
Model Checking the Full Modal Mu-Calculus
for Infinite Sequential Processes

Olaf Burkart∗

LFCS, University of Edinburgh
JCMB, King’s Buildings
Edinburgh EH9 3JZ, UK

<olaf@dcs.ed.ac.uk>

Bernhard Steffen
FMI, Universität Passau

Innstraße 33
94032 Passau, Germany
<steffen@fmi.uni-passau.de>

Infinite-state systems, context-free processes, pushdown processes, regular graphs, modal
mu-calculus, model-checking.

Abstract

In this paper we develop a new elementary algorithm for model-checking infin-
ite sequential processes, including context-free processes, pushdown processes, and
regular graphs, that decides the full modal mu-calculus. Whereas the actual model
checking algorithm results from considering conditional semantics together with
backtracking caused by alternation, the corresponding correctness proof requires
a stronger framework, which uses dynamic environments modelled by finite-state
automata.

1 Introduction

Over the past decade model-checking has emerged as a powerful tool for the auto-
matic analysis of concurrent systems. Whereas model-checking for finite-state systems
is nowadays well-established, the theory for infinite systems is a current research topic
(cf. [Esp96]). Since even weak branching time logics are undecidable for infinite-state
systems incorporating parallel operators [Esp94, EK95], much work has focused on the
verification of sequential processes. The strongest results obtained so far show the de-
cidability of monadic second order logic (MSOL) for the infinite binary tree [Rab69],
pushdown transition graphs [MS85], regular graphs [Cou90], and rational restricted re-
cognizable graphs [Cau96]. However, all decision procedures are non-elementary and thus
not applicable to practical problems. Moreover, MSOL is usually too expressive, since it
∗This work was supported during my stay at IRISA by the European Community under HCM grant

ERBCHBGCT 920017, and during my stay at the LFCS by the DAAD under grant D/95/14834 of the
NATO science committee.

allows to distinguish even bisimilar models. For these reasons, the modal mu-calculus,
a powerful temporal logic combining modal operators with least and greatest fixpoints,
is seen as an attractive alternative for specifying behavioural properties. Choosing the
modal mu-calculus, we do not even loose expressiveness wrt. bisimulation semantics, since
recently, this logic was identified as the bisimulation closed fragment of MSOL [JW96].

The model-checking problem for sequential processes and the modal mu-calculus was
first considered in [BS92]. The authors developed an iterative model-checking algorithm
that decides the alternation-free part of the modal µ-calculus for context-free processes
based on a conditional formulation of the semantics of µ-formulas. Moreover, in [HS94]
it is shown how this can be done using tableaux-based techniques, allowing local model
checking. Finally, the approach was also extended to the strictly larger classes of pushdown
processes [BS95] and regular graphs [BQ96]. Since alternation of fixpoints gives, however,
rise to a strict hierarchy [Bra96] the problem of model-checking the full modal mu-calculus
has still been open. Only recently, Walukiewicz presented a first elementary model-
checking algorithm for pushdown processes based on games [Wal96].

In this paper we develop an alternative algorithm which, essentially, arises as a com-
bination of extending the standard iterative model-checking techniques with conditional
reasoning, in order to capture sequential model structures in an alternation-free setting
[BS92, BS95, BQ96], and the observation that alternating fixpoints require some kind of
backtracking, as it is known from regular model checking (cf. e.g. [CKS92]).

Whereas the actual model checker results directly from this combination, the corres-
ponding correctness proof requires a stronger framework, which uses dynamic environ-
ments. In contrast to the “standard” assertions, which suffice algorithmically, dynamic
environments also explicitly model valuations of variables that occur free in the actual
fixpoint computation. This explicit treatment is necessary in order to establish the link
between the result of the fixpoint iteration and the semantics of the full modal mu-calculus.

Fortunately, all this additional complexity is only required for the proof and need not
be considered for an implementation. In fact, the actual algorithm can be implemented
on top of the algorithms of [BS92, BS95, BQ96] covering the alternation-free case. Taking
|C| as the number of transitions, and |Q| as the branching degree in the finite sequential
process representation, as well as |Φ| as the size of the formula, and ad as the alternation
depth of the formula under consideration, the overall complexity1 is

O(|Φ| ∗ (|Q| ∗ |C|)ad(Φ)+1 ∗ 2|Φ|∗(ad(Φ)+|Q|)).

The plan of the paper is now as follows. The next section describes the class of
processes we will consider, and presents the full modal mu-calculus. Subsequently, we
develop our model-checking algorithm which is proved to be correct in Section 4. The
final section contains our conclusions and directions for future research.

1In this paper we neglect the optimization of [LBC+94] which exploits monotonicity arguments and
would reduce ad(Φ) to ad(Φ)/2.

2

2 Processes and Specifications

Infinite sequential processes comprise context-free processes, pushdown processes, and
regular graphs. In this paper we will mainly concentrate on the model-checking problem
for context-free processes, as the extension to pushdown processes, respectively regular
graphs, can be obtained following the lines of [BS95], respectively [BQ96].

2.1 Context-Free Processes

As usual, we consider labelled transition graphs as models for the behaviour of concurrent
systems, since they allow to represent the underlying interleaving semantics of many
process calculi.

Definition 2.1 A labelled transition graph is a triple T = (S,Act,→) where S is the
set of states, Act is the set of transition labels (or actions), and → ⊆ S × Act × S is
the transition relation.

In particular, we are interested in classes of infinite transition graphs which can be
finitely represented by labelled rewrite systems.

Definition 2.2 A labelled rewrite system is a triple R = (V,Act, R) where V is an
alphabet, Act is a set of labels, and R ⊆ V ∗ × Act × V ∗ is a finite set of rewrite
rules. If the rewrite rules are of the form R ⊆ V ×Act×V ∗ the rewrite system is called
alphabetic.

In the remainder of the paper, a rewrite rule (u, a, v) ∈ R is also written as u a→ v.
Moreover, we will denote a rewrite system simply by R if V and Act are clear from the
context. In general, rewrite systems are used to define a rewrite relation on words of V ∗

where a rewrite rule may be applied at any position. The technical development of this
paper concentrates on rewritings of the following restricted form.

Definition 2.3 Let R = (V,Act, R) be a rewrite system. Then the prefix rewriting rela-
tion of R is defined by

7−→
R

=df { (uw, a, vw) | (u a→ v) ∈ R,w ∈ V ∗ },

and the labelled transition graph TR =df (V ∗,Act, 7−→R) is called the prefix transition graph
of R. By abuse of notation, we will henceforth write uw a→ vw instead of uw 7−→a

R vw.

An alphabetic rewrite system which is interpreted wrt. prefix rewriting is called a
context-free system, and a context-free process is then the rooted prefix transition graph
of a context-free system. Note that the states of a context-free process are words over
V , and we will henceforth use lower greek letters α, β, . . . to denote them. One standard
example for a context-free process is the prefix transition graph of Cex = {A a→ AB, A

b→
ε, B

b→ ε } rooted at A. According to the prefix rewriting defined above the variable A
generates the labelled transition graph of Figure 1.

3

b b b

A

ε Β Β

ΑΒ

b b

a a

b

b

a
ΑΒΑΒ

Β

2 3

2 3 ...

...

Figure 1: The prefix transition graph for the alphabetic rewrite system Cex.

2.2 The Modal µ-Calculus

Nowadays it is widely accepted that system properties can conveniently be expressed
by temporal logic formulas. Particularly, the modal µ-calculus as introduced by Kozen
[Koz83] is a powerful branching time logic. It combines standard modal logic with least
and greatest fixpoint operators which allows to express very complex temporal properties
within this formalism. Due to its expressiveness and its conciseness the µ-calculus can
be regarded as the “assembly language” of temporal logics. Formulas of the µ-calculus,
given in positive form, are defined by the following grammar

Φ ::= tt | ff | X | Φ ∨ Φ | Φ ∧ Φ | [a]Φ | 〈a〉Φ | µX.Φ | νX.Φ

where X ranges over a (countable) set of variables Var , and a over a set of actions Act .
We will use Lµ to denote the set of all µ-calculus formulas.

2.2.1 Standard Semantics

Usually, formulas are interpreted with respect to a labelled transition graph, and the
meaning of a formula is then the set of states where the formula is true. The more
specific, equivalent interpretation given in the following only applies to transition graphs
of context-free systems, although it may also be generalized to arbitrary labelled transition
graphs.

Given TR = (V ∗,Act ,→), and a valuation V : Var → 2V ∗, the inductive definition
below stipulates when a context-free process α ∈ V ∗ has the property Φ, written as
α |=V Φ. If α fails to satisfy Φ, we will write α 6|=V Φ.

α |=V tt
α 6|=V ff
α |=V X iff α ∈ V(X)
α |=V Φ1 ∨ Φ2 iff α |=V Φ1 or α |=V Φ2

α |=V Φ1 ∧ Φ2 iff α |=V Φ1 and α |=V Φ2

α |=V 〈a〉Φ iff ∃ α′. α a→ α′ and α′ |=V Φ
α |=V [a]Φ iff ∀ α′. α a→ α′ implies α′ |=V Φ
α |=V µX.Φ iff ∀ S ⊆ V ∗. (∀ β ∈ V ∗. β |=V [X 7→S] Φ implies β ∈ S) implies α ∈ S
α |=V νX.Φ iff ∃ S ⊆ V ∗. (∀ β ∈ V ∗. β ∈ S implies β |=V [X 7→S] Φ) and α ∈ S

4

where V [X 7→ S] is the valuation resulting from V by updating the binding of X to S.

The clauses for the fixpoints are a reformulation of the Tarski-Knaster theorem which
states that the least fixpoint is the intersection of all pre-fixpoints and the greatest fixpoint
is the union of all post-fixpoints. As a consequence, states satisfy a fixpoint formula iff
they satisfy the unfolding of the formula, i.e. α |=V σX.Φ iff α |=V Φ[σX.Φ/X] where
σ ∈ {µ, ν } and Φ[Ψ/X] denotes the simultaneous replacement of all free occurrences of
X in Φ by Ψ.

The satisfaction relation defined above is independent of the valuation if the considered
formula has no free variables in which case we will drop the index V . We extend our
satisfaction relation, moreover, to sets of formulas by writing α |= Γ if α |= Φ, for all
Φ ∈ Γ. Finally, we observe that the usual denotation of formulas as the set of states
where the formula holds is obtained in our presentation by [[Φ]]V = {α | α |=V Φ }.

Next we define some standard notions which will allow us to deal with occurrences of
subformulas in a given formula.

Definition 2.4 (Binding) A formula Φ is called well named if every fixpoint operator
in Φ binds a distinct variable, and free variables are distinct from bound variables. With
each well named formula Φ we then associate its binding function DΦ which assigns to
every bound variable X of Φ the unique subformula σX.Ψ(X) of Φ, called the binding
definition of X in Φ.

From now on we assume that every formula is well named.

Definition 2.5 (Dependency order, Expansion) Given a formula Φ, we define the
dependency order over the bound variables of Φ, denoted by ≤Φ, as the least partial order
such that if X occurs free in DΦ(Y) then X ≤Φ Y . Moreover, for every subformula Ψ of
Φ, we define the expansion of Ψ with respect to DΦ as:

〈[Ψ]〉DΦ =df Ψ [DΦ(Xn)/Xn] . . . [DΦ(X1)/X1]

where the sequence (X1, . . . , Xn) is a linear ordering of all bound variables of Φ compatible
with the dependency order, i.e. if Xi ≤Φ Xj then i ≤ j.

Definition 2.6 (Subformula relation, Closure) The subformula relation on Lµ, de-
noted by �, is the least partial order on Lµ such that Ψi � Ψ1 ∨ Ψ2, Ψi � Ψ1 ∧ Ψ2,
Ψ � 〈a〉Ψ, Ψ � [a]Ψ, Ψ � µX.Ψ, and Ψ � νX.Ψ, for i = 1, 2 and a ∈ Act. Given
a formula Φ, we define the closure of Φ as CL(Φ) = {Ψ | Ψ � Φ }. Furthermore, if
CL(Φ) = {Ψ1, . . . ,Ψn } we will henceforth assume that the subformulas Ψi are linearly
ordered compatible with �, i.e. if Ψi � Ψj then i ≥ j.

Finally, we define a measure for the complexity of a formula depending on the number of
intertwined alternating fixpoint operators.

5

Definition 2.7 (Alternation Depth)
A formula Φ is said to be in the classes Σ0 and Π0 iff it contains no fixpoint operators. To
form the class Σn+1, take Σn ∪ Πn, and close under (i) boolean and modal combinators,
(ii) µX.Φ, for Φ ∈ Σn+1, and (iii) substitution of Φ′ ∈ Σn+1 for a free variable of Φ ∈
Σn+1 provided that no free variable of Φ′ is captured by Φ; and dually for Πn+1. The
(Niwinski) alternation depth of a formula Φ, denoted by ad(Φ), is then the least n such
that Φ ∈ Σn+1 ∩Πn+1.

Example 2.8 Consider the closed formula Φex = µX.νY.[b]X ∧ [a]Y which expresses
intuitively that “on every (infinite) { a, b }-path only finitely many b-transitions can occur”.
This formula has alternation depth 2, and its closure is the set of formulas {Ψ1,Ψ2,Ψ3,Ψ4,
Ψ5,Ψ6,Ψ7 } where

Ψ1 = µX.νY.[b]X ∧ [a]Y Ψ4 = [b]X Ψ6 = X
Ψ2 = νY.[b]X ∧ [a]Y Ψ5 = [a]Y Ψ7 = Y
Ψ3 = [b]X ∧ [a]Y

When interpreted with respect to the transition graph of Figure 1 the semantics of Φex is
the set of states AB∗∪B∗. Note, however, that the semantics of the inner fixpoint formula
νY.[b]X ∧ [a]Y is not continuous wrt. the valuation of X. This can be seen by applying

f(S) =df [[νY.[b]X ∧ [a]Y]]T[X 7→S]

to the finite approximants B0...j =df { ε, B,B2, . . . , Bj }. Since f(B0...j) = B0...j+1, for
any j, we obtain

⋃
j≥0 f(B0...j) = B∗ as the limit of iteration over the naturals, while one

further iteration yields f(B∗) = AB∗ ∪ B∗. Hence the function f is not continuous.

2.2.2 Assertion-Based Semantics

As pointed out in [BS92], context-free processes can be verified by considering Hoare-logic
style pre-condition/post-condition pairs of sets of formulas for each of the nonterminals
occurring in the context-free system. A triple {Γ} α {∆ } is then interpreted as α satisfies
all formulas of Γ if we assert that after termination of α exactly the set of formulas ∆
holds. This intuition is formally captured by the following definition of assertion-based
semantics which generalises standard semantics by taking into account the set of formulas
which hold after termination of a process.

Given TC = (V ∗,Act, 7−→C), and a valuation V : Var → 2V ∗, the inductive definition
below stipulates when a context-free process α ∈ V ∗ has the property Φ under the hypo-
thesis that after termination of α the formulas ∆ hold, written as α |=V (Φ,∆). If α fails
to satisfy Φ under the hypothesis ∆, we will write α 6|=V (Φ,∆). First we have

ε |=V (Φ,∆) iff Φ ∈ ∆

and then, for α 6= ε,

6

α |=V (tt,∆)
α 6|=V (ff,∆)
α |=V (X,∆) iff α ∈ V(X)
α |=V (Φ1 ∨ Φ2,∆) iff α |=V (Φ1,∆) or α |=V (Φ2,∆)
α |=V (Φ1 ∧ Φ2,∆) iff α |=V (Φ1,∆) and α |=V (Φ2,∆)
α |=V (〈a〉Φ,∆) iff ∃ α′. α a→ α′ and α′ |=V (Φ,∆)
α |=V ([a]Φ,∆) iff ∀ α′. α a→ α′ implies α′ |=V (Φ,∆)
α |=V (µX.Φ,∆) iff ∀ S ⊆ V ∗. (∀ β ∈ V ∗. β |=V [X 7→S] (Φ,∆) implies β ∈ S)

implies α ∈ S
α |=V (νX.Φ,∆) iff ∃ S ⊆ V ∗. (∀ β ∈ V ∗. β ∈ S implies β |=V [X 7→S] (Φ,∆))

and α ∈ S
As in the case of the standard semantics, we will use α |=V (Γ,∆) to denote α |=V (Φ,∆),
for all Φ ∈ Γ.

The usefulness of the assertion-based semantics is underpined by the following propos-
ition [BS92] which states that, firstly, the assertion-based semantics extend the standard
semantics, and secondly, that they allow to reason compositionally about context-free
processes.

Proposition 2.9 The assertion-based semantics is

1. an extension of standard semantics, i.e. given a closed formula Φ, we have,

α |= Φ iff α |= (Φ,∆ε)

for ∆ε = {Ψ ∈ CL(Φ) | ε |= 〈[Ψ]〉DΦ }.

2. compositional wrt. context-free processes, i.e. for all ∆,Γ ⊆ Lµ,

αβ |= (Γ,∆) iff ∃ Σ ⊆ Lµ. α |= (Γ,Σ) and β |= (Σ,∆)

The effectiveness of our algorithm, which is presented in the next section, relies, in par-
ticular, on Proposition 2.9.1, as it shows that Φ can be verified by taking into account
merely the semantics of all subformulas of Φ.

3 The Model-Checking Algorithm

In this section we develop our model-checking algorithm which allows us to verify closed µ-
formulas with arbitrary alternation depth for context-free processes in exponential time.
In fact, the algorithm coincides with a backtracking extension of the model-checker of
[BS92] which deals only with the alternation-free fragment of the modal µ-calculus. The
correctness proof, presented in Section 4, requires, however, a stronger new framework
involving dynamic environments which capture the valuations of free variables on the
context-free transition graph.

7

[[A]]ttV = λ(∆).1 [[A]]Ψ1∨Ψ2
V = [[A]]Ψ1

V t [[A]]Ψ2
V

[[A]]ffV = λ(∆).0 [[A]]Ψ1∧Ψ2
V = [[A]]Ψ1

V u [[A]]Ψ2
V

[[A]]XV = λ(∆).V(X,A) [[A]]〈a〉ΨV = t
A
a→α[[α]]ΨV

[[A]][a]Ψ
V = u

A
a→α[[α]]ΨV

[[A]]µX.ΨV = selA(u{ (hXA1
, . . . , hXAn) | ∀1≤i≤n [[Ai]]ΨV [(X,Aj) 7→hXAj ,1≤j≤n] v hXAi })

[[A]]νX.ΨV = selA(t{ (hXA1
, . . . , hXAn) | ∀1≤i≤n hXAi v [[Ai]]ΨV [(X,Aj) 7→hXAj ,1≤j≤n] })

[[ε]]ΨV(∆) = memΨ(∆)
[[Aα]]ΨV(∆) = [[A]]ΨV({Υ ∈ CL(Φ) | [[α]]ΥV (∆) = 1})

Figure 2: The property transformer scheme.

3.1 The Property Transformer Scheme

Given a context-free system C and a closed formula Φ, each nonterminal A ∈ V =
{A1, . . . , An } defines a mapping [[A]] : 2CL(Φ) → 2CL(Φ) from post- to pre-conditions.
As we are, however, in particular interested in the question whether a given subformula
Ψ ∈ CL(Φ) belongs to the pre-condition set or not, we refine this notion by defining the
following functions, called characteristic property transformers (CPT).

[[A]]Ψ(∆) =df

{
1 if A |= (Ψ,∆)
0 otherwise

Writing IB for the usual lattice of boolean values, characteristic property transformers are
elements of the boolean lattice consisting of all functions from 2CL(Φ) to IB, where the
ordering, and the meet and join operations respectively, are defined argument-wise.

More importantly, they can be obtained as a fixpoint solution of an appropriate func-
tion scheme, called the property transformer scheme (PTS). This scheme is defined by
the rules given in Figure 2, and consists of two parts. The first part copes with the
structure of the context-free system, as well as with the semantics of the formula, and
defines an equation for each pair (A,Ψ) ∈ V × CL(Φ). The second part deals with the
empty process according to the first clause of the assertion-based semantics, as well as
with composed processes according to Proposition 2.9.2. Whereas the rules for the basic
cases mimic directly the semantics of the subformula, the fixpoint related equations are
slightly more complicated and require a simultaneous computation of all their correspond-
ing transformers2. selA then simply selects the A component of the resulting tuple. The
other auxiliary function, memΨ, tests the membership of Ψ in the given set of formulas. It
returns 1 if Ψ ∈ ∆ and 0 otherwise.

The overall structure of the model-checking algorithm consists now of the following
three steps.

2Note that valuations map now pairs of variables and nonterminals to characteristic property trans-
formers.

8

1. Given a context-free system C and a closed µ-formula Φ construct the property
transformer scheme according to the rules given in Figure 2.

2. Solve the (finite) fixpoint problem for the property transformer scheme.

3. Check whether [[A1]]Φ(∆ε) = 1 where A1 is the root of the context-free system, and
∆ε = {Ψ ∈ CL(Φ) | ε |= 〈[Ψ]〉DΦ }.

In Section 4 we prove that the second step of the algorithm computes transformers which
reflect the assertion-based semantics, while Proposition 2.9.1 now ensures that the third
step solves the model-checking problem, as we have

[[A1]]Φ(∆ε) = 1 iff A1 |= (Φ,∆ε) iff A1 |= Φ

Moreover, the ordinary semantics of Φ can be obtained from the set of CPT’s by means
of [[Φ]] = {α ∈ V ∗ | [[α]]Φ(∆ε) = 1}. In particular, the semantics of Φ is always a regular
set of states.

3.2 Complexity

As expected, the required backtracking for alternating µ-formulas yield a worst-case time
complexity for the algorithm, which is exponentially worse (in the alternation depth) than
the estimation given for the alternation-free case [BS92, BS95].

Theorem 3.1 (Complexity)
Let C be a context-free system, and Φ be a closed µ-formula. Then the worst-case time
complexity of solving the property transformer scheme is

O(|Φ| ∗ (|C| ∗ 2|Φ|)ad(Φ)+1)

Proof: For the complexity analysis we assume wlog. that the context-free system is given
in 3-GNF, i.e. that each right-hand side of the context-free system has length at most 2.

First observe that the right-hand side of a single PTS-equation can be computed
argument-wise for each of the 2|Φ| arguments ∆ ∈ CL(Φ). The most expensive right-hand
side computations result from PTS-equations related to formulas containing a modality.
In this case any evaluation of [[α]]ΨV takes time O(|Φ|), and for a fixed Ψ, we have at most
|C| of these composed expressions. Thus fixing a subformula Ψk, the evaluation of all its
PTS right-hand sides for all arguments has time complexity O(|C| ∗ |Φ| ∗ 2|Φ|).

Moreover, there are now at most |C| CPT’s each having a maximal chain length of
approximants of 2|Φ|. Thus the overall worst-case time complexity for computing the
fixpoint at level k ∈ [1, n] can be estimated by

TCk = O(|C| ∗ 2|Φ| ∗ (TCk+1 + |C| ∗ |Φ| ∗ 2|Φ|))

where TCn+1 = 0. Using induction, and thereafter standard techniques to refine the
fixpoint computation by dealing with subformulas occurring in between alternation sim-
ultaneously we hence obtain the overall time complexity

TC1 = O(|Φ| ∗ (|C| ∗ 2|Φ|)ad(Φ)+1)

2

9

3.3 An Example

In this section we illustrate our model-checking algorithm by verifying the µ-formula Φex

of Example 2.8 for the context-free process Cex given in Figure 1. Figure 3 shows the
property transformer scheme PTSex constructed from Cex and Φex, as well as the corres-
ponding fixpoint computation. To shorten the example we have evaluated {Ψ2, . . . ,Ψ7 }
simultaneously, as they occur in the same alternation level, and we have used simply Ψ6

instead of memΨ6. At the bottom of the figure we, finally, apply the resulting characteristic
property transformer [[A]]Ψ1 to the set of subformulas satisfied by ε. Since the application
yields true, we have thus verified that A satisfies indeed the property represented by Ψ1.

4 The Correctness Proof

The observation that the fixpoint computation for µ-formulas with only one sort of fix-
point can be done simultaneously was used in [BS92, BS95] to verify closed alternation-free
formulas by merely exploring the assertion-based semantics. For formulas with alterna-
tion, however, we need a stronger framework which takes also into account the bindings
of free variables where the parity may alternate. These bindings will be dealt with by
dynamic environments which are decribed in terms of deterministic finite-state automata
introduced in Section 4.1. Subsequently, in Section 4.2 we show that dynamic environ-
ments may represent the semantic solution of the model-checking problem, and that there
exists an iterative algorithm which admits the computation of the semantic solution.

4.1 Dynamic Environments

In the presence of formulas containing free variables the simple composition property of
Proposition 2.9.1 no longer captures correctly the behaviour of context-free processes wrt.
the specification at hand. This defect is eliminated by the slight modification given below.

{Γ,V ′ } αβ {∆,V } iff ∃ Σ,V ′′ {Γ,V ′ } α {Σ,V ′′ } and {Σ,V ′′ } β {∆,V }

Intuitively, the modified composition rule expresses that in addition to assertions also
environments must be adapted when considered at intermediate states. In general, the
valuation V ′′ is obtained from V by right cancellation of β, i.e. for all X ∈ dom(V),
V ′′(X) = (V(X) ∩ V ∗β)β−1. As an example, αβ ∈ V(X) would imply α ∈ V ′′(X).

In the remainder of this section we fix now a context-free system C, and a formula
Φ with closure {Ψ1, . . . ,Ψn }. Our aim is to develop a formalism, the dynamic envir-
onments, which faithfully models the adaptations of valuations needed for composition.
Dynamic environments will be partitioned into levels k ∈ [1, n] where a dynamic envir-
onment of level k defines the valuations for {Ψ1, . . . ,Ψk }. This change from valuations
for variables to valuations for subformulas is reflected in the semanics by adding the rule
“if Ψ ∈ dom(V) then (α |=V (Ψ,∆) if α ∈ V(Ψ))”. The original model-checking problem
is then reduced to a corresponding fixpoint problem on the finite domain of dynamic

10

Cex =

A

a→ AB

A
b→ ε

B
b→ ε

 Φex =

Ψ1
µ= Ψ2

Ψ2
ν= Ψ3

Ψ3 = Ψ4 ∧Ψ5

Ψ4 = [b]Ψ6

Ψ5 = [a]Ψ7

Ψ6 = Ψ1

Ψ7 = Ψ2

PTSex =

[[A]]Ψ1
µ= [[A]]Ψ2 [[B]]Ψ1

µ= [[B]]Ψ2

[[A]]Ψ2 ν= [[A]]Ψ3 [[B]]Ψ2 ν= [[B]]Ψ3

[[A]]Ψ3 = [[A]]Ψ4 u [[A]]Ψ5 [[B]]Ψ3 = [[B]]Ψ4 u [[B]]Ψ5

[[A]]Ψ4 = [[ε]]Ψ6 [[B]]Ψ4 = [[ε]]Ψ6

[[A]]Ψ5 = [[AB]]Ψ7 [[B]]Ψ5 = 1
[[A]]Ψ6 = [[A]]Ψ1 [[B]]Ψ6 = [[B]]Ψ1

[[A]]Ψ7 = [[A]]Ψ2 [[B]]Ψ7 = [[B]]Ψ2

Fixpoint computation for PTSex:

[[A]]Ψ1 [[A]]Ψ2 [[A]]Ψ3 [[A]]Ψ4 [[A]]Ψ5 [[A]]Ψ6 [[A]]Ψ7 [[B]]Ψ1 [[B]]Ψ2 [[B]]Ψ3 [[B]]Ψ4 [[B]]Ψ5 [[B]]Ψ6 [[B]]Ψ7

1 0 1 1 1 1 1 1 0 1 1 1 1 1 1
2 Ψ6 Ψ6 Ψ6 1 0 1 Ψ6 Ψ6 Ψ6 1 0 1
3 0 0 Ψ6 0 0 Ψ6 Ψ6 Ψ6 Ψ6 1 0 Ψ6

4 0 0 Ψ6 0 0 0 Ψ6 Ψ6 Ψ6 1 0 Ψ6

5 0 1 1 1 1 1 1 Ψ6 1 1 1 1 1 1
6 Ψ6 Ψ6 Ψ6 1 0 1 Ψ6 Ψ6 Ψ6 1 Ψ6 1
7 Ψ6 Ψ6 Ψ6 Ψ6 0 Ψ6 Ψ6 Ψ6 Ψ6 1 Ψ6 Ψ6

8 Ψ6 1 1 1 1 1 1 Ψ6 1 1 1 1 1 1
9 Ψ6 Ψ6 Ψ6 1 Ψ6 1 Ψ6 Ψ6 Ψ6 1 Ψ6 1

10 Ψ6 Ψ6 Ψ6 Ψ6 Ψ6 Ψ6 Ψ6 Ψ6 Ψ6 1 Ψ6 Ψ6

Standard model-checking for ε delivers ε |= ∆ε =df {Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6,Ψ7 }. Overall we thus obtain:

A |= Ψ1 iff A |= (Ψ1,∆ε) iff [[A]]Ψ1(∆ε) = 1 iff memΨ6(∆ε) = 1 iff Ψ6 ∈ ∆ε

Figure 3: The verification of Φex for Cex.

11

environments, such that the semantics of the original formula is captured by the final
environment of level n.

Definition 4.1 (Dynamic Environment)
A dynamic environment Āk of level k ∈ [1, n] is a sequence of deterministic finite-state
automata Ai = (QAi, V, δAi, FAi), i = 1, . . . , k, where

• QAi = (2CL(Φ))i are the state sets of the automata,

• V is the input alphabet,

• δAi : QAi × V → QAi are the transition functions obeying the constraints

δAi(∆̄i, A) = Γ̄i implies δAi−1(∆̄i−1, A) = Γ̄i−1

where ∆̄i denotes (∆1, . . . ,∆i), and

• FAi = { ∆̄i ∈ QAi | Ψi ∈ ∆i } is the set of accepting states.

Denoting the transitive closure of δAi, as usual, also by δAi the language accepted by Ai
starting in the state ∆̄i is LAi(∆̄i) = {α ∈ V ∗ | δAi(∆̄i, α̃) ∈ FAi } where α̃ is the reverse
of α3.

A dynamic environment Āk together with a state ∆̄k is then interpreted as an envir-
onment which defines valuations for Ψ1, . . . ,Ψk by means of

Ā1〈∆̄1〉 =df [Ψ1 7→ LA1(∆̄1)]

Āk〈∆̄k〉 =df Āk−1〈∆̄k−1〉 [Ψk 7→ LAk(∆̄k)] for 2 ≤ k ≤ n

Dynamic environments are a convenient formalism to describe the semantics of µ-
formulas on context-free processes since they model compositionality simply by transitions
in the finite automata.

Lemma 4.2 Let {Γ,V ′ } A {∆, Āk〈∆̄k〉 }. Then

1. For all i ≤ k, Ψi ∈ Γ iff A ∈ Āk〈∆̄k〉(Ψi), and

2. V ′ = Āk〈δAk(∆̄k, A)〉.

The first property expresses that a dynamic environment of level k captures the se-
mantics of all subformulas up to level k, while the second property states that the envir-
onment to be considered in the pre-condition of A coincides with the interpretation of the
A-successor of ∆̄k in Ak.

3Here we have to use α̃ as the automaton has to model the above mentioned right cancellation

12

The granularity of the transition functions of dynamic environments is not sufficient to
obtain a match between the semantic and the iterative intuition behind the model check-
ing problem. We therefore split these transition functions into characteristic transition
functions (CTF) δi,j as follows.

δi,j(∆̄i, A) =
{

1 if Ψj ∈ δiAi(∆̄i, A)
0 otherwise

where δjAi(∆̄i, A) =df Γj if δAi(∆̄i, A) = Γ̄i. CTF’s can naturally be extended to words
over V by means of

δi,j(∆̄i, ε) = memΨj (∆i)
δi,j(∆̄i, αA) = δi,j(δAi(∆̄i, A), α)

The split into characteristic transition functions allows us to view a dynamic environ-
ment Āk as a matrix of CTF’s as depicted below.

δ1,1 δ1,2 . . . δ1,k . . . δ1,n

...
δk,1 δk,2 . . . δk,k . . . δk,n

This matrix can be systematically extended to a matrix for Āk+1 with new row (δk+1,1, . . .,
δk+1,n) by means of a fixpoint computation such that the final result will capture the
semantics of the formula Φ on the given process. During this computation we need to
update a characteristic transition function by a function of the same column. The arity of
the function is then adapted by either suppressing or by replicating arguments. Formally,
we define

(δi,j ↑ k) (∆̄k, A) =df δi,j(∆̄i, A) where k ≥ i, and

(δi,j ↓ k) (∆̄k, A) =df δi,j(∆̄i, A) where k ≤ i and ∆j = ∆k, for j = k + 1, . . . , i.

Intuitively, the first line describes that a CTF of level i which is used at level k ≥ i ignores
the local formula sets ∆i+1, . . . ,∆k, while the second line expresses that a CTF of level i
which is used at level k ≤ i takes as arguments ∆1, . . . ,∆k, and replicates ∆k i− k times.
To simplify the subsequent presentation of the algorithm we will, however, use δi,j also
for the adapted CTF’s.

As will be elaborated on in the next subsection, the matrices defined above are ad-
equate for proving our main result, Theorem 4.7, i.e. the equivalence of the semantic and
the iterative algorithm presented in Section 4.2, because it is possible to “synchronize”
their corresponding computations on the diagonal.

4.2 Semantic and Iterative Solutions

Given the semantics of the formulas Ψ1, . . . ,Ψk−1 in terms of a dynamic environment
Āk−1 we will now consider the semantics of the remaining formulas Ψk, . . . ,Ψn.

13

Definition 4.3 (Semantic Solutions)
We call Āk, for k ∈ [1, n], the semantic solution of Āk−1, written as S(Āk−1), if the
transition function of Ak satisfies

δAk(∆̄k, A) = Γ̄k iff (Γk, Āk−1〈Γ̄k−1〉) A (∆k, Āk−1〈∆̄k−1〉).

Moreover, we call (Āk, . . . , Ān) the semantic solutions of Āk−1, denoted by S̄(Āk−1), if
Āi = S(Āi−1), for i ∈ [k, n].

It turns out that the semantic solution respects the standard substitution lemma.

Lemma 4.4 Let (Γk, Āk−1〈Γ̄k−1〉) A (∆k, Āk−1〈∆̄k−1〉) and let Āk be the semantic solu-
tion of Āk−1. Then

(Γk, Āk−1〈Γ̄k−1〉[Ψk 7→ LAk(Γ̄k)]) A (∆k, Āk−1〈∆̄k−1〉[Ψk 7→ LAk(∆̄k)])

Corollary 4.5 (Diagonal Consistency)
If Āk, . . . , Ān are the semantic solutions of Āk−1 then δi,j = δj,j, for i ∈ [k, n], j ∈ [1, n].

Due to this corollary we may simply identify the semantic solutions Āk, . . . , Ān with
the characteristic transition functions δk,k, . . . , δn,n. Conversely, given Āk−1 and (arbit-
rary) δk,k, . . . , δn,n we define

• Āk−1 ⊕ (δk,k, . . . , δn,n) as Āk−1 augmented by δk,j =df δj,j, for j ∈ [1, n], and

• Āk−1 ⊗ (δk,k, . . . , δn,n) as Āk−1 augmented by δi,j =df δj,j, for i ∈ [k, n], j ∈ [1, n].

Let us finally sketch the resulting (conceptual) algorithm which iteratively computes
the semantic solutions for Āk−1. Given Āk−1, we would like to compute δi,j for i ∈
[k, n], j ∈ [1, n]. By Corollary 4.5 we already know that δi,j = δj,j for i ∈ [k, n], j ∈
[1, k − 1]. The remaining characteristic transition functions are then computed level-
wise by a two-level fixpoint computation. During the inner-level computation we have
fixed some approximant δk,k and vary the values of δk,k+1, . . . , δk,n. The idea is that
(δk,1, . . . , δk,n) together with Āk−1 defines a dynamic environment Āk for which we can
compute the semantic solutions θk+1,k+1, . . . , θn,n by induction. We may therefore update
δk,k+1, . . . , δk,n by θk+1,k+1, . . . , θn,n, and repeat this iteration until we reach consistency.
In the outer-level fixpoint computation we may now update the fixed δk,k by evaluating
the characteristic transition function for the “unfolding” of Ψk in the current setting, and
start the inner fixpoint computation again. Our main theorem then states that if we have
reached consistency also at the outer-level then the iterative and the semantic solutions
for Āk−1 coincide.

Formally, given a dynamic environment Āk−1, we define a monotone function GIk(δk,k)
called the global iteration function at level k with respect to δk,k by

GIk(δk,k)(δk+1,k+1, . . . , δn,n) =df (θk+1,k+1, . . . , θn,n).

14

where (θk+1,k+1, . . . , θn,n) are the semantic solutions of Āk = Āk−1 ⊕ (δk,k, . . . , δn,n). Ac-
cordingly, µGIk(δk,k) denotes now the least fixpoint of GIk(δk,k), while νGIk(δk,k) denotes
the greatest. Notice, moreover, that both fixpoints are monotone wrt. δk,k.

In order to define in a second step the local iteration function LIk at level k we first
consider the CTF [[[Ψk]]]Ān : QAk × V → { 0, 1} representing the “unfolding” of a formula
Ψk wrt. a dynamic environment Ān. It is given by

[[[Ψk]]]Ān =df

λ(∆̄k, A).1 if Ψk = tt

λ(∆̄k, A).0 if Ψk = ff

Ān[i, i] if Ψk = X and Ψi = σX.Ψj

Ān[i, i]t Ān[j, j] if Ψk = Ψi ∨ Ψj

Ān[i, i]u Ān[j, j] if Ψk = Ψi ∧ Ψj

λ(∆̄k, A). t
A
a→α Ān[i, i](∆̄k, α) if Ψk = 〈a〉Ψi

λ(∆̄k, A). u
A
a→α Ān[i, i](∆̄k, α) if Ψk = [a]Ψi

Ān[i, i] if Ψk = σX.Ψi

where Ān[i, j] denotes the CTF of Ān ocurring in row i, and in column j.

Now let σ be the parity4 of Ψk, σGIk(δk,k) = (δk+1,k+1, . . . , δn,n), and (Āk+1, . . . , Ān)
be the semantic solutions of Āk = Āk−1 ⊕ (δk,k, . . . , δn,n). Then we define

LIk(δk,k) =df [[[Ψk]]]Ān

As LIk is again monotone, we may build its least fixpoint µLIk, as well as its greatest
fixpoint νLIk. Finally, we use GIk and LIk to define the iterative solutions of Āk−1,
written as Ī(Āk−1), by

Ī(Āk−1) =df (ϑk,k, . . . , ϑn,n)

where σ is the parity of Ψk, ϑk,k = σLIk, and (ϑk+1,k+1, . . . , ϑn,n) = σGIk(ϑk,k).

Based on the following lemma, which states that the semantic solutions are a fixpoint
of GIk and LIk, the key to our algorithm is now an iterative characterization of the
semantic solutions.

Lemma 4.6 Let S̄(Āk−1) = (Āk, . . . , Ān) with CTF’s (θk,k, . . . , θn,n). Then we have

1. GIk(θk,k)(θk+1,k+1, . . . , θn,n) = (θk+1,k+1, . . . , θn,n), and

2. LIk(θk,k) = θk,k.

Theorem 4.7 For any given dynamic environment Āk the semantic and the iterative
solutions coincides, i.e. S̄(Āk) = Ī(Āk).

4For non-fixpoint formulas we can take σ to be either µ or ν as the semantics of the subformulas of
Ψk do not depend on the semantics of Ψk itself.

15

Proof: The theorem is shown by induction on k. For the induction base where k = n
there is nothing to show, as S̄(Ān) = () = Ī(Ān). Now consider a dynamic environment
Āk−1 with k− 1 < n, and assume the theorem holds for all i ∈ [k, n]. The induction step
for Ψk = tt, ff, X,Ψi ∨Ψj,Ψi ∧Ψj, 〈a〉Ψi, and [a]Ψi is proved using the definition of LIk
and the fact that the semantics of occurring proper subformulas do not depend on the
semantics of Ψk itself. We therefore prove the induction step only for the case where Ψk

is a minimal fixpoint operator µX.Ψl, since the case for maximal fixpoints is completely
dual.

Let θ = (θk,k, . . . , θn,n) be the semantic solutions of Āk−1, and S̄k = Āk−1 ⊕ θ.
Moreover, let ϑ = (ϑk,k, . . . , ϑn,n) be the iterative solutions of Āk−1, i.e. ϑk,k = µLIk
and (ϑk+1,k+1, . . . , ϑn,n) = µGIk(ϑk,k), as well as Īk = Āk−1 ⊕ ϑ.

(I) (ϑk,k, . . . , ϑn,n) v (θk,k, . . . , θn,n)

To show the inequality we construct inductively a chain of dynamic environments Ā(i)
n ,

for i ≥ 0, as follows. Let

Ā(i)
n = Āk−1 ⊗ (ϑ(i)k,k, . . . , ϑ(i)n,n)

where

ϑ(0)k,k = θk,k, (ϑ(0)k+1,k+1, . . . , ϑ(0)n,n) = µGIk(ϑ(0)k,k)
ϑ(i+1)k,k = [[[Ψk]]]Ā(i)

n
, (ϑ(i+1)k+1,k+1, . . . , ϑ(i+1)n,n) = µGIk(ϑ(i+1)k,k)

Claim : Ā(i)
n , for i ≥ 0, is a descending chain of dynamic environments.

Proof: First note that ϑ(i)k,k w ϑ(i+1)k,k implies Ā(i)
n w Ā(i+1)

n , since by definition

(ϑ(i)k+1,k+1, . . . , ϑ(i)n,n) = µGIk(ϑ(i)k,k) w µGIk(ϑ(i+1)k,k) = (ϑ(i+1)k+1,k+1, . . . , ϑ(i+1)n,n).

The claim is then proved by showing

(4.7.1) Ā(0)
n w Ā(1)

n , and

(4.7.2) Ā(i−1)
n w Ā(i)

n implies Ā(i)
n w Ā(i+1)

n .

(4.7.1) Since by Lemma 4.6.1 GIk(θk,k)(θk+1,k+1, . . . , θn,n) = (θk+1,k+1, . . . , θn,n) we see
that

(θk+1,k+1, . . . , θn,n) w µGIk(θk,k) = (ϑ(0)k+1,k+1, . . . , ϑ(0)n,n),

and hence
ϑ(0)k,k = θk,k = [[[Ψk]]]Āθn w [[[Ψk]]]Ā(0)

n
= ϑ(1)k,k.

Thus we obtain Ā(0)
n w Ā(1)

n .

(4.7.2) Now let Ā(i−1)
n w Ā(i)

n , for some i ≥ 1. Since

ϑ(i)k,k = [[[Ψk]]]Ā(i−1)
n
w [[[Ψk]]]Ā(i)

n
= ϑ(i+1)k,k

by definition, we immediately obtain Ā(i)
n w Ā(i+1)

n , as desired. 2

16

Since the domain of all dynamic environments wrt. Φ and C is finite, we eventually reach
a fixpoint Ā(fix)

n for which we conclude

(ϑk,k, . . . , ϑn,n) v (ϑ(fix)k,k, . . . , ϑ(fix)n,n) v (ϑ(0)k,k, . . . , ϑ(0)n,n) v (θk,k, . . . , θn,n).

(II) LĪk(∆̄k) ⊇ LS̄k(∆̄k), for any consistent ∆̄k

∆̄k is said to be consistent if each ∆i, for i ∈ [1, k], is consistent, and ∆i is called consistent
if it satisfies the following conditions: ff 6∈ ∆i, Ψ1 ∨ Ψ2 ∈ ∆i iff Ψ1 ∈ ∆i or Ψ2 ∈ ∆i,
Ψ1 ∧Ψ2 ∈ ∆i iff Ψ1 ∈ ∆i and Ψ2 ∈ ∆i, and σX.Ψ ∈ ∆i iff X ∈ ∆i iff Ψ ∈ ∆i.

As Ψk = µX.Ψl, (II) follows now from the fixpoint property

α |=Īk〈∆̄k〉 (Ψl,∆k) iff α ∈ LIk(∆̄k)

which is proved by induction on the length of processes. For the induction base we have

ε |=Īk〈∆̄k〉 (Ψl,∆k)
iff Ψl ∈ ∆k

iff Ψk ∈ ∆k by consistency of ∆k

iff ε ∈ LIk(∆̄k)

The induction step then follows from

αA |=Īk〈∆̄k〉 (Ψl,∆k)
iff α |=Īk〈δIk(∆̄k,A)〉 (Ψl, δkIk(∆̄k, A)) by induction hypothesis on k
iff α ∈ LIk(δIk(∆̄k, A)) by induction hypothesis on the length of α
iff αA ∈ LIk(∆̄k)

(III) Since (I) implies LĪk(∆̄k) ⊆ LĪk(∆̄k), we conclude from (II) LĪk(∆̄k) ⊆ LĪk(∆̄k),
for any consistent ∆̄k. We have hence ϑk,k = θk,k, and by induction hypothesis on k also
ϑi,i = θi,i, for i ∈ [k + 1, n].

As ∆ε is consistent, and characteristic transition functions preserve consistency, this
concludes the proof. 2

The observation that only the characteristic transition functions on the diagonal have
to be taken into account when updating δk,k wrt. the current dynamic environment Ān,
allows us to replace the “conceptual” algorithm used in the correctness proof to the
“actual” model-checking algorithm presented in the previous section. This optimization
is, finally, the key for proving the claimed complexity result.

5 Conclusions and Further Research

In this paper we have presented an iterative, elementary model-checking algorithm for
context-free processes which deals with the full modal µ-calculus. This basic algorithm

17

can be extended to the class of pushdown processes following the lines of [BS95], as well as
to the class of regular graphs following the lines of [BQ96], respectively. Essentially, both
extensions are obtained by taking into account the arity Q of pushdown processes (which
corresponds to the number of states in the finite control), respectively regular graphs
(which corresponds to the maximal arity of a hyperedge), which yields characteristic
property transformers with multiple arguments. For these extensions our algorithm has
the worst-time complexity

O(|Φ| ∗ (|Q| ∗ |C|)ad(Φ)+1 ∗ 2|Φ|∗(ad(Φ)+|Q|)).

Recently, Walukiewicz presented another model-checker for pushdown processes which
uses games [Wal96]. His algorithm has a dramatically different complexity estimation. In
particular it behaves much worse for increasing degrees of alternation depths.

O(|C| ∗ (2|Q|∗|Φ|∗ad(Φ))ad(Φ))

Whereas our algorithm directly mimics the behavioural intuition behind sequential pro-
cesses and, in particular, keeps process and formula structure transparent, which gives a
direct handle to extending the underlying process structure, Walukiewics’ algorithm inter-
twines these structures, which, at least, complicates the identification of the modifications
necessary for the extensions.

This structural distinction has also an impact on the further extensions we are plan-
ning: First, to extend model-checking to the class of rational restricted recognizable graphs
as introduced in [Cau96], and second, to develop a local variant. Both extensions will
exploit the structural transparency of our approach and, in particular, use the framework
of dynamic environments.

References

[BQ96] O. Burkart and Y.-M. Quemener. Model-Checking of Infinite Graphs Defined
by Graph Grammars. In INFINITY ’96, MIP-9614, pages 56–70. Universität
Passau, July 1996.

[Bra96] J.C. Bradfield. The Modal mu-Calculus Alternation Hierarchy is Strict. In
CONCUR ’96, LNCS 1119, pages 233–246. Springer, 1996.

[BS92] O. Burkart and B. Steffen. Model Checking for Context-Free Processes. In
CONCUR ’92, LNCS 630, pages 123–137. Springer, 1992.

[BS95] O. Burkart and B. Steffen. Composition, Decomposition and Model-Checking
of Pushdown Processes. Nordic Journal of Computing, 2:89–125, 1995.

[Cau96] D. Caucal. On Infinite Transition Graphs Having a Decidable Monadic Theory.
In ICALP ’96, LNCS 1099, pages 194–205. Springer, 1996.

[CKS92] R. Cleaveland, M. Klein, and B. Steffen. Faster Model Checking for the Modal
Mu-Calculus. In CAV ’92, LNCS 663, pages 410–422, 1992.

18

[Cou90] B. Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 5, pages
193–242. Elsevier Science Publisher B.V., 1990.

[EK95] J. Esparza and A. Kiehn. On the Model Checking Problem for Branching Time
Logics and Basic Parallel Processes. In CAV ’95, LNCS 939, pages 353–366.
Springer, 1995.

[Esp94] J. Esparza. On the Decidability of Model Checking for Several µ-calculi and
Petri Nets. In CAAP ’94, LNCS 787, pages 115–129. Springer, 1994.

[Esp96] J. Esparza. More Infinite Results. In INFINITY ’96, MIP-9614, pages 4–20.
Universität Passau, July 1996.

[HS94] H. Hungar and B. Steffen. Local Model-Checking for Context-Free Processes.
Nordic Journal of Computing, 1(3):364–385, 1994.

[JW96] D. Janin and I. Walukiewicz. On the Expressive Completeness of the Proposi-
tional mu-Calculus wrt. Monadic Second Order Logic. In CONCUR ’96, LNCS
1119, pages 263–277. Springer, 1996.

[Koz83] D. Kozen. Results on the Propositional µ-Calculus. Theoretical Computer
Science, 27:333–354, 1983.

[LBC+94] D.E. Long, A. Browne, E.M. Clarke, S. Jha, and W.R. Marrero. An Improved
Algorithm for the Evaluation of Fixpoint Expressions. In CAV ’94, LNCS 818,
pages 338–350. Springer, 1994.

[MS85] D.E. Muller and P.E. Schupp. The Theory of Ends, Pushdown Automata, and
Second-Order Logic. Theoretical Computer Science, 37:51–75, 1985.

[Rab69] R.O. Rabin. Decidability of Second-Order Theories and Automata on Infinite
Trees. Transactions of the AMS, 141:1–35, 1969.

[Wal96] I. Walukiewicz. Pushdown Processes: Games and Model-Checking. In CAV
’96, LNCS 1102. Springer, 1996.

19

