′
ij

= ε, and if λij = λ ′′V then λ′
ij

= λ ′′.

Reduction (RED)

pXα = qβδ

[pi1α] = qi1γi1δ . . . [pilα] = qilγilδ pXUδ = qβδ
C2

Condition C2:

1. β ∈ Γ+ and |β| ≤M and max(pX) < min(qβ) and |δ| > 1, and

2. U def
= (q1γ1, . . . , qkγk) is simple, and D(pX) = {i1, . . . , il}.

Unfold (UNF)

pXα = qYβ

p1α1 = q1β1 . . . plαl = qlβl
C3

Condition C3: For any a

1. if pXα a−→ p ′α ′ then ∃i : 1 ≤ i ≤ l. p′α ′ = piαi and qYβ a−→ qiβi,

2. if qYβ a−→ q ′β ′ then ∃i : 1 ≤ i ≤ l. q′β ′ = qiβi and pXα a−→ piαi.

Figure 1: Tableau rules

14



Successful terminals

1. pα = pα

2. pα = qβ and in the proof tree the same equation pα = qβ occurs
above on the path to the root.

Unsuccessful terminals

1. pε = qε and p 6= q

2. pα = qβ and min(pα) 6= min(qβ)

3. pα = qβ and pα a−→ but not(qβ a−→)

4. pα = qβ and qβ a−→ but not(pα a−→)

Figure 2: Terminal nodes

pXα = qβδ
RED

. . . [piα] = qiγiδ . . . pXUδ = qβδ
CAN

. . . [qjλ
′
j
δ] = [pjδ] . . . pXUV = qβV

UNF
. . .

The idea is to repeat proof steps whose roots are themselves leaves of a
proof step except when the side conditions for CAN and RED do not apply
in which case the UNF rule is applied instead. The proof step starting with
CAN takes priority over the one starting with RED, which takes priority
over the use of UNF. Note that a recursive constant may only appear as a
final stack symbol, and that simple constants are only explicitly introduced
into processes on the left side of =: they can appear on the right hand side
of = through the presence of recursive constants, when a process becomes
[qiV].

The conditions for being a terminal node are described in Figure 2. A
node labelled pα = qβ in a proof tree is a successful terminal if it is an
identity (qβ is pα) or a repeat: that is, there is a node above it on the path
to the root also labelled pα = qβ. In the conditions for being an unsuc-
cessful terminal we use the standard notation rλ a−→ as an abbreviation
for ∃r ′λ ′. rλ a−→ r ′λ ′. Clearly, if a node labelled pα = qβ is an unsuccessful
terminal then pα 6≡ qβ.

The tableau proof rules are backwards sound with respect to the ap-
proximants ≡n, and this fact is used in the following soundness result.

15



Lemma 1 If there is a tableau proof for pα = qβ then pα ≡ qβ.

Proof: It is straightforward to show that for any n ≥ 0 if all the leaves
p ′
i
α ′
i

= q ′
i
β ′
i

of a proof step have the property that p′
i
α ′
i
≡n q

′
i
β ′
i

then the
root of the proof step p′α ′ = q ′β ′ has the property p′α ′ ≡n+1 q

′β ′. This is
clearly the case for the UNF rule. For the other two proof steps it follows by
a similar kind of backwards soundness for the rules CAN and RED: in the
case of CAN if each leaf [qijλ

′
ij
δ] = [pijδ] has the property [qijλ

′
ij
δ] ≡n [pijδ]

and the leaf pXαV = qβV has the property pXα ≡n+1 qβV then the root
pXαδ = qβδ obeys pXαδ ≡n+1 qβδ, and in the case of RED if each leaf
[pijα] = qijγijδ has the property [pijα] ≡n qijγijδ and the leaf pXUδ = qβδ

has the feature pXUδ ≡n+1 qβδ then the root pXα = qβδ is such that
pXα ≡n+1 qβδ.

Assume that there is a successful tableau built using proof steps with
root pα = qβ, and suppose that pα 6≡ qβ. Clearly it can not be the case that
pα 6≡0 qβ (for then pα = qβ would be an unsuccessful terminal). Hence
there is a least n such that pα ≡n qβ and pα 6≡n+1 qβ. Consequently
there is a leaf p ′α ′ = q ′β ′ of the first proof step such that p′α ′ 6≡n q

′β ′

by backwards soundness described above. Take the leaf pi1αi1 = qi1βi1
for which there is a least n1 such that pi1αi1 ≡n1 qi1βi1 and pi1αi1 6≡n1+1

qi1βi1 (and so n1 < n). Repeatedly apply this argument. At each stage
we have a root of a proof step pijαij = qijβij such that pijαij ≡nj qijβij
and pijαij 6≡nj+1 qijβij, and nj < nl whenever j > l. As the tableau is
finite, this sequence picks out a finite path through the tableau (when the
intermediate subgoals between the root of a proof step and its chosen leaf
are added). However the tableau is successful and so the final goal is a
successful terminal. Clearly it can not be an identity p′α ′ = p ′α ′ since
p ′α ′ ≡n p

′α ′ for all n ≥ 0. Consequently the final goal p′α ′ = q ′β ′ also
occurs earlier in the path. But now we have a contradiction as there can
not be nj and nl (with nj 6= nl) where p′α ′ ≡nj q

′β ′ and p ′α ′ 6≡nj+1 q
′β ′ and

p ′α ′ ≡nl q
′β ′ and p ′α ′ 6≡nl+1 q

′β ′. 2

Now the main result which shows completeness of the tableau method.

Theorem 1 pXα ∼ qYβ iff there is a tableau proof for pXαI = qYβI.

Proof: One half follows by Lemma 1 above and Proposition 8 of the pre-
vious section: if there is a tableau proof for pXαI = qYβI then pXα ∼ qYβ.
For the other half suppose pXα ∼ qYβ. By Proposition 8 pXαI ≡ qYβI. We
now construct a tableau proof for pXαI = qYβI. First we introduce all the
appropriate constants. For each pX and qβ, β ∈ Γ+, |β| ≤ M and where
max(pX) < min(qβ), we define finite sets of constants as determined by
Lemmas 1 and 2 of the previous section. Now we repeatedly build proof
steps that preserve truth until we reach terminals. Lemma 2 of the previ-
ous section and the introduction of constants guarantee that if pXαδ = qβδ

16



is a subgoal with β ∈ Γ+ and |β| ≤ M and max(pX) < min(qβ) and |δ| > 1

then the proof step whose initial rule is CAN is applicable. If CAN is not
applicable to pXα = qβδ and β ∈ Γ+ and |β| ≤ M and max(pX) < min(qβ)

and |δ| > 1 then the other proof step applies. Otherwise the rule UNF is
always applicable to a nonterminal subgoal (as any process in a tableau
has the form pXα or pε). Clearly, as truth is preserved it is not possible to
reach an unsuccessful terminal goal.

The only impediment is the possibility that the proof construction never
ends, that we build a proof tree with an infinite path. The rest of the proof
shows that this is impossible. Note that because of normedness, for each
k ≥ 1 the set {rδ : for some pα such that |α| < k, rδ ≡ pα and δ and α
contain at most one recursive constant} is finite.

Let S be the following measure

max({|λi| +M : V
def
= (q1λ1, . . . , qkλk) is recursive} ∪ {MG+ 2} ∪ {4})

In a goal pα = qβ we say that pα is a left process and qβ is a right process.
Note the following observations:

1. Any occurrence of a left or right process has at most one recursive
constant which can only appear as the final stack symbol.

2. The only way that simple constants can be introduced into a right
process is through the UNF rule, in the circumstance that pXα = qYV

and qY a−→ rε: this means that in a right process qβUδ where U is
simple, |Uδ| < S.

3. The only circumstance that both CAN and RED are not applicable to
a nonterminal goal pXα = qβδ, |β| ∈ Γ+, is when max(pX) 6< min(qβ)

and δ = ε or δ = V or δ = Uδ1 and U is simple. In which case |βδ| < S.

Suppose p1α1 = q1β1, . . . , pnαn = qnβn, . . . is an infinite path of distinct
goals in the tableau (with p1α1 = pXαI and q1β1 = qYβI). Let gi be the
ith goal in this sequence. We show that there must be a repeat goal in
this sequence: for some i goal gi is a terminal. A little notation. Consider
the rule that takes gi to gi+1: if the rule is UNF we say gi+1 is an UNF
successor of gi, if the rule is CAN then we say it is an l-successor if it is of
the form [qiλ

′
i
δ] = [piδ] and an r-successor if it has the form pXαV = qβV.

Similarly, if the rule is RED then we say it is an l-successor if it is of the
form [piα] = qiγδ and an r-successor if it has the form pXUδ = qβδ.

The following are true for the sequence g1, . . . , gn, . . .

1. There is an i such that for all j ≥ i the goal gj is not an r-successor of
CAN because the right process of such a goal has the form qβV where
|β| < M (and so |βV | < S).

17



2. There is an i such that for all j ≥ i the goal gj is not an UNF successor.
First by 1 above there is an i such that no later goal is an UNF suc-
cessor via the two kinds of proof steps (as it would then be preceded
by a right successor of CAN). Secondly, by observation 3 earlier CAN
and RED are not applicable to a goal only when its right process is
small.

Hence there is a suffix gi, . . . , gn, . . . of goals such that each goal is a
successor of RED or an l-successor of CAN. If in this suffix the goal gj is an
r-successor of RED then gj+1 is an l-successor of CAN. Clearly, there cannot
be j ≥ i such that for all k ≥ j the goal gk is an l-successor of CAN as each
application reduces the right process by at least one stack symbol. Simil-
arly, there cannot be j ≥ i such that for all k ≥ j the goal gk is an l-successor
of RED as each application reduces the left process by one stack symbol,
except when a simple constant or a recursive constant is encountered: in
the first case the stack may temporarily expand but the number of simple
constants is reduced by one and in the second case, whenever a recursive
constant is exposed the left process has size less than S. Consequently in-
finitely often there must be a change over from l-successors of CAN to a
successor of RED. Consider any subsequence gi, . . . , gi+k of goals which are
l-successors of CAN and such that CAN is not applicable to gi+k. So gi+k-1
has the form pXαδ = qβδ and gi+k has the form [qiλ

′
i
δ] = [piδ]: either δ

is small (of length less than M + 2) or δ has the form β1Uδ1 where U is
simple (and |β1| ≤M). Hence either |βδ| < S or the right process of gi+k has
size less than S. Hence there can not be such an infinite sequence of goals
without a repeat. 2

5 Conclusion and open questions

We have shown that bisimulation equivalence is decidable for normed push-
down processes. However, no complexity measure is available as the de-
cision procedure essentially relies on Lemma 2 of Section 3. Moreover, it
is not clear if the proof can be generalised to include unnormed pushdown
processes: the main problem is that we are then unable to show complete-
ness of the tableau proof system.

Normed BPA processes and normed pushdown processes are two means
for generating the context-free languages (without the empty string). These
languages are also generable using richer descriptions. Let Γ be a finite
family of nonterminals and A a finite family of actions. A basic transition
has the form α

a−→ β where α, β ∈ Γ∗ and a ∈ A. We can then define a
process as a sequence of nonterminals whose behaviour is determined by
the basic transitions together with the prefix rule:

18



PRE if α a−→ β then αδ a−→ βδ

The notion of normed process is then appropriately definable (for instance
by utilising a finite set of final states which have no transitions, as in [24]).

In the table below is a Caucal hierarchy of process descriptions accord-
ing to how the family of basic transitions is specified. In each case we as-
sume a finite family of rules. Type 3 captures finite-state processes, Type 2
captures BPA processes in Greibach normal form, and Type 11

2
, in fact, cap-

tures pushdown processes. For Type 0 and below this means that in each
case there are finitely many basic transitions. In the other cases R1 and
R2 are regular expressions over the nonterminals. The idea is that each
rule R1

a−→ β stands for the possibly infinite family of basic transitions
{α

a−→ β : α ∈ R1} and R1
a−→ R2 stands for the family {α

a−→ β : α ∈
R1 and β ∈ R2}. For instance a Type−1 rule of the form X∗Y

a−→ Y includes
for each n the basic transition XnY a−→ Y.

Basic Transitions
Type −2 R1

a−→ R2

Type −1 R1
a−→ β

Type 0 α
a−→ β

Type 11
2

α
a−→ β where |α| = 2 and |β| > 0

Type 2 X
a−→ β

Type 3 X
a−→ Y or X a−→ ε

This Caucal hierarchy is implicit in Caucal’s work on understanding
context-free graphs, and understanding when the monadic second-order
theory of graphs is decidable [8, 7, 9, 6, 10]. With respect to language
equivalence, there is no distinction between Type −2 and Type 2. With re-
spect to bisimulation equivalence this is not the case. However Caucal
showed in [8] that Type 0 processes coincide (up to isomorphism of their
transition graphs) with pushdown processes (and hence Type 11

2
processes).

Consequently a corollary of the main result in this paper is that bisimula-
tion equivalence is decidable for normed Type 0 processes. This leaves as
open questions whether it is also decidable for normed processes in Type−1

and Type −2. These could turn out to be very difficult open questions, as
we note below. One other reason for interest in these problems is that de-
cidability questions about weak bisimulation can be coded as decidability
questions about strong bisimulation at a higher level in the hierarchy: for
instance, weak bisimulation of totally normed BPA processes can be coded
into strong bisimulation of normed pushdown processes [18].

19



Another area for further work is the long standing issue of decidabil-
ity of language equivalence for deterministic pushdown automata, DPDA.
These are normed deterministic pushdown processes which also have ε
moves. When processes are deterministic language equivalence coincides
with bisimulation equivalence. Hence the result proved in this paper gen-
eralises [26] which proves decidability of language equivalence for real-
time DPDA accepting by the empty stack: a real-time DPDA has no ε
moves. However the proof method is very different: [26] uses Valiant’s
parallel stacking technique whereas the method here relies on congruence
and cancellation. Further work is needed to establish whether we can of-
fer new insight into this difficult open problem. However this problem is
related to the open questions above, as a DPDA with ε transitions can be
coded as Type −1 process without ε transitions. For a different perspective
on these issues see [9].

Acknowledgement: The author would like to thank Mojmir Kretin-
sky whose visit to Edinburgh rekindled the work reported here, and Olaf
Burkart and Didier Caucal for comments on an earlier draft.

References

[1] Baeten, J. and Bergstra, J. (1991). Recursive process definitions with
the state operator. Theoretical Computer Science, 82, 285-302.

[2] Baeten, J., Bergstra, J., and Klop, J. (1987). Decidability of bisimu-
lation equivalence for processes generating context-free languages.
Lecture Notes in Computer Science, 259, 94-113.

[3] Baeten, J., Bergstra, J., and Klop, J. (1993). Decidability of bisimu-
lation equivalence for processes generating context-free languages.
Journal of Association of Computing Machinery, 40, 653-682.

[4] Burkart, O., and Steffen, B.(1995). Composition, decomposition, and
model checking of pushdown processes. Nordic Journal of Comput-
ing, 2, 89-125.

[5] Burkart, O., Caucal, D., and Steffen, B. (1994). An elementary de-
cision procedure for arbitrary context-free processes. Tech. Report
94-28, RWTH Aachen (extended version of Lecture Notes in Com-
puter Science, 969, 423-433).

[6] Burkart, O., Caucal, D., and Steffen, B. (1996). Bisimulation collapse
and the process taxonomy. Lecture Notes in Computer Science, 1119,
247-262.

20



[7] Caucal, D. (1990). Graphes canoniques de graphes algébriques. In-
formatique Théorique et Applications (RAIRO), 24,339-352.

[8] Caucal, D. (1992). On the regular structure of prefix rewriting. The-
oretical Computer Science, 106, 61-86.

[9] Caucal, D. (1995). Bisimulation of context-free grammars and of
pushdown automata. CSLI Lecture Notes, 53, 85-106.

[10] Caucal, D. (1996). On infinite transition graphs having a decidable
monadic theory. Lecture Notes in Computer Science, 1099, 194-205.

[11] Caucal, D., and Monfort, R. (1990). On the transition graphs of auto-
mata and grammars. Lecture Notes in Computer Science, 484, 311-
337.

[12] Christensen, S., Hirshfeld, Y., and Moller, F. (1993). Decomposability,
decidability and axiomatisability for bisimulation equivalence on ba-
sic parallel processes. Proceedings 8th Annual Symposium on Logic
in Computer Science, IEEE Computer Science Press.

[13] Christensen, S., Hirshfeld, Y., and Moller, F. (1993). Bisimulation
is decidable for basic parallel processes. Lecture Notes in Computer
Science, 715, 143-157.

[14] Christensen, S., Hüttel, H., and Stirling, C. (1995). Bisimulation
equivalence is decidable for all context-free processes. Information
and Computation, 121, 143-148.

[15] Groote, J. (1992). A short proof of the decidability of bisimulation for
normed BPA processes. Information Processing Letters, 42, 167-171.

[16] Groote, J., and Hüttel, H. (1994). Undecidable equivalences for basic
process algebra. Information and Computation, 115, 354-371.

[17] Hirshfeld, Y. (1994). Deciding equivalences in simple process algeb-
ras. Tech. Report ECS-LFCS-94-294, Edinburgh University.

[18] Hirshfeld, Y. (1996). Bisimulation trees and the decidability of weak
bisimulations. To appear.

[19] Hirshfeld, Y., Jerrum, M., and Moller, F. (1994). A polynomial al-
gorithm for deciding bisimilarity of normed context-free processes.
Procs. IEEE 35th Annual Symposium on Foundations of Computer
Science, 623-631.

21



[20] Hopcroft, J., and Ullman, J. (1979). Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley.

[21] Hüttel, H. (1994). Undecidable equivalences for basic parallel pro-
cesses. Lecture Notes in Computer Science, 789.

[22] Hüttel, H., and Stirling, C. (1991). Actions speak louder than words:
proving bisimilarity for context free processes. Proceedings 6th An-
nual Symposium on Logic in Computer Science, IEEE Computer Sci-
ence Press, 376-386.

[23] Jančar, P. (1994). Decidability questions for bisimilarity of Petri nets
and some related problems. Lecture Notes in Computer Science, 775,
581-594.

[24] Moller, F. (1996). Infinite results. Lecture Notes in Computer Science,
1119, 195-216.

[25] Muller, D., and Schupp, P. (1985). The theory of ends, pushdown
automata, and second-order logic. Theoretical Computer Science, 37,
51-75.

[26] Oyamuguchi, M., Honda, N., and Inagaki, Y. (1980). The equival-
ence problem for real-time strict deterministic languages. Informa-
tion and Control, 45, 90-115.

22


