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Abstract

This paper establishes the decidability of typechecking in Fω∧ , a typed lambda
calculus combining higher-order polymorphism, subtyping, and intersection types.
It contains the first proof of decidability of subtyping for a higher-order system.

1 Introduction

The system F ω
∧ (F-omega-meet) was first introduced in [16], where it was shown to be rich

enough to provide a typed model of object oriented programming with multiple inheritance.
The system F ω

∧ is an extension of F ω [22] with bounded quantification and intersection
types, which can be seen as a natural generalization of the type disciplines present in the
current literature, for example in [19, 26, 27, 11]. Systems including either subtyping or
intersection types or both have been widely studied for many years. What follows is not
intended to be an exhaustive description, but a framework for the present work.

First-order type disciplines with intersection types have been investigated by the group
in Torino [18, 2] and elsewhere (see [10] for background and further references). A second-
order λ-calculus with intersection types was studied in [26]. Systems including subtyping
were present in [9, 5]. Higher order generalizations of subtyping appear in [4, 17, 25, 3].

Lambda calculi syntax is often presented by several interdependent relations or judge-
ments (such as context formation, kinding, and typing, for example), and we say that a
given lambda calculus is decidable if its typing relation is, but because of the interdepend-
ence of judgements it actually means the decidability of all the interwoven relations.

The system F≤, a second-order λ-calculus with bounded quantification, was studied in
[21]. In [26] it was proved that typing in F≤ was undecidable and that undecidability was
caused by the subtyping relation, the rule for bounded quantification being responsible for
the failure.
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An alternative rule for subtyping quantified types was presented in [11] in an attempt
to find a decidable system, and the decidability of subtyping was proved for an extension of
system F with bounded polymorphism, but different from F≤. Unfortunately, the typing
relation fails to satisfy the minimal type property. This failure, discovered by Ghelli,
introduces serious problems in type checking and type inference. At the moment it is
not clear how to solve them or, even more problematic, whether the typing relation is
decidable. The solution we chose here to overcome this problem is to replace the subtyping
rule between quantifiers by the corresponding rule of Cardelli and Wegner’s kernel Fun [9].

Because F ω
∧ has reduction on types we introduce a conversion rule that includes inter-

convertible types in the subtype relation. Therefore, our subtyping relation relates types of
a more expressive type system than that presented in [11]. In fact, treating the interaction
between interface refinement and encapsulation of objects, in object oriented programming,
has required higher-order generalizations of subtyping: the F-bounded quantification of
Canning, Cook, Hill, Olthoff and Mitchell [4] or system F ω

≤ [6, 8, 7, 25, 3].
In this paper we give a positive answer to the decidability of typing in the presence of

β∧-convertible types and subtyping. We prove that subtyping in F ω
∧ is decidable, which

a fortiori gives the decidability of subtyping for the F ω
≤ fragment because the former is a

conservative extension of the latter – namely, each subtyping statement derivable in F ω
∧

containing no intersections other than the empty ones is also derivable in F ω
≤ . A major

task in establishing the decidability result for our system is in proving that subtyping is
decidable.

We use a definition of F ω
∧ from [15, 12] that differs from the one introduced in [16]

in two ways. First, the ill-behaved Castagna and Pierce quantifier rule has been replaced
by the Cardelli and Wegner rule. Secondly, we introduce a richer notion of reduction on
types, and thereby the four distributivity rules become particular cases of the conversion
rule. This alternative (and equivalent) presentation provides a different view of the system
that is the key to proving the decidability of subtyping.

This new perspective suggests that to prove the decidability of subtyping it is enough
to concentrate on types in normal form. Note that the solution cannot be as simple as
to restrict the subtyping rules of F ω

∧ to handle only types in normal form and replace
conversion by reflexivity. The following is a good example of the intricacies of the problem
to be solved. Consider the context Γ ≡W :K, X ≤ ΛY :K.Y :K→K, Z ≤ X:K→K, where
every type is in normal form; observe that X and Z are subtypes of the identity on K.
Then Γ ` X(Z W ) ≤ W , which is also in normal form, is not derivable without using
conversion, i.e. without performing any β-reduction steps.

The subtyping rules of F ω
∧ are not syntax directed, in the sense that the form of a

derivable subtyping statement does not uniquely determine the last rule of its derivation.
A deterministic version of the subtyping relation, AlgF ω

∧ , is presented in [15, 12]. There it
is proved to be equivalent to the original presentation on well-formed types. The system
AlgF ω

∧ considers only types in normal form, and will be our starting point to prove the
decidability of subtyping.

In this paper we establish the decidability of subtyping in F ω
∧ by proving that the

algorithm described by AlgF ω
∧ terminates, which is equivalent to showing that the definition
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of the AlgF ω
∧ is well-founded. We discuss this further in section 5.3.

In the algorithm, checking whether Γ `Alg S T ≤ A is reduced to checking if Γ `Alg

lubΓ(S T )nf ≤ A, where lubΓ(S T ) substitutes the leftmost innermost variable of S T by its
bound in Γ. Such replacements may produce a term that is not in normal form, in which
case we normalize it afterwards. (In an alternative notation used in [1], Γ `Alg XS1 · · ·Sn ≤
A is reduced to checking if Γ `Alg (Γ(X)S1 · · ·Sn)nf ≤ A.) The main problem here is that
the size of the types to be examined in the recursive call may not decrease. This indicates
that the proof of termination of the algorithm is not immediate. In particular, the proof
of termination for the second order calculus presented in [11] cannot be modified to serve
our purposes, because of the interaction between reduction and the substitution of type
variables by their bounds in our system. See section 5.3 for more details.

Typing and subtyping are defined using context formation and kinding judgements,
therefore in section 4 we show that the latter are decidable.

Finally we prove in section 8 that typing is decidable. To illustrate the problem of
typing consider the following situation. Imagine trying to type f a in different contexts.
We know we can type an application if we can find an arrow type for f whose domain types
a. In the context Γ, X≤S→T :?, f :X, a:S, we need to use that the type X, with which
f is declared, is a subtype of S→T . Note that X, the minimal type of f , does not have
enough structural information to type an application. Therefore, one needs to “climb” the
subtyping hierarchy until a type with enough information is found, in this case an arrow
type.

If we want to type f a with respect to the context Γ′ ≡ Γ, Z≤ΛY :?.S→Y :?→?, W≤Z:?
→?, f :WT, a:S, we have to use that WT is a subtype of S→T , which involves replacing
W by Z, then Z by ΛY : ? .S→Y in WT , and finishing with a step of β-reduction. Since
we need to continue making replacements and reduction steps until we find an arrow type,
this procedure is slightly more complicated than finding the lubΓ′(WT ), which is ZT .
The situation is even more twisty because of the presence of intersection types, but we
leave that for section 8. This suggests that proving the termination of typechecking is
not immediate, and that we will need to use similar ideas to those needed to prove the
termination of subtype checking.

This paper extends the decidability result of [13] for subtyping to the typing relation.

2 Syntax of Fω
∧

We now present the rules for kinding, subtyping, and typing in F ω
∧ . They are organized as

proof systems for four interdependent judgement forms:

Γ ` ok well-formed context
Γ ` T : K well-kinded type
Γ ` S ≤ T subtype
Γ ` e : T well-typed term.
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We sometimes use the metavariable Σ to range over statements (right-hand sides of judge-
ments) of any of these four forms.

2.1 Syntactic Categories

The kinds of F ω
∧ are those of F ω: the kind ? of proper types and the kinds K1→K2 of

functions on types (sometimes called type operators).

K ::= ? |K→K

The language of types of F ω
∧ is a straightforward higher-order extension of F≤, Cardelli

and Wegner’s second-order calculus of bounded quantification. Like F≤, it includes type
variables (written X), function types (T→T ′), and polymorphic types (∀X≤T :K.T ′), in
which the bound type variable X ranges over all subtypes of the upper bound T . Moreover,
like F ω, we allow types to be abstracted on types (ΛX:K.T ) and applied to argument types
(T T ′); in effect, these forms introduce a simply typed λ-calculus at the level of types.
Finally, we allow arbitrary finite intersections (

∧K [T1..Tn]), where all the Ti’s are members
of the same kind K.

T ::= |X |T→T | ∀X≤T:K .T |ΛX:K .T |TT |∧K [T..T ]

We use the abbreviation >K for nullary intersections and sometimes X:K for X ≤ >K :K.

>K ≡ ∧K [ ] X:K ≡ X ≤ >K :K

We drop the maximal type Top of F≤, since its role is played here by the empty intersec-
tion >?. For technical convenience, we provide kind annotations on bound variables and
intersections so that every type has an “obvious kind,” which can be read off directly from
its structure and the kind declarations in the context.

The language of terms includes the variables (x), applications (e e) , and functional ab-
stractions (λx:T.e) of the simply typed λ-calculus, plus the type abstraction (λX≤T :K.e)
and application (e T ) of F ω. As in F≤, each type variable is given an upper bound at the
point where it is introduced.

Intersection types are introduced by expressions of the form “for(X∈T1..Tn)e”, which
can be read as instructions to the type-checker to analyze the expression e separately under
the assumptions X ≡ T1, X ≡ T2, . . . , X ≡ Tn and conjoin the results. For example, if
+ : Int→Int→Int ∧Real→Real→Real, then we can derive

for(X∈Int, Real)λx:X.x+ x : Int→Int∧ Real→Real.

e ::= x |λx:T.e | e e |λX≤T:K .e | eT | for(X∈T..T)e

The operational semantics of F ω
∧ is given by the following reduction rules on types and

terms.

Definition 2.1.1 (Reduction rules for types)
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1. (ΛX:K.T1)T2 →β∧ T1[X←T2]

2. S → ∧?[T1..Tn]→β∧
∧?[S→T1 .. S→Tn]

3. ∀X≤S:K.
∧?[T1..Tn]→β∧

∧?[∀X≤S:K.T1 .. ∀X≤S:K.Tn]

4. ΛX:K1.
∧K2[T1..Tn]→β∧

∧K1→K2[ΛX:K1.T1 .. ΛX:K1.Tn]

5. (
∧K1→K2[T1..Tn])U →β∧

∧K2[T1 U .. TnU ]

6.
∧K [T1 ..

∧K [S1..Sn] .. Tm]→β∧
∧K [T1 .. S1..Sn .. Tm]

The first rule is the usual β-reduction rule for types. Rules 2 through 5 express the fact that
intersections in positive positions distribute with respect to the other type constructors.
Rule 6 states that intersection is an associative operator. The left-hand side of each
reduction rule is a redex and the right-hand side its reduct. The relation →β∧ is extended
so as to become a compatible relation with respect to type formation,�β∧ is the transitive
and reflexive closure of→β∧, and =β∧ is the least equivalence relation containing→β∧. The
capture-avoiding substitution of S for X in T is written T [X←S]. Substitution is written
similarly for terms, and is extended point-wise to contexts. The β∧-normal form of a type
S is written Snf, and is extended point-wise to contexts.

Definition 2.1.2 (Reduction rules for terms)

1. (λx:T1.e1)e2 →βfors e1[x←e2]

2. (λX≤T1:K1.e)T →βfors e[X←T ]

3. (for(X∈T1..Tn)e1)e2 →βfors for(X∈T1..Tn)(e1 e2)

4. for(X∈T1..Tn)e→βfors e, if X 6∈ FV(e)

Rules 1 and 2 are the β-reductions on terms. Rule 3 says that the for constructor can
be pushed to the outermost level. We consider the reduction defined by rules 1 through
3 as →βfor and the one defined by 4 as →s (s comes from simplification). The left-hand
side of each reduction rule is a redex and the right-hand side its reduct. The relation
→βfors is extended so as to become a compatible relation with respect to term formation,
�βfors is the transitive reflexive closure of→βfors, and =βfors is the least equivalence relation
containing →βfors.
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2.2 Contexts

A context Γ is a finite sequence of typing and subtyping assumptions for a set of term and
type variables.

The empty context is written ∅. Term variable bindings have the form x:T ; type variable
bindings have the form X≤T :K, where T is the upper bound of X and K is the kind of
T .

Γ ::= ∅ |Γ, x:T |Γ, X≤T :K

When writing nonempty contexts, we omit the initial ∅. The domain of Γ is written
dom(Γ). The functions FV(—) and FTV(—) give the sets of free term variables and
free type variables of a term, type, or context. Since we are careful to ensure that no
variable is bound more than once, we sometimes abuse notation and consider contexts as
finite functions: Γ(X) yields the bound of X in Γ, where X is implicitly asserted to be in
dom(Γ).

Types, terms, contexts, statements, and derivations that differ only in the names of
bound variables are considered identical. The underlying idea is that variables are de Bruijn
indexes [20].

Definition 2.2.1 (Closed)

1. A term e is closed with respect to a context Γ if FV(e)∪ FTV(e) ⊆ dom(Γ).

2. A type T is closed with respect to a context Γ if FTV(T ) ⊆ dom(Γ).

3. A typing statement Γ ` e : T is closed if e and T are closed with respect to Γ.

4. A kinding statement Γ ` T : K is closed if T is closed with respect to Γ.

5. A subtyping statement Γ ` S ≤ T is closed if S and T are closed with respect to Γ.

We consider only closed typing statements. Observe that in the limit case of the rule
T-Meet, when n = 0, not having the closure convention would allow nonsensical terms
to be typed. On the other hand, the free variable lemma (lemma 3.2) guarantees that
kinding statements are closed and the well-kindedness of subtyping (lemma 3.8) ensures
that subtyping statements are closed as well.

2.3 Context Formation

The rules for well-formed contexts are the usual ones: a start rule for the empty context
and rules allowing a given well-formed context to be extended with either a term variable
binding or a type variable binding.

∅ ` ok (C-Empty)

Γ ` T : ? x 6∈ dom(Γ)
Γ, x:T ` ok

(C-Var)
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Γ ` T : K X 6∈ dom(Γ)
Γ, X≤T :K ` ok

(C-TVar)

2.4 Type Formation

For each type constructor, we give a rule specifying how it can be used to build well-
formed type expressions. The critical rules are K-OAbs and K-OApp, which form type
abstractions and type applications (essentially as in a simply typed λ-calculus).

The well-formedness premise Γ ` ok in K-Meet (and in T-Meet below) is required for
the case where n = 0.

Γ1, X≤T :K, Γ2 ` ok
Γ1, X≤T :K, Γ2 ` X : K

(K-TVar)

Γ ` T1 : ? Γ ` T2 : ?
Γ ` T1→T2 : ?

(K-Arrow)

Γ, X≤T1:K1 ` T2 : ?
Γ ` ∀X≤T1:K1.T2 : ?

(K-All)

Γ, X :K1 ` T2 : K2

Γ ` ΛX :K1.T2 : K1→K2
(K-OAbs)

Γ ` S : K1→K2 Γ ` T : K1

Γ ` S T : K2
(K-OApp)

Γ ` ok for each i ∈ {1..n} , Γ ` Ti : K

Γ ` ∧K [T1..Tn] : K
(K-Meet)

2.5 Subtyping

The rules defining the subtype relation are a natural extension of familiar calculi of bounded
quantification. Aside from some extra well-formedness conditions, the rules S-Trans, S-

TVar, and S-Arrow are the same as in the usual, second-order case. Rules S-OAbs and
S-OApp extend the subtype relation point-wise to kinds other than ?. The rule of type
conversion in F ω, that is, if Γ ` e : T and T =β T ′ then Γ ` e : T ′, is captured here as the
subtyping rule S-Conv, which also gives reflexivity as a special case. The rule S-All is
the rule of Cardelli and Wegner’s Fun language [9] in which the bounds of the quantifiers
are equal. Rules S-Meet-G and S-Meet-LB specify that an intersection of a set of types
is the set’s order-theoretic greatest lower bound.

Γ ` S : K Γ ` T : K S =β∧ T

Γ ` S ≤ T (S-Conv)

Γ ` S ≤ T Γ ` T ≤ U
Γ ` S ≤ U (S-Trans)

Γ1, X≤T :K, Γ2 ` ok
Γ1, X≤T :K, Γ2 ` X ≤ T

(S-TVar)
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Γ ` T1 ≤ S1 Γ ` S2 ≤ T2 Γ ` S1→S2 : ?
Γ ` S1→S2 ≤ T1→T2

(S-Arrow)

Γ, X≤U :K ` S ≤ T Γ ` ∀X≤U :K.S : ?
Γ ` ∀X≤U :K.S ≤ ∀X≤U :K.T

(S-All)

Γ, X :K ` S ≤ T
Γ ` ΛX :K.S ≤ ΛX :K.T

(S-OAbs)

Γ ` S ≤ T Γ ` S U : K
Γ ` S U ≤ T U (S-OApp)

for each i ∈ {1..n} , Γ ` S ≤ Ti Γ ` S : K

Γ ` S ≤
∧K [T1..Tn]

(S-Meet-G)

Γ ` ∧K [T1..Tn] : K

Γ ` ∧K [T1..Tn] ≤ Ti
(S-Meet-LB)

2.6 Term Formation

Except for T-Meet and T-For, the term formation rules are precisely those of the second-
order calculus of bounded quantification. T-For provides for type checking under any of a
set of alternate assumptions. For each Si, the type derived for the instance of the body e
when X is replaced by Si is a valid type of the for expression itself. The T-Meet rule can
then be used to collect these separate typings into a single intersection. Type-theoretically,
T-Meet is the introduction rule for the ∧ constructor; the corresponding elimination rule
need not be given explicitly, since it follows from T-Subsumption and S-Meet-LB.

Γ1, x:T , Γ2 ` ok
Γ1, x:T , Γ2 ` x : T

(T-Var)

Γ, x:T1 ` e : T2

Γ ` λx:T1.e : T1→T2
(T-Abs)

Γ ` f : T1→T2 Γ ` a : T1

Γ ` f a : T2
(T-App)

Γ, X≤T1:K1 ` e : T2

Γ ` λX≤T1:K1.e : ∀X≤T1:K1.T2
(T-TAbs)

Γ ` f : ∀X≤T1:K1.T2 Γ ` S ≤ T1

Γ ` f S : T2[X←S]
(T-TApp)

Γ ` e[X←S]:T S : {S1..Sn}
Γ ` for(X∈S1..Sn)e : T

(T-For)

Γ ` ok for each i ∈ {1..n} , Γ ` e : Ti
Γ ` e :

∧?[T1..Tn]
(T-Meet)
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Γ ` e : S Γ ` S ≤ T
Γ ` e : T

(T-Subsumption)

Most of the rules include premises which have two rather different sorts: structural premises,
which play an essential role in giving the rule its intended semantic force, and well-formation
premises, which ensure that the entities named in the rule are of the expected sorts.

We sometimes omit well-formation premises that can be derived from others. For
example, in the rule S-Arrow, we drop the premise Γ ` T1→T2 : ?, since it follows from
Γ ` S1→S2 : ? using structural properties.

3 Properties

In this section we list properties whose proofs can be found in [12].

Lemma 3.1 If Γ ` Σ and Γ1 is a prefix of Γ, then Γ1 ` ok as a subderivation. Moreover,
except for the case Γ1 ≡ Γ and Σ ≡ ok, the subderivation is strictly shorter.

Lemma 3.2 (Free variables)

1. If Γ ` T : K, then FTV(T ) ⊆ dom(Γ).

2. If Γ ` ok, then each variable or type variable in dom(Γ) is declared only once.

Lemma 3.3 (Generation for context judgements)

1. If Γ1, X≤T :K, Γ2 ` ok, then Γ1 ` T : K by a proper subderivation.

2. If Γ1, x:T , Γ2 ` ok, then Γ1 ` T : ? by a proper subderivation.

Proposition 3.4 (Generation for kinding)

1. Γ ` X : K implies Γ ≡ Γ1, X≤T :K, Γ2 for some Γ1, T , and Γ2.

2. Γ ` T1→T2 : K implies K ≡ ? and Γ ` T1, T2 : ?.

3. Γ ` ∀X≤T1:K1.T2 : K implies K ≡ ? and Γ, X≤T1:K1 ` T2 : ?.

4. Γ ` Λ(X:K1)T2 : K implies K ≡ K1→K2 and Γ, X≤>K1:K1 ` T2 : K2, for some
K2.

5. Γ ` S T : K implies Γ ` S : K ′→K and Γ ` T : K ′, for some K ′.

6. Γ ` ∧K [T1..Tn] : K ′ implies K ≡ K ′ and Γ ` ok and Γ ` Ti : K for each i.

If one tries to prove Weakening (Corollary 3.7) directly by induction on derivations the
induction hypothesis is too weak in the cases for K-All and S-OAbs, for example. We
adapt McKinna and Pollack’s idea of renaming [24] to overcome this problem.



4 DECIDABILITY OF CONTEXT FORMATION AND KINDING 10

Definition 3.5 (Parallel Substitution) A parallel substitution γ for Γ is an assignment
of types to type variables in dom(Γ) and terms to term variables in dom(Γ). A renaming
for Γ in ∆ is a parallel substitution γ from variables to variables such that

• for every x:A in Γ, γ(x):A[γ] is in ∆, and

• for every X≤T :K in Γ, γ(X)≤A[γ]:K is in ∆.

We write Σ[γ] for the result of performing the substitution γ in the judgement Σ. The
renaming γ{x 7→ y} maps x to y and behaves like γ elsewhere, similarly for type variables.

Lemma 3.6 (Renaming) If ∆ ` ok and γ is a renaming for Γ in ∆ then Γ ` Σ implies
∆ ` Σ[γ].

Corollary 3.7 (Weakening/Permutation) Let Γ and Γ′ be contexts such that Γ ⊆ Γ′

and Γ′ ` ok. Then Γ ` Σ implies Γ′ ` Σ.

Proposition 3.8 (Well-kindedness of subtyping) If Γ ` S ≤ T , then Γ ` S : K and
Γ ` T : K for some K.

Proposition 3.9 (Well-kindedness of typing) If Γ ` e : T , then Γ ` T : ?.

4 Decidability of context formation and kinding

The decidability of kinding is used to prove the decidability of subtyping in section 5.3,
and the decidability of ok judgements is used to prove the decidability of typechecking in
section 8. We want to define a measure (size) on judgements to show that the complexity of
the hypothesis in a kinding derivation rule is smaller than the complexity of the conclusion.
Given that kinding rules may depend on ok judgements we need to define a measure for
both kinding and well-formation judgements. Rules C-TVar and C-Var suggest that the
size of ok should be bigger than 0 (let it be 1). The rule K-Meet in the empty case,
suggests that the size of >K should be bigger than the size of ok, while K-TVar indicates
that the size of a variable should be bigger than the size of ok. With all these ideas in
mind we define the following measure.

Definition 4.1 (Size)

1. The size of a type expression T , sizet(T ), is defined as follows.

(a) sizet(X) = 2,

(b) sizet(S→T ) = sizet(∀X≤S:K.T ) = sizet(S T ) = sizet(S) + sizet(T ) + 1,

(c) sizet(ΛX:K.T ) = sizet(T ) + 3,

(d) sizet(
∧K [T1..Tn]) = 2 + Σ1≤i≤nsizet(Ti).



5 DECIDABILITY OF SUBTYPING 11

2. The homomorphic extension to contexts, sizec(Γ), is defined as follows.

(a) sizec(∅) = 0,
(b) sizec(Γ, X ≤ T :K) = sizec(Γ, x:T ) = sizec(Γ) + sizet(T ).

3. The size of a subtyping, kinding, or ok judgement J , sizej(J), is defined as follows.

(a) sizej(Γ ` ok) = sizec(Γ) + 1,
(b) sizej(Γ ` T : K) = sizec(Γ) + sizet(T ).
(c) sizej(Γ ` S ≤ T ) = sizec(Γ) + sizet(S) + sizet(T ).

Lemma 4.2 (Well-foundedness of context formation and kinding rules)

1. For every kinding or ok judgement J , sizej(∅ ` ok) ≤ sizej(J).

2. If
J1 .. Jn

J
is a kinding rule or a context formation rule, then sizej(Ji) < sizej(J) for

each i ∈ {1..n} .

Corollary 4.3 (Decidability of context formation and kinding)

1. For any context Γ it is decidable whether Γ ` ok.

2. For any context Γ, type expression T , and kind K, it is decidable whether Γ ` T : K.

Proof: Lemma 3.3 and proposition 3.4 imply that context formation rules and kinding
rules determine an algorithm to check context judgements and kinding judgements, and
lemma 4.2 implies that this algorithm terminates. 2

5 Decidability of subtyping

In the solution for the second order lambda calculus presented in [26], the distributivity
rules for intersection types are not considered as rewrite rules. For that reason, new
syntactic categories have to be defined (composite and individual canonical types) and an
auxiliary mapping (flattening) transforms a type into a canonical type. Our solution does
not need either new syntactic categories or elaborate auxiliary mappings, since the role
played there by canonical types is performed here by types in normal form.

After the work in [13] was completed, Steffen and Pierce proved a similar result for
F ω
≤ [28]. There are several differences between our work and the proof of decidability of

subtyping in [28]. Our result is for a stronger system which also includes intersection types,
and implies the result for F ω

≤ . Moreover, our proof of termination has the novel idea of
using a choice operator to model the behavior of type variables during subtype checking.

An important property of derivation systems is the information that a derivable judge-
ment contains about its proofs. This information is essential to produce results which not
only state properties about the subproofs, but also help identify ill formed judgements.
Consider the following example.
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Example 5.1 In F ω
∧ we can prove: W :K,X ≤ ΛY :K.Y :K→K, Z ≤ X :K→K ` X(ZW ) ≤

W. Note that X and Z are subtypes of the identity on K, therefore it makes sense
for X(Z W ) to be a subtype of W . The derivation is as follows. Let Γ ≡ W :K, X ≤
ΛY :K.Y :K→K, Z ≤ X:K→K. For the sake of readability we omit kinding judgements.

Γ ` ok
S-TVar

Γ ` X ≤ ΛY :K.Y
S-OApp

Γ ` X(ZW ) ≤ (ΛY :K.Y )ZW

(ΛY :K.Y )ZW =β∧ ZW
S-Conv

(ΛY :K.Y )ZW ≤ ZW
S-Trans

Γ ` X(ZW ) ≤ ZW

Γ ` ok
S-TVar

Γ ` Z ≤ X

Γ ` ok
S-TVar

Γ ` X ≤ ΛY :K.Y
S-Trans

Γ ` Z ≤ (ΛY :K.Y )
S-OApp

Γ ` ZW ≤ (ΛY :K.Y )W

(ΛY :K.Y )W =β∧ W
S-Conv

(ΛY :K.Y )W ≤W
S-Trans

Γ ` ZW ≤W

Γ ` X(ZW ) ≤ ZW Γ ` ZW ≤W
S-Trans

Γ ` X(ZW ) ≤W

This simple example already shows that S-Trans erases information obtained by S-

Conv that is not present in the conclusion any longer.

5.1 A subtype checking algorithm, AlgF ω
∧

Subtyping statements in AlgF ω
∧ are written Γ `Alg S ≤ T , and S, T , and all types appearing

in Γ are in β∧-normal form. A, B, and C range over types whose outermost constructor
is not an intersection.

Remark 5.1.1 It is an immediate consequence of the β∧-reduction rules that, if T is in
β∧-normal form, then T is either X, S→A, ∀X≤S:K.A, ΛX:K.A, AS where A is not an
abstraction, or

∧K [A1..An]. We frequently use this notation as a reminder of the shape of
types in normal form.

We now define lubΓ(S). In [12], it is proved that, when defined, it is the smallest type
beyond S with respect to Γ.

Definition 5.1.2 (Least strict Upper Bound)

lubΓ(X) = Γ(X),
lubΓ(T S) = lubΓ(T )S.
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Definition 5.1.3 (AlgF ω
∧ subtyping rules)

Γ ` X : K
Γ `Alg X ≤ X

(AlgS-TVarRefl)

Γ ` T S : K
Γ `Alg T S ≤ T S

(AlgS-OAppRefl)

Γ `Alg Γ(X) ≤ A X 6≡ A
Γ `Alg X ≤ A

(AlgS-TVar)

Γ `Alg T ≤ S Γ `Alg A ≤ B Γ ` S→A : ?
Γ `Alg S→A ≤ T→B

(AlgS-Arrow)

Γ, X≤S:K `Alg A ≤ B Γ ` ∀X≤S:K.A : ?
Γ `Alg ∀X≤S:K.A ≤ ∀X≤S:K.B

(AlgS-All)

Γ, X≤>K :K `Alg A ≤ B
Γ `Alg ΛX :K.A ≤ ΛX :K.B

(AlgS-OAbs)

Γ `Alg (lubΓ(T S))nf ≤ A Γ ` T S : K T S 6≡ A
Γ `Alg T S ≤ A

(AlgS-OApp)

∀i ∈ {1..m}Γ `Alg A ≤ Ai Γ ` A : K

Γ `Alg A ≤
∧K [A1..Am]

(AlgS-∀)

∃j ∈ {1..n}Γ `Alg Aj ≤ A ∀k ∈ {1..n}Γ ` Ak : K

Γ `Alg
∧K [A1..An] ≤ A

(AlgS-∃)

∀i ∈ {1..m} ∃j ∈ {1..n}Γ `Alg Aj ≤ Bi ∀k ∈ {1..n}Γ ` Ak : K

Γ `Alg
∧K [A1..An] ≤

∧K [B1..Bm]
(AlgS-∀∃)

In [15, 12] it was proved that this algorithm is equivalent to the original subtyping
system.

Proposition 5.1.4 (Equivalence of ordinary and algorithmic subtyping)

Let Γ ` S : K and Γ ` T : K. Then Γ ` S ≤ T if and only if Γnf `Alg Snf ≤ T nf.

Now first let’s go back to our example.

5.2 Example

In this section, we give the derivation in AlgF ω
∧ of the example 5.1 (also mentioned in

the introduction). Let Γ ≡ W :K, X ≤ ΛY :K.Y :K→K, Z ≤ X:K→K. We present
a proof in the normal system of Γnf `n X(ZW )nf ≤ W nf , which is the translation of
Γ ` X(ZW ) ≤W.
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Observe that Γnf ≡ Γ,
(X(ZW ))nf ≡ X(ZW ), and
W nf ≡ W.

For the sake of readability we omit kinding judgements. The derivation in normal form
in AlgF ω

∧ is substantially shorter than the one in F ω
∧ shown in section 5.

Γ `W : K
AS-Refl

Γ `n ((ΛY :K.Y )W )nf ≤W
AS-OApp

Γ `n XW ≤W
AS-OApp

Γ `n ((ΛY :K.Y )(ZW ))nf ≤W
AS-OApp

Γ `n X(ZW ) ≤W

5.3 Termination of subtype checking

To establish the decidability of the subtyping relation of F ω
∧ we prove the termination or

well-foundedness of the relation defined by the AlgF ω
∧ subtyping rules. We show this by

reducing the well-foundedness of AlgF ω
∧ to the strong normalization property of the →β∧+

relation.
We begin by extending the language of types with the constructor + as follows.

T+ ::= X type variable
| T+→T+ function type
| ∀(X≤T+:K )T+ polymorphic type
| Λ(X:K )T+ operator abstraction
| T+ T+ operator application
| ∧

K [T+..T+ ] intersection at kind K
| T+ + T+ choice

Since we have enriched the language of types with a new type constructor, we need to
extend our kinding judgements (section 2.4) with the following kinding rule.

Γ `+ S : K Γ `+ T : K
Γ `+ S + T : K

(K-Plus)

The reduction →β∧+ is obtained from →β∧ by adding the reductions associated with
the choice operator +, S+T →β∧+ S and S+T →β∧+ T . We also need the corresponding
kinding rule saying that Γ ` S + T : K whenever Γ ` S, T : K. As far as we are aware,
choice operators have not been used before to analyze subtyping.

Notation 5.3.1 We write + modulo commutativity and associativity.

We now define a new reduction→β∧+.
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Definition 5.3.2 (→β∧+) The reduction on types→β∧+ is obtained from→β∧ (definition
2.1.1) by adding the following two rules:

1. S + T →β∧+ S, and

2. S + T →β∧+ T .

We also write →+ to refer to these two new reduction rules.

As usual,→β∧+ is extended to become a compatible relation with respect to type formation,
�β∧+ is the reflexive, transitive closure of →β∧+, and =β∧+ is the reflexive, symmetric,
and transitive closure of →β∧+.

Proposition 5.3.3 (Strong normalization for →β∧+)

If Γ `+ T : K, then every β∧+-reduction sequence starting from T is finite.

Proof: The result follows using the strategy used to prove that the reduction →β∧ is
strongly normalizing on well kinded types (see [15, 12]). We only need to modify the
definition of saturated sets by adding the following closure condition:
if T , U , R1..Rn ∈ SN+, then TR1..Rn ∈ S and UR1..Rn ∈ S imply (T + U)R1..Rn ∈ S.
2

Next, we define a measure for subtyping statements such that, given a subtyping rule,
the measure of each hypothesis is smaller than that of the conclusion. Most measures for
showing the well-foundedness of a relation defined by a set of inference rules involve a
clever assignment of weights to judgements, often involving the number of symbols. We
need a more sophisticated measure, since in AlgS-OApp it is not necessarily the case that
the size of the hypothesis is smaller than the size of the conclusion.

We introduce a new mapping from types to types in the extended language in order
to define a new measure on subtyping statements. To motivate the definition of this new
measure, we analyze the behavior of type variables during subtype checking. Assume that
we want to check if Γ `Alg S ≤ T , where S is a variable or a type application. It can be the
case that the judgement is obtained with an application of AlgS-TVar or AlgS-OApp, in
which case we have to consider a new statement Γ `Alg S ′ ≤ T , where S ′ is obtained from
S by replacing a variable by its bound (and eventually normalizing). However, we do not
replace every variable by its bound, as this would constitute an unsound operation with
respect to subtyping. Consider the following example.

Example 5.3.4 Two unrelated variables may have the same bound.
X≤>?:?, Y≤>?:? 6` X ≤ Y, but
X≤>?:?, Y≤>?:? ` >? ≤ >?.

Our new mapping, plus, includes in each type expression this nondeterministic behavior
of its type variables.

Definition 5.3.5 (plus)
The mapping plusΓ : T→T+ is defined as follows.
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1. plusΓ1, X≤T :K,Γ2
(X) = X + plusΓ1

(T ),

2. plusΓ(T→S) = plusΓ(T )→plusΓ(S),

3. plusΓ(∀X≤T :K.S) = ∀X≤plusΓ(T ):K.plusΓ,X≤T :K(S),

4. plusΓ(ΛX:K.S) = ΛX:K.plusΓ,X:K(S),

5. plusΓ(S T ) = plusΓ(S) plusΓ(T ),

6. plusΓ(
∧K [S1..Sn]) =

∧K [plusΓ(S1)..plusΓ(Sn)].

Example 5.3.6 plus
X≤>?:?, Y≤X:?, Z≤Y :?(Z) = Z + Y +X +>?.

We need to show that plus is well defined on well kinded arguments.

Lemma 5.3.7 (Well-foundedness of plus) If Γ ` T : K, then plusΓ(T ) is defined.

Proof: Observe that the sizej of the kinding judgements of the arguments strictly de-
creases in each recursive call. Consider

rankΓ(S) = sizej(Γ ` S : kind(Γ, S)),

where sizej(Γ ` S : K) is the size of the derivation of the kinding judgement (see definition
4.1). The function kind can be defined straightforwardly using proposition 3.4, such that
kind(Γ, S) = K if Γ ` S : K, and gives a constant NoKind otherwise. Moreover, lemma 4.2
implies that the function kind is total. Given that Γ ` S : K, by lemmas 3.3(1) and 3.4,
the rank decreases in each recursive call and the least value is that of sizej(` >K : K). 2

Lemma 5.3.8 If Γ ` T : K, then Γ `+ plusΓ(T ) : K.

Proof: By induction on the derivation of Γ ` T : K, observing that Γ ` T : K implies
Γ `+ T : K. It is straightforward to verify that `+ satisfies weakening using renamings (see
corollary 3.7). We consider here the case for K-TVar, the rest follows by straightforward
induction. We are given, Γ1, X ≤ T :K, Γ2 ` ok. By lemma 3.3, there is a proper
subderivation of Γ1 ` T : K. Finally, the result follows by the induction hypothesis,
weakening, and K-Plus. 2

Lemma 5.3.9 (Strengthening for plus)

1. Let X 6∈ FTV(Γ2) ∪ FTV(S). Then
Γ1, X≤TX :KX , Γ2 ` S : K implies plusΓ1,X≤TX :KX ,Γ2

(S) = plusΓ1,Γ2
(S).

2. Γ1, x:T , Γ2 ` S : K implies plusΓ1, x:T ,Γ2
(S) = plusΓ1,Γ2

(S).

Proof:
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1. By lemma 5.3.7, plusΓ1, X≤TX :KX ,Γ2
(S) is defined, therefore we can reason by induction

on the number of unfolding steps of plus. We proceed by case analysis on the form
of S.

S ≡ Y . We have to consider two cases.
(a) Γ1 ≡ ∆1, Y≤T1:K1, ∆2. Then, by definition,

plusΓ1,X≤TX :KX ,Γ2
(Y ) = Y + plus∆1

(T1).
On the other hand, also by the definition of plus,

plusΓ1,Γ2
(Y ) = Y + plus∆1

(T1).
(b) Γ2 ≡ ∆1, Y≤T1:K1, ∆2. By the definition of plus,

plusΓ1,X≤TX :KX ,Γ2
(Y ) = Y + plusΓ1, X≤TX :KX ,∆1

(T1).
By lemma 3.1,

Γ1, X≤TX:KX , Γ2 ` ok,
and, by lemma 3.3(1),

Γ1, X≤TX:KX , ∆1 ` T1 : K1.

Moreover, since X 6∈ FTV(Γ2), it follows that X 6∈ FTV(∆1) ∪ FTV(T1).
Then, applying the induction hypothesis we obtain

Y + plusΓ1,X≤TX :KX ,∆1
(T1) = Y + plusΓ1,∆1

(T1),
and the result follows by the definition of plus.

S ≡ ∀Y≤T1:K1.T2. By the definition of plus,

plusΓ1, X≤TX :KX ,Γ2
(∀Y≤T1:K1.T2)

= ∀Y≤plusΓ1,≤TX :KX ,Γ2
(T1):K1.plusΓ1, X≤TX :KX ,Γ2, Y≤T1:K1

(T2).

By generation for kinding (proposition 3.4),

Γ1, X≤TX:KX , Γ2, Y≤T1:K1 ` T2 : ?,

and, since X 6∈ FTV(Γ2, Y≤T1:K1) ∪ FTV(T2), by the induction hypothesis,

∀Y≤plusΓ1,≤TX :KX ,Γ2
(T1):K1.plusΓ1,X≤TX :KX ,Γ2, Y≤T1:K1

(T2)
= ∀Y≤plusΓ1,≤TX :KX ,Γ2

(T1):K1.plusΓ1,Γ2, Y≤T1:K1
(T2).

By lemma 3.1,

Γ1, X≤TX:KX , Γ2, Y≤T1:K1 ` ok,

by generation for context judgements (lemma 3.3(1)),

Γ1, X≤TX:KX , Γ2 ` T1 : K1.

Since X 6∈ FTV(Γ2) ∪ FTV(T1), by the induction hypothesis,

∀Y≤plusΓ1,≤TX :KX ,Γ2
(T1):K1.plusΓ1,Γ2, Y ≤T1:K1

(T2)
= ∀Y≤plusΓ1,Γ2

(T1):K1.plusΓ1,Γ2, Y≤T1:K1
(T2)

= plusΓ1,Γ2
(∀Y≤T1:K1.T2).
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For all the other cases, the result follows by straightforward application of the induc-
tion hypothesis, using generation for kinding (proposition 3.4).

2. The definition of plus does not depend on the assumptions of term variables. 2

Lemma 5.3.10 (Weakening for plus) If Γ′ ` ok, Γ ⊆ Γ′, and Γ ` S : K, then plusΓ(S) =
plusΓ′(S).

Proof: The assumptions ensure that plusΓ(S) is defined, so we can proceed by induction
on the number of unfolding steps of the definition of plus. We proceed by case analysis on
the form of S.

S ≡ X. By generation for kinding (proposition 3.4) and the fact that Γ ⊆ Γ′,

Γ ≡ Γ1, X≤T :K, Γ2 and Γ′ ≡ Γ′1, X≤T :K, Γ′2.

There are two cases to consider.

1. If Γ1 ≡ Γ′1, then the result follows by the definition of plus.

2. If Γ1 6≡ Γ′1, then Γ1 ⊆ Γ′1 ∪ Γ′2.
By the definition of plus,

plusΓ(X) = X + plusΓ1
(T ).

By lemmas 3.1 and 3.3(1), it follows that Γ1 ` T : K. Hence, by the induction
hypothesis,

X + plusΓ1
(T ) = X + plusΓ′(T ).

Since Γ′ ` ok, from lemma 3.3(1), it follows that Γ′1 ` T : K. Consequently,
({X}∪FTV(Γ′2))∩FTV(T ) = ∅ by the free variables lemma (lemma 3.2). Hence,
starting from the last declaration in Γ′2, we can iterate the strengthening lemma
for plus (lemma 5.3.9 items 1 and 2) to obtain

X + plusΓ′(T ) = X + plusΓ′1
(T ) = plusΓ′(X).

S ≡ ∀X≤T1:K1.T2. We have that Γ ` ∀X≤T1:K1.T2 : ?, by generation for kinding (pro-
position 3.4).

Let Z be a new type variable, in particular Z 6∈ dom(Γ′). Then, by α-conversion,
S =α ∀Z≤T1:K1.T2[X←Z].

By the definition of plus,

plusΓ(S) =α plusΓ(∀Z≤T1:K1.T2[X←Z])
= ∀Z≤plusΓ(T1):K1.plusΓ, Z≤T1:K1

(T2[X←Z]).

By generation for kinding and lemmas 3.1 and 3.3(1), it follows that Γ ` T1 : K1.
Then, by the induction hypothesis,
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∀Z≤plusΓ(T1):K1.plusΓ, Z≤T1:K1
(T2[X←Z])

= ∀Z≤plusΓ′(T1):K1.plusΓ, Z≤T1:K1
(T2[X←Z]).

By generation for kinding, Γ, X≤T1:K1 ` T2 : ? , and by renaming (lemma 3.6), we
have that Γ, Z≤T1:K1 ` T2[X←Z] : ?. (Taking the renaming that maps X to Z

and is the identity elsewhere.)

Applying again the induction hypothesis, it follows that

∀Z≤plusΓ′(T1):K1.plusΓ, Z≤T1:K1
(T2[X←Z])

= ∀Z≤plusΓ′(T1):K1.plusΓ′, Z≤T1:K1
(T2[X←Z])

= plusΓ′(∀Z≤T1:K1.T2[X←Z])
=α plusΓ′(S).

The case for S ≡ ΛX:K.T is similar to the last case. In all other cases, the proof follows
by straightforward application of the induction hypothesis. 2

The operation plus does not have the usual properties under substitution; as following
example shows, the equality

plusΓ1, X≤S:K1,Γ2
(T2)[X←plusΓ1

(T1)] = plusΓ1,Γ2[X←T1](T2[X←T1])

does not hold in general.

Example 5.3.11 Consider the case where
Γ1 ≡ Y≤>?:?, Γ2 ≡ ∅, S ≡ Y, T1 ≡ Y, and T2 ≡ X.
Then
plus

Y ≤>?:?,X≤Y :?(X)[X←plus
Y ≤>?:?(Y )] = (X + Y +>?)[X←(Y +>?)]

= Y +>? + Y +>?.
On the other hand,
plus

Y ≤>?:?(X[X←Y ]) = plus
Y ≤>?:?(Y ) = Y +>?.

We therefore need a lemma which says that the well-formed types are well-behaved
under substitution with respect to the plus operation.

Lemma 5.3.12 (Substitution for plus) If Γ1, X≤S:K1, Γ2 ` T2 : K2 and Γ1 ` T1 : K1,
then

plusΓ1, X≤S:K1,Γ2
(T2)[X←plusΓ1

(T1)]�β∧+ plusΓ1,Γ2[X←T1](T2[X←T1]).

Proof: By induction on the size of the derivation of Γ1, X≤S:K1, Γ2 ` T2 : K2. We
proceed by case analysis on the form of T2.

T2 ≡ Y . By the free variables lemma (lemma 3.2), Y ∈ dom(Γ1, X≤S:K1, Γ2). Then there
are three cases to consider.
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Y ∈ dom(Γ1). Let Γ1 ≡ ∆1, Y≤U :K, ∆2. Then

plusΓ1, X≤S:K1,Γ2
(Y )[X←plusΓ1

(T1)],
by the definitions of plus and substitution,

= Y + (plus∆1
(U)[X←plusΓ1

(T1)])
since X 6∈ FTV(U) ∪ FTV(∆1), X 6∈ FTV(plus∆1

(U)).
= Y + plus∆1

(U),
= plusΓ1,Γ2[X←T1](Y [X←T1]).

Y ≡ X. Then
plusΓ1, X≤S:K1,Γ2

(X)[X←plusΓ1
(T1)],

by the definitions of plus and substitution,
= plusΓ1

(T1) + (plus∆1
(U)[X←plusΓ1

(T1)]),
→+ plusΓ1

(T1).
On the other hand,
plusΓ1,Γ2[X←T1](X[X←T1])
= plusΓ1,Γ2[X←T1](T1),

since FTV(T1) ∪ dom(Γ1), by strengthening for plus(5.3.9),
= plusΓ1

(T1).

Y ∈ dom(Γ2). Let Γ2 ≡ ∆1, Y≤U :K, ∆2. Then

plusΓ1, X≤S:K1,Γ2
(Y )[X←plusΓ1

(T1)],
by the definitions of plus and substitution,

= Y + (plusΓ1, X≤S:K1,∆1
(U)[X←plusΓ1

(T1)]),
by generation (3.4) and the induction hypothesis,

→β∧+ Y + plusΓ1,∆1[X←T1](U [X←T1]),
= plusΓ1,Γ2[X←T1](Y [X←T1]).

T2 ≡ ∀Y≤S1:K.S2. Let Γ ≡ Γ1, X≤S:K1, Γ2. Then

plusΓ(∀Y≤S1:K.S2)[X←plusΓ1
(T1)],

by the definitions of plus and substitution,
= ∀Y≤plusΓ(S1)[X←plusΓ1

(T1)]:K.plusΓ, Y≤S1:K(S2)[X←plusΓ1
(T1)],

by generation (proposition 3.4) and the induction hypothesis,
→β∧+ ∀Y≤plusΓ1,Γ2[X←T1](S1[X←T1]):K.

plusΓ1,Γ2[X←T1], Y≤S1[X←T1]:K(S2[X←T1])
by the definitions of plus and substitution,

= plusΓ1,Γ2[X←T1]((∀Y≤S1:K.S2)[X←T1]).

Other cases. All the other cases are similar to the case T2 ≡ ∀Y≤S1:K.S2. 2
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Lemma 5.3.13 (Monotonicity of plus with respect to →β∧) If Γ ` T : K, then

1. Γ→β∧ Γ′ implies plusΓ(T )�β∧+ plusΓ′(T ).

2. T →β∧ T ′ implies plusΓ(T )�β∧+
>0 plusΓ(T ′).

Proof: By simultaneous induction on the size of the derivation of Γ ` T : K. We proceed
by case analysis on the form of T .

1. Γ→β∧ Γ′.

T ≡ X. Let Γ ≡ Γ1, X≤S:K1, Γ2. Then we have to consider three cases.

(a) Γ1 →β∧ Γ′1. Then
plusΓ(X) = X + plusΓ1

(S)
by lemma 3.3 and part (1) of the induction hypothesis,

�β∧ X + plusΓ′1
(S) = plusΓ′1

(X).
(b) S →β∧ S

′. By lemma 3.3 and part (2) of the induction hypothesis.
(c) Γ2 →β∧ Γ′2. By the definition of plus.

T ≡ ∀X≤T1:K1.T2. By generation for kinds (proposition 3.4), there are proper sub-
derivations of Γ ` T1 : K1 and Γ, X≤T1:K1 ` T2 : ?. Then, by part (1) of the
induction hypothesis, it follows that

plusΓ(T1) �β∧ plusΓ′(T1), and
plusΓ,X≤T1:K1

(T2) �β∧ plusΓ′, X≤T1:K1
(T2).

The result follows by the definitions of plus and �β∧.

Other cases. The rest of the cases are similar to the case T ≡ ∀X≤T1:K1.T2, using
generation for kinding (proposition 3.4) and part 1 of the induction hypothesis.

2. T →β∧ T
′.

T ≡ ∀X≤T1:K1.T2. We have to consider three cases.

(a) T1 →β∧ T ′1. By generation for kinding (proposition 3.4), there are proper
subderivations of Γ ` T1 : K1 and Γ, X≤T1:K1 ` T2 : ?. Then, by parts (2)
and (1) of the induction hypothesis respectively, it follows that

plusΓ(T1) �β∧
>0 plusΓ(T ′1), and

plusΓ, X≤T1:K1
(T2) �β∧ plusΓ, X≤T1

′:K1
(T2).

The result follows by the definitions of plus and �β∧.
(b) T2 →β∧ T ′2. By part (2) of the induction hypothesis.
(c) ∀X≤T1:K1.

∧?[S1..Sn]→β∧
∧?[∀X≤T1:K1.S1..∀X≤T1:K1.Sn].
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plusΓ(∀X≤T1:K1.
∧?[S1..Sn])

= ∀X≤plusΓ(T1):K.
∧?[plusΓ, X≤T1:K1

(S1)..plusΓ, X≤T1:K1
(Sn)]

→β∧+
∧?[∀X≤plusΓ(T1):K.plusΓ,X≤T1:K1

(S1)..
..∀X≤plusΓ(T1):K.plusΓ, X≤T1:K1

(Sn)]
= plusΓ(

∧?[∀X≤T1:K1.S1..∀X≤T1:K1.Sn])

T ≡ T1 T2. We have to consider four cases.

(a) T1 →β∧ T ′1,
(b) T2 →β∧ T ′2,
(c) T ≡ ∧?[S1..Sn] and

∧?[S1..Sn]T2 →β∧
∧?[S1 T2..Sn T2].

(d) T ≡ ΛX:K.S1 and (ΛX:K.S1)T2 →β∧ S1[X←T2]

Cases 2a, 2b, and 2c follow using similar arguments to those used for the case
T ≡ ∀X≤T1:K1.T2. Consider case 2d.
plusΓ((ΛX:K.S1)T2)
= (ΛX:K.plus

Γ, X≤>K :K
(S1))plusΓ(T2)

→β∧ plus
Γ, X≤>K :K

(S1)[X←plusΓ(T2)],

by lemma 5.3.12,
�β∧+ plusΓ(S1[X←T2]).

Other cases. The rest of the cases follows using a similar argument to the one used
in the case T ≡ ∀X≤T1:K1.T2. 2

Lemma 5.3.14 Let lubΓ(S) be defined and Γ ` S : K. Then plusΓ(S)�+
>0 plusΓ(lubΓ(S)).

Proof: By induction on the structure of S. Since lubΓ(S) is defined, it is enough to
consider the following two cases.

S ≡ X. Let Γ ≡ Γ1, X ≤ T :K, Γ2.

plusΓ(X) = X + plusΓ1
(T )

= X + plusΓ(T ) by weakening (lemma 5.3.10),
→+ plusΓ(T )
= plusΓ(lubΓ(X))

S ≡ AT . By the induction hypothesis. 2

Our measure to show the well-foundedness of AlgF ω
∧ considers the β∧+-reduction paths

of the plus versions of the types in the subtyping judgements. As we mentioned before, in
AlgS-TVar and AlgS-OApp the types appearing in the hypothesis may be larger than
those in their conclusions. Therefore, the well foundedness of the AlgF ω

∧ relation is not
immediate. The next corollary gathers the previous results to serve our purposes.
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Corollary 5.3.15

1. If Γ ` X : K, then plusΓ(X)�β∧+
>0 plusΓ(Γ(X)).

2. If Γ ` AT : K then plusΓ(AT )�β∧+
>0 plusΓ(lubΓ(AT )nf).

Proof: Item 1 is a particular case of the previous lemma (lemma 5.3.14), and item 2
is a consequence of lemma 5.3.14 and the monotonicity of plus with respect to →β∧+

(5.3.13(2)). 2

Finally, we can define our measure.

Definition 5.3.16 (Weight)

1. weight(Γ `Alg S ≤ T ) = <max-red(plusΓ(S)) + max-red(plusΓ(T )), sizej(Γ ` S ≤
T )>,

2. weight(Γ ` T : K) = <0, 0>,

where max-red(S) is the length of a maximal β∧+-reduction path starting from S, and
sizej is defined in definition 4.1.

Pairs are ordered lexicographically. Note that <0, 0> is the least weight.

Proposition 5.3.17 (Well-foundedness of AlgF ω
∧ )

If
J1 .. Jn

J
is an AlgF ω

∧ rule, then weight(Ji) < weight(J), for each i ∈ {1..n} .

Proof: By inspection of the rules of AlgF ω
∧ . 2

Finally, we can state the main result of this section.

Theorem 5.3.18 (Decidability of subtyping in F ω
∧ )

For any context Γ and for any two types S and T , it is decidable whether Γ ` S ≤ T .

6 Our decidability proof and full F≤
In the introduction we mentioned that subtyping in F≤, a second-order λ-calculus with
bounded quantification defined by Curien and Ghelli in 1989, is undecidable. A question
that comes to mind is: if we try to apply our proof of the decidability of subtyping in F ω

∧
to F≤, where will it fail?

If we consider the algorithm for the subtyping relation in [21], the place where our proof
does not go through is when we try to prove that the algorithm terminates by calculating
the maximal length of the plus versions of the types in the rule for subtyping quantified
types. Remember that the subtyping rule for quantified types in full F≤ is:

Γ ` T1 ≤ S1 Γ, X≤T1 ` S2 ≤ T2

Γ ` ∀X≤S1. S2 ≤ ∀X≤T1. T2
(F≤- S-All)
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Consider now the following case.

Γ ≡ Y4≤>?, Y3≤Y4, Y2≤Y3, Y1≤Y2,

T1 ≡ Y1,

S1 ≡ >?,
T2 ≡ X→X, and
S2 ≡ X→X.

The plus versions of the types in the subtyping statements of this example are as follows.

plusΓ, X≤Y1
(S2) ≡ (X + Y1 + Y2 + Y3 + Y4 +>?)→(X + Y1 + Y2 + Y3 + Y4 +>?)

plusΓ, X≤Y1
(T2) ≡ (X + Y1 + Y2 + Y3 + Y4 +>?)→(X + Y1 + Y2 + Y3 + Y4 +>?)

plusΓ(∀X≤S1. S2) ≡ ∀X≤>?. (X +>?)→(X +>?)
plusΓ(∀X≤T1. T2) ≡ ∀X≤Y1 + Y2 + Y3 + Y4 +>?.

(X + Y1 + Y2 + Y3 + Y4 +>?)→(X + Y1 + Y2 + Y3 + Y4 +>?)

The length of a maximal +-reduction in each case is:

max-red(plusΓ, X≤Y1
(S2)) = 10

max-red(plusΓ, X≤Y1
(T2)) = 10

max-red(plusΓ(∀X≤S1. S2)) = 2
max-red(plusΓ(∀X≤T1. T2)) = 14.

The weight of the conclusion Γ ` ∀X≤S1. S2 ≤ ∀X≤T1. T2, as defined in definition 5.3.16,
is smaller than the weight of the hypothesis Γ, X≤T1 ` S2 ≤ T2, because the maximal
length of a +-reduction starting from the plus version of the conclusion is shorter than the
maximal length of a +-reduction starting from the plus version of that hypothesis. To be
more precise,

max-red(plusΓ(∀X≤S1. S2)) + max-red(plusΓ(∀X≤T1. T2))
<

max-red(plusΓ, X≤Y1
(S2)) + max-red(plusΓ, X≤Y1

(T2)).

7 Type checking and type inference

Motivating examples of the following definitions can be found in [15, 12].
The function lub (definition 5.1.2) is a partial function which is only defined for type

variables and type applications. Here, we extend the definition of lub to intersection types
in such a way that it is defined if the least upper bound is defined for at least one of the
types in the intersection.
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Definition 7.1 (Homomorphic extension of lub to intersections, lub∗)

lub∗Γ(X) = Γ(X),
lub∗Γ(S T ) = lub∗Γ(S)T,

lub∗Γ(
∧K [T1..Tn]) =

∧K [T ′1..T ′n], if ∃i ∈ {1..n} such that lub∗Γ(Ti)↓,

where T ′i is lub∗Γ(Ti), if lub∗Γ(Ti)↓, and Ti otherwise.

We define the mapping flub which given a type T (and a context Γ) finds the smallest
type larger than T (with respect to the subtype relation) having structural information to
perform an application.

Definition 7.2 (Functional Least Upper Bound) The functional least upper bound of a
type T , in a context Γ, flubΓ(T ) is defined as follows.

flubΓ(T ) =
{

flubΓ(lub∗Γ(T nf)), if lub∗Γ(T nf)↓;
T nf, otherwise.1

The intuition behind the definition of the function flub is to find S→T starting form WT
as in the last example mentioned in the introduction. In other words, flubΓ′(W T ) = S→T .
For simplicity we assume S→T in normal form. Step by step,

flubΓ′(W T ) = flubΓ′(lub∗Γ′(W T ))
= flubΓ′(Z T )
= flubΓ′(lub∗Γ′(Z T ))
= flubΓ′((ΛY : ? .S→Y )T )
= S→T.

More generally, flub climbs the subtyping hierarchy until it finds an arrow, a quantifier,
or an intersection of these two.

Definition 7.3 (arrows and alls )

1. arrows (T1→T2) = {T1→T2},
arrows (

∧?[T1..Tn]) = ∪i∈{1..n} arrows (Ti),
arrows (T ) = ∅, if T 6≡ T1→T2 and T 6≡ ∧?[T1..Tn].

2. alls (∀X≤T1:K.T2) = {∀X≤T1:K.T2},
alls (

∧?[T1..Tn]) = ∪i∈{1..n} alls (Ti),
alls (T ) = ∅, if T 6≡ ∀X≤T1:K.T2 and T 6≡ ∧?[T1..Tn].

1This step can be optimised in an implementation of the type checking algorithm, allowing us to avoid
the normalization of T when T is either an arrow type or a quantified type.
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The situation here is significantly more complex than in [26] for F∧, an extension of the
second order λ-calculus. There it is enough to recursively search for arrows or polymorphic
types in the context, because in F∧ there is no reduction on types. The information to be
searched for is explicit in the context, so the job done here by flub is simply an extra case
in the definition of arrows and alls . Namely,

arrows (X) = arrows (Γ(X)) and
alls (X) = alls (Γ(X)).

Moreover, to prove that flub is well-founded is similar for us in complexity to proving
termination of subtype checking. The similarity comes from the fact that computing flub
involves replacing variables by their bounds in a given context and normalizing with respect
to →β∧, as in lemma 7.8. In contrast, in [26] it is enough to observe that well-formed
contexts cannot contain cycles of variable references.

Notation 7.4 We introduce a new notation for intersection types. We write
∧K [T |φ(T )],

meaning the intersection of all types T such that φ(T ) holds. Note that this is an alternative
notation to

∧K [T1..Tn] such that φ(Ti) holds if and only if i ∈ {1..n} .

We can now define a type inference algorithm for F ω
∧ .

Definition 7.5 (A type inference algorithm, inf)

Γ1, x:T , Γ2 ` ok
Γ1, x:T , Γ2 `inf x : T

(AT-Var)

Γ, x:T1 `inf e : T2

Γ `inf λx:T1.e : T1→T2
(AT-Abs)

Γ `inf f : T Γ `inf a : S
Γ `inf f a :

∧?[Ti |Si→Ti ∈ arrows (flubΓ(T )) and Γ ` S ≤ Si]
(AT-App)

Γ, X≤T1:K1 `inf e : T2

Γ `inf λX≤T1:K1.e : ∀X≤T1:K1.T2
(AT-TAbs)

Γ `inf f : T
Γ `inf f S :

∧?[Ti[X←S] | ∀X≤Si:K.Ti ∈ alls (flubΓ(T )) and Γ ` S ≤ Si]
(AT-TApp)

for all i ∈ {1..n} Γ `inf e[X←Si] ∈ Ti
Γ `inf for(X∈S1..Sn)e :

∧?[T1..Tn]
(AT-For)

The algorithmic information of rule AT-App is that in order to find a type for f a in
Γ, we need to infer a type S for a and a type T for f , and to take the intersection of all
the T ′is such that Ti→Si ∈ arrows (flubΓ(T )) and Γ ` S ≤ Si.

To show that flub is well-defined we use a similar argument to that used in section 5.3
to show that the relation defined by AlgF ω

∧ is well-founded. We show in lemma 7.8 that a
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maximal β∧+-reduction path of the plus version of the argument of flub is strictly longer
than a maximal β∧+-reduction path of the plus version of the argument of its recursive
call. But first we need to show the following auxiliary result.

Lemma 7.6 If lub∗Γ(T ) is defined, then Γ ` T ≤ lub∗Γ(T ).

Lemma 7.7 Let lub∗Γ(T ) be defined and Γ ` T : K. Then plusΓ(T )�β∧+
>0 plusΓ(lub∗Γ(T )).

Proof: The proof follows by induction on the structure of T . If T ≡ X or T ≡ S T , then
the argument is the same as in lemma 5.3.14. The case remaining to be checked is when
T ≡ ∧K [T1..Tn]. Then

plusΓ(
∧K [T1..Tn]) =

∧K [plusΓ(T1)..plusΓ(Tn)]
plusΓ(lub∗Γ(

∧K [T1..Tn])) =
∧K [plusΓ(T ′1)..plusΓ(T ′n)],

where T ′1 ≡ Ti or T ′i = lub∗Γ(Ti). Since lub∗Γ(T ) is defined, there exists j ∈ {1..n} such
that lub∗Γ(Tj) is defined. Now, for every k such that lub∗Γ(Tk) is defined, by the induction
hypothesis, we have that

plusΓ(Tk)�β∧+
>0 plusΓ(lub∗Γ(Tk)).

Hence,

plusΓ(
∧K [T1..Tn])�β∧+

>0 plusΓ(lub∗Γ(
∧K [T1..Tn])). 2

Lemma 7.8 (Well-foundedness of flub)

If Γ ` T : K, then flubΓ(T ) is defined.

Proof: If lub∗Γ(T nf) is undefined, flub terminates because →β∧ is strongly normalizing on
well kinded types. Otherwise, define

weight(flubΓ(T )) = max-red(plusΓ(T )),
where max-red(S) is the length of a maximal β∧+-reduction path starting from S. Lemma
5.3.8 and the strong normalization property of →β∧+ imply that weight is well defined and
always positive on well kinded types. Since lub∗Γ(T nf) is defined,

plusΓ(T ) �β∧+ plusΓ(T nf), by lemma 5.3.13(2),
�β∧+

>0 plusΓ(lub∗Γ(T nf)), by lemma 7.7.

Then the weight of the arguments of flub reduces in each recursive call, which proves that
flub is well-founded. 2

Lemma 7.9 Let Γ ` S, T : ? and S =β∧ T . Then flubΓ(S) ≡ flubΓ(T ).
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8 Decidability of type checking and type inference

We know from [15, 12], that the algorithm inf is sound and computes minimal types for
the F ω

∧ typing system.

Proposition 8.1 (Soundness of inf) If Γ `inf e : T , then Γ ` e : T .

Proposition 8.2 (inf computes minimal types)
If Γ ` e : T and Γ `inf e : T ′, then Γ ` T ′ ≤ T .

The next step is to prove that the algorithm inf always terminates. This result completes
the proof of decidability of type checking and type inference in F ω

∧ .
We first define a measure for terms such that the type information inside the terms is

considered to have constant value. The intuition behind the definition is to find a measure
on terms which is invariant under type substitution (see lemma 8.4).

Definition 8.3 (size ‖−‖)

‖x‖ = 1,
‖λx:T.e‖ = 1 + ‖e‖,
‖e1 e2‖ = ‖e1‖+ ‖e2‖,
‖λX≤T :K.e‖ = 1 + ‖e‖,
‖e T‖ = 1 + ‖e‖,
‖for(X∈T1..Tn)e‖ = 1 + ‖e‖.

Lemma 8.4 ‖e‖ = ‖e[X←T ]‖.

Proposition 8.5 (Well-foundedness of inf)
The inference rules for inf define a terminating algorithm.

Proof: In the case of AT-Var, the termination follows from the decidability of ok judge-
ments (see corollary 4.3(1)). Furthermore, for each rule R of inf, if Γ ` e : T is a hypothesis
and Γ ` e′ : T ′ is the conclusion of R, then ‖e‖ < ‖e′‖. Moreover, in the cases for AT-

App and AT-TApp, Γ ` f : T by the soundness of inf (proposition 8.1), Γ ` T : ? by
well-kindedness of typing (proposition 3.9). Hence flubΓ(T ) is defined by lemma 7.8. Fur-
thermore, arrows and alls define finite sets, and, as we proved in section 5.3, subtyping is
decidable. Hence, the algorithm inf always terminates. 2

We can now state and prove that type checking in F ω
∧ is decidable.

Theorem 8.6 (Decidability of type checking in F ω
∧ )

For any context Γ, and for any term e and type T closed in Γ, it is decidable whether
Γ ` e : T .
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Proof: Infer a minimal type T ′ for e in Γ using inf, which is decidable by proposition 8.5,
and check whether Γ ` T ′ ≤ T , which is also decidable by theorem 5.3.18. 2

Every term e closed in a context Γ has type >?. We are interested in finding types
other than >?, namely non-trivial types. Since inf computes minimal types and >? is the
largest type (modulo =β∧) , if a term has a non trivial type in a given context, then the
algorithm inf finds it.

Theorem 8.7 (Decidability of type inference in F ω
∧ )

For any context Γ and for any term e closed in Γ, it is decidable whether there exists
a type T such that Γ ` e : T and T 6=β∧ >?.

Proof: Infer a minimal type T for e in Γ using inf, which is decidable by proposition
8.5, and reduce T to normal form which is decidable because →β∧ is strongly normalising.
Finally, check whether T nf ≡ >?. 2

9 Conclusions

In this paper we proved that typing in F ω
∧ is decidable. A major part of the problem is

proving that the subtyping relation is decidable. A novel aspect of our proof is the use of
a choice operator to model the behaviour of variables during subtype checking.

This paper contains the first proof of decidability of subtyping for a higher order lambda
calculus. (The proof presented in [28] was developed afterwards and with knowledge of
our proof.) The decidability of subtyping is reduced to proving the strong normalization
of the language of types enriched with a choice reduction. In section 6 we show where our
proof of decidability breaks if applied to the undecidable second order system F≤. Because
the decidability of subtyping is established for well-formed types, we also show that well-
formation of types and contexts are decidable judgements. Finally, the proof of termination
of typechecking uses the technology developed for the decidability of subtyping.

The work presented here has been extracted from the Ph.D thesis of the author [15]. A
short version of the decidability of subtyping result has been published in CSL’94 [14], and
the decidability of subtyping result was first published in [13]. The techniques developed
here have been applied to study the combination of dependent types and subtyping in [1].
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