The C-LEMMA Memory Interface on the Cray T3D

Christopher D. Walton and Bruce J. McAdam
Department of Computer Science
University of Edinburgh

Abstract

The challenges associated with the implementation of a concurrent programming language
on a parallel machine are often independent of the language itself, such as memory-management.
This report is a description of a language-independent memory-platform for the Cray T3D
supercomputer, called the C-LEMMA interface. The interface is closcly based on the definition of
the LEMMA interface used in the DP/ML (Distributed Poly/ML) compiler. However, the actual
implementation is quite different, due to some severe limitations imposed by the Cray architecture.
The memory-platform provides a distributed shared virtual memory (i.e. a single shared virtual
address space distributed across processors) with global garbage-collection.

This report is a detailed description of the implementation of the C-LEMMA interface. It is
also intended as a reference manual for those who wish to implement the run-time system of a
concurrent programming language using the interface.

1. Introduction

The C-LEMMA interface, described in this report, is intended to provide the first stage
of an ongoing project to implement a compiler for the Standard ML programming language
[Miln90] on the Cray T3D Supercomputer. The practical advantages of such a compiler are
twofold. On the one hand, it would allow programmers already using the Cray T3D to
program in a language capable of expression a wide range of complex problems. On the other
hand, it would enable programmers already familiar with the Standard ML language to
considerably increase the performance of existing programs and/or construct larger programs
with greater resource requirements. The Cray T3D implementation of Standard ML is
intended to be closely based on the successful Distributed Poly/ML (DP/ML) compiler for
networked clusters of workstations [Matt91]. While this compiler already provides a
significant performance increase, the Cray’s 30Gflop/peak performance and large address
space would potentially provide a huge performance boost for a range of applications.

At its lowest level, the DP/ML compiler is based around a memory-management
interface called LEMMA [Matt95a], and [Matt95b]. A description of an implementation of
this interface for the Cray T3D forms the body of this report. Although the LEMMA interface
contains a number of optimisations for the DP/ML compiler, it was designed to be a general-
purpose interface capable of supporting a wide-range of concurrent programming languages.
As a result, the content of this report has a far wider applicability than simply a back-end for
the Standard ML compiler.

The implementation of the LEMMA interface is based around a technique known as
Distributed Shared Memory (DSM) [Nitz91], and [Colo94]. DSM provides a single globally-
addressable virtual address space, shared between processes executing on different processors.
The advantages of DSM over conventional message-passing libraries (e.g. MPI [Mpif94])
include ease of programmability and portability, achieved through the use of the shared-
memory programming paradigm. At the present time, the C-LEMMA interface is the only

DSM system for the Cray T3D. In addition to a distributed shared memory, LEMMA also
provides a global garbage-collection facility for the shared address space.

The following report is a detailed description of the implementation of the LEMMA
interface on the Cray T3D, together with an explanation of the interface for those who may
wish to use it to implement a concurrent programming language on the Cray.

1.1 Terminology: LEMMA, C-LEMMA, W-LEMMA, and RTS

The LEMMA interface, as described in [Matt95a], does not make any assumptions
regarding implementation, thereby leaving open the possibility of alternative implementations
on different concurrency platforms with the same interface. Indeed, the previous distributed-
workstation version of the LEMMA interface [Matt95b] is quite different to the one described
in this report. In order to avoid confusion, the Cray T3D version of the LEMMA interface
will be referred to as C-LEMMA, while the distributed workstation version will referred to as
W-LEMMA. The term LEMMA used in isolation will refer to the LEMMA interface definition
without regard to a particular implementation.

Although the LEMMA interface is designed to be language-independent in that it treats
all program data as generic objects, there are places in the garbage-collector where is necessary
to examine the data contained inside these object (e.g. to find the pointers). Consequently, the
LEMMA interface relies on a small language-dependent Run Time System (RTS) for this
information. Therefore, a different implementation of the RTS is required depending on the
target language. An example RTS for DP/ML is described later in this report. It is worth
noting that the interface definition treats LEMMA as a library of functions which are called by
the RTS, as the RTS may be required to perform marshalling on the data objects before they
are processed by LEMMA.

2. The LEMMA Interface Definition

The LEMMA memory interface [Matt95a] defines a memory-platform for supporting
concurrent programming languages. The model of computation assumed by LEMMA is a
single client machine, and one or more servers. The servers provide only computing power
and maintain state only as an extension of the client. The client is responsible for initiating
and terminating execution, in addition to providing facilities such as I/O.

The LEMMA interface provides most of the memory management facilities required
for a concurrent programming language. The remaining language-specific memory
management facilities are provided in a separate interface known as the run-time system (RTS).
LEMMA and RTS are inter-related (although their boundaries are carefully defined) and rely
on each other behaving correctly. The LEMMA interface effectively provides the RTS with
the following three facilities:

1. Setting up communication channels between clients and servers.
2. Allowing distributed objects to be shared through virtual addressing.
3. Allocating memory without requiring explicit deallocation (garbage-collection).

In contrast to the majority of programming languages, Standard ML can make a
compile-time distinction between immutable and mutable data objects. Immutable objects are
those whose value is fixed from the time of allocation, while mutable objects may change their
value at any time during program execution. Reference-types (ref) are the only mutable data
objects in Standard ML. Consequently, immutable data allocation is far more common than
mutable data allocation, provided a largely functional programming style is used. This

assumption is used to perform several optimisations in LEMMA. Other programming
languages, such as C, have only mutable data objects (variables) and will therefore require only
the mutable data functions of LEMMA.

The LEMMA interface definition [Matt95a] consists of a large number of functions,
enabling it to support a range concurrent languages. The possibility of alternative
implementations of LEMMA with the same interface is left open. It is also possible to
produce a working run-time system without implementing the full LEMMA interface.

2.1 Distributed Shared Memory and Garbage-Collection

Distributed Shared Memory (DSM) allows a process to access memory locations
which reside on remote machines as if they were part of its own local address space. The
DSM technique employed by LEMMA, uses the fact that a typical machine has a very large
virtual address space available (e.g. 64-bit for the DEC Alpha), but uses only a small portion
for its physical memory. LEMMA statically partitions the virtual address space between
machines and allows each machine to allocate only within its partition. ~When a machine
accesses an area of virtual memory outside of its partition (i.c. used by another machine) a
page-fault signal is generated by the OS. This signal is trapped by LEMMA and a copy of the
page is fetched from the remote machine. This situation is illustrated in the following diagram.
In this case, machine 1 has attempted to access an area of memory managed by machine 2.

Virtual Spaces

Space Managed
By Machine 3
Immutable
Page Copied Space Managed
From | By Machine 2
Machine2 - Y
Space Managed
Allocated By Machine 1
Pages \

Machine 1 Machine 2 Machine 3

Figure 2.1 - The LEMMA Memory Model

The complete DSM technique in LEMMA involves some additional complexity. The above
diagram shows memory accesses performed using a page granularity, yet an actual data object
may be much larger (or indeed smaller) than a page. Also, immutable and mutable objects
must be treated separately. Consequently, LEMMA allocates mutable and immutable objects
in separate arcas as described below.

2.1.1 Immutable Data Objects

Immutable objects are packed into pages by LEMMA. Pages containing immutable
objects are never invalidated and therefore can be freely cached between machines without the
need for coherency checking. A cached immutable object always appears in exactly the same
virtual memory location as the original object. It is simple to discover the manager of an
immutable object from its address, since the address space is statically partitioned.

2.1.2 Mutable Data Objects

Mutable objects may freely change (by definition). This can lead to two problems if
we simply employ the same technique used for immutable objects:

1. If mutable data is packed into pages, the well-known false-sharing problem may occur as
we can only invalidate complete pages (a page may contain more than one object). One
possible solution, is simply to allocate one object per page, resulting in memory wastage.
The solution used by the W-LEMMA and C-LEMMA implementations is to abandon the
use of page protection to control access and allocate a separate header for each mutable
object. This header is checked whenever the object is accessed.

2. The other problem concerns the caching of objects on remote machines. Clearly a
coherency protocol will be required for mutable data. A number of suitable protocols are
described in [Serg94].

2.1.3 Global Garbage-Collection

The LEMMA interface definition also provides garbage-collection of the shared
address space via an extension of the rmwo-space copying approach [Matt95b]. For reasons
explained later, the C-LEMMA interface uses an alternative technique, based around a more
traditional mark and sweep algorithm.

3. The Cray T3D Supercomputer

In order to understand the implementation of the C-LEMMA interface it is necessary to
know a little about the Cray T3D architecture and its memory-management facilities. A
detailed description of the Cray T3D configuration used in this report can be found in
[Boot95], and an overview of the Cray T3D system architecture can be found in [Cray93].
The Cray T3D is an impressive Massively-Parallel-Processing (MPP) computer capable of
providing huge (30Gflop/peak) computation rates. The T3D configuration used in the
description of the C-LEMMA system is as follows:

“.. the T3D array comprises 256 nodes each with 2 processing elements (PEs) for a total of
512 PEs. Each PE consists of a DEC Alpha 21064 processor running at 150MHz, supporting 64-bit
integer and 64-bit IEEE floating point operations and delivering 150 64-bit Mflop/s. The peak
performance of the T3D array itselfis 300Gflop/s. The DEC Alpha 21064 includes an 8Kbyte direct-
mapped data cache and an 8Kbyte instruction cache. Each processor has 64Mbyte of RAM, giving
an aggregate memory of 32Gbytes. The nodes are arranged in a three-dimensional torus, with each
of the six links from each node simultaneously supporting hardware transfer rates of up to
300Mbyte/s. Hardware support for a single address space across the array is provided ... ”

OTHER
NODES

il

ROUTER

NETWORK
INTERFACE

- DATA
<—>» CONTROL

&

Figure 3.1 - A T3D Processing Node

3.1 Programming Model and Memory Addressing

Programming for the T3D is performed (for the purposes of C-LEMMA) using an
extension of the C language [Cray94]. The T3D uses a Single-Program-Multiple-Data
(SPMD) programming model which means that the same program is run on each processor
simultaneously, though these programs may identify which processor they are executing on and
act accordingly (i.e. multiple data).

The Cray T3D provides a global address space. In theory, it is possible to treat the
entire available memory space as a single object. While this appears ideal for supporting
distributed shared memory, things are not nearly as straightforward. The Cray T3D uses only
64-bit addresses. All local memory accesses are performed using only the lower 26 address
bits (i.c. 64Mb). Remote accesses are controlled by bits 32-36 in the address. These bits
index into a 32-entry look-up table called the DTB-annex. This table contains some processor
specific information including a processor number'. Only the first 16 of the table entries are
available to the user. This means that, in-fact, the global address space only covers a
maximum of 16 PEs. The reason for this seemingly arbitrary limitation is the fact that the
DEC Alpha 21064 processors used do not implement the full 64-address lines on the chip
package.

To perform full global addressing, it is necessary to dynamically alter the PE mapping
in the DTB-annex table. An optimised programming library, called SHMEM (SHared
MEMory) is provided to transparently alter these table mappings. The C-language version of
the SHMEM library [Barr94] provides the following two functions (among others) for
accessing remote memory:

void shmem get(long *target, long *source, int nlong, int pe);
void shmem put(long *target, long *source, int nlong, int pe);

e shmem get copies a block of memory, of length nlong 64-bit words, starting at address
source On processor pe, to address target on the calling PE.

e shmem put writes a block of memory, from address source on the calling processor, of
length nlong 64-bit words, into address target on processor pe, without notification.
This function does not wait for the operation to complete.

Although the SHMEM library may be used to perform global addressing, it is not
satisfactory for DSM as a data object does not appear at the same memory address to each
processor. Consequently, a form of address translation is also required.

The documentation [Boot95b] contains three heuristics to consider when designing
shared memory applications:

1. Remote memory access is slower than local memory access.
2. The further apart the PEs (numerically), the slower the communication.
3. Remote read operations are slower than remote write operations.

3.2 Operating System

The T3D is hosted by Cray Y-MP and Cray J-90 computers running UNICOS-MAX
(a UNIX-like OS). These machines are used as the front-end for editing and compiling T3D
code as well as serving I/O requests from the T3D. Each T3D processor runs a cut-down
micro-kernel of UNICOS-MAX, which forwards 1/0 requests to the hosts and manages global

! There is a slight complication involving logical and real PE numbers. However, only the logical PE
number will be used in this report: PEs will be numbered from 0 upwards.

memory addressing. Unfortunately, this micro-kernel does not provide the full UNIX
functionality required for the C-LEMMA interface. Similar problems hampered a previous
attempt to implement DP/ML on the Meiko CS2 Transputer system [Bhoe92].

1. Although page fault signals are generated when an unallocated (or illegal) area of memory is
accessed, these signals cannot be caught by an individual PE. Instead, the entire process is
terminated. Signals are used in the garbage-collection (user signals) and distributed shared
virtual memory (page fault signals) sections of W-LEMMA.

2. It is not possible to allocate a portion (page) of memory at a specific virtual address.
Indeed, it appears that pages and virtual addresses are not even used. The only way of
allocating memory is to use the heap (e.g. using malloc or declaring an array).

3. The system is limited to one process per processor. Although not a serious limitation, this
does somewhat limit the extensibility of the eventual DP/ML implementation.

4. The Distributed Virtual Memory Emulator (DVME)

In order to overcome the limitations of the Cray T3D architecture described in the
previous section, a separate library was constructed to emulate the distributed virtual memory
functionality required by the LEMMA interface. Memory accesses must be passed through
this emulator or they will be invalid. Clearly, trapping all memory accesses will considerably
reduce the performance of system, but the primary concern at this stage of the design was
functionality. Efficiency will hopefully be dealt with in a future project, possibly by re-writing
some of the emulator as C-macros (thereby eliminating function-call overhead). There are
four main tasks performed by the Distributed Virtual Memory Emulator (DVME) on behalf of
the C-LEMMA interface:

1. Provision of a distributed virtual memory address space.

2. Caching of immutable page data.

3. Allocation and de-allocation of contiguous blocks of pages.
4. Communication of short messages between processors.

An added benefit of the emulator is that it gathers all of the OS and networking
dependent sections of the C-LEMMA interface into one module, enhancing the overall
portability of the system. In this case, the DVME is based on the Cray SHMEM library, but it
could equally be implemented using UNIX and TCP/IP or even on a message-passing system
such as MPI. It is worth noting that the PVM and MPI message-passing systems on the Cray
are also implemented using the SHMEM library. The following sections describe the four
main algorithms used in the DVME library.

4.1 A Distributed Virtual Address Space

The DVME uses a special virfual address format. All addresses used throughout the
above layers must use this format. Only the emulator (with a few small exceptions for
performance reasons) is permitted to use real memory addresses. The DEC Alpha processor
used in the Cray has a 64-bit architecture: words are defined to be 64-bits in length and all
addresses are word length. Only half of the available 64Mb of memory on each PE is used as
the main data area (explained below). Therefore, only the lower 25 bits (32Mb) of the 64-bit
virtual address are used for addressing purposes. The next 8 bits are used to indicate which

(of a maximum 256)° PEs the address applies to. The remaining bits are left undefined (for
future addressing needs). With a little thought, it is clear that this style of address effectively
provides a contiguous virtual address space partitioned across the PEs in 32Mb segments.
The address format is illustrated graphically below:

63 32 24 0

LOCAL
ADDRESS

UNUSED PE

Figure 4.1 - DVME Virtual Address Format

On the Cray it is not possible to allocate a portion of memory at a specific address.
However, data declared in the global region of a C program is guaranteed to be allocated at the
same address on every PE (recall that the same program runs on every PE). This fact can be
used to declare a large contiguous region (i.e. array) of memory on the heap with a known
global starting address. Sections of this pre-allocated memory can be used, as if allocating a
portion of memory at a specific address. A page-table is used to perform the address
translations between virtual and real memory addresses. There are two such areas of memory
used in the DVME:

1. A large 32Mb data area is reserved on each processor and partitioned into 8Kb pages (this
page size is defined by the DEC Alpha hardware). Note that the data area also contains the
USEr processes.

2. Another contiguous 16Mb region is used as a cache for remote immutable pages.

The remaining memory is used to hold the page tables and the remaining run-time system. A
possible arrangement for the various memory regions is shown below.

64Mb

32 Mb
DATA AREA

32
16Mb IMMUTABLE
DATA CACHE

16

PAGE TABLE

OS & C-LEMMA SYSTEM

Figure 4.2 - Possible Memory Map

The page-table is used to convert virtual addresses into real addresses. A one-to-one
mapping is used between the entries in the page table and the 8Kb pages in the data area. That
is, the first entry in the page table corresponds to the first page in the data area, etc. This
mapping simplifies address translations in the emulator. Each PE has its own separate page
table relating to its local 32Mb data arca (4096 entries). Each page table entry (PTE)
occupies a 64-bit word. The format of these entries is shown below:

* A single user is only permitted (on the system used in this report) to use a maximum half of the total
number of processors at any time.

63 3210

REAL ADDRESS | | |

[
Mutable bit
Segment marker Immutable bit

Figure 4.3 - A Page Table Entry (PTE)

The mutable and immutable bits indicate the type of data stored in the corresponding page.
If neither bit is set, the page is empty (to have both set would be invalid).

The segment marker bit is used in the page allocation algorithm.

The real address field is used to store a pointer to the actual memory address of the page.
At this stage, this address is redundant because of the one-to-one mapping, but will be used
in the page caching mechanism. The real addresses are aligned to 8Kb page boundaries
which permits the usage of the lower bits for other purposes.

The following diagram illustrates the address translation process (from a virtual to real

addresses) inside the emulator:

L.

2.

63 32 24 14 0

=
PE| PAGE E VIRTUAL ADDRESS

. =

L
................... Y,
PROCESSOR PE 5
3
\
-+

L_ REAL ADDRESS 1[M] <

DATA AREA PAGE TABLE

Figure 4.4 - Virtual Address Translation

The PE field in the virtual address is used to determine on which processor the data resides,
and hence, which page table and data area to examine.

The upper bits of the virtual address (i.e. the page) are used to index into the page table on
this processor. The mutable and immutable bits of the PTE are checked to ensure a valid

page mapping.

. Lastly, the lower bits of the virtual address (i.e. the offser) are added together with the real

address in the PTE to obtain the actual address of the required data.

4.2 Immutable Data Caching

The virtual address translation mechanism described above is clearly inefficient when it

comes to accessing data on a remote processor. In order to improve this performance, a form
of data caching is required. The caching of mutable data requires a coherency protocol, which
adds overhead and significantly increase the complexity of the system (currently atomic writes
are used, which ensure consistency but remain inefficient). However, as explained earlier,

immutable data can be freely cached without the need for coherency checking as it is never
invalidated.

Figure 4.2 shows a 16Mb region reserved for caching immutable data. It is trivial to
extend the address translation mechanism to fetch an entire page (rather than a word) when it
accesses a remote immutable object. Therefore it is only necessary to design a suitable
caching algorithm.

A hardware cache is often constructed out of associative memory. This allows all of
the cache locations to be examined simultaneously for the presence of a particular tag. In a
software scheme we do not have this luxury, neither would it be practical to examine every
page in the cache (2048 entries) on every remote memory access. The solution that is
implemented extends the page-table on each PE to provide an entry for every possible page
location. This generates a rather large (§8Mb) page-table on each PE, but ensures a minimum
overhead on remote memory accesses. The new page table layout is shown below:

Etc.

12288

Processor 3
Data Area

8192
Processor 2
Data Area

4096
Processor 1
Data Area

Figure 4.5 - Extended Page Table

4.2.1 Retrieval of Objects Via the Cache

The following pseudo-code shows the steps that the address translation mechanism
must take when accessing a remote immutable object:

Check page-takle cn lccal FE fcr a valid mapring intc the cache.

If ncne fcund then
Fetch remcte rage ccntaining the required address intc the rage cache.
Ugpdate the ccrrespcnding lccal ETE tc pcint tc the cache.

Return the required wcrd frcm the page cache.

Clearly, the page-table will only be sparsely populated with addresses except in the
portion relating to its own data area (note that PTEs always point to valid local addresses).
The size of the page-table could be reduced using hashing or set-associativity techniques, but
this would adversely affect performance unless carefully implemented.

4.2.2 Insertion of Pages Into the Cache.

The remaining issues involve page-placement and page-invalidation within the cache.
The commonly used hardware technique is to attempt a least-recently-used (LRU) policy.
Every time a page is accessed, a history bit is set in the corresponding PTE. Periodically,
these history bits are cleared. When the cache becomes full, the first page with its history bit
clear is overwritten. While this technique looks promising, the cost of clearing the history bits
without hardware assistance is too great.

Instead, a simpler round-robin policy is used: the cache is filled sequentially until it
becomes full, then the cache is overwritten from the beginning, invalidating one page at a time,
etc. This leaves one remaining complication. When a page is overwritten, the PTE pointing
to the old page must be cleared. This entry will lie in a part of the page-table outside the local
portion. To enable the PTE to be cleared easily, a small table of back-pointers is maintained
for each page in the cache (2048 pages). The entries of this table contain the index of the PTE
pointing at the page. The various tables used in this scheme are shown below (this example
examines the tables on PE 2).

PE3
3
I I
' 8Kb PAGES
2 1
PE1

BACK-POINTER 16Mb IMMUTABLE A

TABLE CACHE /A
PAGE TABLE

Figure 4.6 - Inmutable Page Caching

1. Remote immutable pages are copied sequentially into the local cache area and the local
page-table is updated.

2. Each page in the cache has an entry in the back-pointer table with its original address.

3. The entries in the back-pointer table are used to invalidate the page-table when cache is
cleared.

4.3 Contiguous Page Allocation and Deallocation

The next area of concern is the allocation (and deallocation) of contiguous pages of
memory in the emulator. As stated earlier, each processor is responsible for the management
of memory within its own data arca. Most of the time it doesn’t matter at what address a page
is allocated. However, there are times when data must be placed at a certain memory location.
(It is reasonable to assume that these areas will be allocated first). Clearly, allocating pages of
memory sequentially or in a round-robin fashion will be inadequate. A solution to the memory
allocation problem must be able to satisfy the following requirements.

1. Allocation of data at a specific memory location.
2. Allocation of data at an unspecified memory location.

3. De-allocation of data at a specific memory location.

It is also highly desirable to reduce memory fragmentation as far as possible.

10

4.3.1 Allocation and De-Allocation Algorithm

The algorithm described below performs the required allocation and de-allocation
operations, as well as attempting to minimise fragmentation. This may not be the most
efficient algorithm available, but it performs the job adequately assuming the frequent
allocation of short segments of memory. For the purposes of this algorithm, a segment is
defined as a block of one or more contiguous pages.

The 32Mb data area on each processor consists of 4096 pages. These pages will be
indexed sequentially from 0 to 4095. The algorithm maintains 13 ordered lists (numbered 0 to
12) used for storing the indices of unallocated segments. Only the index of the first page in the
segment is stored in the list. Each of these lists stores segments that are a different (and
increasing) power of two in length. For example, list 5 stores the indices of segments that are
32 (2°) pages in length. The indices are stored in increasing order in each list.

Initially, none of the 4096 pages are allocated, therefore, list 12 (2'2 = 4096) contains a
single entry O (the index of the first page). This could equivalently be represented as two
segments of 2048 pages in which case, list 11 (2" = 2048) would contain the entries 0 and
2048 in that order. However, in practice the algorithm maintains the largest contiguous
segments possible.

The allocation of a segment of memory at an arbitrary memory location proceeds as
follows. (Note that allocation corresponds to the removal of items from the lists). The
required segment length is rounded-up to the nearest power of two. The lists are then searched
from this power of two upwards (e.g. 32 = list 5 upwards) until a non-empty list is found. If
no non-empty lists are found, the allocation fails. Otherwise, the first item is removed from
this list and the index returned. The remaining pages (due to the rounding-up) are then de-
allocated. The following pseudo-code illustrates this allocation procedure:

Allccate (length,;, :
Rcund ‘length’ ur tc nearest pcwer cf twc.
Search listes frcm this pcwer upwards until a ncn-empty list is fcund.
If a ncn-empty list can’t ke fcund, fail.
Ce-allccate (rcunded-length - starting length;.
Return first item frcem ncen-empty list.

De-allocation of a segment of memory is done recursively. The length of the segment
to be de-allocated is rounded-down to the nearest power of two. The pages corresponding to
the rounded length are removed from the segment and inserted into the list associated with this
power of two. The remaining pages are repeatedly fed back into the de-allocation routine until
there are no pages left. De-allocation will always terminate as the first list corresponds to a
segment of length one. The following pseudo-code illustrates this de-allocation procedure:

Ce-Allccate (length; :
Rcund ‘length’ dcwn tc the nearest pcwer cf twc.
Flace a segment cf rcunded length intc the ccrrespcnding list.
If (starting length - rcunded length > Cj
Ce-Allccate (starting length - rcunded length).

As it stands, the algorithm makes no attempt to reduce memory fragmentation. The
eventual consequence is that all of the free pages will end up in small segments and a request
for a large segment will fail despite the fact that there are enough contiguous pages to satisfy
the request. This problem is partially rectified by a simple addition to the de-allocation
routine. If two segments are positioned one after the other, they can be combined to produce
one segment, a power-of-two greater in length. This fact is used to merge segments wherever
possible during de-allocation.

11

Recall that the lists are organised in increasing order. The modification to the de-
allocation routine begins once the insertion point in the appropriate list has been found but
prior to actually inserting the pages. The indices of the segments before and after the insertion
point are examined to see if either could be merged with the new segment to produce a larger
segment. If not, insertion proceeds as before. If a merge candidate is found, this segment is
removed from the list and merged with the new segment. The resulting larger segment is then
inserted into the list corresponding to its new length. (This insertion could also lead to a
merge). Finally the remaining pages are de-allocated as before. The following diagram
illustrates a list insertion with merging:

TO BE INSERTED

BEFORE MERGING: NEW SEGMENT

INSERTION

LIST S POINT
(length 32) 1 35 102 266

NOT A MERGE CANDIDATE MERGE CANDIDATE
(70-32=38, NOT 35) (70+32=102)

MERGE

AFTER MERGING:

LISTS | 1 |—|35 H266|
(length 32)

LIST 6
(length 64)

Figure 4.7 - List Insertion and Merging

4.3.2 Allocation at a Specific Memory Location

The allocation of memory at a specific address can also be achieved, although the
solution is less intuitively appealing. The technique used attempts to allocate all of the pages
between two indices by piecing together empty segments containing the required pages. The
allocation routine proceeds as follows:

The lists are searched in turn until a segment containing the starting index is found.
This segment is removed and the pages within the segment, before the starting index are
returned to the lists. The lists are then repeatedly searched for segments with starting indices
directly after the previously removed segment. If such a segment cannot be found, there must
already be a previously allocated segment between the two indices and so the allocation fails.
Otherwise, the segment is removed and the search and removal continues until a segment
containing the final index is removed. Spare pages after the final index are returned to the
lists. The following diagram illustrates this technique:

12

INITIAL LIST CONFIGURATIONS:

st | 1|2 H 7] 8 Hi7 i8]

ist2 | 3 | 4| s | e 192 [21 2]

List3 | 9o [10 [1|12]13 14 [15] 16 |

ALLOCATING PAGES 4 TO 20 LEAVES THE FOLLOWING:

LIST 0

st [1 |2 o2 |22 |

The items in the lists are shown with all their indices for clarity (only the first index is actually stored).
Figure 4.8 - Allocation Between Two Indices

As it stands, the page allocation/de-allocation algorithm is entirely self contained (i.e. it
does not require any external data to operate). Indeed, it is implemented as a separate module
to allow the algorithm to be easily changed and/or modified. A few more steps are therefore
required to link the procedures into the main DVME interface.

4.3.3 Memory-Management in the DVME Interface

On allocation of a segment of memory (cither at a specified or unspecified location),
the pages within the segment must be marked in the page table as allocated. This is done by
setting either the mutable or immutable bit (depending on the type of segment allocated) of the
PTE for every page in the segment. To facilitate de-allocation, the first page in the segment
also has its segment marker bit set. All other pages in the segment have their segment marker
bits clear. Finally, the address field of the PTE is filled in. This is performed via a simple
incremental calculation from the starting address as there is a one-one mapping between the
PTEs and the data area pages. Recall that it is not necessary to fill in the address field for
local pages. Nevertheless, as an optimisation, these addresses are calculated once during
allocation and stored in the page-table rather than re-calculating on every memory access.
This optimisation also allows a single access mechanism to be used for both local and locally
cached pages.

To perform the de-allocation of a segment of memory, the length of the segment must
be known. The length is calculated using the page table as follows. The first page in the
segment is checked to see if the segment-marker bit is set (i.e. a segment does actually start at
the specified address). The routine then counts the PTEs following this starting page until
either:

1. An entry containing another set segment marker bit is encountered, or

2. An entry containing an unallocated page is encountered, or

3. The end of the local page table is reached.

De-allocation of the segment can then proceed using this calculated segment length. Finally,
the PTEs associated with the segment must be cleared.

4.4 Message Buffering

The DVME also provides a facility for transferring small messages between processes.
These messages are always two words in length and typically consist of a result code and an

13

argument. The message is also tagged with the name of the sending process. At present,
these messages are only used while garbage-collection.

One of the limitations of the Cray T3D architecture discussed earlier is that signals
cannot be caught by a single processor. This means that there is no immediate method of
informing a process when a new message arrives. Each process must therefore periodically
check for incoming messages at suitable points in the code. A 128 entry circular-buffer is
used to store the incoming messages. The explanation of the operation of this buffer is
confined to the following diagram as it is a very common data-structure.

START points to the first item in the BUFFER.
START FINISH points to the last item in the BUFFER.
LENGTH is the number of items in the BUFFER.

INITIALLY. both START and FINISH point to item O.

IF START=FINISH the BUFFER is empty.
IF ((FINISH+1) mod LENGTH) = START the BUFFER is full.

ADDING AN ITEM:

CHECK BUFFER not full.
BUFFER[FINISH] = new item.
FINISH = (FINISH+1) mod LENGTH.

REMOVING AN ITEM:

CHECK BUFFER not empty.

item = BUFFER[START].

START = (START+1) mod LENGTH.

Figure 4.9 - A Circular-Buffer

A problem that can arise with this technique is that two (or more) processes may wish
to send a message to the same destination simultaneously. It is possible that one message may
overwrite the other if one of the processes reads the value of the ‘finish™ variable before the
other has updated it. This problem can be overcome by using a mutual exclusion algorithm.
Fortunately the Cray SHMEM library provides an atomic-swap operation which simplifies the
task. The atomic-swap operator places a value into a memory location (on any processor) and
returns the old value at that location atomically. The following pseudo-code, when executed
by every process, ensures that only one process can enter the critical-section at a time. The
lock variable is shared by every process:

dc
cld lcck = atcmic swap (1, lcck;;
while (cld_lcck == C;;
< critical-secticn >
atcmic swap (C, lcck;;

This solution is not entirely satisfactory as it can lead to starvation (e.g. one process
may be running slower and therefore never get a chance to enter the critical section).
However, this is unlikely to be a problem in practice.

When using the message transfer operations it is important to be aware of the
possibility of deadlock (e.g. one process attempts to write into a full buffer on another
processor while this other process is attempting to do the reverse). This can be avoided by
checking for incoming messages when the buffer-full condition is detected.

5. The C-LEMMA Memory-Platform

The Distributed Virtual Memory Emulator (DVME) provides a considerable number
of the functions necessary to implement the complete C-LEMMA interface. The remaining
tasks concern the architecture/network independent sections of C-LEMMA:

14

1. Controlled allocation of mutable and immutable objects.
2. Extended operations on mutable objects (¢.g. mutable freezing).
3. Global Garbage-Collection.

The complete C-LEMMA interface closely follows the definition given in [Matt95a]
with a few small exceptions. The most notable exception is that asynchronous operation is not
supported. The LEMMA interface makes provision for a number of the function calls to be
left to complete in the background while execution continues. Given the single-process-per-
processor limitation of the Cray it is not possible to provide this facility. However, the lack of
asynchronous operation does not violate any of the LEMMA operating principles as all of these
functions may also be called synchronously. The other exceptions involve the new garbage-
collection algorithm used for the Cray and will be dealt with in the appropriate section.

As a consequence of using a software emulated virtual memory system, the C-
LEMMA interface also contains two additional functions for the reading and writing of
immutable objects. Previously, a transparent mechanism using page-fault signals was used to
access and cache immutable objects. The new functions simply pass the memory requests
directly into the DVME interface.

The following sections describe the main algorithms and techniques used in the
implementation of the C-LEMMA interface.

5.1 Controlled Allocation of Mutable and Immutable Objects

Within the DVME, all data is handled in terms of pages and words. At the LEMMA
level, data is treated in terms of arbitrary sized objects. Consequently, a small but important
part of the C-LEMMA implementation concerns the mapping of data objects into DVME
pages. To avoid wasting memory, C-LEMMA attempts to pack objects into pages during
allocation. Objects are not permitted to cross page boundaries unless the size of the object is
greater than a page. While this restriction is not strictly necessary, it ensures that small
immutable objects do not require more than one page of cache and it also simplifies the
allocation routine. The data structure shown below is used to keep track of the allocation of
objects into mutable and immutable pages:

structure allccatcrs

{

wcrd mutspace; /* Numkber cf wcrds left in mutakle page */
werd immutspace; /* Numkber cf werds left in immutakle page */
wcrd mutptr; /* Starting address cf free mutakle space */
werd immutptr; /* Starting address cf free immutakle space */
bi
MUTABLE PAGE IMMUTABLE PAGE
%////// immutptr

s

Figure 5.1 - LEMMA Page Allocation Structure

When space is required for a new object, C-LEMMA first checks the allocation structure to see
if the object will fit in the remaining space. If not, new pages are obtained from the DVME to
hold the object. In either case, the allocation tracking structure is updated to show the

15

remaining space in the page. If the object spans more than one page, the allocation structure
records the free space in the final page occupied by the object. Typically, objects are allocated
in this manner one at a time. However, C-LEMMA provides the facility for allocating a larger
arca of memory (a segment) to hold several immutable objects at once. The objects within a
segment may form circular structures. A segment must be fully filled in before another
immutable allocation can take place.

Mutable objects can only be allocated one at a time. A header is appended to the
beginning of each mutable object as it is allocated. The format of this header is shown below
(figure 5.2). The magic word is used to provide a crude mechanism for verifying that an arca
of memory is actually a mutable object (it is set to the integer 12345). The length word
stores the size of the object. The remaining fields will be explained in the next section. The
header is hidden from the layers above C-LEMMA as the allocation mechanism only returns
the starting address of the object itself.

structure mutakle_ header

{

wcrd magic; /* Magic numker */
wcrd length; /* CkZect length */
kcclean frczen; /* Frczen © */
virtual address cld:; /* Cld address */

Figure 5.2 - Mutable Object Header

After a certain number of pages have been allocated, the garbage-collector is
automatically invoked to reclaim any memory no longer in use. Garbage-collection can also
be explicitly started at any time.

5.2 Extended Operations on Mutable Objects

The LEMMA interface contains two additional operations that can be performed on
mutable objects. Under some circumstances it is known that a mutable object will not have its
value changed again after a certain point. The LEMMA interface contains a mechanism for
freezing such a mutable. This effectively changes a mutable object into an immutable one.
At first sight, this would appear to be simply a case of changing the PTE entries for the
mutable object into immutable ones at the DVME level. However, objects are packed into
pages by C-LEMMA and this operation could also affect other mutable objects. To get
around this, mutable objects could simply be allocated in individual pages, but this was
considered this to be a waste of valuable memory (there are only 4096 pages available).

The solution adopted by the W-LEMMA interface moves the mutable object into an
immutable area of memory. However, a reference to the object may still exist inside any other
object anywhere in the virtual address space. A forwarding pointer is therefore placed into the
old object location to inform other objects of the new object location. This solution is closely
tied to the copying garbage-collection mechanism, used by the W-LEMMA interface, which
also moves objects and places forwarding pointers. The C-LEMMA interface uses an
alternative garbage-collection mechanism that does not move objects. Rather than deal with
the complications of forwarding pointers, an entirely different solution was adopted. The
solution avoids any modification to the DVME interface by treating the object as a mutable at
the DVME level. Consequently, the object will not be cached, but it is assumed that frozen
mutable objects will be sufficiently rare’. A Boolean variable in the mutable header is used to
indicate that the mutable is frozen. Since all memory accesses are passed through the C-

® This appears to be a fair assumption as frozen mutable objects are generated in only one place of the
DP/ML compiler.

16

LEMMA interface, it is straightforward to alter the C-LEMMA memory access functions to
deal correctly with this special case. The following pseudo-code illustrates the modification to
the ‘load immutable” function:

Lcad Immutakle (kase, cffset)

Cuery rage tyre at kase address.

If Immutakle
Read data at kase + cffset.

Else If Mutakle
Check fcr ‘frczen’ ccnditicn in mutakle header at kase address.
If Frczen

Read data at (kase + cffeet, treating as a mutakle.

Flse Invalid Address.

Else Fage Fault.

Although it has been stated that mutable data is never cached and is always accessed
in-place (in C-LEMMA), there is one small exception to this rule. The LEMMA interface
definition provides a mechanism for fetching an exclusive copy of a mutable object. This
ensures that a local copy of the object is available (although not necessarily at the same
address). However, no coherency checking is performed and the contents of the object on any
other processor is undefined. This operation is provided purely for performance reasons.
After the local accesses to the object have been performed, the object is released back to its
original location.

The implementation of this mechanism in the W-LEMMA interface is an extension of
the mutable caching policy. The C-LEMMA interface uses another technique whereby a new
arca of memory is allocated in the local address area to hold the object and the object is copied
word-at-a-time into this area. The old address field in the mutable header is updated to point
back to the previous location. The local copy can then be accessed as a normal mutable
object. When the object is released, the local mutable object is copied back into its original
location, overwriting the original object. All of these operations are performed using the
existing DVME functions without modification.

5.3 Distributed Garbage-Collection

As mentioned earlier, the distributed garbage-collection algorithm used in C-LEMMA
differs from the one used in the workstation version. There are several reasons why it was
chosen to reject the two-space copying approach. A two-space algorithm requires a virtual
address area twice as large as the actual data area. This implies an impractical 16Mb page-
table on each processor (using DVME), and also complicates the one-one mapping between the
local page table area and the data areca. Moreover, the compacting of objects means that the
DVME page allocation algorithm no longer knows which pages are free (unless all the pages
are reallocated). Although inconvenient, these problems could potentially be overcome. The
remaining reason for rejecting the two-space approach applies to any implementation. Moving
objects between spaces changes their address. This renders all cached data (both at the
underlying hardware and DVME software levels) invalid and causes a flurry of unnecessary
activity while the cache contents are renewed.

The distributed garbage-collector used in C-LEMMA is based on an algorithm
presented in [Kord93]. The algorithm in this paper performs all object traversals in-place, in
the sense that objects are not moved. This approach effectively overcomes all the problems of
the two-space approach highlighted above. The technique used is similar to a traditional mark
and sweep collector, but requires only one pass through the objects. A summary of the basic
operation of the algorithm is given below. To bring the description of the algorithm in line
with the one described in the paper it is first necessary to define a few terms and their meanings
in the context of the C-LEMMA interface:

17

A subheap is defined to be the part of the heap managed by a single node. This
corresponds to the section of the virtual address space managed by a single processor in C-
LEMMA.

The garbage-collector assumes the possibility of logical migration of objects. That is,
objects belonging to a single subheap can reside at many nodes. In the context of C-LEMMA,
this corresponds to immutable objects residing in the cache. It is worth noting that the
garbage-collector could also cope with the caching of mutable data should the current access-
in-place mechanism be changed.

Garbage-collection is performed on a per-subheap basis. Therefore, the co-operation
of several nodes may be required to complete the collection of a single subheap. The garbage-
collection algorithm relies heavily upon the maintenance of a number of data structures
described below:

5.3.1 Garbage-Collection Data Structures

e For each node, a ParticipantList data structure is maintained. This list keeps track of all
the nodes that have cached objects belonging to the local subheap. All nodes in this list
must participate in the collection of the local subheap.

e For every subheap, an object directory table (ODT) is maintained. This table contains
entries for objects in the local subheap that are referenced from objects belonging to other
subheaps (using a conservative estimate). The roofs for the collection of the local subheap
are root_set_for local node w ODT.

o A non-local reference table (NRT) is also maintained for every subheap. This table
contains entries for objects in other subheaps that are referenced by objects in the local
subheap. An inter-subheap reference always has an entry in both the local NRT and the
corresponding remote ODT. To avoid a constant flow of messages between nodes, each
node maintains a local copy (an image) of the ODT and NRT for every subheap. At the
beginning of collection, the union of these images is calculated to produce the complete
ODT and NRT.

o Each node is responsible for the traversal (i.e. following the pointers) of objects that it has
cached. To facilitate this, an external-reference table (ERT) is maintained on each node.
If, during the collection of a subheap, a reference to an object on another node is
encountered, this reference is placed into the ERT on that node. Traversal continues on this
node by arranging each node to traverse all objects with entries in its ERT. Another table
called the pending table (PT) is maintained on the node responsible for the subheap
currently being collected. This table stores all of the objects from which traversals need to
be performed (i.e. a local copy of all the entries which have been placed into the ERT of
other nodes).

o A free-list (FL) on each node keeps track of the unused space in the local subheap. At the
start of collection, another new-firee-list (NLF) is initialised with an optimistic estimate that
the entire subheap is empty. As collection proceeds, traversed objects are marked in the
NFL. At the end of collection, the NFL is copied into the FL. This process effectively
removes all of the garbage objects.

e Finally, each node contains a GCcount variable which records the number of times a
collection has been performed on the local subheap. ODT and NRT entries are time-
stamped with the value of GCcount when they are created. = However, the additional
complexity associated with time-stamping will not be dealt with in this explanation.

18

5.3.2 The Garbage-Collection Algorithm

The following algorithm is used to perform the garbage-collection of a subheap. The
main work of the algorithm is done by the local node containing the subheap. However, the
other participants are required to co-operate at various stages (particularly during traversals).

1. The local node requests the ODT and NRT images from all nodes in the ParticipantList.
These images are merged together with the local ODT and NRT entries.

2. All the root object references and ODT entries are copied into the ERT and PT.

3. A recursive object traversal is done on every object with an entry in the ERT (on all
participating nodes). Traversal terminates when either, there are no pointers remaining, the
next object resides on a different node or, the next object belongs to a different subheap. If
the next object resides on a different node, an entry is added to the ERT on that node. An
entry is also added to the PT of the node containing the subheap. If the next object belongs
to a different subheap, then traversal of this object is not part of the collection of the current
subheap and so a entry is added to the NRT. Traversed objects are marked in the NFL.
Each node maintains a separate image of the NFL for the subheap until the end of the
collection.

4. When the recursive traversal of an object in the ERT has finished, the corresponding entry
is removed from the PT on the node containing the subheap. Collection finishes when all of
the entries have been removed from the PT.

5. The local node requests all of the NRT and NFL images from the participants. These
images are merged with the local NRT and NFL.

6. The garbage objects are identified by comparing the FL with the NFL. Objects that do not
appear in the NFL are garbage. These garbage objects are subsequently removed on all
nodes.

The following diagram illustrates the garbage-collection process (note that the FL
shows the objects which are allocated for clarity):

NODE a NODE b

Al Bl Al & Bl ARE ROOTS.
\ Al, A2, A3 & A4
\ A3 BELONG TO SUBHEAP A.

l,’ \ @ Bl.B2 & B3

| | BELONG TO SUBHEAP B.
) ’ (82

N 4

\ . A4 & B3 ARE GARBAGE.

BEFORE COLLECTION :

ODT(A): A3 ODI(B): B2.B3
NRT (A): B3.B2 NRT(B): A3

FL(A): Al A2, A3, A4 FL(B): Bl1. B2. B3

AFTER COLLECTION OF SUBHEAP A (A4 REMOVED) :

ODT(A): A3 ODI(B): B2
NRT(A): B2 NRT(B): A3
FL(A): Al A2, A3 FL(B): Bl1. B2. B3

B3 WILL BE REMOVED WHEN SUBHEAP B IS COLLECTED.

Figure 5.3 - Garbage-Collection of Subheap A

19

Garbage-collection of a subheap may proceed asynchronously with respect to the
collection of any other subheap. For example, a node may be garbage-collecting its own
subheap as well as participating in the collection of one or more other subheaps. A global
garbage-collection corresponds to the collection of all the subheaps. Note that the simplified
algorithm presented here does not correctly identify cyclic garbage. To collect cyclic garbage,
the full algorithm as described in the paper [Kord93] is required.

5.3.3 Garbage-Collection in C-LEMMA

The C-LEMMA interface contains an implementation of the garbage-collection
algorithm presented above. However, the garbage-collection routine is currently separate from
the C-LEMMA interface as it has yet to be properly tested. Nevertheless, only a small amount
of extra work remains to integrate the collector with the C-LEMMA interface.

6. Language-Specific Memory Management

The C-LEMMA interface handles the allocation, sharing, and garbage-collection of
generic data objects. LEMMA is not permitted to examine the contents of an object as the
details of the object representations are specific to the higher-level language implementation.
Nevertheless, there are a number of occasions where LEMMA requires specific information
about the contents of a particular object (e.g. during garbage-collection traversals). Therefore,
a separate language-specific interface, the Run Time System (RTS), is also required [Matt95a].
The functions provided by the RTS are as follows:

Returning the size of an object given its address.

Determining if an object contains constants or addresses, and where.
Applying a function to all of the addresses in an object.

Supplying the roots of all objects accessible by the machine.

Closing an immutable segment of memory.

Handling messages and system signals (W-LEMMA only).

Moving objects and placing forwarding pointers (W-LEMMA only).

Nk W~

The implementation of the RTS interface on the Cray is very straightforward. The
new garbage-collection algorithm used in the C-LEMMA interface means that the most
complicated part of the RTS, moving of objects and the placing of forwarding pointers, is no
longer required. The following section outlines the construction of an RTS for the DP/ML
compiler.

6.1 An RTS for DP/ML

In order to provide an RTS for the DP/ML compiler it is necessary to examine the
representation of data objects in DP/ML. A detailed description of their structure can be
found in [Matt95¢c]. The first word in every object contains the length of the object together
with a flag indicating the content of the object. The following diagram illustrates the layout of
an object:

20

FLAG BIT DEFINITIONS:

63 31 23 0
UNUSED | | | LENGTH BIT
I 0 BYTE SEGMENT
FLAG 1 CODE SEGMENT
2 CLOSURE
% 3 STACK SEGMENT
% OBJECT 4 RESERVED
= 5 RESERVED
6 MUTABLE SEGMENT
7 FORWARDING POINTER

Figure 6.1 - DP/ML Object Layout

Clearly, the first two RTS functions can be provided simply by examining the first
word in the object. Closing an immutable segment (function 5) corresponds to updating the
length field of the header word to the actual length of the data within the segment.

The RTS (function 4) supplies all the root objects for garbage-collection. The root
objects are determined using a registry structure maintained at a higher-level. During a
collection, it is necessary to traverse all of the pointers inside an object. The RTS provides a
function (3) which applies another function (supplied as an argument) to all of the addresses in
an object. With a little thought, it is clear that a recursive pointer traversal can be performed
by supplying the recursive traversal function itself to this RTS function. The RTS function
determines all of the addresses inside an object as follows. The object is scanned word-at-a-
time for potential addresses. That is, all values inside the object that correspond to valid
memory locations. To avoid misinterpreting data items as addresses, the DP/ML interpreter
allocates such items in byte-segments which cannot be scanned. The interpreter op-codes can
be distinguished as they do not correspond to valid addresses.

21

7. Programming with the C-LEMMA Interface

This section contains a description of the C-LEMMA interface, from a programmers
perspective, using the implementation of the Distributed Poly/ML (DP/ML) byte-code
interpreter on the Cray T3D [McAd97] as an example of the style and techniques to use. This
section is intended to help application programmers who wish to use C-LEMMA without
delving too deeply into details of its implementation, though we advise that your read other
relevant material such as the LEMMA interface definition [Matt95a]. We start with some
remarks about the architecture of the DP/ML system, then look at how to program different
types of memory use with LEMMA. In particular, we will look at how different /ayers of C-
LEMMA are used at different times for different tasks.

7.1 Architecture of C-LEMMA Programs

The use of C-LEMMA has a large effect on the logical structure of programs. The
structure of the DP/ML system is described below.

7.1.1 Structure of DP/ML

The complete DP/ML system [Matt95¢] consists of three separate parts: the persistent
database, the byte-code interpreter”, and the run-time module (part of which is the LEMMA
interface):

o The persistent database is essentially a memory dump of a running DP/ML system.

o The byte-code interpreter (written in C) which emulates an abstract machine; ML programs
are compiled to byte-code then executed by the interpreter.

o The run-time support system (also written in C) is used by the interpreter to communicate
with the hardware and the operating system.

The C-LEMMA interface forms part of the run-time support system. The byte-code
interpreter is an application program using C-LEMMA, and the persistent database is loaded
into LEMMA memory, so C-LEMMA is central to the program architecture. An idealised
view of how the system is constructed is a hierarchy of memory controllers each offering
approximately the same functionality but with a different level of abstraction:

'

64-bit P2
| =

Database | RTS LEMMA 3
L] : A 1] 05

: =Y

Byte Code | (|) g DVME | %
Interpreter | : B

Cray T3D <| SHMEM
Hardware

Figure 7.1 - Layers in DP/ML

* The native machine-code generating version will not be considered due to the additional complexity
involved.

22

In reality, the interplay between the various layers is significantly more complex than
indicated above. For the purpose of efficiency, layers may communicate directly with lower
layers, rather than only the layer directly below them. For example, the byte-code interpreter
contains sections which deal directly with memory hardware without involving the intermediate
layers.

7.1.2 Linking Programs to C-LEMMA

DP/ML, and any other program using C-LEMMA, has the C-LEMMA system linked
into the executable file (when it is compiled). Programs use C-LEMMA's facilities by calling
its functions.

The T3D has a Single Program Multiple Data (SPMD) architecture (refer to section
3.1). When you compile your C programs and link them to C-LEMMA there is a single
executable file which is loaded onto every processor in your partition (a fixed number of
processors used exclusively by your program). Each instance of the program (on its own
processor) must establish which processor it is running on and act accordingly. This will be
explained in more detail later.

7.1.3 GLUE and C-LEMMA

The GLUE layer provides an interface between the byte-code interpreter and the C-
LEMMA interface. The majority of DP/ML memory interactions are performed using the
GLUE functions. These functions offer similar facilities to programs as does LEMMA, but at
a higher level of abstraction. GLUE is designed for use only with DP/ML, so other programs
must use C-LEMMA functions directly. The following descriptions deal with both GLUE and
C-LEMMA functions.

7.2 System Initialisation

All C-LEMMA programs must initialise the system before performing any memory
interactions. The functions to call when initialising depend on whether programs are using
GLUE or LEMMA.

7.2.1 Initialisation using GLUE

Every processor must call the function GLUE initialise memory when it starts.
The client must then set up the garbage-collector using the
GLUE register gc proc(GCprocedure, LEMMA GC Kind Strong) function. The
client should then check for servers with the function GLUE find server as we will see in
the next section.

7.2.2 Initialisation using LEMMA

Programs using C-LEMMA directly should call LEMMA initialise, then set up the
garbage collector. The LEMMA interface definition contains details of how this is done.

23

7.2.3 Servers and Clients

Earlier sections have described the differences between the client and the servers. It is
important that you make the client act differently from servers. One task of the client should is
to locate servers when it starts. The client is always processor number 0. The processor
number is stored in the global value LEMMA server no which is set when you initialise C-
LEMMA. Apart from the restriction that the client should use ‘find server’ and that the
servers cannot call ‘find server’, there are few restrictions on what the client and servers should
do.

7.2.4 Loading a File into LEMMA Memory

An important task of DP/ML is to initialise itself by loading a database (memory
image) file. The database is to be shared by all the processors in the partition and, therefore,
must be placed in LEMMA memory. The database contains LEMMA/RTS objects, so when
it is loaded objects are created without directly using the C-LEMMA functions.

Here, we give a short description of how to load a database into LEMMA memory.
The description applies to loading any image containing LEMMA objects into LEMMA
memory. Typically, loading a memory image into virtual memory would use the (UNIX)
operating system mmap function, however, as this function is unavailable on the T3D we must
use DVME:

The loader function must declare these variables:

/* Number of pages required, and size of segments in bytes */

int immutPages, mutPages, immutSize, mutSize;

DVME_addr immutDVME, mutDVME; /* Virtual addresses to allocate */
byte *immutReal, *mutReal; /* Real addresses to load to */

The program must set the number of pages required, sizes of the segments and the addresses
they are to be loaded to. C-LEMMA will later give values for the real addresses. After setting
the variables above, use these lines to allocate virtual memory:

LEMMA_ASSERT(
(DVME allocate at address (immutDVME, immutPages, DVME immutable)

== DVME_success), "DVME allocate immut failed in LEMMA load");
LEMMA_ASSERT(
(DVME allocate at address (mutDVME, mutPages,DVME mutable) ==

DVME_success), "DVME allocate mut failed in LEMMA load");

After allocating virtual memory, use these lines to find the real addresses of the memory:

DVME virtual to real ((DVME_ addr)immutDVME, &immutReal);
DVME virtual to_ real ((DVME_ addr)mutDVME, &mutReal) ;

Next you must set up the file db so that it is ready to load immutable data. Then load it using
the line:

fread (immutReal, 1, immutSize, db);

Finally set up db so it is ready to load mutable data, then load it:

fread (mutReal, 1, mutSize, db);

24

The code above makes use of DVME functions and real memory operations which will be
described later.

7.3 Allocation of Data Objects
7.3.1 Allocation in GLUE

When creating an object using GLUE, the object type (mutable or immutable) and size
must be known. The GLUE alloc function takes a single word parameter which is the size of
the object to allocate with flags indicating the type of object. The parameter becomes the
header of the object. For example, to allocate an eight word mutable object:

RTS addr newObject = GLUE alloc(RTS_F mutable | 8);

GLUE does not offer exactly the same functionality as LEMMA, so LEMMA must be used
directly for more complex allocation and memory manipulation such as freezing an object
(converting a mutable object into an immutable one).

7.3.2 Allocation in LEMMA

In addition to LEMMA allocate mutable and LEMMA allocate immutable,
LEMMA offers a number of other functions for allocation and object manipulation. Refer to
the LEMMA interface definition for details on how to use these.

7.4 Accessing Objects

Because memory is being managed by a software library, rather than hardware and the
operating system, objects cannot be accessed using conventional means. Instead function calls
must be used to read and write memory.

7.4.1 Access with GLUE

GLUE provides a simple way for programs to access bytes within LEMMA objects. It
provides functions to read and write bytes within mutable and immutable objects, taking object
address and offsets as parameters:

LEMMA word GLUE get mutable (RTS addr addr, LEMMA word offset);
void GLUE set mutable (RTS_addr addr, LEMMA word offset,
LEMMA word value) ;
LEMMA word GLUE get immutable (RTS addr addr, LEMMA word offset);
void GLUE set immutable (RTS addr addr, LEMMA word offset,
LEMMA word value) ;

The meanings of these functions should be self explanatory. The GLUE set immutable

function should only be used immediately after creating the object. These functions lack
efficiency but are ideal for prototyping when designing programs.

25

7.4.2 Access with LEMMA

As explained in section 2.1, W-LEMMA implements a DSM system transparently
using page-fault signals. The alternative technique used in C-LEMMA requires all memory
accesses to be explicit. Consequently, two extra functions are required for reading and writing
immutable objects. These functions are analogous to the LEMMA load mutable and
LEMMA assign mutable functions already present in the LEMMA interface.

LEMMA result LEMMA load immutable(int is address, LEMMA addr,
int offset, LEMMA word *result, LEMMA synch type,
int *synchtoken);

LEMMA result LEMMA assign_ immutable (int is_address, LEMMA addr,
int offset, LEMMA word value, LEMMA synch type,
int *synchtoken);

Programmers are advised to read the next section on using real addresses to make their code
more efficient.

7.5 Using Real Memory Addresses

It is often useful to bypass C-LEMMA functions and access objects directly using real
memory addresses. This allows code to be more like conventional C code (allowing, for
example, array indexing) and can make programs more efficient by reducing the overheads of
function calling and repeated address resolution. To use normal memory accesses with data in
C-LEMMA memory, DVME must first be used to find the real address of the data, this is a
simple operation, a short fragment of code is shown in below:

Declare DVME and real address forms of the program counter:

DVME addr pcDVME;
byte *pc;
word instr;

Given a virtual address, the corresponding real address is calculated as follows:

LEMMA ASSERT (DVME_V:i_rtual_to_real (pcDVME, &pc) ==DVME_SUCCESS,
"Failed to convert PC to real address"™);

The real address can then be used as a conventional C pointer:

instr = *(pc++); /* read next instruction
and increment program counter */

7.5.1 When to use Real Addresses

An important consideration in the design of a C-LEMMA program is when to use real
addresses instead of virtual ones:

1. As the C-LEMMA garbage collector does not move objects, once a program has a real
pointer to some data it is safe to keep this pointer for later accesses. Real pointer should
not, however, be used inside objects in the LEMMA memory as they are not safe for use by
other processors.

26

2. As it is not possible to convert a real address back into a virtual address, avoid converting
DVME addresses then performing arithmetic operations on the resulting pointer. Doing this
would prevent you from sending the result to another processor.

3. DP/ML stores the real addresses of the stack and current code as processes do not migrate
from one process to another, this saves processor time by avoiding use of C-LEMMA
functions where they are not necessary.

Therefore, it is advisable to use real addresses where possible to keep the code simple
and make programs more efficient, provided it can be determined that these addresses will not
migrate to another processor where they will be invalid.

7.6 Message Passing Communication

Although C-LEMMA is primarily a shared-memory system, it also offers a few simple
message passing primitives for convenience. Message passing can be used to send simple
signals from one processor to another, in particular it is useful for client to server
communication.

Messages are described as R7TS messages as they are primarily designed for
synchronising run-time operations such as garbage collection. DP/ML uses these messages so
that the client can signal a server to start executing a function. However, it is not advisable to
use these primitives to write programs with in a message passing style. A specialised message
passing interface such as MPI [Mpif94] is more suitable for this.

7.6.1 Message Passing Primitives

A message consists of two words. The first word is an identifier giving the message
type, the second is data associated with this (¢.g. an address). Functions are provided for
asynchronous send and receive (LEMMA send rts message and
LEMMA get rts message) and synchronous receive (GLUE wait for message).
Synchronous receive simply busy-waits until a message arrives. Several values for the first
word (message type) are reserved, these can be found in the appendix (section 9.4). Additional
values may be added to this file for user-defined messages.

27

8. Further Work and Concluding Remarks

The purpose of C-LEMMA is to support the implementation of concurrent languages
on the Cray T3D. There are two main achievements associated with the new C-LEMMA
interface over the previous workstation-based version.

1. The construction of the Distributed Virtual Memory Emulator (DVME) library. This
library implements a paging distributed virtual memory sub-system. The C-LEMMA
interface is based on the functionality provided by this library. However, the library could
also be used by other Cray applications requiring a distributed virtual address space. An
added advantage of this library is that it separates the OS and network dependencies from
the C-LEMMA interface providing an overall more portable system. In this project, the
library is an entirely software-based due to the limitations of the Cray hardware. However,
the possibility of alternative implementations on different architectures is available.

2. The implementation of a new in-place global garbage-collection algorithm. This algorithm
should provide a performance advantage over the fwo-space copying approach used in W-
LEMMA, as it avoids the inefficiencies and complications of moving objects and placing
forwarding pointers.

The distributed shared memory system is working and has been thoroughly tested. A
detailed study of the Cray T3D shared memory system revealed that the performance of the C-
LEMMA implementation will almost certainly be better than the W-LEMMA implementation,
although a direct comparison has yet to be performed.

8.1 Improving the C-LEMMA Interface.

A number of techniques for improving the performance and/or efficiency of C-
LEMMA were suggested earlier in this report. It is hoped that these will be implemented in a
future project.

1. A large number of the C-LEMMA functions could be rewritten as C-macros, thereby
eliminating the associated function-call overhead.

2. The 8Mb page-table inside the DVME interface could be implemented using an efficient
hashing technique to save a considerable amount of memory.

3. An analysis of the Cray’s shared memory performance revealed that a large increase in
performance could be obtained through the caching of mutable objects. This would also
enhance the appeal of the C-LEMMA interface for imperative languages which contain only
mutable data objects. The mutable caching scheme used in the W-LEMMA interface is
detailed in [Serg94]. The scheme adaptively selects between three different caching
policies on an object-by-object basis by examining the access patterns to the object. This
technique potentially provides far greater performance than a single system-wide caching
policy.

8.2 Improving the Cray T3D Architecture

Despite the predicted increase in performance, it is clear that the full potential of the
Cray T3D is not being realised. A significant amount of the performance is wasted due to the
necessity of the software-based virtual address translation scheme. A number of

28

improvements to the Cray T3D architecture, each of which would improve overall performance
of the DVME interface, are outlined below.

1. If individual processors could catch operating system signals, most immutable data accesses
would not have to be passed through the emulator. Instead, page-fault signals could be
handled on remote memory accesses as in the W-LEMMA system. This would
significantly improve access times to locally resident immutable objects. User signals
could also be used to inform processors of arriving messages, avoiding the necessity of
repeatedly checking for incoming messages, thereby improving the performance of the new
garbage-collection routine. Signals could also be used to provide a time-slicing
mechanism, permitting more than one process per processor.

2. The overheads associated with the Cray SHMEM library come from the dynamic alteration
of the DTB-annex table to provide the illusion of a globally addressable memory. If the
Cray T3D provided hardware support for a global address space, then there would be little
need for the SHMEM library. This would provide a significant boost in performance to the
DVME interface and the other Cray message-passing systems. It is difficult to see why the
Cray designers did not improve performance in this way since every parallel process is
affected. However, it is understood that the new Cray T3E incorporates this improvement.

3. The most radical proposal would be to provide caching of remote data on each node. This
would significantly simplify the DVME interface and almost certainly improve performance
over a software managed cache. However, a complicated distributed cache-invalidation
scheme would be required and would probably limit the overall scaleability of the Cray
architecture.

29

9. Appendix - C-LEMMA Interface Prototypes

9.1 DVME Interface Header File.

/**
/
/* Title : Cray T3D Distributed Virtual Memory Emulator (DVME) v1.05

y Yy
*/
/* File : dvme.h - Functions, types and variables exported from DVME

yp p

*/

/**

/

/* Word length */
typedef long DVME addr, DVME word; /* Word size is 64-bit */

/* Inter-Processor Message Format */
struct dvme message
{
DVME word dataO, datal;
int sender pe;
}i

typedef struct dvme message DVME message;

/* Exit conditions */
typedef enum
{

DVME success,

DVME buffer full, /* Message buffer conditions */
DVME buffer empty,
DVME fail /* i.e. Page Fault */

} DVME_ result;

/* Status descriptions */
typedef enum
{

DVME mutable, /* Mutable */
DVME immutable, /* Immutable */
DVME unallocated /* Free Space */

} DVME page status;

/* Globals */

extern int DVME mype; /* Processor number */
extern int DVME numpes; /* Total number of processors */
void DVME initialise(void); /* Initialisation */

/* Virtual Address Manipulation */
int DVME processor (DVME addr virtual address);
DVME addr DVME make virtual (DVME word page number, int pe);

DVME result DVME virtual to real (DVME addr virtual address,
DVME word **real);

/* Memory Access */
DVME result DVME read mutable word(DVME addr virtual address,
DVME word *value);
DVME result DVME read immutable word(DVME addr virtual address,
DVME word *value);
DVME result DVME write mutable word(DVME addr virtual address,
DVME word newvalue,
DVME word *oldvalue);
DVME result DVME write immutable word(DVME addr virtual address,
DVME word value) ;

/* Memory Allocation/De-Allocation */
DVME result DVME allocate segment (DVME_ addr *virtual address, int *length,
DVME page status type);
DVME result DVME deallocate segment (DVME addr virtual address,
DVME page status stat);

30

DVME result DVME allocate at address(DVME addr virtual address, int length,
DVME page status stat);
DVME page status DVME query page status(DVME addr virtual address,
int *pe no);
/* Message Passing */
DVME result DVME send message(int dest pe, DVME message *message);
DVME result DVME get message (DVME message *message);

/* Error Handling */
void DVME crash(char *message);
#define DVME ASSERT(x,s) ((!(x)) ? (void) (DVME crash(s)) : (void)O0)

9.2 DVME Memory Allocation Routine Header File.

/**

/

/* Title : Cray T3D Distributed Virtual Memory Emulator (DVME) v1.02

*/

/* File : dvme_heap.h - header file for heap management functions

*/
/**

/

void HEAP_initialise(int length, DVME_addr start):;

void HEAP_ dealloc_contig_pages (int length, DVME_addr offset);
DVME_result HEAP_alloc_contig pages (int length, DVME_addr *offset);
void HEAP_allocate_at_address (int length, DVME_addr offset);

9.3 C-LEMMA Interface Header File.

/**

/

/* Title : Cray T3D Distributed ML Memory Interface (C-LEMMA) v1.02

*/

/* File : lemma.h - exports from LEMMA interface

*/
/**

/

/* Word sizes and address formats */
typedef long word;
typedef word LEMMA word, LEMMA addr, RTS addr;

/* Synch types (only LEMMA SYNCH supported) */
typedef enum
{
LEMMA SYNCH,
LEMMA ASYNCH
} LEMMA synch type;

/* Result codes */

typedef enum

{
LEMMA Failed,
LEMMA Succeeded,
LEMMA InProgress,
LEMMA TooMany

} LEMMA result;

/* Message format */
typedef struct

{
LEMMA word rtsm data0O, rtsm datal;
int rtsm sender;

} LEMMA rts message;

/* Server information */

31

extern int LEMMA server no;
extern int LEMMA servers;

/* Interrupt
typedef enum
{

/*
/*

This servers ID */
Total number of servers */

reasons */

LEMMA Synch request,
LEMMA RTS Msg_ arrived,
LEMMA RTS Clear to_ send,
LEMMA Immutable complete,
LEMMA Mutable complete

} LEMMA interrupt reason;

/* Garbage-Collection types */

typedef enum
{

LEMMA GC_Kind_ Strong,
LEMMA GC_ Kind Weak
} LEMMA GC Kind;

#define PAGE CREDIT 2048

/* Allocation structure

/* Local pages allocated before GC begins */

struct allocators

{
word
word
LEMMA word
LEMMA word
)i

/* Mutable object header */
typedef struct

{

word magic;
word frozen;
word length;

LEMMA addr

(for keeping track of allocation inside pages) */
mutspace; /* # words left in current mutable page */
immutspace; /* # words left in current immutable page */
mutptr; /* pointer into current mutable page */
immutptr; /* pointer into current immutable page */
/* magic number for checking headers */
/* page frozen (0=no) */
/* length of mutable */

old addr; /* old address (if get exclusive used) */

} LEMMA mutable header;
#define LEMMA MAGIC 12345
#define MUTABLE OVERHEAD (sizeof (LEMMA mutable header)/sizeof (LEMMA word))

/* Error Handling */

#define LEMMA ASSERT (x,s)

(('(x)) ? (void) (DVME_crash(s)) (void) 0)

/* Initalisation */

LEMMA result

LEMMA initialise memory(int is_server, int token,
LEMMA addr *interface addr, unsigned int interface size);

/* Mutables */

LEMMA result
LEMMA result

LEMMA result

LEMMA result

LEMMA result
LEMMA result
LEMMA result
LEMMA result

LEMMA allocate mutable (LEMMA addr *, int);

LEMMA load mutable(int is_address, LEMMA addr, int offset,
LEMMA word *result, LEMMA synch type, int *synchtoken);

LEMMA assign mutable(int is_address, LEMMA addr, int offset,
LEMMA word value, LEMMA word *result, LEMMA synch type,
int *synchtoken);

LEMMA check mutable operation(int synchtoken,
LEMMA word *result);

LEMMA freeze mutable (LEMMA addr);

LEMMA get exclusive copy(LEMMA addr, LEMMA addr *);

LEMMA release exclusive copy(LEMMA addr) ;

LEMMA is mutable (RTS_addr, int *);

/* Immutables */

LEMMA result
LEMMA result
LEMMA result

LEMMA result

LEMMA allocate immutable (LEMMA addr *, int);

LEMMA allocate immutable segment (LEMMA addr *, int *);

LEMMA load immutable(int is_address, LEMMA addr, int offset,
LEMMA word *result, LEMMA synch type, int *synchtoken);

LEMMA assign immutable (int is_address, LEMMA addr, int offset,
LEMMA word value, LEMMA synch type, int *synchtoken);

/* Message buffering */

LEMMA result

LEMMA get rts message (LEMMA rts message *);

32

LEMMA result LEMMA send rts message (int, LEMMA rts message *);

/* Garbage-collection */
LEMMA result LEMMA force garbage collection(void);

/* I0 handling */
LEMMA result LEMMA ensure object is accessible(RTS_addr, LEMMA synch type);
LEMMA result LEMMA connect to server(char *server name, int
*server address,
int token):;

9.4 C-LEMMA Messages

/**

/* Title : C-LEMMA Message Formats

*/

/* File : messages.h

*/
/**

/

/* Messages to be handled by LEMMA {get, send}_rts_message */
typedef enum

GC_PARTICIPATE,
GC_DEPART,
GC_COUNT_A,
GC_REQ1,
GC_oDT1,
GC_NRT1,
GC_ACK1,
GC_TRAVERSE,
GC_ADD,
GC_UPDATE_A,
GC_UPDATE_B,
GC_REQ2,
GC_NFL2,
GC_NRT2,
GC_ACK2,
GC_COUNT_B,
GC_REMOVE,
GC_FINISH,
SV_START /* Server, start a process */
} GC_MESSAGE;

9.5 RTS Header File.

/**

/
/* Title : Cray T3D Run-Time System (RTS) v1.02

/* File : rts.h

/**

/

void RTS_ for addresses in object (LEMMA addr, void (
LEMMA addr, int));

void RTS_apply to address(LEMMA word *p, RTS addr (

void RTS _apply to rts message (LEMMA rts message%*,

RTS addr (*op) (RTS addr));

*) (RTS_addr,
*op) (RTS_addr)) ;
void RTS_crash(char *);

void RTS close segment (void);

void RTS apply to roots(RTS addr (*op) (RTS addr), LEMMA GC Kind strength);
LEMMA addr RTS_start of object (RTS_addr);

33

int RTS object length(LEMMA addr);
int RTS _object is mutable (LEMMA addr);
void RTS fill unused space(LEMMA addr, int);

/* RTS object header masks */

#define RTS_Flag field 0xf£000000 /* hi byte of lengthword

*/

#define RTS_Length field OxO00ffffff /* low 3 bytes of lengthword
*/

[F mmm e RTS Flags ———————=———————————————————————~
*/

/* F_bytes means the data is bytes and must not be searched for pointers
*/

#define RTS_F bytes 0x01000000

/* F_code means that the data is a code segment with a literal segment at
*/

/* the end. Only this must be searched for pointers.

*/

#define RTS_F code 0x02000000

/* F_first ptr means that the first word contains the address of the
next.*/

/* This is an optimisation of a closure which only contains the address

*/

/* of the code and has no free variables. (Only with F _bytes or F code).
*/

#define RTS_F first ptr 0x04000000

/* F_stack means the segment is a stack segment. (F mutable is also set)
*/

#define RTS_F stack 0x08000000

/* F_mutable means that the object is mutable i.e. a variable or a vector
*/

#define RTS_F mutable 0x40000000

/* These next two bits are not looked at by the store management system
*/

#define RTS_F userl 0x10000000 /* No longer used */

#define RTS_F user2 0x20000000 /* No longer used */

/* F_gc 1s used by the garbage-collector to indicate an object which has

/* been moved to a new address. The rest of the word is the new address.
#define RTS_F gc 0x80000000 /* No longer required */
/* If this bit is set then the address is a code pointer */

#define RTS CODE BIT 2

#define RTS_ASSERT (x,s) ((!(x)) ? (void) (DVME crash(s)) : (void)O0)

9.6 GLUE Header File.

/**

/
/* Title : Cray T3D Run-Time System Glue v1.00

/* File : rts_glue.h

/**

/

typedef long word;

#define TAGSHIFT 1
#define TAG 1
#define TAGGED (i) (((i) << TAGSHIFT) + TAG)

/* Initialisation */
voild GLUE_initialise_memory(void);
LEMMA result GLUE_find_server (int pe);

/* Memory allocation and access */

RTS_addr GLUE_alloc(RTS_word size);
LEMMA word GLUE_get_mutable (RTS_addr addr, LEMMA word offset);

34

void GLUE set mutable (RTS_ addr addr, LEMMA word offset, LEMMA word value);
LEMMA word GLUE get immutable (RTS addr addr, LEMMA word offset);

void GLUE set immutable (RTS_ addr addr, LEMMA word offset, LEMMA word
value) ;

/* Garbage-collection */
void GLUE register gc proc(void (*op) (RTS_addr (*) (RTS_addr)),
LEMMA GC _Kind);

/* Messaging */
void GLUE wait for message (LEMMA rts message *m);

35

10. Bibliography.

[Barr94]

[Boot95]

[Bhoe92]

[Colo94]

[Cray93]

[Cray94]

[Hogg94]

[Kord93]

[Matt91]

[Matt95a]

[Matt95b]

[Matt95c¢]

[McAd97]

[Miln90]

[Mpif94]

[Nitz91]

[Serg94]

Barriuso and A. Knies, “SHMFEM User’s Guide for C”, Cray Research Inc.,
Revision 2.2, 1995.

S. Booth, J. Fisher, P. H. Maccallum, and A. D. Simpson, “Introduction fo the Cray
73D at EPCC”, EPCC, September 1995.

R. A. F. Bhoedjang, “Porting Concurrent Poly/ML to the Computing Surface”,
Report EPCC-SS892-02, EPCC, September 1992.

G. Colouris, J. Dollimore, and T. Kindberg, “Distributed Systems: Concepts and
Design”, (Second Edition), Addison Wesley, 1994, Chapter 17.

Cray Research Inc., “Cray Research MPP Software Guide”, Cray Research Inc.,
SG-2508, Revision 1.0, 1993.

Cray Research Inc., “Cray Standard C Reference Manual”, Cray Research Inc.,
SR-2506, Revision 4.0, 1994.

J. Hogg, “Poly/ML on Alpha”, MSc. Project Report, University of Edinburgh,
September 1994,

R. Kordale, M. Ahamad and J. Shilling, “Distributed/Concurrent Garbage
Collection in Distributed Shared Memory Systems”, IEEE Computer, 1993.

D. C. J. Matthews, “4 Distributed Concurrent Implementation of Standard ML”,
Report ECS-LFCS-91-174, LFCS, Edinburgh University, August 1991.

D. C. J. Matthews and T. Le Sergent, “LEMMA Interface Definition”, Report ECS-
LFCS-95-316, LFCS, Edinburgh University, January 1995.

D. C. J. Matthews and T. Le Sergent, “LEMMA: A Distributed Shared Memory with
Global and Local Garbage-Collection”, Report ECS-LFCS-95-325, LFCS,
Edinburgh University, June 1995.

D. C. J. Matthews, “Papers on Poly/ML”, Report ECS-LFCS-95-335, LFCS,
October 1995.

B. J. McAdam, “Poly/ML on the Cray T3D: A Byte-Code Interpreter”, 4th Year
Project Report, Department of Computer Science, Edinburgh University, May 1997.

R. Milner, M. Tofte, and R. Harper, “The Definition of Standard ML”, MIT press,
1990.

Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard”,
May 1994.

B. Nitzberg and V. Lo, “Distributed Shared Memory: A Survey of Issues and
Algorithms”, IEEE Computer, August 1991.

T. Le Sergent and D. C. J. Matthews, “Adaptive selection of protocols for strict

coherency in distributed shared memory”, Report ECS-LFCS-94-306, LFCS,
September 1994,

36

