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Abstract: Standard concepts of initial and final algebra semantics are generalised
in a modular hierarchical manner. The resulting relative formalism allows a unified
view on the relationship between initial and final algebra semantics and gives a
dualised notion of consistency. Using this, a modular hierarchical approach to proof
by consistency is taken by which only top-level equations need be considered at any
level. The formalism also allows non-homogeneous specification schemes and different
proof methods at each level.
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1 Introduction

One incentive for equational (algebraic) specification of abstract data types is its aptness
for a variety of simple and efficient methods of formal semi-mechanised proof. A partic-
ularly immediate family of proof methods are those based on term rewriting techniques.
Two choices of semantics dealt especially with by rewrite based methods are initial and
final/terminal (algebra) semantics. Roughly, two terms are semantically equal according
to initial algebra semantics only if their equality can be proven in the equational calcu-
lus. Final algebra semantics on the other hand, determine two terms equal unless proven
otherwise in the calculus. In a purely equational language, to prove an “inequation” is to
show distinguishability of the two terms involved w.r.t. a given basic (primitive) semantics,
i.e. s cannot be equivalent to t if there is a context c such that c[s] and c[t] are not equi-
valent according to the primitive/basic semantics. Hence, final semantics is observational
and behavioural in that two terms are equivalent if they “behave” equivalently when used
in observable (relevant) contexts. Besides being able to easily describe data types which
are cumbersome to describe directly (maps, infinite data types, processes [Pad95]), final
semantics also provides abstraction up to equivalent observable behaviour as described by
behavioural and observational semantics, e.g. [ST87, BHW94].

Proof by consistency is a general method for proving/refuting equations according to
initial or final semantics. The idea pioneered by Musser [Mus80], is that when adding
a hypothesis to a specification, Knuth-Bendix completion [KB70] may be applied for
detecting inconsistencies refuting the hypothesis. The method also goes by the name
“induction-less induction”, the ‘induction’ in question being the structural induction of
[Bur69, Gut75]. For the initial case, the general method has been elaborated by many
authors e.g. [Gog80, HH82, JK89, Küc89, Fri86, Bac88]. In [LPL96] proof by consistency
is adapted to higher-order term-rewriting.

A method for proof by consistency in final semantics was described in [Pue84]. Struc-
tural context induction [Hen91, Hen92] has been developed for proofs according to beha-
vioural and observational semantics, hence one might call proof by consistency in final
semantics “induction-less” context induction. Lysne in [Lys92, Lys94] observes that proof
by consistency is inherently close in spirit to reasoning according to final semantics, since
explicit output is a witness of distinguishability. Lysne describes an approach to proof
by consistency according to final semantics which subsumes, fully or partly, several of the
approaches designated for initial semantics.

This note elaborates on the relationship between initial and final semantics. Final se-
mantics are defined relatively to an underlying initial semantics in which inequalities are
observed. Also, consistency in the initial sense can be seen as relative to a “kernel” se-
mantics. These evident notions of relativity are made explicit by presenting a formalism,
relative semantics, which provides a common vantage point for initial and final semantics.
The formalism expresses consistency more explicitly, and enables a nice dualised under-
standing of different concepts of consistency. Explicit mention of a “kernel”, displays a link
with hierarchical specification as in [WPP+83]. The formalism of relative semantics thus
suggests a modular hierarchical style of specification linked directly to modular level-wise
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proof by consistency. Early ideas of a hierarchical approach to consistency and inductive
completion for initial semantics appear in [Kir84].

Relative semantics is a generalisation in several respects. Firstly, it generalises standard
initial and final semantics into one common framework. Secondly, it generalises initial
and final semantics to arbitrary level hierarchies of semantics. Thirdly, whereas other
methods yield hierarchical constructs which always can be viewed monolithically, relative
semantics also cater for non-homogeneous situations where one cannot reduce a hierarchy
to a monolithic heap. Indeed, by catering for non-homogeneous specification the relative
construction supports different proof methods at each level.

The formalism of relative semantics presented here first appeared in [Han95]. In [Pad95]
a similar formalism is presented in the context of general inductive and co-inductive defin-
itions of relations and functions with corresponding initial (least fixed-point) and final
(greatest fixed-point) semantics (e.g. [Gor94]). The way in [Pad95] of dealing with proofs
according to final semantics is by explicitly converting co-inductive definitions to induct-
ive ones using finite approximants thereby making inductive proof techniques applicable
in the final case. This is somewhat different from the approach described in the present
note, where the observation that proof by consistency is inherently co-inductive in nature
is used for doing proofs directly according to final semantics. Also, emphasis is on notions
of consistency which we find useful for understanding more of the common nature of initial
and final semantics, and on modularity of structures and proofs in such a way as to allow
different proof methods at each level.

Section 2 reviews basic notions, section 3 reviews definitions of initial and final se-
mantics, sections 4 & 5 introduce relative semantics and notions of consistency, section 6 de-
scribes modular level-wise proof by consistency and section 7 illustrates non-homogeneous
specification and reasoning.

2 Preliminaries

This section gives some basic notions of algebraic specification and term rewriting that are
used directly in this note. They are to be found in greater detail for algebraic specification
in [Wir90] or [EM85], and for rewriting in [Klo92] or [DJ90].

We will be dealing with many-sorted specifications whose semantics will be given as
classes of total many-sorted algebras with non-empty carriers.

A signature Σ = 〈S, F 〉 consists of a set of sorts and a set of function symbol profiles of
the form f : s1 × · · · × sn → s for s1, . . . , sn, s ∈ S giving a function symbol along with its
arity and sort. A function symbol with arity 0 is called a constant. A sensible signature has
at least one constant of every sort in S. Without further mention all signatures in this note
are assumed sensible. A total heterogeneous Σ-algebra A =

〈
〈As〉s∈S, 〈fA〉f∈F

〉
consists of

an S-indexed family 〈As〉s∈S of non-empty carriers and an F -indexed 〈fA〉f∈F family of
total functions containing an fA ∈ (As1×· · ·×Asn → As) for every f : s1×· · ·×sn→ s ∈ F .
All algebras in this note are assumed to be total. A Σ-term algebra TΣ(X) for a set of
variables X is the free algebra generated from X over the signature Σ, any carrier TΣ(X)s



2 PRELIMINARIES 4

containing exactly the terms of sort s generated from X and Σ. The ground -term Σ-algebra
TΣ(∅) is denoted by GΣ.

In the following, let Σ = 〈S, F 〉 be fixed. A homomorphism φ : A → B is a family
〈φs ∈ (As → Bs)〉s∈S of mappings such that for all f : s1 × · · · × sn → s ∈ F and all
a1 ∈ As1, . . . , an ∈ Asn: φs(fA(a1, . . . , an)) = fB(φs1(a1), . . . , φsn(an)).

A substitution is a homomorphism σ : TΣ(X)→ TΣ(X). A context c[2] is a term with a
single place holder or hole 2. We write c ∈ TΣ(X) for c[2] ∈ TΣ∪{2}(X). Context application
is a context with a term substituted for its place holder, e.g. c[s];

An interpretation φATΣ(X) : TΣ(X) → A is a homomorphism from a term-algebra to an
algebra in which one can think of the terms as being interpreted. A computation structure
is an algebra A such that φAGΣ

is surjective, i.e. all carrier elements are denotable by ground
terms.

A congruence ∼ on an algebra A is a family 〈∼s〉s∈S such that each ∼s is an equivalence
relation on As and if f : s1 × · · · × sn → s ∈ F then for all a1, b1 ∈ As1, . . . , an, bn ∈ Asn:
a1 ∼s1 b1, . . . , an ∼sn bn ⇒ fA(a1, . . . , an) ∼s fA(b1, . . . , bn). The quotient A/∼ w.r.t. an
algebra A and congruence ∼ is the algebra with carriers As/∼s for each s ∈ S and functions
defined by fA/∼([a1]∼s1 , . . . , [an]∼sn ) = [f(a1, . . . , an)]∼s , for every f : s1×· · ·×sn → s ∈ F .

An algebra A is initial in a class K of Σ-algebras if A ∈ K and for every B in K there
exists exactly one homomorphism from A to B. Conversely A is final in K if A ∈ K and
for every B in K there exists exactly one homomorphism from B to A.

A (Σ-)equation is an element in TΣ(X)s × TΣ(X)s, written u = v, for u, v ∈ TΣ(X)s;
s ∈ S, and is valid in a Σ-algebra A, written A |= u = v, iff φATΣ(X)(u) = φATΣ(X)(v) for
all interpretations φATΣ(X). A Σ-algebra A is a model for a set of Σ-equations E if every
equation in E is valid in A. The class of all Σ-algebras which are models of E is denoted
by ModΣ(E). The following is an important fact relating initiality and finality to validity.

Fact 1. For any g, g′ ∈ GΣ

1. A Σ-computation structure I is initial in a class K of Σ-algebras iff
I |= g = g′ ⇔ for all A ∈ K : A |= g = g′.

2. A Σ-computation structure F is final in a class C of Σ-computation structures iff
F 6|= g = g′ ⇔ for all A ∈ C : A 6|= g = g′.

A term rewrite system (TRS) 〈Σ, R〉 consist of a signature and a set R of rewrite
rules v→ h over TΣ(X). A TRS is often simply denoted by its set of rules R. For any
s, t ∈ TΣ(X), s rewrites in R to t in one step, written s→

R
t, if there is a v→ h ∈ R and

a substitution σ such that s = c[vσ] and t = c[hσ], for some context c[2]. The task of
finding such a σ and c[2] is called matching and is algorithmic. The relation →

R
is a rewrite

relation, meaning it fulfils s→
R
t ⇒ c[sσ]→

R
c[tσ] for all contexts c[2] and substitutions σ.

Moreover it is the least such rewrite relation, meaning that →R is the rewrite closure of R.
The transitive closure of →

R
is denoted by +→

R
, the reflexive-transitive closure by ∗→

R

and the symmetric closure by ↔
R

.
The equational calculus will be dealt with in the equivalent form of symmetric TRSs;

i.e. we consider as provability relation for a given set of equations E, the relation ∗↔
E

; i.e.
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the rewrite, reflexive, symmetric, transitive closure of E. For any terms s and t and set of
equations E, we then have E ` s = t ⇔ s ∗↔

E t. For any set of rules or equations E, the
closure ∗↔

E is a congruence, and quotients w.r.t. ∗↔
E are usually written A/E.

For any relation < a derivation in < or an <-derivation is a possibly infinite sequence
〈t0, t1, . . . , ti, . . .〉 such that for every 0 ≤ j, tj < tj+1.

A TRS 〈Σ, R〉 is terminating if there is no infinite derivation in →
R

. It is confluent if

s ∗←
R
w ∗→

R
t ⇒ ∃u | s ∗→

R
u ∗←

R
t

If both these properties are present the TRS is complete. One then has a rewrite driven
decision procedure for the relation ∗↔

R
, if R has finitely many rules: Completeness gives

that every term t ∈ TΣ(X) has a unique normal form t!, i.e. a unique t! such that t ∗→
R
t!

and 6 ∃u | t! ∗→R u, which can be computed in finitely many steps.
Knuth-Bendix completion [KB70] was originally designed to generate a complete R

with the same equational theory as a given set of equations E. However, in the attempt of
generating such a TRS, the procedure derives new theorems in a certain manner which can
be useful for other purposes even if it doesn’t succeed in its completion task. The method
of proof by consistency thus uses the completion process to derive certain inconsistency
witnesses generated if an added equation is not an inductive consequence of the equations
already present. This checks hypotheses according to the initial model, but as mentioned
in the introduction the method can also be used according to other semantics, e.g. final
algebra semantics.

Completion is usually described by a set of inference rules manipulating a pair 〈E,R〉
(see any of the two references above) and the relation `KB is defined such that 〈E,R〉 `KB
〈E′, R′〉 if 〈E′, R′〉 is obtainable from 〈E,R〉 in one step by applying any of the inference
rules. A possibly infinite completion sequence 〈〈E0, R0〉, . . . , 〈Ei, Ri〉, . . .〉 is then such that
for every i, 〈Ei, Ri〉 `KB 〈Ei+1, Ri+1〉. Running completion in the original sense means
ideally hoping for the following property: 〈E, ∅〉 `∗KB 〈∅, R〉 and no inference rule is ap-
plicable. Then R is complete and has the same equational theory as E. Since the starting
point is a set of unordered equations, and since termination is in general undecidable, a
completion process is equipped with a user defined term ordering so that equations, original
or generated, may be oriented into rewrite rules in such a way that every Ri is terminating.

The driving force in completion is the elimination of non-confluence (this view is due
to Bachmair [Bac91]). Any derivation of s ∗↔

R t for a non-confluent R might have peaks
si−1←R si→R si+1 as well as valleys sj−1→R sj←R sj+1. A completion process may be viewed as
a peak elimination process, ultimately seeking to produce a set of rules such that a rewrite
proof s ∗→

R
u ∗←

R
t is possible for every s, t s.t. s ∗↔

R
t. We have:

Fact 2. (Bachmair [Bac87]) Suppose a possibly infinite completion sequence

〈〈E0, R0〉, . . . , 〈Ei, Ri〉, . . .〉
is fair w.r.t. inferences, i.e. no possible inference is overlooked infinitely often and every
equation generated is orientable. Then for any s and t:

s ∗↔E0
t ⇔ ∃j | s!Rj = t!Rj
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It is this property that we will be using for our version of proof by consistency.
One standard form of proof by consistency is based on inductive completion. A term

t is said to be ground reducible in R if for all ground substitutions σ ∈ (TΣ(X) → GΣ),
there exists a u such that tσ +→

R
u. Ground reducibility is decidable. We have:

Fact 3 (Inductive completion). Let R be complete and having the same equational the-
ory as E. For any equation s = t consider a completion sequence

〈〈E0, R0〉, . . . , 〈Ei, Ri〉, . . .〉
which is fair w.r.t. inferences, and where every equation generated is orientable. Then:

GΣ/E 6|= H
m

a rule 〈l, r〉 is generated during the process s.t.
l is not ground reducible in R.

Constructive function specification suggests viewing a signature Σ as disjointly divided into
Σc consisting of constructors and Σd consisting of defined operators. Essential syntactic
qualities are then captured as follows:

Definition 1. (Guttag [Gut77]) A set of equations or rules E is sufficiently complete
w.r.t. Σc if for every g ∈ GΣ there exists a gc ∈ GΣc such that g ∗↔

E gc.

Definition 2. (Guttag [Gut77]) Let Ec be the Σc-equations in E. Then, E is consistent
w.r.t. Σc if gc ∗↔

E
g′c ⇔ gc

∗↔
Ec
g′c for arbitrary gc, g′c ∈ GΣc .

Suppose now that the term ordering given for completion is such that every u ∈ TΣd∪Σc(X)\
TΣc(X) is greater in the ordering than all v ∈ TΣc(X), and that R is sufficiently complete
w.r.t. Σc. Then a refuting witness l = r for inductive completion will be a rule purely over
TΣc(X), and moreover for some ground substitution σ, lσ ∗6↔

R
rσ. Thus, a refuting witness is

a rule which collapses R-equivalence classes, i.e. E-equivalence classes in GΣ/E. Moreover,
since R is complete, R is consistent w.r.t. Σc: Suppose gc

∗↔
R g′c. Then by completeness we

have gc
∗→
R gc!

∗←
R g′c, and by the term ordering gc

∗→
Rc
gc!

∗←
Rc
g′c. A refuting witness is therefore a

witness of inconsistency in the sense of definition 2, resulting from adding the hypothesis
s = t.

There are essentially two things that can go wrong in any completion based process.
One is non-termination of the process. There are however results [Her92] that can be used
in some cases to determine whether an infinite sequence will bring anything essentially
new, or not, in which case the remaining sequence can be neglected. The more annoying
thing that may happen is inability to orient some equation, either because the given term
ordering is too weak, or because it is fundamentally impossible to orient the equation
without giving a non-terminating set of rules. There are extensions to standard rewriting
and completion which try to deal with the latter case. Ordered rewriting and completion
exploit the possibility that all ground instances of equations may be orientable. Extended
or class rewriting puts all non-orientable equations in a separate set and does rewriting
and completion modulo the equational theory of this set. The appropriate versions of facts
2 and 3 hold for these variants.
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3 Equational Specification and Semantics

In proof technical considerations as those done for e.g. proof by consistency, the models
directly involved are syntax dependent term models of specifications or equations. These
are typically, and naturally, initial or final in character. The semantics defined in the
following two sections for the specification formalisms presented there all give term models
generated directly from the syntax and the equations involved. In section 4, the semantics
of relative specifications is generated this way relative to a kernel semantics.

Initial and final semantics represent monomorphic interpretation schemes in that model
classes for specifications consist of exactly one algebra (up to isomorphism). In a refine-
ment setting [ST97, Mor94] monomorphic semantics are directly relevant at final stages of
development, but due to fact 1, these semantics also represent larger model classes and are
thus relevant at earlier development stages as well.

This section reviews standard notions of equational specification and initial and final
semantics. The next section introduces relative equational specification and initial and
final semantics thereof.

Definition 3. An (equational) specification SP is a pair SP = 〈Σ, E〉 consisting of a
signature Σ and a set of Σ-equations E.

Initial and final semantics are described as follows:

Definition 4. For SP = 〈Σ, E〉 a specification, the restriction ∗↔
E GΣ of ∗↔

E to GΣ is the
initial semantics specified by SP.

Definition 5. (e.g. Lysne [Lys92]) For SP = 〈Σ, E〉 a specification, the congruence

g ∼Q g′ ⇔ ¬∃c ∈ GΣ; gc ∈ GΣc | (c[g] ∗↔
E
gc

∗6↔
E
c[g′] or c[g′] ∗↔

E
gc

∗6↔
E
c[g])

is the final semantics specified by SP.

Since for any congruence ∼ on GΣ, g ∼ g′ ⇔ GΣ/∼ |= g = g′, we here deliberately confuse
the semantical model GΣ/∼ with the underlying ∼.

An algebra’s property of being initial or final in some interesting class of algebras may
reveal information as to how well the corresponding interpretation scheme fulfils the in-
tentions of specification. The monomorphic intention behind the specification formalisms
dealt with here would be that one specifies all there is, i.e. all intended semantic equal-
ities are specified (initial intention), or that all semantic inequalities are specified (final
intention).

Let ∼ be any congruence on GΣ. Consider the class

b∼cΣ = {A | g ∼ g′ ⇒ A |= g = g′}

of Σ-computation structures. An algebra in b∼cΣ satisfies all the equalities (and perhaps
more) induced by ∼. For example, the restriction of ModΣ(E) to computation structures
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is by completeness (Birkhoff) the class b ∗↔
E
cΣ. On the other hand, the algebras in the class

of Σ-computation structures

d∼eΣ = {A | g 6∼ g′ ⇒ A 6|= g = g′}

satisfy no equality which is not induced by ∼.1

The quotient GΣ/E (GΣ/
∗↔
E ) is initial in b ∗↔E cΣ, meaning that it is the computation

structure model of E satisfying fewest equations, i.e. no equation holds unless explicitly
entailed in the equational calculus from E. Conversely, GΣ/∼Q is final in d ∗↔Ec eΣc ∩ b

∗↔
E
cΣ,

meaning that GΣ/∼Q is the computation structure model of E satisfying the greatest
amount of equations, but satisfying no more equations over GΣc than those explicitly
entailed by Ec, i.e. satisfying the “inequations” of the initial semantics on GΣc . Further
inequalities are derived from these basic inequalities by the congruence principle:

c[g] 6∼ c[g′] ⇒ g 6∼ g′ (1)

(In contrast, the final model of only b ∗↔E cΣ contains one element and is generally not very
interesting.) These two extremal modes of semantics (initial and final) are the results of
two natural ways of generating term models from syntax and equations.

Specific specifications will be written in a syntax suggested in the following examples.
Specification names will coincide with signature names:

Example 1. The following specification just specifies integers generated by 0 and the
two operators successor and predecessor, together with two operations for addition and
subtraction:

spec Intop

sorts int
constructors 0 : int, succ, pred : int → int
defined oprs +, – : int × int → int
axioms EIntop : succ(pred(x)) = x,

pred(succ(x)) = x,

x+0 = x,
x+succ(y) = succ(x+y),
x+pred(y) = pred(x+y),

x – 0 = x,
x–succ(y) = pred(x–y),
x–pred(y) = succ(x–y)

The initial semantics ∗←→EIntopGIntop
consists of all inductive consequences of EIntop , i.e. all equa-

tions whose ground instantiations are logical consequences of EIntop . d

1or satisfy all inequalities (or more) induced by ∼, but strictly speaking this formulation presumes
‘inequality’ expressible in the formula language.



4 RELATIVE SPECIFICATION AND SEMANTICS 9

Example 2. This specification specifies an operator altsum that takes as input a sequence
of integers and produces the alternating sum of the sequence. Here the alternating sum of
e.g. 〈x0, x1, x2, x3, x4〉 is (x0 − x1) + (x2 − x3) + x4.

spec AltSumList–Intop

sorts int, list
constructors 0 : int, succ, pred : . . . , ε : list, a : int × list → list
defined oprs altsum : list → int
axioms EIntop ∪ EAltSumList : altsum(ε) = 0,

altsum(x a ε) = x,
altsum(x a (y a q)) = (x – y) + altsum(q)

The final semantics ∼Q on GAltSumList−Intopc
gives by the observer altsum that list con-

structor terms are semantically equal if and only if they represent integer sequences whose
alternating sums are equal. d

The method of this example of specifying semantics on one type based upon the initial
semantics of another is studied and used in [Kam83, Les83, GHJ85, DO91].

We might bias specifications by indicating what sort of semantics we want. For example,
the initially and finally biased specifications of example 1 would have the headings spec
Intop initial, and spec AltSumList–Intop final respectively.2

4 Relative Specification and Semantics

We now define relative specification and semantics. A relative semantics is defined w.r.t.
a given kernel semantics, and is thus hierarchical in nature. Making a kernel explicit in
specification and semantics will allow us to discuss consistency in relation to notions of
conservative extensions of specifications. We also find that the definition of final semantics
is a bit more intuitive when expressed relatively to an explicit kernel.

Definition 6. An (equational) relative specification is either an equational specific-
ation or a pair RSP = 〈SP , SPκ〉 consisting of an equational specification SP = 〈Σ, E〉
and a relative specification SPκ = 〈Σκ, Eκ〉, such that Σκ ⊆ Σ, but E ∩ Eκ = ∅. The
specification SPκ is called the kernel of RSP.

This is slightly different from the definition of hierarchical specification in [WPP+83] and
extension in [Pad95] where SP always includes SPκ, and in particular the upper level
equations of SP always include the equations of SPκ. Our intention is that the two sets of
equations are disjoint. This lets us reason modularly, actually disregarding details of the
primitive specification. Whereas hierarchical specifications treated in e.g. [WPP+83] can
always be seen as non-hierarchical ones, we wish to be able to treat also non-homogeneous
situations in which a hierarchy can not be viewed as a monolith (section 7). The formalism
of relative specification reflects this.

2The notion of ‘bias’ here is not that discussed in connection to VDM.
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A biased relative specification is a relative specification with a bias on each component
SP and SPκ.

4.1 Relative Semantics

We now focus on the semantics of biased relative specifications. We start with the final
case. As seen in the previous section, final semantics depend upon basic inequalities in a
kernel semantics in order to give new inequalities. Semantics specified in this manner are
therefore inherently hierarchical. Relative semantics makes this explicit:

Definition 7. Let RSP = 〈SP , SPκ〉 with SP = 〈Σ, E〉 and biased SPκ = 〈Σκ, Eκ〉 be a
relative specification, such that ∼κ on GΣκ is the semantics specified by SPκ. Define the
following relation ∼ζ= 〈∼ζs〉s∈S on GΣ: For any s ∈ S and all g, g′ ∈ GΣs

g∼ζsg′ ⇔ ¬∃c ∈ GΣ; g1, g2 ∈ GΣκ | c[g] ∗↔
E
g1 6∼κs′g2

∗↔
E
c[g′]

for some sort s′ ∈ S. We call ∼ζ the final semantics relative to ∼κ specified by RSP.
We refer to ∼κ as the kernel of ∼ζ.

Example 3. The specification of example 1 can now be rephrased hierarchically:

spec AltSumList final
relative to Intop initial

sorts list
constructors ε : list, a : int × list → list
defined oprs altsum : list → int
axioms EAltSumList : altsum(ε) = 0,

altsum(x a ε) = x,
altsum(x a (y a q)) = (x – y) + altsum(q)

The final semantics ∼ζ on GAltSumListc relative to the initial semantics on GIntop is identical
to ∼Q of example 1. d

Now, ∼Q=∼ζ is not true in general, but the identity does hold under certain sound condi-
tions and consistency. We will return to this issue after introducing relative semantics in
fuller depth.

The relation ∼ζ in definition 7 is not necessarily a congruence. It is always symmetric
and satisfies the congruence principle, but reflexivity and transitivity may be not satisfied:
Let ∼κ be the identity congruence on G{a,b} for constants a, b. Let E = {a = b}. We then
have a ∗↔

E a 6∼κ b ∗↔
E a, so a 6∼ζ a. To demonstrate lack of transitivity, let ∼κ on G{a,b,c,d}

be such that a 6∼κ b, c ∼κ d and d ∼κ e. Let E = {f(c) = a, f(e) = b}. Then we have
f(c) ∗↔

E
a 6∼κ b ∗↔

E
f(e), giving c 6∼ζ e, in spite of c ∼ζ d and d ∼ζ e.

Hence, this relation is strictly speaking not worthy of being called a semantics. However
it is reasonable to impose the following restrictions on definition 7:
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KC: E is kernel conservative : ∗↔
E GΣκ ⊆ ∼κ

SC: E is sufficiently complete w.r.t. Σκ
c .

KC asserts that all equalities on Σκ-terms explicitly entailed by E are (already) specified by
SPκ. This technically resembles the notion of ‘hierarchy conservative’ in [WPP+83], the
difference being again that here E does not (necessarily) contain the equations of SPκ. SC’s
reference to sufficient completeness w.r.t. the constructors of Σκ is a slight generalisation
of the notion in definition 1, also extended naturally to many-sorted situations. Regarding
∼κ as constructor semantics, focusing on constructive function specification would require
that SC is fulfilled.

Theorem 1. Given KC and SC, the relation ∼ζ in definition 7 is a congruence.

Now we state a result of finality for ∼ζ defined above as we did in the previous section
for ∼Q. The following lemmas are easily proven:

Lemma 2. g 6∼κ g′ ⇒ g 6∼ζ g′: all inequalities in ∼κ are preserved in ∼ζ.

Lemma 3. Assume KC and SC. Then GΣ/∼ζ ∈ ModΣ(E)

And then we have:

Theorem 4. Assume KC and SC. Then GΣ/∼ζ is final in d∼κeΣκ ∩ b ∗↔E cΣ.

Proof: By lemma 2 GΣ/∼ζ is in d∼κeΣκ . By lemma 3 GΣ/∼ζ is in b ∗↔
E
cΣ. Now, suppose

g 6∼ζ g′ for some g, g′ ∈ GΣ, i.e. c[g] ∗↔E g1 6∼κ g2
∗↔
E c[g′] for some c ∈ GΣ, g1, g2 ∈ GΣκ .

Consider any A ∈ d∼κeΣκ ∩ b ∗↔E cΣ, and assume A |= g = g′. Since A ∈ b ∗↔E cΣ, we have
A |= c[g] = g1 and A |= c[g′] = g2. But then A |= g1 = g2 contradicting A ∈ d∼κeΣ. So
A 6|= g = g′, and the theorem follows by fact 1. 2

This result shows that this semantics does indeed match our intention: GΣ/∼ζ is the
least computational model of E satisfying the inequations in ∼κ, meaning that ∼ζ is the
congruence on GΣ inducing two terms as semantically equal unless their inequality follows
with necessity from principle (1) using E and ∼κ.

We now generalise initial semantics to relative initial semantics.

Definition 8. Let RSP = 〈SP , SPκ〉 with SP = 〈Σ, E〉 and biased SPκ = 〈Σκ, Eκ〉 be a
relative specification, such that ∼κ on GΣκ is the semantics specified by SPκ. Consider the
rewrite relation < on GΣ such that for all g, g′ ∈ GΣ

g < g′ ⇔
{
g↔E g′ or
∃g1, g2 ∈ GΣκ ; c ∈ GΣ | g = c[g1], g′ = c[g2], g1 ∼κ g2

Define ∼α on GΣ by ∼α= <∗ We call ∼α the initial semantics relative to ∼κ specified
by RSP. We refer to ∼κ as the kernel of ∼α.
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The relation ∼α in definition 8 is clearly a congruence. The case Σκ =∼κ= ∅ and the case
∼κ= ∗↔

E GΣκ yield the initial semantics as defined in definition 4.
The way relative initial specification will be utilised in our examples is by giving se-

mantics to constructors by way of a kernel and letting the axioms E give semantics to
defined operators.

Example 4. We add a concatenation operator to AltSumList:

spec AltSumListop initial
relative to AltSumList final

defined oprs à : list × list → list
axioms EAltSumListop : ε à r = ε,

(x a q) à r = x a (q à r)
d

Example 5. The specification Intop from example 1 can be rephrased thus:

spec Intop initial
relative to Int initial

sorts int
defined oprs +, – : int × int → int
axioms x+0 = x,

x – 0 = x,
x+succ(y) = succ(x+y),
x–succ(y) = pred(x–y),
x+pred(y) = pred(x+y),
x–pred(y) = succ(x–y)

spec Int initial
sorts int
constructors 0 : int, succ, pred : int → int
axioms succ(pred(x)) = x,

pred(succ(x)) = x
d

In both initial and final generalisations the kernel may be final, initial, or even of some
other bias or mode (see section 7). This accommodates the use of different strategies for
defining equality over constructor terms. We have the initial dual of lemma 2:

Lemma 5. g ∼κ g′ ⇒ g ∼α g′, i.e. all equalities in ∼κ are preserved in ∼α.

And then it is straight forward to show:

Theorem 6. The quotient GΣ/∼α is initial in b ∗↔E cΣ ∩ b∼κcΣ.

So relative initial semantics specifies terms as semantically unequal unless their equality
follows with necessity from E in conjunction with ∼κ.
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4.2 Relative Consistency

The postulate that a mathematical proposition cannot simultaneously be true and false
is mirrored in predicate calculus by referring to a set of axioms as inconsistent when the
predicate true = false is deducible from the axioms. In a generalised view, consistency is
related to basic understandings of the semantic domain which are expressed as requirements
to the involved axioms and calculus. Guttag’s notion of consistency in definition 2 thus
presupposes the semantics of constructors specified by the designated set Ec, calling the
whole set E inconsistent if E breaches these semantics. This act of viewing consistency
always relatively to such presuppositions is made explicit by a notion of consistency in
relative specification relative to the kernel specification.

Definition 9. A relative specification RSP is initially kernel preserving relative to
∼κ if

∼κ = ∼αGΣκ

where ∼α is the initial semantics specified by RSP relative to ∼κ.

The definition of consistency in definition 2 is the special case of definition 9 where ∼κ is
a congruence on constructors specified base initially by some Ec ⊆ E.

Definition 10. A relative specification RSP is finally kernel preserving relative to
∼κ if

∼ζGΣκ
= ∼κ

where ∼ζ is the final semantics specified by RSP relative to ∼κ.

Failure of kernel preservation will be called kernel corruption .
In the final case, several other notions related to consistency are feasible. It is for

example natural to identify a signature Σo ⊆ Σ of designated observers meant to specify
final semantics by principle (1). Final inconsistency w.r.t. Σo would then mean there are
defined operators in Σ \Σo whose specification in E gives further inequalities by principle
(1) than intended. This is dealt with in [Han97].

A defined operator whose specification gives kernel corruption w.r.t. some presupposed
semantics ∼κ on constructors cannot be interpreted as a function in any algebra containing
GΣκ/∼κ as a sub-algebra. In this manner the notion of relative consistency generalises the
notion of consistency in predicate logic which is equivalent to the nonexistence of any
model for any inconsistent set of predicates. In predicate logic, the predefined semantics
on {true,false} is true 6=false. In relative equational semantics, the kernel plays the role of
predefined semantics.

However, note that a relative specification does have a model even if the specification
is kernel corrupting. In order to investigate notions of consistency it is essential that there
are semantics to be discussed in the event of inconsistency as well. This is safe as long as
the semantics of an inconsistent specification bears witness of the inconsistency. Relative
semantics supports this by its explicit kernel.
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5 Modularity under Consistency

A crucial assumption of modular programming is the context independency of modules, in
the sense that properties of submodules should be unaffected by their use in some larger
context. In algebraic specification this is mirrored by the notion of ‘conservative extension’.
Algebras characterised by complex specifications should have models of the constituent sub-
specifications as (intact) sub-algebras. Such algebras are dubbed “hierarchical models” in
[WPP+83]. The analogue for relative specification are initial or final models which have
the model of the kernel specification GΣκ/∼κ as a sub-algebra. This end is fulfilled by
kernel preservation (two analogues, and analogues only, in [WPP+83] being ‘hierarchy-
conservativeness’ and ‘hierarchy-faithfulness’).

This section investigates kernel preservation and modularity in some depth, resulting
in the partial equivalence of generalised initial and final semantics.

5.1 Kernel Preservation

We start by showing the coincidence of initial and final kernel preservation.

Theorem 7. Assume SC. Let RSP be a relative specification whose biased kernel has se-
mantics ∼κ. We have relatively to ∼κ, that RSP is finally kernel preserving if and only if
RSP is initially kernel preserving.

Before proving this we make a few observations. The result is independent of KC, but
note that the assumption of KC excludes a particularly blatant cause of kernel corruption
different from the type caused by principle (1) on page 8.

Example 6. Consider the following specification:

spec CorruptInt1 initial
relative to Int initial

sorts int
defined oprs f : int → int
axioms f(0) = 0,

f(0) = succ(0)

or even:

spec CorruptInt2 initial
relative to Int initial

sorts int
axioms 0 = succ(0)

Both specifications give initial-semantically succ(0) ∼α 0. The assumption of KC rules out
such specifications as CorruptInt and CorruptInt2. d
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Note also that the coincidence in theorem 7 cannot be shown simply by establishing ∼ζGΣκ
=

∼αGΣκ
, because initial and final corrupted kernel semantics do not coincide. This fact is the

counterpart of lemmas 5 and 2. Final kernel corruption means

∼ζGΣκ
⊂ ∼κ

whereas initial kernel corruption amounts to

∼κ ⊂ ∼αGΣκ

The two forms of kernel corruption are duals of each other—initial kernel corruption col-
lapsing the kernel’s congruence classes, and final kernel corruption composing new ones.

Example 7. Consider the specification

spec CorruptInt3
relative to Int initial

sorts int
defined oprs f : int → int
axioms f(0) = 0,

f(succ(x)) = succ(f(x)),
f(pred(x)) = f(x)

Relative to the initial semantics given by Int, the specification CorruptInt3 is both initially
and finally kernel corrupting. Initially we have succ(0) ∼α 0 and final-semantically we have
succ(pred(0)) 6∼ζ 0. The relations ∼α and ∼ζ are not identical. We have succ(0) 6∼ζ 0, and
also succ(pred(0)) ∼α 0. d

Now for the proof:

Proof of Lemma 7: Let ∼α be the initial semantics relative to ∼κ.
Assume RSP is not finally kernel preserving relative to ∼κ. By lemma 2 there must

exist c ∈ GΣ and gκ, g′κ, g1, g2 ∈ GΣκ such that

c[gκ] ∗↔E g1 6∼κ g2
∗↔
E
c[g′κ] but gκ ∼κ g′κ

Since gκ ∼κ g′κ we have gκ ∼α g′κ by lemma 5, giving c[gκ] ∼α c[g′κ]. Since c[gκ] ∗↔
E
g1 and

g2
∗↔
E
c[g′κ], we then get g1 ∼α g2. But g1 6∼κ g2, so E cannot be initially kernel preserving

relative to ∼κ.
For the converse implication, suppose first that KC does not hold. Then there are

gκ, g′κ ∈ GΣκ such that
gκ

∗↔
E
g′κ but gκ 6∼κ g′κ

But then we have gκ 6∼κ g′κ
∗↔
E
gκ, and E is trivially finally kernel corrupting.
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So, assume KC. Suppose RSP is initially kernel corrupting relative to ∼κ. By lemma 5
there are gκ, g′κ ∈ GΣκ such that

gκ ∼α g′κ but gκ 6∼κ g′κ

We now define

g↔κ g′ ⇔
{
g ∗6↔E g′ and
∃c ∈ GΣ; g1, g2 ∈ GΣκ | g = c[g1], g′ = c[g2], g1 ∼κ g2

Consider an arbitrary ∼α-derivation 〈gκ, . . . , g′κ〉 in GΣ. By KC we must have gκ ∗6↔
E
g′κ, so

there must be at least one ↔κ -step in the derivation, and since gκ 6∼κ g′κ, there must also
be at least one ↔

E
-step in the derivation. We may assume that this latter step is such

that g↔E g′ where at least one of g, g′ is not in GΣκ ; otherwise this step would by KC be a
↔κ -step. There is, then, a term g 6∈ GΣκ in the derivation. But then there must exist two
↔
E

-steps; since a ↔κ -step cannot link a term in GΣκ with a term not in GΣκ (and gκ 6= g′κ,
since ∼κ is reflexive). Both these two ↔

E
-steps must be linking terms in GΣκ with terms

not in GΣκ . The derivation must therefore be of the form:

gκ
∗↔
κ gκ0

+↔
E
c1[g1] ∗↔κ c1[g′1] ∗↔

E
· · ·
:

· · · ∗↔
E
ck[gk] +↔

κ ck[g′k]
∗↔
E
ck+1[gk+1] +↔

κ ck+1[g′k+1] ∗↔
E
· · ·

:
· · · ∗↔E cn[gn] ∗↔κ cn[g′n] +↔

E gκn
∗↔κ g′κ

for gκ0, gκn, gi, g
′
i ∈ GΣκ and ci ∈ GΣ; 1 ≤ i ≤ n. By SC we have

ci[g′i]
∗↔
E
gκi

∗↔
E
ci+1[gi+1]

for some gκi ∈ GΣκ ; 1 ≤ i ≤ n. Now, we cannot have gκ0 ∼κ · · · ∼κ gκk ∼κ · · · ∼κ gκn, since
this would entail gκ ∼κ g′κ. Therefore there must exist a 0 ≤ l < n such that gκl 6∼κ gκl+1.
But then we have

cl+1[gl+1] ∗↔
E
gκl 6∼κ gκl+1

∗↔
E
cl+1[g′l+1]

Since gl+1 ∼κ g′l+1, RSP is finally kernel corrupting relative to ∼κ. 2

Based on proposition 7, the relationship between final and initial kernel preservation
under KC (and for the case ‘n = 1’ in the proof) is illustrated in figure 1.

Final kernel preservation is trivial relative to an identity kernel:

Observation 8. If a final semantics is a congruence and its kernel ∼κ is an identity
relation then lemma 2 gives final kernel preservation relative to ∼κ.

Hence we get the following perhaps obvious corollary from proposition 7 and observation
8.
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g1 c[gκ] c[g′κ] g2

g1 g2

∗
E

∗←→κ ∗
E

∗ E ∗E

6∼κ

(a)

c[gκ]

c[gκ] c[g′κ]

c[g′κ]g1 g2∗
E

∗←→
κ

∗
E

∗E ∗ E

6∼κ

(b)

Figure 1: Duality. Kernel corruption from two points of view. Final and initial kernel preser-
vation are under KC two manifestations of the same phenomenon. In (a) inconsistency declares
itself as initial kernel corruption, in that g1 6∼κ g2, but g1 ∼α g2. In (b) inconsistency manifests
itself in final kernel corruption, in that gκ 6∼ζ g′κ, but gκ ∼κ g′κ.

Corollary 9. Assume SC. If the final semantics is a congruence and its kernel ∼κ is the
identity relation then we also have initial kernel preservation relative to ∼κ.

That is, a specification cannot corrupt a kernel without the kernel providing a situation
where the term-universe is in a many-to-one correspondence with the semantic value space.

Although the matter is not pursued further here, the above results based upon sufficient
completeness have interesting formulations as partial results corresponding to assumptions
of partial sufficient completeness. Such partial results are interesting e.g. in connection
with hidden sorts and symbols and also in connection with partial specifications.

5.2 Separability

Kernel preservation ensures conservativeness in a hierarchical sense. Relative semantics
arise from two component semantics—the kernel and that given by some equation set E.
Under KC and SC, kernel preservation also ensures the preservation of the semantics on all
terms of kernel sorts, i.e. also the part specified by E. Consider the following relation:

(∼κ ∪ ∗↔
E GΣ)∗ [i.e. the reflexive-transitive closure of the union] (2)

The closure under monotonicity (context application) of this relation is just the relative
initial semantics of definition 8. However with monotonicity stripped away, there is no
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“interaction” between the two components ∼κ and ∗↔
E GΣ . Intuitively then, under SC and

KC, (∼κ ∪ ∗↔
E GΣ)∗ is separable, i.e. gives precisely the pure sum of the semantics of its

two components. More precisely, it is straight-forward to prove the separability of (∼κ∪
∗↔
E GΣ)∗:

Lemma 10. Assume SC and KC. For a congruence ∼κ on GΣκ and a set of equations E,
we have

1. (∼κ ∪ ∗↔
E GΣ)∗GΣκ

= ∼κ (preservation of ∼κ)

2. ∗↔
E GΣ ⊆ (∼κ ∪ ∗↔

E GΣ)∗ (preservation of ∗↔
E

. Completeness)

3. g(∼κ ∪ ∗↔
E GΣ)∗gκ ⇒ g ∗↔

E
g′κ (preservation of ∗↔

E
. Soundness 1)

for any g ∈ GΣ and gκ ∈ GΣκ , for some g′κ ∈ GΣκ such that gκ ∼κ g′κ.

4. g(∼κ ∪ ∗↔
E GΣ)∗g′ ⇒ g ∗↔

E
g′ (preservation of ∗↔

E
. Soundness 2)

for any g, g′ ∈ GΣ of sorts not in Σκ.

Proof: 1 : Suppose (∼κ ∪ ∗↔
E GΣ)∗GΣκ

6= ∼κ. Since it is evident that ∼κ⊆ (∼κ ∪ ∗↔
E GΣ)∗GΣκ

,
there must exist gκ, g′κ ∈ GΣκ such that gκ 6∼κ g′κ, in spite of gκ(∼κ ∪ ∗↔

E GΣ)∗g′κ. But then
we must have

gκ ∼κ g1
∗↔
E
g′1 ∼κ g2

∗↔
E
g′2 ∼κ · · · ∼κ gi

∗↔
E
g′i ∼κ · · · ∼κ gn

∗↔
E
g′n ∼κ g′κ

for some gi, g′i ∈ GΣκ ; 1 ≤ i ≤ n. By KC gi ∼κ g′i for every 1 ≤ i ≤ n, and then gκ ∼κ g′κ,
which is a contradiction.

2 : Obvious.

3 : Suppose g(∼κ∪ ∗↔
E GΣ)∗gκ for some g ∈ GΣ, gκ ∈ GΣκ . Observe that g must be of the

same sort as gκ. By SC we then have g ∗↔
E
g′κ for a g′κ ∈ GΣκ . Then

gκ(∼κ ∪ ∗↔
E GΣ)∗g ∗↔

E
g′κ

i.e. gκ(∼κ ∪ ∗↔
E GΣ)∗g′κ. And then (1) gives gκ ∼κ g′κ.

4 : Suppose g(∼κ ∪ ∗↔
E GΣ)∗g′ for some g, g′ ∈ GΣ. Observe that g must be of the same

sort as g′, and that every component in any (∼κ ∪ ∗↔
E GΣ)∗-derivation 〈g, . . . , g′〉 is of the

same sort as g, g′.
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Observe also that every (∼x∪ ∗↔
E GΣ)∗-derivation step has the form gi = gx ∼κ g′x = gi+1,

for gκ, g′κ ∈ GΣκ ; or the form gi↔E gi+1 (for gi, gi+1 ∈ GΣ).
Let Sκ denote the set of sorts of terms occurring in GΣκ . Suppose g, g′ are not of

any type in Sκ. But then we cannot have gi ∼κ gi+1 for any components gi, gi+1 in any
(∼κ ∪ ∗↔

E GΣ)∗-derivation 〈g, . . . , g′〉. Consequently g ∗↔
E
g′, and the lemma follows. 2

Now we may use (∼κ ∪ ∗↔
E GΣ)∗ to show that initial and final semantics are separable in

kernel sorts under kernel preservation; i.e. the components of relative semantics in kernel
sorts are untouched. The following two theorems are easily proven:

Theorem 11. Assume KC and SC. Let RSP = 〈SP , SPκ〉 be a relative specification with
SP = 〈Σ, E〉 and biased SPκ = 〈Σκ, Eκ〉, such that ∼κ on GΣκ is the semantics specified
by SPκ. Then for Sκ the sorts in Σκ we have:

(∼κ ∪ ∗↔
E GΣ)∗Sκ = ∼αSκ
m

RSP is initially kernel preserving relative to ∼κ

Proof: If RSP is initially kernel corrupting relative to ∼κ then (∼κ ∪ ∗↔
E GΣ)∗Sκ 6= ∼αSκ by

proposition 10(1).
So, assume initial kernel preservation. Clearly (∼κ ∪ ∗↔

E GΣ)∗Sκ ⊆ ∼αSκ, so we concentrate
on showing (∼κ∪ ∗↔

E GΣ)∗Sκ ⊇ ∼αSκ. We induce on the length n of an arbitrary ∼αSκ-derivation
〈g, . . . , g′〉 in GΣ for g, g′ ∈ GΣSκ:

n = 1: Trivially g(∼κ ∪ ∗↔
E GΣ)∗g.

n = k + 1; k ≥ 1: We then have a derivation 〈g, . . . , gk, g′〉. Since g, gk must be of
a sort in Sκ, the induction hypothesis gives g(∼κ ∪ ∗↔

E GΣ)∗gk. Suppose gk ↔E g′. Then
gk(∼κ ∪ ∗↔

E GΣ)∗g′ and the theorem follows. Suppose gk = c[g′k] and c[g′′] = g′ and g′k ∼κ g′′,
for some g′k, g

′′ ∈ GΣκ . Since c[g′k] and c[g′′] are of some sort in Sκ, SC gives c[g′k]
∗↔
E
gκ and

c[g′′] ∗↔
E g′κ for some gκ, g′κ ∈ GΣκ . Assuming initial kernel preservation or the equivalent

notion of final kernel preservation (proposition 7) we have

¬∃c′ ∈ GΣ; g1, g2 ∈ GΣκ | c′[g′k]
∗↔
E
g1 6∼κ g2

∗↔
E
c′[g′′]

But then gk = c[g′k]
∗↔
E
gκ ∼κ g′κ ∗↔

E
c[g′′] = g′, i.e. gk(∼κ ∪ ∗↔

E GΣ)∗g′. 2

Theorem 12. Assume KC and SC. Let RSP = 〈SP , SPκ〉 be a relative specification with
SP = 〈Σ, E〉 and biased SPκ = 〈Σκ, Eκ〉, such that ∼κ on GΣκ is the semantics specified
by SPκ. Then for Sκ the sorts in Σκ we have:

(∼κ ∪ ∗↔
E GΣ)∗Sκ = ∼ζSκ
m

RSP is finally kernel preserving relative to ∼κ

Proof: If RSP is finally kernel corrupting relatively to ∼κ then (∼κ ∪ ∗↔
E GΣ)∗Sκ 6= ∼ωSκ by

proposition 10(1).
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Assume final kernel preservation. Suppose g(∼κ ∪ ∗↔
E GΣ)∗g′ for arbitrary g, g′ ∈ GΣSκ .

We show g∼ωg′ by induction on the length n of an arbitrary (∼κ ∪ ∗↔
E GΣ)∗Sκ-derivation

〈g, . . . , g′〉.
n = 1: By KC and SC and fact 1 ∼ω is reflexive, so g ∼ω g.
n = k + 1; k ≥ 1: We then have a derivation 〈g, . . . , gk, g′〉. Since g, gk must be of a

sort in Sκ, the induction hypothesis gives g∼ωgk. Any (∼κ ∪ ∗↔
E GΣ)∗-derivation step has

the form gi = gκ ∼κ g′κ = gi+1, for gκ, g′κ ∈ GΣκ ; or the form gi↔E gi+1 (for gi, gi+1 ∈ GΣSκ).
Suppose gk = gκ ∼κ g′κ = g′ for gκ, g′κ ∈ GΣκ : Since SP is finally kernel preserving we have
gk = gκ∼ωSκg′κ = g′, and the theorem follows. Suppose gk↔E g′: By lemma 3 gk ∼ω g′ and
since g, gk are of some sort in Sκ, we get gk∼ωg′.

Now suppose g∼ωg′ for arbitrary g, g′ ∈ GΣSκ. By SC we have g ∗↔
E
gκ and g′ ∗↔

E
g′κ for

gκ, g
′
κ ∈ GΣκ . Since g ∼ω g′, we have

¬∃c ∈ GΣ; g1, g2 ∈ GΣκ | c[g] ∗↔E g1 6∼κ g2
∗↔
E c[g′]

In particular we have g ∗↔
E gκ ∼κ g′κ

∗↔
E g′ thus giving g(∼κ ∪ ∗↔

E GΣ)∗g′. 2

Finally, we get the following essential property as a corollary of theorems 11 and 12:

Theorem 13. Assume KC and SC. Under kernel preservation we have that initial and final
semantics coincide in kernel sorts:

∼αSκ = ∼ζSκ

Before ending this section let us return briefly to the non-relative final semantics of
definition 5. The analogue of this corollary for a standard non-relative specification SP =
〈Σ, E〉, is that for E convergent and sufficiently complete

∼QSκ = ∗↔
E Sκ

where Sκ denotes designated initial sorts [Lys92]. This holds regardless of inconsistency.
This is roughly because in a monolithic definition such as definition 5, at finality the implicit
“kernel” is corrupted in the initial direction (see fig. 1) before the mechanism of extracting
inequalities sets in. In contrast, the relative definition corrupts the kernel in the process of
extracting inequalities, hence corrupting the kernel in the final direction. In the relative
case, inconsistency reveals itself in the exact symmetrical duals of kernel corruption. So
on a higher level, proposition 7 and theorem 13 give the equivalence of initial and final
semantics on kernel sorts, also for relative semantics.

Under kernel preservation/consistency one can show ∼Q = ∼ζ (where the kernel of ∼ζ
is the implicit ∗↔

Ec GΣc
), by using the separable relation ( ∗↔

Ec GΣc
∪ ∗↔

E GΣ)∗.

5.3 Inconsistency revealed as referential opacity

According to proposition 10(1) it may seem that the relation (∼κ ∪ ∗↔
E GΣ)∗ is in a sense

insensitive to inconsistency. However, even though (∼κ ∪ ∗↔
E GΣ)∗ always preserves its
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components, inconsistency now reveals itself through other symptoms; namely lack of
monotonicity under context application, in other words (∼κ∪ ∗↔

E GΣ)∗ becomes referentially
opaque.

Theorem 14. Assume KC and SC. Let ∼ζ be the final semantics specified by a relative
biased specification RSP relative to ∼κ on GΣκ . We then have for Sκ the sorts in Σκ:

RSP is finally kernel corrupting relative to ∼κ
m

(∼κ ∪ ∗↔
E GΣ)∗Sκ is not monotone w.r.t. context application

Proof: Suppose RSP is finally kernel corrupting. By observation 2 there must be c ∈ GΣ

and gκ, g′κ, g1, g2 ∈ GΣκ such that

c[gκ] ∗↔E g1 6∼κ g2
∗↔
E
c[g′κ] but gκ ∼κ g′κ

Since gκ ∼κ g′κ proposition 10(1) gives gκ(∼κ ∪ ∗↔
E GΣ)∗g′κ. Now, suppose

c[gκ](∼κ ∪ ∗↔
E GΣ)∗c[g′κ]

It cannot be the case that c[gκ]
∗↔
E c[g′κ] since this would give g1

∗↔
E g2 which contradicts KC.

Any (∼κ ∪ ∗↔
E GΣ)∗-derivation 〈c[gκ], . . . , c[g′κ]〉 in GΣ must therefore have the form

c[gκ] ∗↔
E
gκ1 ∼κ gκ′1 ∗↔

E
gκ2 ∼κ gκ′2 ∗↔

E
· · ·

:
· · · ∗↔E gκi ∼κ gκ′i

∗↔
E · · ·

:
· · · ∗↔

E
gκn ∼κ gκ′n ∗↔

E
c[g′κ]

(3)

for n ≥ 2 and gκi, gκ
′
i ∈ GΣκ ; 1 ≤ i ≤ n. By KC gκ′i ∼κ gκi+1 for 1 ≤ i ≤ n. But since

g1
∗↔
E
c[gκ] and c[g′κ]

∗↔
E
g2 we get g1 ∼κ g2 which is a contradiction. Consequently, and since

c[gκ], c[g′κ] must be of type Sκ, c[gκ](∼κ 6 ∪ ∗↔
E GΣ)∗Sκc[g

′
κ], so (∼κ ∪ ∗↔

E GΣ)∗Sκ is not monotone
w.r.t. context application.

Conversely, suppose that g(∼κ∪ ∗↔
E GΣ)∗g′ but c[g](∼κ 6 ∪ ∗↔

E GΣ)∗c[g′] for some c[g], c[g′] ∈
GΣSκ . By SC we have g ∗↔

E gκ and g′ ∗↔E g′κ for gκ, g′κ ∈ GΣκ . Hence, gκ(∼κ ∪ ∗↔
E GΣ)∗g′κ and

by proposition 10(1)
gκ ∼κ g′κ

By SC we also have c[g] ∗↔
E
g1 and c[g′] ∗↔

E
g2 for g1, g2 ∈ GΣκ . Now, we cannot have g1 ∼κ g2,

because then c[g](∼κ ∪ ∗↔
E GΣ)∗c[g′]. Accordingly,

c[g] ∗↔E g1 6∼κ g2
∗↔
E c[g′]

and then also
c[gκ] ∗↔

E
c[g] ∗↔

E
g1 6∼κ g2

∗↔
E
c[g′] ∗↔

E
c[g′κ]

So, gx 6∼ω g′x, but gκ ∼κ g′κ, thus RSP is finally kernel corrupting. 2

And of course we have the dual by proposition 7:
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Corollary 15. Assume KC and SC. Let ∼α be the initial semantics specified by a biased
relative specification RSP relative to ∼κ on GΣκ . We then have for Sκ the sorts in Σκ:

RSP is initially kernel corrupting relative to ∼κ
m

(∼κ ∪ ∗↔
E GΣ)∗Sκ is not monotone w.r.t. context application

Example 8. For the specification CorruptInt3 from example 7 we had initial-semantically
f(succ(pred(0))) ∼α succ(0) and f(0) ∼α 0 giving initial kernel corruption by succ(0) ∼α
0. Consider the associated relation (∼κ ∪ ∗↔

E GΣ)∗. We have

succ(pred(0)) (∼κ ∪ ∗↔
E GΣ)∗ 0,

but

f(succ(pred(0))) (∼κ 6 ∪ ∗↔E GΣ)∗ f(0).

d

6 Proof by Kernel Preservation

The formalism of relative semantics can now be utilised to describe a modular hierarchical
approach to proof by consistency, in which at each stage, only the uppermost equations in
the hierarchy need be considered for completion. So, given a relative semantics ∼r we pose
the problem of determining whether GΣ/∼r |= u = v for any given equation u = v (which
is undecidable in general, of course). Although the following result is stated for standard
completion and assumes orientability, it also holds for ordered completion assuming only
orientability of ground instances. This is evident by examining the proof, since peak
elimination is done w.r.t. ground-term derivations. It also holds for extended completion
if all unorientable equations are in kernel terms, i.e. over TΣκ(X).

Theorem 16. Let ∼ζ be the final semantics specified by a relative biased specification
RSP relative to ∼κ on GΣκ under assumption of KC and SC. Let H be a set of equational
hypotheses. Suppose a completion sequence 〈〈E ∪H, ∅〉, . . . , 〈Ei, Ri〉, . . .〉 is fair w.r.t. in-
ferences and is s.t. every equation generated is orientable. Assume furthermore that every
term in TΣ(X)\TΣκ(X) is greater in the completion process’s term ordering than all terms
in TΣκ(X). Then:

GΣ/∼ζ 6|= H
m

an equation or rule 〈l, r〉 over TΣκ(X) is generated during the process s.t.
GΣκ/∼κ 6|= l = r
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Proof: Assume GΣ/∼ζ 6|= H, i.e. there is some u = v ∈ H, ground-instantiation τ and
context c such that c[uτ ] ∗↔E g1 6∼κ g2

∗↔
E c[vτ ]. But then, g1

∗←→
E∪{u=v}g2. Regarding completion

processes as derivation transforming processes in the style of Bachmair [Bac91], any deriva-
tion 〈g1, . . . , g2〉 may be transformed into a derivation 〈g1, . . . , g2〉′ where every component
is a term in GΣκ (otherwise, by assumption of the term ordering, there would be peak in
the derivation). This entails the generation of a set Ej ∪Rj purely over TΣκ(X) such that
g1

∗←→Ej∪Rj g2. But then at least one of 〈l, r〉 ∈ Ej ∪Rj must be s.t. GΣκ/∼κ 6|= l = r, or else
g1 ∼κ g2, contradicting our assumption.

Conversely, assume an equation or rule 〈l, r〉 over TΣκ(X) is generated during the process
s.t. for some instantiation σκ, lσκ 6∼κ rσκ. By KC, lσκ ∗6↔

E
rσκ. Then, every E∪H-derivation

must be of the form

lσκ
∗↔
E
c1[u1σ1], c1[v1σ1] ∗↔E · · ·

∗↔
E
cn[unσn], cn[vnσn] ∗↔

E
rσκ

(or any ui, vi-symmetrical form), for 〈ui, vi〉 ∈ H; 1 ≤ i ≤ n. By SC, for every i there
are gi, g′i ∈ GΣκ s.t. ci[uiσi]

∗↔
E gi and ci[viσi]

∗↔
E g′i. There must be some 1 ≤ l ≤ n s.t.

gl 6∼κ g′l, or else lσκ ∼κ rσκ (since lσκ ∼ g1, gi ∼ gi+1 and g′n ∼ rσκ by KC). But then
cl[ulσl] ∗↔E gl 6∼κ g′l ∗↔E cl[vlσl], so ulσl 6∼ζ vlσl, hence GΣ/∼ζ 6|= H . 2

According to theorem 16, equational hypotheses H0 may be resolved according to a relative
hierarchical data-type GΣ/∼r composed of final modules, by running completion w.r.t. the
top-level (n’th-level) equations En and extracting a set of new hypotheses H1 in kernel
terms. These new hypotheses are in turn given to completion together with the level n− 1
equations En−1, and so on, until some atomic module is encountered, which if standard
initial can be dealt with by standard methods. Note how reasoning about GΣ/∼r is done
modularly w.r.t. current top-level equations only. This lightens the burden of having
to consider for completion a large monolithic set of equations for the whole hierarchical
data-type.

What about initial modules? Assuming that all relative initial modules only have
kernel-sorts, corollary 13 states that under kernel preservation, initial modules may be
treated as final. If kernel preservation is not guaranteed, then by duality, initial kernel
corruption will manifest itself in final kernel corruption. Viewing any kernel corruption
as simply a sign of wrongful specification, initial and final specification may be viewed as
equivalent in kernel sorts, and theorem 16 applies.

Theorem 16 says that a kernel corrupting witness will reveal itself if and only if the
set of hypotheses are not valid in the data-type. Hence, proof by kernel preservation is
a generalised relative version of proof by consistency. By the equivalence in kernel sorts,
this is also a generalised relative version of proof by consistency methods designated for
standard initial semantics.



6 PROOF BY KERNEL PRESERVATION 24

Example 9. Consider the following specification:

spec FlatTree final
relative to AltSumListop initial
sorts tree
constructors ε : tree, leaf : int → tree, node : tree × tree → tree
defined oprs flatten : tree → list
axioms EFlatTree : flatten(ε) = 0,

flatten(leaf(x)) = x aε,
flatten(node(l,r)) = flatten(l) à flatten(r)

The observer flatten should give final-semantically that two GFlatTreec-terms are semantically
equal if and only if they represent trees which, when flattened (infix) give semantically equal
sequences according to AltSumListop initial. To check whether

h0: node(node(leaf(x),leaf(y)),leaf(z)) = node(leaf(x),node(leaf(y),leaf(z)))

is valid in the relative datatype GFlatTree/∼ζ specified by FlatTree final, the set {h0} ∪
EFlatTree is subjected to completion with a term-ordering in which every term in TFlatTree(X)\
TAltSumListop(X) is greater than all terms in TAltSumListop(X). This yields a single equation

h1: ((xaε) à (yaε)) à (zaε) = (xaε) à ((yaε) à (zaε))

over TAltSumListop(X). Completion of {h1} ∪ EAltSumListop does not yield any hypotheses over
TAltSumList(X), so according to theorem 16, h0 is valid in GFlatTree/∼ζ.

Completion of

h′0: node(leaf(x),node(leaf(y),ε)) = node(ε,ε)

together with EFlatTree yields the new hypothesis

h′1: (x a ε) à ((y a ε) à ε) = ε à ε

which completed with EAltSumListop yields

y a (x a (x a q)) = y a q

which completed with EAltSumList produces

0 = x

which can be refuted as an inductive consequence of EIntop by standard methods. Hence h′1
is not valid in GFlatTree/∼ζ . d

Theorem 16 also shows how one might discover kernel corruption. If the procedures
refutes a hypothesis which is known to hold in the kernel, then the specification is not
kernel preserving. Similar ideas occur in [Kir84].
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7 Non-homogeneous hierarchies

In this section two sources of non-homogeneouity to a specification hierarchy are briefly
sketched. The key point being that relative specification admits non-homogeneouity and
supports different proof methods at each level.
Auxiliary functions may give unintended semantics:

spec AltSumList’ final
relative to Intop initial

sorts list
constructors ε : list, a : int × list → list
defined oprs altsum, alt1, alt2 : list → int
axioms EAltSumList′ : altsum(q) = alt1(q),

alt1(ε) = 0,
alt2(ε) = 0,
alt1(x a q) = x – alt2(q),
alt2(x a q) = x + alt1(q)

The operators alt1 (handling the subtraction part) and alt2 (handling the additition part)
are auxiliary to altsum, and the intended final semantics is that of AltSumList final of
example 3. However, this specification is finally inconsistent w.r.t. Σo = {altsum}: Letting
g = succ(0)a(succ(0)a(pred(0)aε)) and g′ = pred(0)aε, we have

alt2(g) ∗←→EAltSumList′
succ(succ(succ(0))) 6∼κ pred(0) ∗←→EAltSumList′

alt2(g′)

giving g 6∼ζ g′ (while altsum(g) ∗←→EAltSumList′
pred(0) ∗←→EAltSumList′

altsum(g′), so the only intended dis-
tinguisher altsum does not distinguish g and g′). This can be resolved by using structured
specifications involving hiding, and the corresponding structured semantics are then con-
sistent, see [Hen97] for an overview. However, when reasoning about such specifications,
the hidden information may have to be used, and proofs must then be done according to the
structure in the specification and semantics. In [Han97] such structure is introduced into
equational logic by restricting the monotonicity axiom in equational logic to allow context
application of non-hidden symbols only. (A similar restriction is also applied for proving
refinement of non-deterministic data-types in [QG93].) This effectively protects auxiliary
operators from unauthorised use in the logic as well, i.e. alt2 can only be accessed by
the main operator altsum. Using this calculus, syntactic initial and final term models can
be generated according to which a modification of proof by consistency checks equations
[Han97]. The formulation of these semantics and the modification of proof by consistency
benefits greatly from insight gained on notions of consistency (kernel preservation) presen-
ted in the current note. Relative semantics cater firstly for the definition of term model
semantics according to this modified logic, and secondly by supporting modified versions
of proof by consistency at each level.

Specifications like AltSumList’ above that are inconsistent in some sense if auxiliary
operators are not hidden, occur naturally in refinement proofs, some nice examples are to
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be found in [ST88]. Relative semantics thus ultimately enables proof by consistency to be
used to a greater extent in specification refinement proofs.

Another source of non-homogeneouity is the following: Due to unorientability, no com-
plete pure term-rewrite system exists for the characteristic equations for sets (of natural
numbers) {add(add(s,x),x) = add(s,x), add(add(s,x),y) = add(add(s,y),x)}. However, it is
possible to write a convergent specification of a function computing canonical represent-
atives for the classes specified by the characteristic axioms, e.g. in the form of sorted
non-repeating lists. So if Es specifies a canonical representatives function crep, this gives
rise to indirect specification of the form g ∼s g′ ⇔ s(g) ∗←→

Es
s(g′), where s represents crep.

The issue of convergence is crucial for rewrite related reasoning, and by specifying a func-
tion inducing a semantics, rather than the semantics itself directly, one may thus indirectly
convergently specify semantics for which no direct convergent set of equations exist.

Now, s is not a symbol intended to represent a genuine function in a data-type. In the
case of an indirectly specified module occurring in a larger context, one would not want to
view the entire entity monolithically. Proof by consistency adapted to indirect semantics
would have to be treated as a separate process, making monolithic completion unsuitable.
Relative specification and semantics provide the formalism for incorporating this kind of
incompatible specification as a module of a larger hierarchical specification.

In certain cases it is possible to reduce indirect semantics to final semantics, and also to
initial semantics by introducing the equation s(x) = x. Proving this benefits greatly from
formulation in the relative constructs.

8 Concluding Remarks

The notions of relative specification and semantics were presented in order to (1) make
explicit the notion of a kernel in existing notions of initial and final semantics. This provides
(2) a uniform view of initial and final semantics and dualised notions of consistency as kernel
preservation, and also provides (3) a modular hierarchical generalisation of initial and final
semantics admitting a corresponding modular hierarchical method of proof by consistency
where at each level the kernel may be disregarded. This extends to the “meta-theory”
also—results in this note are stated and proved disregarding details of the kernel. Making
the kernel explicit in the formalisms also (4) permits non-homogeneous specification and
semantics schemes, admitting diverse proof methods at each level of the hierarchy.

This work on extremal monomorphic semantics is a basic step: It lays a basis on which
investigation into relative loose semantics may be done. Given a loose kernel semantics
consisting of a class of congruences, there are several ways of defining a next relative layer.
One option is to extend in a point-wise fashion and consider a class of monomorphic relative
models as the next layer semantics. Each member of this class will be extremal in some
class of their own so one might also consider the union of all these classes to be the relative
loose semantics.

Much investigation has been invested into modularity and compositionality properties
of rewrite systems [Ohl95]. The approach in this note tends to decomposition in the sense
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that only modular parts of an entire specification should be treated at a time. In particular,
an analysis of the effects of running completion on parts of an equation set compared to
those of completing the entire set, would seem interesting.
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