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Abstract


We develop a theory of higher-order exact real number computation based on
Scott domain theory. Our main object of investigation is a higher-order func-
tional programming language, Real PCF, which is an extension of PCF with a
data type for real numbers and constants for primitive real functions. Real PCF
has both operational and denotational semantics, related by a computational
adequacy property.


In the standard interpretation of Real PCF, types are interpreted as con-
tinuous Scott domains. We refer to the domains in the universe of discourse of
Real PCF induced by the standard interpretation of types as the real numbers
type hierarchy. Sequences are functions defined on natural numbers, and predic-
ates are truth-valued functions. Thus, in the real numbers types hierarchy we
have real numbers, functions between real numbers, predicates defined on real
numbers, sequences of real numbers, sequences of sequences of real numbers,
sequences of functions, functionals mapping sequences to numbers (such as lim-
iting operators), functionals mapping functions to numbers (such as integration
and supremum operators), functionals mapping predicates to truth-values (such
as existential and universal quantification operators), and so on.


As it is well-known, the notion of computability on a domain depends on
the choice of an effective presentation. We say that an effective presentation of
the real numbers type hierarchy is sound if all Real PCF definable elements and
functions are computable with respect to it. The idea is that Real PCF has
an effective operational semantics, and therefore the definable elements and
functions should be regarded as concretely computable. We then show that
there is a unique sound effective presentation of the real numbers type hierarchy,
up to equivalence with respect to the induced notion of computability. We can
thus say that there is an absolute notion of computability for the real numbers
type hierarchy.


All computable elements and all computable first-order functions in the
real numbers type hierarchy are Real PCF definable. However, as it is the
case for PCF, some higher-order computable functions, including an existential
quantifier, fail to be definable. If a constant for the existential quantifier (or,
equivalently, a computable supremum operator) is added, the computational
adequacy property remains true, and Real PCF becomes a computationally
complete programming language, in the sense that all computable functions of
all orders become definable.


We introduce induction principles and recursion schemes for the real num-
bers domain, which are formally similar to the so-called Peano axioms for nat-







ural numbers. These principles and schemes abstractly characterize the real
numbers domain up to isomorphism, in the same way as the so-called Peano
axioms for natural numbers characterize the natural numbers. On the practical
side, they allow us to derive recursive definitions of real functions, which imme-
diately give rise to correct Real PCF programs (by an application of computa-
tional adequacy). Also, these principles form the core of the proof of absolute-
ness of the standard effective presentation of the real numbers type hierarchy,
and of the proof of computational completeness of Real PCF.


Finally, results on integration in Real PCF consisting of joint work with
Abbas Edalat are included.
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Chapter 1


Introduction


We develop a theory of higher-order exact real number computation based on
Scott domain theory [AJ94]. Our main object of investigation is a higher-
order functional programming language, Real PCF, which is an extension of
PCF [Plo77] with a data type for real numbers and constants for primitive real
functions.


Traditionally, in computing science one represents real numbers by floating-
point approximations. If we assume that these approximations are “exact” then
we can prove correctness of numerical programs by analytical methods. Such an
idealization is the idea behind the so-called BSS model [BSS89]. However, such
“correct” programs do not produce correct results in practice, due to the pres-
ence of round-off errors. Striking examples are described in [MM96]. Moreover,
such programs are inappropriate for problems whose solution is sensitive to
small variations on the input.


As a consequence, exact real number computation has been advocated as
an alternative solution (see e.g [Boe87, BC90, BCRO86, Gru, MM96, Pot96,
Viu90, Vui88] on the practical side and [Bra96, Gia93b, Gia96b, Gia96a, Gia93a,
Grz57, KV65, Ko91, ML70, Myh53, PeR83, Ric54, Tur37, Wei87, Wei95, Wie80]
on the foundational side). In exact real number computation, as opposed to
floating point-computation, the produced outputs are guaranteed to be correct,
and, moreover, the results can be effectively computed to within any desired
degree of accuracy. These approaches, as well as ours, differ from the BSS
model in that they consider only effective computations in the sense of logic
and recursion theory [Kle52, Rog67, Tur37], whereas the BSS model admits
non-effective operations such as equality tests on real numbers. The BSS model
is best conceived as a useful idealization of floating-point computation, as we
have indicated above, and as Blum, Shub and Smale indicate in their seminal
paper [BSS89].


However, work on exact real number computation has focused on representa-
tions of real numbers and has neglected the issue of data types for real numbers.
Two exceptions are [BC90] and [Gia93a]. In particular, programming languages
for exact real number computation with an explicit distinction between opera-
tional semantics [Gun92], which is representation-dependent, and denotational
semantics [Gun92], which is representation-independent, have hardly been in-
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vestigated. An exception is [Gia93a]. Such programming languages allow for
correctness proofs based on analytical methods, in a representation-independent
fashion, as discussed below.


The real numbers type of Real PCF is interpreted as the interval domain
introduced by D.S. Scott [Sco72b], which is related to the interval space in-
troduced by R.E. Moore [Moo66]. The elements of the interval domain are
considered as “generalized real numbers” or “partial real numbers”. Such an
extension of PCF was one of the problems left open by G.D. Plotkin in his
seminal paper [Plo77]. Pietro di Gianantonio [Gia93a] also presents an exten-
sion of PCF with a ground type interpreted as a domain of real numbers, with
the purpose of obtaining an abstract data type for real numbers. His extension
is based on an algebraic domain of real numbers. In this thesis we push his
ideas further; in particular, in addition to work with a continuous domain of
real numbers which faithfully represents the real line, we give an operational
semantics to our extension of PCF with real numbers.


There have been a number of applications of domain theory in constructing
computational models for classical spaces, including locally compact Hausdorff
spaces [Eda95e] and metric spaces [EH96]. These models have resulted in new
techniques in computation with real numbers. In particular the computational
measure and integration theory [Eda95e, Eda95b, Eda96b, EN96] has had vari-
ous applications, including exact computation of integrals, in fractals [Eda96a],
statistical physics [Eda95a], stochastic processes [Eda95d] and neural networks [Eda95c,
Pot95].


An important feature of our approach to exact real number computation
is that the programmer does not have access to representations within the
programming language and can think of real numbers as abstract entities in
the usual mathematical sense. Of course, the Real PCF machinery has access
only to concrete representations. The correct interaction between the abstract
level and the concrete level is usually referred to as computational adequacy . At
the denotational level, a Real PCF program is just a mathematical expression
denoting a number or a function. The task of the programmer is to find a
mathematical expression in this language denoting the entity that he or she
has in mind. This entity is usually given by unrestricted mathematical means.
In this case the programmer has to find an equivalent Real PCF expression.
Computational adequacy ensures that the entity denoted by the program will be
actually computed by the Real PCF machinery. This is why the programmer is
not concerned with representations in correctness proofs. Of course, in order to
obtain efficient programs, the programmer has to reason about representations.
The point is that efficiency considerations and correctness proofs can be tackled
separately.


We introduce induction principles and recursion schemes for the real num-
bers domain, which are formally similar to the so-called Peano axioms for nat-
ural numbers [Sto66]. These principles and schemes allow us to prove correct-
ness of programs and derive correct programs respectively.


In addition to computational adequacy, a main result is computational com-
pleteness , which roughly means that Real PCF has enough primitive operations
to express all computable functions. This result is proved by means of the above
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induction principles and recursion schemes.


1.1 Main results and underlying ideas


We now proceed to a slightly more detailed and technical exposition of our main
results and underlying ideas.


Computational Adequacy The operational semantics of Real PCF imple-
ments computations on real numbers via computations on rational intervals.
We show that the operational semantics is computationally adequate with re-
spect to the denotational semantics, in the sense that every piece of information
about the value assigned by the denotational semantics to a program is even-
tually produced in a finite number of steps by the operational semantics. The
intuitive idea of “piece of information” is formalized via the use of continuous
domains [AJ94, Sco72a], and the the proof of computational adequacy relies on
the basic machinery of continuous domains, including the so-called “way-below
relation” and “ε−δ characterization of continuity”. The domain of partial num-
bers is a (non-algebraic) continuous domain. Its subspace of maximal points
(single-point intervals) is homeomorphic to the Euclidean real line, so that real
numbers are special cases of partial real numbers. Notice that no algebraic
domain can have the real line as its subspace of maximal points.


Continuous words We show that partial real numbers can be considered as
“continuous words”, and we use this fact to obtain the operational semantics
of Real PCF. Partial real numbers can be considered as continuous words in
the sense that they can be given the structure of a monoid, in such a way that
it has a finitely generated submonoid isomorphic to the monoid of words over
any finite alphabet. Moreover, as it is the case for words, the prefix preorder
of the monoid of continuous words coincides with its information order. This
coincidence is the basis for the successful interaction between the operational
and denotational semantics of Real PCF.


Concatenation of continuous words has intuitive geometrical and compu-
tational interpretations. Geometrically, a concatenation of continuous words
corresponds to a rescaling of an interval followed by a translation (an affine
transformation). Computationally, a concatenation of continuous words corres-
ponds to refinement of partial information; in a concatenation xy, the partial
real number y refines the information given by x, by selecting a subinterval of x.


The notion of length of words generalizes to partial real numbers. The
length of a partial real number is an extended non-negative real number, being
infinity iff the partial number is maximal, and zero iff the partial number is
bottom. Roughly speaking, the length of a partial number x considered as a
partial realization of an unknown real number y gives the number of digits of a
digit expansion of y that x is able to give correctly. The concatenation operation
“adds lengths”, in the sense that the length function is a monoid homomorphism
from the monoid of partial real numbers to the additive monoid of non-negative
extended real numbers.
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The usual basic operations cons, head and tail used to explicitly or recurs-
ively define functions on words generalize to partial real numbers. Geometric-
ally, the operation cons is an affine transformation (in analytic terms, a linear
map) on the unit interval, tail reverses the effect of cons, and head decides in
which half of the real line its argument lies, telling us nothing in ambiguous
cases.


Concatenation of partial numbers can be infinitely iterated. This fact gives
a notion of meaningful infinite computation. The concatenation of finite initial
segments of infinite computations gives more and more information about the
final result, in such a way that every piece of information about the (ideal)
result is eventually produced in a finite amount of steps. In practice, the terms
of a computation can be taken as the partial numbers with distinct rational
end-points.


The interpretation of partial real numbers as continuous words is related to
a well-known approach to real number computation. Usual binary expansions
are not appropriate representations for real number computation; for instance,
multiplication by three is not computable if we read the expansions from left
to right [Wie80]. But binary expansions of numbers in the signed unit interval
[−1, 1] allowing a digit −1 turn out to be effective [BCRO86, Gia93a, Gru,
Wei87, Wei95, Wie80]. In the domain of partial numbers contained in the signed
unit interval, infinite concatenations of the partial numbers [−1, 0], [−1


2 ,
1
2 ] and


[0, 1] correspond to binary expansions of numbers in the signed unit interval
using the digits −1, 0 and 1 respectively.


To be accurate, the interpretation of partial numbers as continuous words
holds only for the domain of partial real numbers contained in the unit interval
(or any other compact interval). The domain of partial numbers contained in
the unit interval is referred to as the partial unit interval , and the domain of
all partial real numbers is referred to as the partial real line. The above results
are extended from the partial unit interval to the partial real line via an action
of the partial unit interval on the partial real line.


Higher-order real number computation In the standard interpretation of
Real PCF, types are interpreted as bounded complete continuous domains [AJ94],
which form a cartesian closed category [LS86] suitable for higher-order real num-
ber computation. We refer to the domains in the universe of discourse of Real
PCF induced by the standard interpretation of types as the real numbers type
hierarchy . Sequences are functions defined on natural numbers, and predic-
ates are truth-valued functions. Thus, in the real numbers types hierarchy we
have real numbers, functions between real numbers, predicates defined on real
numbers, sequences of real numbers, sequences of sequences of real numbers,
sequences of functions, functionals mapping sequences to numbers (such as lim-
iting operators), functionals mapping functions to numbers (such as integration
and supremum operators), functionals mapping predicates to truth-values (such
as existential and universal quantification operators), and so on.
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Higher-order exact real number computability As it is well-known, the
notion of computability on a domain depends on the choice of an effective
presentation [KP79]. We say that an effective presentation of the real numbers
type hierarchy is sound if all Real PCF definable elements and functions are
computable with respect to it. The idea is that Real PCF has an effective op-
erational semantics, and therefore the definable elements and functions should
be regarded as concretely computable. An important result is that there is a
unique sound effective presentation of the real numbers type hierarchy, up to
equivalence with respect to the induced notion of computability. We can thus
say that there is an absolute notion of computability for the real numbers type
hierarchy.


Computational completeness of Real PCF We show that all comput-
able elements and all computable first-order functions in the real numbers type
hierarchy are Real PCF definable. However, as it is the case for PCF, some
higher-order computable functions, including an existential quantifier, fail to be
definable. If a constant for the existential quantifier (or, equivalently, a com-
putable supremum operator) is added, the computational adequacy property
remains true, and Real PCF becomes a computationally complete programming
language, in the sense that all computable functions of all orders become defin-
able [Esc96b], as it is also the case for PCF. Informally, this means that Real
PCF has enough primitive operations.


Recursive real functions So far, except for the recent work by Brattka [Bra96],
there has been no attempt to characterize computability on the real line via
recursiveness. The computational completeness result for Real PCF immedi-
ately gives rise to an inductively defined collection of higher-order functions on
real numbers (namely the Real PCF definable ones) which contains exactly the
computable ones. Thus, we can reason about computability in a representation-
independent way, by reducing computability questions to recursiveness ques-
tions.


Induction and recursion on the real line We introduce induction prin-
ciples and recursion schemes for the real line, based on the theory of do-
main equations [AJ94, Plo80, SP82] and previous work on the uniform real
line [Esc94]. These principles abstractly characterize the partial real line up to
isomorphism in the category of bounded complete domains, in the same way as
the so-called Peano axioms for natural numbers characterize the natural num-
bers up to isomorphism in the category of sets. On the practical side, they allow
us to derive recursive definitions of real functions, which immediately give rise
to correct Real PCF programs (by an application of computational adequacy).
Also, these principles form the core of the proof of absoluteness of the standard
effective presentation of the real numbers type hierarchy, and of the proof of
computational completeness of Real PCF.
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Integration in Real PCF We report results on integration in Real PCF
consisting of joint work with Abbas Edalat [EE96a]. We begin by generaliz-
ing Riemann integration of real valued functions of real variables to partial
real valued functions of partial real variables. We then show that several basic
properties of standard Riemann integration generalize to interval Riemann in-
tegration. In particular, we prove a generalization of the so-called Fubini’s rule,
which reduces multiple integrals to iterated simple integrals. We then consider
two approaches to integration in Real PCF. First, we show how to introduce
integration as a primitive operation, with a simple operational semantics which
is proved to be computationally adequate. Second, we introduce the supremum
operator mentioned above as a primitive operation, again with a simple oper-
ational semantics which is proved to be computationally adequate, and then
we show that the integration operator can be recursively defined in Real PCF
extended with the supremum operator.


1.2 Additional contributions


In order to either justify some of the decisions taken in the course of our invest-
igation or else obtain our results on real number computation, we were led to
obtain some subsidiary results in domain theory, which are interesting in their
own right. These results are reported in Part II, and are about, or directly
related to


• domain equations [AJ94, Plo80, Sco72a, SP82],


• effectively given domains [EC76, Plo80, Smy77], and


• coherently complete domains [Plo78].


1.3 Background


The prerequisites for this work are basic topology [Bou66, Kel55, Smy92b,
Vic89], basic recursion theory [Phi92, Rog67], very basic category theory [Cro93,
ML71, McL92, Poi92], domain theory [AJ94, GHK+80, Plo80], effective domain
theory [EC76, Plo80, Smy77], and operational and denotational semantics of
PCF [Gun92, Plo77]. Since domain theory, effective domain theory, and PCF
are heavily used in this thesis, we include background chapters on these sub-
jects. Some notions of the other subjects are recalled when they are needed.


1.4 Organization


This thesis is organized in five parts,


I Background


II Domain theory revisited


III The partial real line


6







IV Computation on the partial real line


V Integration on the partial real line,


in addition to a part containing concluding remarks. Each part contains a
description of its contents and organization, and so does each of its chapters.


The reader who is mainly interested in real number computation can safely
skip Part II at a first reading, as we clearly indicate when some chapter in
Part II is needed to proceed further.


An automatically generated index of definitions is included; it contains the
emphasized defined terms and some mathematical symbols.
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Part I


Background
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This part can be used as a reference. In Chapter 2 we introduce domain
theory. In Chapter 3 we introduce effective domain theory. In Chapter 4 we
introduce the programming language PCF.
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Chapter 2


Domain theory


We regard domain theory as a branch of topology which is conveniently presen-
ted via order theoretic concepts, as it is done in the seminal papers [Sco72a,
Sco76] by Dana Scott. This chapter, which can be used as a reference, intro-
duces basic concepts, terminology, and results.


Our main references to domain theory are [AJ94, Plo80]. Additional ref-
erences to the topological aspects of domain theory are [GHK+80, Smy92b,
Vic89].


2.1 Directed complete posets and the Scott topology


A preordered set is a set together with a reflexive and transitive binary rela-
tion v. Preordered sets naturally arise in topology as follows. For any spaceX ,
the binary relation v defined by


x v y iff every neighbourhood of x is a neighbourhood of y
iff x belongs to the closure of {y},


is a preorder on the points of X , called the specialization order of X . It is
clear from the definition that any continuous map between topological spaces
preserves the specialization order. If X is Hausdorff, then this preorder is trivial
because it is the identity relation (also called the discrete order). A main
feature of domain theory is that it considers spaces with a rich specialization
order.


Convention 2.1 Unless otherwise stated, every mention of order in a topo-
logical space implicitly refers to its specialization order. �


A poset (partially ordered set) is a preordered set (P,v) with v an-
tisymmetric. Recalling that a space is T0 if no two distinct points share the
same system of neighbourhoods, antisymmetry of the specialization order is
equivalent to the T0 axiom.


Let P be a poset, x ∈ P , and X ⊆ P . Then we write


1. ↑↑x = {v ∈ P |x v v},
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2. ↓↓x = {u ∈ P |u v x},


3. ↑↑X =
⋃
x∈X ↑↑x,


4. ↓↓X =
⋃
x∈X ↓↓x.


Convention 2.2 We use the words below and above in partial ordered sets
to refer to order in the non-strict sense. For example, if x v y we say that x is
below y and that y is above x. If we want to imply that x and y are distinct,
we say strictly below and strictly above. �


A subset A of a poset P is directed if every finite subset of A has an
upper bound in A. Since the empty set is included in this definition, a directed
set is non-empty. A dcpo (directed complete poset) is a poset with least
upper bounds of directed subsets. The order relation of a dcpo is called its
information order.


Convention 2.3 We write
⊔
A to denote the least upper bound of a subset A


which has a least upper bound, and we write
⊔↑A to denote the least upper


bound of a set A which is assumed to be directed. �


A function between dcpos is order-continuous if it preserves least upper
bounds of directed subsets. Such a function is necessarily monotone.


The Scott topology of a dcpo D has as open sets the sets O such that


1. O is an upper set, and


2. if O contains the least upper bound of a directed subset A of D then O
already contains a member of A.


It follows that a set is closed in the Scott topology iff it is a lower set containing
the least upper bounds of its directed subsets. The main feature of this topology
is that order-continuity coincides with topological continuity. Moreover, if D is
a dcpo endowed with its Scott topology, then its specialization order coincides
with its information order.


Convention 2.4 Unless otherwise stated, when we implicitly or explicitly
refer to a dcpo D as a topological space, we mean the set of elements of D
endowed with the Scott topology of D. �


2.2 Pointed dcpos and least fixed-points


A dcpo is pointed if it contains a least element ⊥, called bottom. A function
between pointed dcpos is strict if it preserves ⊥.


Every dcpo D can be made into a pointed dcpo by the addition of a new
least element ⊥. The resulting dcpo is denoted by D⊥ and is called the lifting
of D. This construction makes sense even if D is already pointed.


A fixed-point of an endofunction f : X → X is an element x such that
f(x) = x. Every continuous endomap f : D → D on a pointed dcpo D has
a least fixed-point, given by


⊔↑
n∈ω f


n(⊥). Least fixed points are interesting
mainly in connection with function spaces, which are discussed below.
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2.3 Domains


The way-below order of a dcpo D is the binary relation� on D defined by


x� y in D iff for every directed set A ⊆ D, y v
⊔↑A implies x v a


for some a ∈ A.


A continuous map f : D→ E preserves the way-below relation iff its a semiopen
map, in the sense that ↑↑f(O) ⊆ E is Scott open for every Scott open set O ⊆ D.
The following properties are easily verified (for example, for the first one, it
suffices to consider A = {y}), and some of them are entailed by the others:


1. x� y implies x v y,


2. if ⊥ is a least element then ⊥ � x,


3. u v x� y v v implies u� v,


4. x� y � z implies x� z,


5. if u� x, v � x and u t v exists then u t v � v.


There is no reason why any pair (x, y) (except if x is a minimal element) should
be related by the way-below relation for general dcpos (an example in which only
such pairs are related by the way-below order is given by two complete chains
with top elements identified). A dcpo is continuous if its way-below relation is
frequent, in the sense that it satisfies the following axiom of approximation:


x =
⊔↑
y�x


y.


That is, the set of elements way-below x is directed and has x as its least upper
bound. The axiom of approximation implies that


If x 6v y then there is some u� x such that already u 6v y.


We write


1. ↑↑x = {v ∈ P |x� v},


2. ↓↓x = {u ∈ P |u� x},


3. ↑↑X =
⋃
x∈X ↑↑x,


4. ↓↓X =
⋃
x∈X ↓↓x.


With this notation, the axiom of approximation reads


x =
⊔↑ ↓↓x.


In a continuous dcpo, the way-below relation satisfies the following interpola-
tion property:


If x� y then there is some u such that x� u� y.
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This implies that


x � y iff for every directed set A, we have that x � a for some
a ∈ A whenever y v


⊔↑ A.


A domain is a continuous dcpo. A basis of a domain D is a subset B such
that


x =
⊔↑
↓↓x ∩B.


That is, x is the directed join of the members of B which are way-below x. By
definition, a domain is a basis of itself. A domain is countably based if it has
a countable basis (the terminology ω-continuous is also used).


For any basis B of a domain D, the sets ↑↑b for b ∈ B form a base of the
Scott topology. Thus, if D and E are domains with bases B and C, then a
function f : D → E is continuous at x iff


c� f(x) for c ∈ C iff there is some b� x in B such that c� f(b).


This is often referred to as the ε− δ characterization of continuity. Also,
f is continuous at x iff


f(x) =
⊔↑
b�x


f(b).


An element x is finite (or compact, or isolated from below) if it is way-
below itself. This means that x is below some member of each directed set with
least upper abound above x. Any basis of a continuous dcpo contains the set of
compact elements (which can be empty). A dcpo is algebraic if the compact
elements form a basis. The basis of finite elements of an algebraic domain D is
denoted by KD.


2.4 Lattice-like domains


A continuous lattice is a continuous dcpo which is also a complete lattice
(has all joins and meets, including those of the empty set).


A subset of a poset is bounded (or consistent) if is has an upper bound.
A poset is bounded complete (or consistently complete) if every bounded
subset has a least upper bound. Since this definition includes the empty set,
which is bounded iff the poset is non-empty, a bounded complete poset is poin-
ted if it is non-empty. A bounded complete domain is a continuous dcpo
which is also bounded complete. Every continuous lattice is a bounded com-
plete domain, but not conversely. However, if a bounded complete domain fails
to be a continuous lattice, it fails only by lacking a top element. Moreover,
the bounded complete domains are the closed subspaces of continuous lattices.
Notice that for this to be true we have to admit the empty bounded complete
domain – as we did. We refer to bounded complete, countably based domains
as continuous Scott domains.


A subbasis of a bounded complete domain D is a subset S such that the
joins of finite consistent subsets of S form a basis, called the basis induced
by S.
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A poset is coherently complete if every pairwise consistent subset has a
least upper bound. Plotkin [Plo78] says that a poset is coherent in this case.
We follow the terminology of [Str94], because coherence is used to denote many
different notions in computing science and mathematics. Every coherently com-
plete poset is bounded complete, but not conversely. A coherently complete
domain is a continuous dcpo which is also coherently complete.


For any poset P we write


1. x↑↑y in P iff {x, y} is bounded,


2. x# y iff not x↑↑y.


In these cases we respectively say that x and y are consistent and that x and y
lie apart. This terminology is taken from [Plo77, Plo78]. Monotone functions
preserve the consistency relation and reflect the apartness relation. A bounded
complete domain is coherently complete iff whenever an element is apart from
the least upper bound of a bounded set, it is already apart from some member
of the set.


2.5 Retracts and universal domains


A section-retraction pair between objects X and Y of a category X consists
of morphisms


X
r
�
s
Y with r ◦ s = idX .


In this case s ◦ r is an idempotent on Y and X is called a retract of Y .
The categories of domains, continuous lattices, bounded complete domains,


and coherently complete domains are closed under the formation of retracts in
the ambient category of dcpos and continuous maps.


An object of a category is universal if it has every object of the category
as a retract. This (well-established) terminology is obviously misleading, as the
term “universal” is already used in another sense in category theory.


Let B= {tt,ff} be the discretely ordered set of truth values, B= B⊥ be
the flat domain of truth values. Then Bω is a universal domain in the
category of countably based coherently complete domains and strict continuous
maps (and hence is also universal in the larger category with all continuous
maps) [Plo78]. (But notice that it is not known whether every coherently
complete domain is the retract of some power of B; Plotkin [Plo78] conjectures
that the answer is negative.)


2.6 Function spaces


We assume that the reader is familiar with the concept of cartesian closed cat-
egory [ML71, McL92, Poi92]. Roughly, a cartesian closed category is a category
with finite products and well-behaved function spaces, called exponentials.


The category of dcpos and continuous maps is cartesian closed. The empty
product is the one-point dcpo, and binary products are obtained by forming the
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set-theoretical product and endowing it with the componentwise order defined
by


(x, y) v (u, v) iff x v u and y v v.


Exponentials are given by the set of all continuous maps endowed with the
pointwise order defined by


f v g iff f(x) v g(x) for all x.


The exponential D ⇒ E of two dcpos is endowed with the application map
app : (D⇒ E)×D→ E defined by


app(f, x) = f(x),


which is continuous. Moreover, in this case, for any dcpo C there is a bijection
between continuous maps C × D → E and continuous maps C → (D ⇒ E)
which sends a map f : C×D → E to the map curry(f) : C → (D⇒ E) defined
by


curry(f)(x)(y) = f(x, y),


also called the transpose of f . In the other direction, the bijection sends a
map g : C → (D⇒ E) to the map uncurry(g) : C ×D→ E defined by


uncurry(g)(x, y) = g(x)(y).


For any pointed dcpo E, the function fix : (E ⇒ E) → E which sends a
function f ∈ (E ⇒ E) to its least fixed-point


⊔↑
n f


n(⊥) ∈ E is continuous, and
it is called the least fixed-point combinator. In applications, it is often the
case that E is a function space C ⇒ D, and the least fixed-point operator is used
to solve functional equations of the form f = F (f) for F : (C ⇒ D)→ (C ⇒ D)
continuous. Such a functional equation is often called a recursive definition
of f , and it is implicitly assumed that it defines f to be the least fixed-point
of F .


The category of domains and continuous maps fails to be cartesian closed,
because exponentials fail to exist in general. However, the full subcategories
of continuous lattices, bounded complete domains, and coherently complete
domains are cartesian closed, and, moreover, products and function spaces are
calculated as in the category of dcpos and continuous maps. There are other
interesting examples of cartesian closed categories of domains [Jun90, JS96a,
JS96b], but they are outside the scope of this work.


If D and E are bounded complete domains with (countable) bases A and B
respectively, then a (countable) subbasis of D ⇒ E is the set of single-step
functions A⇒s B = {a Z⇒ b|a ∈ A, b ∈ B}, where


(a Z⇒ b)(x) =


{
b if a� x,
⊥ otherwise.


The induced (countable) basis is denoted by A ⇒ B, and its members (finite
joins of consistent single-step functions) are referred to as step functions.
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2.7 Ideals and round ideals


Let P be a poset. An ideal in P is a directed lower set in P . The set of
all ideals of P ordered by inclusion is an algebraic domain, referred to as the
ideal completion of P . Every algebraic domain is isomorphic to the ideal
completion of its basis of finite elements. The isomorphism is given by the map
which sends an element x to the ideal of finite elements below x.


Every continuous domain is a retract of an algebraic domain. In fact, if B
is a basis of a domain D, then D is a retract of the ideal completion of B. The
section sends an element x ∈ D to the ideal ↓↓x ∩ B, and the retraction sends
an ideal I ⊆ B to its least upper bound


⊔↑ I ∈ D.
Smyth [Smy77] introduced round ideals in the context of R-structures (also


called abstract bases in [AJ94]) as a generalization of Dedekind cuts, with the
purpose of constructing continuous domains as certain completions of their
bases, discussed below.


An abstract basis is a transitively ordered set (B,≺) such that for all finite
M ⊆ B,


M ≺ x implies M ≺ y ≺ x for some y ∈ B.


Here M ≺ x is a short-hand for m ≺ x for each m ∈M . Lower sets and directed
sets for transitively ordered sets are defined in the same way as for partially
ordered sets. A round ideal of an abstract basis (B,≺) is a directed set A
with A = ↓↓A, or, equivalently, such that


1. for all x ≺ y in B, if y ∈ A then x ∈ A, and


2. for every x ∈ A there is some y ∈ A with x ≺ y.


The round completion of an abstract basis consists of the set of round ideals
ordered by inclusion. The round completion of any abstract basis is a domain;
moreover, the image of the embedding b 7→ ↓↓b of B into the completion is a basis
of the completion. Conversely, for any basis B of a domain D, the restriction
of the way-below order of D to B gives rise to an abstract basis, with round
completion isomorphic to D.


2.8 Injective spaces


In typical applications of domain theory, one starts by embedding given spaces
into appropriate domains (see e.g. [Sco76, Plo78, Eda95e, Eda95b, Eda96a,
Eda96b, EE96a, Esc96a, EH96]). Thus, given spaces X and Y embedded into
domains D and E respectively, it is natural to ask whether the continuous
maps D → E capture the continuous maps X → Y , in the sense that every
continuous map f : X → Y extends to a continuous map h : D → E. Since
every continuous map f : X → Y trivially coextends to a continuous map
g : X → E, it suffices to consider extensions of continuous maps g : X → E to
continuous maps h : D→ E. This brings us to the subject of injective spaces.


Let X be a category and J be a class of monomorphisms of X closed under
composition with isomorphisms. An object E ∈ X is injective with respect
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to J if every morphism g : X → E extends to a morphism h : D → E, for any
subobject inclusion j : X → D in J:


X ⊂
j - D


@
@
@g R 	..


...
..


h
E


Here we consider the category of T0 spaces.
When the class J consists of all subspace inclusions, we simply speak of


injective spaces, as in [Sco72a], and we have that:


The injective spaces are the continuous lattices.


Moreover, extensions can be found in a canonical way. If X is a subspace of a
space Y , and E is any injective space, then every continuous map g : X → E
has a greatest continuous extension ĝ : D → E, with respect to the pointwise
order induced by the specialization order of E, given by


ĝ(d) =
⊔↑


d∈V ∈ΩD


l
x∈V ∩X


g(x).


Here ΩD is the lattice of open sets of D.
In several applications, the spaces embedded into domains are Hausdorff


(e.g. the discrete space of natural numbers, the ω-power of the discrete space
{0, 1} of bits) and the embeddings are onto the subspace of maximal points
of bounded complete domains (e.g., the flat domain of natural numbers, the
domain of finite and infinite sequences of bits ordered by prefix). In our applic-
ations, we consider the embedding of the Euclidean real line onto the subspace
of maximal points of the interval domain discussed in Chapter 8.


The closure of any subset of a domain contains its lower set. By Zorn’s
Lemma, every point of a domain is below some maximal point. Hence the
closure of the subspace of maximal points is the whole domain. Therefore the
set of maximal points of a domain is dense.


A space is densely injective if it is injective with respect to the class
of dense subspace inclusions. Since there are fewer dense subspace inclusions
than subspace inclusions, there are more densely injective spaces than injective
spaces, and we have that:


The densely injective spaces are the bounded complete domains.


Notice that for this to be true we have to admit the empty bounded complete
domain (cf. Section 2.4). Again, extensions can be found in a canonical way. If
X is a dense subspace of a space Y , and E is any domain, then every continuous
map g : X → E has a greatest continuous extension ĝ : Y → E, given by the
same rule as for injective spaces. The fact that X is dense is equivalent to the
fact that the set X ∩ V is non-empty for every non-empty open subset V of Y .
Therefore the meet cannot be the missing top element, which shows that the
rule gives rise to a well-defined map.
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The examples of embeddings given above are, in fact, embeddings into co-
herently complete domains. A subspace X of a space Y is called isochordal
in [Plo78] if for any pair of disjoint open sets U and V in X there is a pair of
disjoint open sets U ′ and V ′ in Y such that U ′ ∩X = U and V ′ ∩X = V . For
example, every dense subspace is isochordal. A space is isochordally inject-
ive if it is injective with respect to the class of isochordal subspace inclusions.
There is no known domain-theoretic characterization of the isochordally in-
jective spaces. However, there is a domain-theoretic characterization of the
isochordalily injective second countable spaces:


In the category of second countable T0 spaces, the isochordally in-
jective spaces are the countably based, coherently complete domains.


2.9 Bifree algebras


Let X be a category and F : X→ X be a functor. Recall that an F-algebra is
a morphism α : FX → X , and that an F-algebra homomorphism from an
algebra α : FX → X to an algebra β : FY → Y is a morphism h : X → Y such
that h ◦ α = β ◦Fh:


FX α−−−→ X


Fh


y yh
FY −−−→


β
Y


Dually, an F-coalgebra is a morphism α : X → FX , and an F-coalgebra
homomorphism from a coalgebra α : X → FX to a coalgebra β : X → FX
is a morphism h : X → Y such that Fh ◦ α = β ◦ h:


X
α−−−→ FX


h


y yFh


Y −−−→
β


FY


Algebras (resp. coalgebras) compose and form a category.
If α : FX → X is an initial algebra then α is an isomorphism. Freyd [Fre90,


Fre91, Fre92] attributes this fact to Lambek.


Definition 2.5 A bifree algebra is an initial algebra α : FX → X whose
inverse is a final coalgebra (Freyd speaks of free algebras in this case). �


Sometimes a bifree algebra α : FX → X is referred to as the canonical
solution to the domain equation


X ∼= FX.


In this work we consider bifree algebras in the category SDom of bounded
complete domains and strict continuous maps. A functor F : SDom→ SDom
is locally continuous if for all D and E, the map


f 7→ Ff : (D⇒ E)→ (FD⇒ FE)
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is continuous. A basic result of Smyth and Plotkin [SP82] is that


Every locally continuous functor F : SDom → SDom has a bifree
algebra.


This result is stated and proved in a much more general form which does not
concern us in this work. Also, it is not relevant for the purposes of this work
how the canonical solution is constructed, because we can deduce the results
that we are interested in from the formal properties of bifree algebras. The
interested reader can find the construction of the bifree algebra as a bilimit
in [AJ94, Plo80, SP82].
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Chapter 3


Effectively given domains


This chapter introduces effectively given domains. The material of Section 3.3
on effectively given algebraic domains is standard [EC76, Plo80]. However,
the material on effectively given coherently complete domains is slightly non-
standard, but it is based on well-known ideas by Plotkin [Plo78] and Smyth [Smy77].


3.1 Recursion theory preliminaries


Recall that a pairing function is a recursive bijection (m, n) 7→ 〈m, n〉 : N2 →
N. For any pairing function there are unique recursive maps π1, π2 : N → N
such that l 7→ (π1(l), π2(l)) is its inverse. See Rogers [Rog67] for a construction
of a pairing function. In this section we consider an unspecified pairing function
denoted as above, with projections also denoted as above.


Definition 3.1 Let A ⊆ N be a set of the form {n1, n2, . . . , nk} with n1 <
n2 < · · · < nk. Then the natural number


∑k
i=1 2ni is called the canonical


index of A. Notice that if A is empty then the canonical index of A is 0. The
finite set with canonical index n is denoted by ∆n. �


The idea is to use binary expansions. The condition n1 < n2 < · · · < nk is not
actually needed; it is enough that ni 6= nj for i 6= j. Rogers writes Dn instead of
∆n, but this is in conflict with the usual notation for domains. The particular
form of the indexing of finite sets given in Definition 3.1 is not important. The
only relevant properties are:


1. The map n 7→ ∆n is a bijection between natural numbers and finite sets
of natural numbers.


2. There are recursive functions δ and ρ such that if ∆n is non-empty then


(a) δ(n) ∈ ∆n,


(b) ∆ρ(n) = ∆n − {δ(n)}.


Definition 3.2 Let A and B be sets endowed with enumerations {an}n∈N and
{bn}n∈N of its elements respectively.
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1. A subset X of A is recursive (respectively r.e.) if the set X̂ = {n ∈
N|an ∈ X} is recursive (respectively r.e.).


2. A function f : A → B is recursive if there is a recursive function f̂ :
N→ N such that f(an) = bf̂(n).


3. A relation R ⊆ A × B is recursive (respectively r.e.) if the relation
R̂ ⊆ N × N defined by mR̂n iff amRbn is recursive (respectively r.e.).
This definition generalizes to n-ary relations on n enumerated sets in the
obvious way.


4. A set C of finite subsets of A is recursive (respectively r.e.) if the set
{n | {bk|k ∈ ∆n} ∈ C} is recursive (respectively r.e.).


5. A relation R ⊆ A × PfinB is recursive (respectively r.e.) if the relation
R̂ ⊆ N×N defined by mR̂n iff amR{bk|k ∈ ∆n} is recursive (respectively
r.e.). �


3.2 Effectively given domains


This subsection contains preliminary definitions and motivations for the defini-
tions of algebraic and continuous effectively given domains given in the following
sections.


Definition 3.3 Let D and E be domains together with enumerated bases A
and B respectively.


1. An element x ∈ D is computable if the set Ax
def= ↓↓x ∩ A is recursively


enumerable.


2. A continuous function f : D → E is computable if the relation


Graph(f) def= {(a, b) ∈ A×B|b� f(a)}


is recursively enumerable. �


These definitions of computability are appropriate only if certain properties of
the enumerations are assumed. First, computable functions should form a cat-
egory under ordinary function composition; that is, the identity function should
be computable, and the composition of two composable computable functions
should be computable. For instance, the identity is computable iff the way-
below order restricted to basis elements is recursively enumerable. Moreover, if
f : D → E is computable and x ∈ D is computable, f(x) should be computable.
Also, it would be reasonable to have that x ∈ D is computable iff there is some
r.e. directed subset of A with lub x, and this cannot be proved without further
assumptions on the enumeration of A.


Second, a category of computable functions appropriate for higher-order
computability has to be cartesian closed. We restrict our attention to the
category of bounded complete domains as it is done in [EC76, Plo80, Smy77].
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Convention 3.4 In this chapter, the term domain designates a bounded
complete countably based domain. �


To say that a cartesian category of computable maps is closed amounts to saying
that the evaluation map is computable and that a function defined on a cartesian
product is computable iff its transpose is computable. Given domains D and
E endowed with enumerated bases (A, {an}n∈N) and (B, {bn}n∈N) respectively,
it is natural to construct an enumerated basis (A ⇒ B, {(a⇒ b)n}n∈N) of the
function space D ⇒ E as follows:


1. A ⇒ B is the basis induced by the subbasis consisting of single-step
functions a Z⇒ b for a ∈ A and b ∈ B (cf. 2.6).


2. (a⇒ b)n =


{⊔
M if M def= {al Z⇒ bm| 〈l, m〉 ∈ ∆n} is consistent,
⊥ otherwise.


It would be reasonable to have that a continuous map f : D → E is computable
as a function iff it is computable as an element of the function space D ⇒ E.
Since consistency is not decidable for arbitrary enumerations [Smy77], this is
not true in general. In particular, it follows that the category of domains with
enumerated bases and computable functions is not cartesian closed.


3.3 Effectively given algebraic domains


This section is based on [EC76, Plo80]. We only present the (parts of the)
proofs which are necessary for this work.


Definition 3.5 An effectively given algebraic domain is an algebraic do-
main D together with an enumeration {bn}n∈N of KD such that the following
relations are recursive:


1. x↑↑y,


2. x = y t z,


for x, y, and z ranging over KD (cf. Definition 3.2).
The notions of computability of elements and functions are given by Defin-


ition 3.3. �


Lemma 3.6 (D, {bn}n∈N) is an effectively given algebraic domain iff the fol-
lowing are recursive:


1. the set of finite consistent subsets of KD,


2. the relation x v
⊔
Y for x ∈ KD and Y ⊆fin KD.


Lemma 3.7 In order to effectively present an algebraic domain D it suffices
to give an enumeration {sn}n∈N of a subbasis S of D contained in KD, such
that the following are recursive:
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1. the set of finite consistent subsets of S,


2. the relation x v
⊔
X for x ∈ S and X ⊆fin S.


Proof Take


bn =


{⊔
M if M def= {sk|k ∈ ∆n} is consistent,
⊥ otherwise. �


Proposition 3.8 An element x of an effectively given algebraic domain
(D, {bn}n∈N) is computable iff there is a primitive recursive function k 7→ nk
such that the set {bnk}k∈N is consistent and has lub x.


We say that a set M is way-consistent it is has an upper bound in the
way-below order.


Lemma 3.9 Let D and E be bounded complete algebraic domains, and {ai}i∈I
and {bi}i∈I be finite families of elements of D and E respectively. Then the
following statements are equivalent:


1. {ai Z⇒ bi}i∈I is a consistent subset of D ⇒ E.


2. For every J ⊆ I, if {aj}j∈J is way-consistent then {bj}j∈J is consistent.


As a corollary, we have that


Lemma 3.10 Let D and E be bounded complete domains respectively, {ai}i∈I
and {bi}i∈I be finite families of compact elements of D and E respectively, and
assume that the set {ai Z⇒ bi}i∈I is consistent. Then the following statements
hold:


1.
⊔
i∈I{ai Z⇒ bi} v f iff bi v f(x) for all i ∈ I and all compact x ∈ ↑↑ai.


2.
⊔
i∈I{ai Z⇒ bi}# f iff bi# f(x) for some i ∈ I and some compact x ∈ ↑↑ai.


Recall that, under the conditions of the above lemma,
⊔
{ai Z⇒ bi}i∈I is a


compact element of D⇒ E.


Proposition 3.11 A map f between effectively given algebraic domains D
and E is computable as a function D → E iff it is computable as an element
of the function space D ⇒ E. An element x ∈ D is computable iff the global
element x : 1→ D is a computable function.


Proposition 3.12 The category of effectively given algebraic domains and
computable functions is cartesian closed.


In particular, the evaluation map is computable, and thus if f : D → E and
x ∈ D are computable so is f(x).
Proof Let (D, {an}n∈N) and (E, {bn}n∈N) be effectively given algebraic do-
mains. We only consider function spaces. Define an enumeration of the subbasis
of D ⇒ E consisting of finite single-step functions by s〈m,n〉 = (am ⇒ bn). Then
the conditions of Lemma 3.7 apply, as Lemmas 3.9 and 3.6 show. If the induced
enumeration of the the step functions of D ⇒ E is denoted by {(a⇒ b)n}n∈N
then (D⇒ E, {(a⇒ b)n}n∈N) is an effectively given algebraic domain. �
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Lemma 3.13 For any effectively given algebraic domain D, the least fixed-
point combinator of type (D⇒ D)→ D is computable.


3.4 Effectively given coherently complete domains


As we have seen, ω-algebraic bounded complete domains have a relatively
simple theory of effectivity. Unfortunately, this is not the case for ω-continuous
bounded complete domains.


Smyth [Smy77] defines three notions of effectivity for ω-continuous bounded
complete domains, namely effectively given domain, effectively given M-domain,
and effectively given A-domain. The notions are equivalent, in the sense that
they can be effectively translated to each other. Moreover, it can be shown that
they give rise to equivalent categories of effective maps.


The notion of effectively given A-domain gives rise to a simple notion of
effectively given coherently complete domain, as it is shown below. We slightly
modify Smyth’s definition in order to make effective presentations explicit, as
Kanda and Park [KP79] showed that it is possible to effectively present some
domains in essentially different ways (as it is made clear in Chapter 6):


Definition 3.14 An effectively given A-domain is a computable retract of
an effectively given algebraic domain. More precisely, it is a list
D = (D,E, s, r) where D is a domain, E is an effectively given algebraic do-
main, (s : D → E, r : E → D) is a section-retraction pair, and the idempotent
s ◦ r : E → E is computable. The list (E, s, r) is referred to as the effective
presentation of D. �
The idea is to reduce effectivity in the continuous case to effectivity in the
algebraic case, using the fact that every continuous domain is a retract of an
algebraic domain.


Since Bω is a universal coherently complete domain with a simple theory
of effectivity [Plo78], it is natural to specialize the above definition to the case
when E = Bω , obtaining a simple definition of effectively given coherently
complete domain.


An element p ∈ Bω is finite iff p−1(tt) and p−1(ff) are finite subsets of ω.
Plotkin [Plo78] considers the following effective presentation of Bω:


bn = p, where p is the unique finite element such that


n =
∑


i∈p−1(tt)


2 · 3i +
∑


i∈p−1(ff)


3i.


The idea is to use ternary expansions. It turns out that


p ∈ Bω is computable iff p−1(tt) and p−1(ff) are r.e. subsets of ω,


and that


A function g : Bω → Bω is computable iff the relation


b v g(a)


is r.e. for finite a, b ∈ Bω.
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Definition 3.15 We call this effective presentation the standard effective
presentation of Bω, and from now on we implicitly assume the standard
effective presentation of Bω , unless otherwise stated. �


This induces effective presentations on the product Bω × Bω and the function
space Bω ⇒ Bω as we have discussed above.


The following definition is certainly not original, but it is non-standard.
Therefore we are forced to prove some results about it.


Definition 3.16


1. An effective presentation of a coherently complete domain D is a
section-retraction pair


(s : D → Bω, r : Bω → D)


such that the induced idempotent s ◦ r : Bω → Bω is computable.


2. An effectively given coherently complete domain is a list (D, s, r)
where D is a coherently complete domain and (s, r) is an effective present-
ation of D.


3. Let (D, sD, rD) and (E, sE, rE) be effectively given coherent domains.


(a) An element x ∈ D is computable if sD(x) ∈ Bω is computable.
This is equivalent to say that there is some computable p ∈ Bω such
that x = rD(p).


(b) A continuous function f : D → E is computable if the function
(rD ⇒ sE)(f) : Bω → Bω is computable:


Bω (rD⇒sE)(f)−−−−−−−→ Bω


rD


y xsE
D −−−→


f
E


This is equivalent to either of the following conditions:
• There is a computable g : Bω → Bω with f = (sD ⇒ rE)(g).
• There is a computable g : Bω → Bω such that the following


diagram commutes:
Bω g−−−→ Bω


rD


y yrE
D −−−→


f
E


�


Proposition 3.17 Any effectively given coherently complete domain (D, s, r)
has a basis of computable elements. In particular, any finite element of D is
computable.
Proof It is given by r (KBω ). �
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We already know that coherently complete domains form a cartesian closed
category. The domains Bω×Bω and Bω ⇒ Bω are retracts of Bω, simply because
Bω is universal. In fact, Bω ×Bω is isomorphic to Bω. An isomorphism is given
by Pair : Bω → Bω ×Bω defined by


Pair−1(p, q)(2n) = p(n)
Pair−1(p, q)(2n+ 1) = q(n).


Then (Bω×Bω ,Pair−1,Pair) is an effectively given coherently complete domain.
We assume the section-retraction pair


(Pred : (Bω ⇒ Bω)→ Bω ,Fun : Bω → (Bω ⇒ Bω))


constructed in [Plo78]. But notice that the details of the construction are
unimportant; the relevant fact is that there are such computable maps. Since
Pred and Fun are computable, so is Pred ◦ Fun : Bω → Bω . Therefore (Bω ⇒
Bω,Pred,Fun) is an effectively given coherently complete domain.


Theorem 3.18 Effectively given coherently complete domains and computable
functions form a cartesian closed category.
Proof Let C, D, E be effectively given coherently complete domains. The
identity of D is computable, because sD ◦ idD ◦ rD = sD ◦ rD is computable by
definition. Let f : C → D and g : D → E be computable. Then


sE ◦ g ◦ f ◦ rC = sE ◦ g ◦ (rD ◦ sD) ◦ f ◦ rC = (sE ◦ g ◦ rD) ◦ (sD ◦ f ◦ rC).


Hence sE ◦g◦f◦rC is computable, because by definition sE◦g◦rD and sD◦f◦rC
are computable functions Bω → Bω, and the composition of two computable
functions Bω → Bω is computable. Thus g◦f : C → E is computable. Therefore
effectively given coherently complete domains and computable maps form a
category.


Clearly, a terminal domain can be effectively presented, and the unique map
from any effectively given coherently complete domain to it is clearly comput-
able. An effective presentation of D ×E is given by


(Pair−1 ◦ (sD × sE), (rD × rE) ◦ Pair),


The projections are easily shown to be computable, and also f : C → D and
g : C → E are computable iff 〈f, g〉 : C → D × E is computable. Hence the
category has finite products.


An effective presentation of D⇒ E is given by


(Pred ◦ (rD ⇒ sE), (sD ⇒ rE) ◦ Fun).


The evaluation map ev : (D⇒ E)×D→ E is easily checked to be computable,
and also a computable function f : C ×D → E is computable iff its transpose
f̄ : C → (D ⇒ E) is computable. Hence the category has exponentials, and
therefore it is cartesian closed. �
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Definition 3.19 We denote by ECDom the category of effectively given co-
herently complete domains and computable functions.


Given effective presentations of D and E, we implicitly assume the effective
presentations of D × E and D ⇒ E constructed in the above theorem, unless
otherwise stated. �


Proposition 3.20 1. A continuous map is computable as a function iff it
is a computable element of the corresponding function space.


2. An element is computable iff the induced global element is a computable
function.


In particular, if f : D → E and x ∈ D are computable, so is f(x) ∈ E.
Proof A function f : D → E is computable iff the element f ∈ D ⇒ E
is computable, because sE ◦ f ◦ rD is computable iff (Pred ◦ (rD ⇒ sE))(f) is
computable, as


Pred((rD ⇒ sE)(f)) = Pred(sE ◦ f ◦ rD),


and Pred(φ) is computable iff φ = Fun(Pred(φ)) is computable. The second
assertion is immediate. �


Proposition 3.21 The fixed-point combinator fixD : (D ⇒ D) → D is com-
putable for every effectively given coherently complete domain D = (D, s, r).


In particular, the least fixed-point of a computable function is computable.
Proof By Theorem 3.18 we have that


D⇒ D = (D⇒ D, s′, r′),


where
s′ = Pred ◦ (r⇒ s) and r′ = (s⇒ r) ◦ Fun.


Hence, by definition, fixD is computable iff there is a computable g : Bω → Bω
with


fixD = (s′ ⇒ r)(g).
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Let f : D → D. Then


(s′ ⇒ r)(fixBω ◦ Fun)(f) = r ◦ (fixBω ◦ Fun) ◦ s′(f)
= r ◦ (fixBω ◦ Fun) ◦ (Pred ◦ (r⇒ s))(f)
= r ◦ fixBω ◦ (r⇒ s)(f)
= r ◦ fixBω(s ◦ f ◦ r)


= r


(⊔↑
n∈ω


(s ◦ f ◦ r)n(⊥)


)


= r


(⊔↑
n∈ω


s ◦ fn ◦ r(⊥)


)


= r ◦ s
(⊔↑
n∈ω


fn(r(⊥))


)
=


⊔↑
n∈ω


fn(⊥)


= fixD(f).


Hence we can take g = fixBω ◦Fun, because fixBω ◦Fun is computable. Therefore
fixD is computable. �


Let D be a bounded complete domain. The sequential conditional


if : B ×D ×D → D


is defined by


if(p, x, y) =



x if p = tt,
y if p = ff ,
⊥ otherwise.


Since bounded complete dcpos have binary meets, and since the binary meet
operation is continuous in bounded complete domains, we also have the parallel
conditional


pif : B ×D ×D→ D


defined by


pif(p, x, y) =



x if p = tt,
y if p = ff ,
x u y otherwise.


We sometimes write
if p then x else y


and
pif p then x else y


instead of if(p, x, y) and pif(p, x, y) respectively.


Proposition 3.22 For any effectively given coherently complete domain D,
the sequential and parallel conditionals ifD and pifD are computable maps, re-
gardless of the choice of effective presentation of the domain of truth-values.
Proof As above, using the fact that ifBω and pifBω are computable [Plo78].�
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Definition 3.23 ESDom is the category of effectively given coherently com-
plete domains and strict computable maps. �


We say that a functor F : ESDom → ESDom is locally computable if for
all D and E, the map


f 7→ Ff : (D⇒ E)→ (FD⇒ FE)


is computable, uniformly in the effective presentations of D and E, which means
that there is a single computable F : (Bω ⇒ Bω)→ (Bω ⇒ Bω). From [Plo78,
Plo80, Smy77] we know that functors formed from basic constructions such as
product and exponential by composition are locally computable, and that


Every locally computable functor has a computable bifree algebra.
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Chapter 4


The programming language
PCF


We introduce the basic notions of PCF needed in this thesis. See [Gun92] for
an excellent textbook account.


This chapter is based on [Plo77], with minor adaptations and simplifications
convenient to our needs, and can be safely skipped and used as a reference.


4.1 The languages LDA, LPA and LPA+∃


Given a collection of symbols called ground types, the set of types is the least
set containing the ground types and containing the formal expression (σ → τ)
whenever it contains the expressions σ and τ . The greek letters σ and τ range
over types. We let (σ1, . . . , σn, τ) stand for (σ1 → (σ2 → · · · (σn → τ) · · · )).


Given a collection L of formal constants, each having a fixed type, and a
family of formal variables {ασi } (i ≥ 0) for each type σ, the L-terms are given
by the following inductive rules:


1. Every variable ασi is an L-term of type σ.


2. Every constant of type σ is an L-term of type σ.


3. If M and N are L-terms of types (σ → τ) and σ respectively then (MN )
is an L-term of type τ .


4. If M is an L-term of type τ then (λασiM) is an L-term of type σ → τ .


When L is understood from the context it need not be used as a prefix. The
letters L, M , and N range over terms. The letter c range over constants. We
denote the fact that a term M has type σ by M : σ. Notice that every term
has a unique type. Terms of the form (MN ) are called combinations. Terms
of the form (λαM) are called abstractions. Parentheses around combinations
and abstractions are sometimes omitted with the convention that juxtaposition
associates to the left. We also omit parentheses in type expressions with the
convention that → associates to the right.


The set of free variables of a term M is FV(M), inductively defined by
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1. FV(ασi ) = {ασi }


2. FV(c) = ∅


3. FV(MN ) = FV(M) ∪ FV(N )


4. FV(λασiM) = FV(M)− {ασi }


A term M is closed if FV(M) = ∅ and open otherwise. Programs are closed
terms of ground type. The idea is that the ground types are the data types and
programs produce data, via the operational semantics. The remaining terms
are significant as subprograms. Sometimes we will informally refer to any PCF
term as a program.


[N/α]M is the result of replacing all free occurrences of the variable α in
M by N , making the appropriate changes in the bound variables of M so that
no free variables of N become bound.


The ground types for the language LDA are N and T, and its constants are


tt : T ff : T


ifσ : (T, σ, σ, σ) for σ ground


Yσ : (σ → σ)→ σ for each σ


kn : N for each natural number n


(+1) : N→ N, (−1) : N→ N, (= 0) : N→ T


The language LPA is the language LDA extended by the constants


pifσ : (T, σ, σ, σ) for σ ground


The language LPA+∃ is the language LPA extended with the constant


∃ : (N→ T)→ T


4.2 Denotational semantics


A collection of domains for PCF is a family {Dσ}σ of domains, one for
each type σ, such that Dσ→τ = Dσ ⇒ Dτ . It is standard if DT is B (the flat
domain of truth values), and DN is N (the flat domain of natural numbers).


An interpretation of a language L is a collection {Dσ}σ of domains for
PCF together with a mapping


c 7→ AJcK : L →
⋃
σ


{Dσ}


which is type-respecting, in the sense that if c : σ then AJcK ∈ Dσ.
An interpretation is standard if it interprets the constants tt, ff , ifσ, Yσ,


kn, (+1), (−1), (= 0), pifσ and ∃ respectively as tt, ff , the sequential condi-
tional, the fixed point operator, the natural number n, the successor function,
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the predecessor function, the test for zero, the parallel conditional and the
continuous existential quantifier ∃ : (N ⇒ B)→ B defined by


∃(p) =



tt if p(n) = tt for some n ∈ N ,
ff if p(⊥) = ff ,
⊥ otherwise.


Notice that p(⊥) = ff iff p(n) = ff for all n ∈ N , by monotonicity of p.
An interpretation 〈{Dσ}σ,A〉 induces a denotational semantics Â for L.
First, the set Env of environments is the set of type-respecting functions


from the set of variables to
⋃
σ{Dσ}. It is ranged over by ρ. If α : σ and x ∈ Dσ


then ρ[x/α] is the environment which maps α to x and any other variable α′


to ρ(α′). The undefined environment ⊥ maps each variable of type σ to the
bottom element of the domain Dσ.


The denotational semantics


M 7→
(
ρ 7→ ÂJMK(ρ)


)
: Terms→ (Env→


⋃
σ


{Dσ})


is inductively defined by:


1. ÂJαK(ρ) = ρ(α)


2. ÂJcK(ρ) = AJcK
3. ÂJMNK(ρ) = ÂJMK(ρ)


(
ÂJNK(ρ)


)
4. ÂJλαMK(ρ)(x) = ÂJMK(ρ[x/α]) (with x ∈ Dσ if α : σ)


Informally,


1. A variable denotes what the environment assigns to it.


2. A constant denotes what the interpretation assigns to it.


3. If a term M denotes the function f : D → E and a term N denotes the
value x ∈ D then the combination MN denotes the value f(x) ∈ E.


4. If a term M denotes the value yx ∈ E in an environment which assigns
the value x ∈ D to the variable α, then the abstraction λαM denotes the
function f : D→ E defined by f(x) = yx.


If M is closed then its denotation does not depend on the environment, in the
sense that ÂJMK(ρ) = ÂJMK(ρ′) for all ρ and ρ′.


In order to simplify notation, we let JMK stand for the denotation ÂJMK(⊥)
of a closed term M with respect to an implicit semantics Â. Also, for any
term M , we let JMK(ρ) stand for ÂJMK(ρ).
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4.3 Operational semantics


The operational semantics of LDA is given by an immediate reduction rela-
tion, defined by the following rules:


1. (λαM)N → [N/α]M


2. YM →M(YM)


3. (+1)kn→ kn+1, (−1)kn+1 → kn


4. (= 0)k0 → tt, (= 0)kn+1 → ff


5. if ttMN → M , if ffMN → N


6. M →M ′


MN →M ′N
, N → N ′


MN →MN ′
if M is if , (+1), (−1) or (= 0)


We omit the reduction rules of the languages LPA and LPA+∃. The reduction
relation preserves types, in the sense that if M → M ′ and M has type σ, so
does M ′.


Evaluation is given by a partial function Eval from programs to constants,
defined by


Eval(M) = c iff M →∗ c


It is well-defined because if M →∗ c and M →∗ c′ then c = c′.
The following theorem is often referred to as the adequacy property of


PCF. It asserts that the operational and denotational semantics coincide.


Theorem 4.1 (Plotkin [Plo77], Theorem 3.1) For any LDA program M
and constant c,


Eval(M) = c iff JMK = JcK.
Proof Lemma 4.6 below. �
The following definitions are introduced to formulate and prove Lemma 4.6.


Definition 4.2 The predicates Compσ are defined by induction on types by:


1. If M : σ is a program then M has property Compσ iff JMK = JcK implies
Eval(M) = c.


2. If M : σ → τ is a closed term it has property Compσ→τ iff whenever N : σ
is a closed term with property Compσ then MN is a term with property
Compτ .


3. If M : σ is an open term with free variables α1 : σ1, . . . , αn : σn then it has
property Compσ iff [N1/α1] · · · [N2/αn]M has property Compσ whenever
N1, . . . , Nn are closed terms having properties Compσ1


, . . . , Compσn re-
spectively.


A term of type σ is computable if it has property Compσ. �
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If M : σ → τ and N : σ are closed computable terms, so is MN and also a
term M : (σ1, . . . , σn, τ) is computable iff M̃N1 . . .Nn is computable whenever
the terms N1 : σ1, . . . , Nn : σn are closed computable terms and M̃ is a closed
instantiation of M by computable terms.


In the following definition, α has to be chosen as some variable of appropriate
type in each instance.


Definition 4.3 Define terms Ωσ by


Ωσ = Yσ(λαα)


for σ ground and
Ωσ→τ = λαΩτ ,


and define terms Y(n)
σ by induction on n by


Y(0)
σ = λα.Ωσ,


Y(n+1)
σ = λα.α(Y(n)


σ α).�


Then JYσK =
⊔
nJYn


σK for any standard interpretation.


Definition 4.4 The syntactic information order 4 is the least relation
between terms such that


1. Ωσ 4M : σ and Y(n)
σ 4 Yσ,


2. M 4M , and


3. if M 4 M ′ : σ → τ and N 4 N ′ : σ then λαN 4 λαN ′ and also
MN 4M ′N ′.


�


Lemma 4.5 (Plotkin [Plo77], Lemma 3.2) If M 4 N and M →M ′ then
either M ′ 4 N or else for some N ′, N → N ′ and M ′ 4 N ′.
Proof By structural induction on M and cases according to why the imme-
diate reduction M → M ′ takes place. �


We include the proof of the following lemma since we are going to extend it
to Real PCF:


Lemma 4.6 (Plotkin [Plo77], Lemma 3.3) Every LDA-term is computable.
Proof By structural induction on the formation rules of terms:


(1) Every variable is computable since any closed instantiation of it by a
computable term is computable.


(2) Every constant other than the Yσ’s is computable. This is clear for
constants of ground type. Out of +1, −1, = 0, and if we only consider −1
as an example. It is enough to show (−1)M computable when M is a closed
computable term of type N. Suppose J(−1)MK = JcK. Then c = km for
some m and so JMK = m+ 1. Therefore as M is computable, M →∗ km+1 and
so (−1)M →∗ km = c.
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(3) If M : σ → τ and N : σ are computable, so is the combination MN . If
MN is closed so are M and N and its computability follows from clause 2 of
the definition of computability. If it is open, any closed instantiation L of it by
computable terms has the form M̃Ñ where M̃ and Ñ are closed instantiations
of M and N respectively and therefore themselves computable which in turn
implies the computability of L and hence of MN .


(4) If M : τ is computable, so is the abstraction λαM . It is enough to
show that the ground term LN1 · · ·Nn is computable when N1, · · · , Nn are
closed computable terms and L is a closed instantiation of λαM by computable
terms. Here L must have the form λαM̃ where M̃ is an instantiation of all
free variables of M , except α, by closed computable terms. If JLN1 · · ·NnK =
JcK, then we have J[N1/α]M̃N2 · · ·NnK = JLN1 · · ·NnK = JcK. But [N1/α]M̃
is computable and so too therefore is M̃N2 · · ·Nn. Therefore LN1 · · ·Nn →
[N1/α]M̃N2 · · ·Nn →∗ c, as required.


(5) Each Yσ is computable. It is enough to prove YσN1 · · ·Nk is comput-
able when N1, · · · , Nk are closed computable terms and YσN1 · · ·Nk is ground.
Suppose JYN1 · · ·NkK = JcK. Since JYσK =


⊔
nJYn


σK, JY(n)N1 · · ·NkK = JcK for
some n. Since JΩσK = ⊥ for σ ground, Ωσ is computable for σ ground. From this
and (1), (3), and (4) proved above it follows that every Ωσ and Y(n)


σ is comput-
able. Therefore Y(n)N1 · · ·Nk →∗ c and so by Lemma 4.5, YN1 · · ·Nk →∗ c,
concluding the proof. �
This lemma extends to the languages LPA and LPA+∃. It suffices to show that
pif and ∃ are computable terms, with respect to appropriate reduction rules.
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Part II


Domain theory revisited
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This part contains new results on domain theory, which are about, or dir-
ectly related to


• bifree algebras,


• effectively given domains, and


• coherently complete domains.


In Chapter 5 we introduce the concept of inductive retraction as a gen-
eralization of the concept of bifree algebra. Inductive retractions are used in
Chapter 10 of Part III in order to obtain structural recursion schemes for the
partial real line.


In Chapter 6 we introduce some results about equivalence of effectively
given domains. These results are used in Chapter 12 of Part IV to establish
absoluteness of the notion of computability in the real numbers type hierarchy.


In Chapter 7 we characterize the coherently complete domains as the bounded
complete domains having certain “joining maps”. These joining maps are used
in Chapter 12 to prove that every computable first-order function in the real
numbers type hierarchy is Real PCF definable (without the existential quanti-
fier).


The reader who is mainly interested in real number computation can safely
proceed directly to Part III, as we clearly indicate when some chapter or
portion of a chapter in the present part is needed to proceed further.
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Chapter 5


Bifree algebras generalized


In this chapter we introduce a new technique for defining structural recursion
schemes based on the theory of domain equations. This technique was first
introduced in [Esc96b] by the author and then further developed in collabora-
tion with Thomas Streicher [ES97]. The results obtained in collaboration are
contained in Sections 5.2 and 5.3.


Recursion is a paradigmatic notion in theoretical computer science. Domain
theory incorporates recursion both at the level of elements (via least fixed-points
of continuous maps) and at the level of objects (via canonical solutions of do-
main equations). Although recursion at the element level can be explained from
first principles, recursion at the object level leads to recursion at the element
level [Gun92]. Moreover, recursive definitions of domains give rise to structural
recursion at the element level [LS81, SP82], via bifree algebras (cf. Definition 2.5
in Section 2.9). For instance, both primitive recursion and general recursion (in
the form of minimization) are induced by a recursive definition of the natural
numbers [Smy92a].


Thus, we are led to consider recursion in the partial real line, at both levels.
This is the subject of Chapter 10 in Part III. There is a fundamental problem,
however, about domain equations for the partial real line, namely that the
canonical solution of a domain equation involving usual functors is algebraic,
but the partial real line is not algebraic.


A relevant observation is that there are two main aspects of a domain equa-
tion D ∼= FD. First, its canonical solution is uniquely determined by the
functor F. Second, its canonical solution gives rise to recursion schemes via bi-
free algebras. Our solution to the problem of structural recursion on the partial
real line consists in giving up the first aspect and weakening the second aspect,
in such a way as to still have structural recursion. In this chapter we develop
and investigate such a weakening.


The basic idea is to consider not a distinguished domain D such that D ∼=
FD, but instead a domain D such that D is a retract of FD, in a special way to
be defined in the technical development that follows this discussion. We refer
to such a domain D as an F-inductive retract.


The section and retraction involved in the situation referred above are not
a final coalgebra and an initial algebra respectively, because the existence part
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in the definition of finality and initiality are missing. However, the uniqueness
part is present; there is at most one homomorphism from any coalgebra to the
section, and there is at most one homomorphism from the retraction to any
algebra.


The lack of the existence part is not a severe problem in practice, because
it is often the case that in a recursive definition we know the entity which we
intend to define. Hence it is enough to be sure that the entity is the only
solution to the recursive definition. Therefore the uniqueness part is enough for
such purposes.


5.1 Inductive retractions


The material of this section was originally introduced in [Esc96b] with the
purpose of establishing both absoluteness of the notion of computability in the
real numbers type hierarchy and computational completeness of Real PCF.


Convention 5.1 In the remaining of this chapter, X is any category and F
is an endofunctor of X. �


Definition 5.2 An F-inductive retraction is a pair of arrows X
α
�
β


FX


such that


f = α ◦ Ff ◦ β iff f = idX . �


The right-to-left implication shows that


α ◦ β = idX


and hence X is a retract of FX . Also, notice that if 〈α, β〉 is an F-inductive
retraction in X, then 〈β, α〉 is an F-inductive retraction in Xop.


The following proposition shows that inductive retractions generalize bifree
algebras:


Proposition 5.3 Let X
α
�
β


FX be an F-inductive isomorphism. If F has a


bifree algebra then it is isomorphic to α.
Proof Let i : FC → C be a bifree algebra, r : i→ α be the unique algebra
homomorphism and s : β → i−1 be the unique coalgebra homomorphism. This
means that r ◦ i = α ◦ Fr and i−1 ◦ s = Fs ◦ β. Hence


r ◦ s = r ◦ i ◦ i−1 ◦ s
= α ◦ Fr ◦ Fs ◦ β
= α ◦ F(r ◦ s) ◦ β.


By inductivity, r ◦ s = idX . Since s = i ◦Fs ◦ β, we have that


s ◦ r ◦ i = i ◦ Fs ◦ β ◦ α ◦ Fr


= i ◦ F(s ◦ r).


Hence s ◦ r : i→ i and therefore s ◦ r = idC . �
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Convention 5.4 In the remaining of this chapter, i : FC → C is a bifree


algebra and X
α
�
β


FX is an F-inductive retraction. �


The first part of the proof of Proposition 5.3 shows that every inductive
retract is a retract of the bifree algebra, in a canonical way:


Lemma 5.5 If r : i → α and s : β → i−1 are the unique (co)algebra homo-


morphisms then X
r
�
s
C is a retraction with r ◦ s = idX .


Lemma 5.6 There are unique (co)algebra homomorphisms α→ α and β → β.
Proof Let f : α → α be an algebra homomorphism. This means that
f ◦ α = α ◦ Ff . Hence f = α ◦ Ff ◦ β. By inductivity, f = idC . The second
part follows by duality. �


A technical lemma


The following lemma, which may appear to be rather technical, is applied to
establish computational completeness of Real PCF in Chapter 12 of Part IV.
The idea is to replace a canonical solution of a domain equation by a domain
having the canonical solution as a retract.


Lemma 5.7 Let X be a category, let F : X→ X be a functor, let


C
i
�
j


FC


be a bifree algebra, let


X
α
�
β


FX


be an F-inductive section-retraction pair, let


C
p


�
e
C′


be a section-retraction pair with p ◦ e = id, and define


C′
i′


�
j′


FC′


by
i′ = e ◦ i ◦ Fp and j ′ = Fe ◦ j ◦ p


Then any pair of maps


X
r′


�
s′
C′


such that
r′ = α ◦ Fr′ ◦ j ′ and s′ = i′ ◦ Fs′ ◦ β


is a section-retraction pair with r′ ◦ s′ = id.
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Proof Let
X


r
�
s
C


be the canonical section-retraction pair constructed in Proposition 5.5. Since


r′ ◦ e ◦ i = α ◦ Fr′ ◦ j ′ ◦ e ◦ i by the assumption on r′


= α ◦ Fr′ ◦ Fe ◦ j ◦ p ◦ e ◦ i by definition of j ′


= α ◦ F(r′ ◦ e) ◦ j ◦ i because p ◦ e = id
= α ◦ F(r′ ◦ e) because j is the inverse of i,


and since this means that r′ ◦ e is an algebra homomorphism from i to α, it
follows that r′ ◦ e = r. Similarly,


j ◦ p ◦ s′ = j ◦ p ◦ i′ ◦ Fs′ ◦ β By the assumption on s′


= p ◦ e ◦ i ◦ Fp ◦Fs′ ◦ β by definition of i′


= j ◦ i ◦ F(p ◦ s′) ◦ β because p ◦ e = id.
= F(p ◦ s′) ◦ β.


Since this means that p◦s′ is a coalgebra homomorphism from β to j, it follows
that p ◦ s′ = s. We also have that


j ′ ◦ i′ = Fe ◦ j ◦ p ◦ e ◦ i ◦ Fp by definition of i′ and j ′


= Fe ◦ j ◦ i ◦ Fp because p ◦ e = id
= Fe ◦ Fp because j is the inverse of i.


It follows that


r′ ◦ s′ = α ◦ Fr′ ◦ j ′ ◦ i′ ◦ Fs′ ◦ β by the assumption on r′ and s′


= α ◦ Fr′ ◦ Fe ◦ Fp ◦ Fs′ ◦ Fβ because j ′ ◦ i′ = Fe ◦ Fp


= α ◦ Fr ◦ Fs ◦ β because r′ ◦ e = r and p ◦ s′ = s


= α ◦ β because r ◦ s = id
= id by definition.�


5.2 Structural recursion


This section contains results developed in collaboration with Thomas Streicher.


Proposition 5.8 Let r : i → α, s : β → i−1, e = s ◦ r : C → C, h : i → a,
and k : b→ i−1.


1. For any algebra a : FA → A, there is a homomorphism f : α → a iff
h = h ◦ e, and in this case f = h ◦ s.


2. For any coalgebra b : B → FB, there is a homomorphism g : b → β iff
k = e ◦ k, and in this case g = r ◦ k.
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Proof (1): If f : α→ a then f ◦ r = h because r : i→ α. Therefore f = h◦s
and h = h ◦ s ◦ r. Conversely, if f ◦ r : i→ a then f : α→ a because


f ◦ α = f ◦ α ◦ F(r ◦ s)
= f ◦ α ◦ Fr ◦ Fs


= f ◦ r ◦ i ◦ Fs


= a ◦ F(f ◦ r) ◦ Fs


= a ◦ Ff ◦ F(r ◦ s)
= a ◦ Ff.


If h ◦ s ◦ r = h then this holds in particular for f = h ◦ s. (2): Dual to (1). �
Roughly, condition (1) means that h respects the congruence on C induced by
the idempotent e = s ◦ r, and that f is the restriction of h to A via s. Dually,
condition (2) means that the image of k is contained in image of e and that g
is the corestriction of k to B via r.


Corollary 5.9


1. For any algebra a : FA → A there is at most one homomorphism
f : α→ a.


2. For any coalgebra b : B → FB there is at most one homomorphism
g : b→ β.


Only for the last result of this section, we assume that our base category X
is the category SDom of domains and strict continuous maps.


Proposition 5.10 Let F : SDom→ SDom be locally continuous.


1. If there is a homomorphism f : α → a for a given algebra a : FA → A
then it is the least f ′ : X → A such that f ′ = a ◦ Ff ′ ◦ β.


2. If there is a homomorphism g : b → β for a given coalgebra b : B → FB
then it is the least g′ : B → X such that g′ = α ◦ Fg′ ◦ b.


Proof (1): The least solution of the above equation is f ′ =
⊔
n fn, where the


sequence fn is inductively defined by


f0 = ⊥
fn+1 = a ◦ Ffn ◦ β.


Define idn : X → X by


id0 = ⊥
idn+1 = α ◦ Fidn ◦ β.


By local continuity of F,⊔
n


idn =
⊔
n


idn+1


=
⊔
n


(α ◦Fidn ◦ β)


= α ◦ F


(⊔
n


idn


)
◦ β.
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Hence
⊔
n idn = idX by inductivity. Since f is strict, we have that f0 = f ◦ id0.


Assuming that fn = f ◦ idn we deduce that


fn+1 = a ◦ Ffn ◦ β
= a ◦ Ff ◦ Fidn ◦ β
= f ◦ α ◦ Fidn ◦ β
= f ◦ idn+1.


Hence fn = f ◦ idn for every n. Therefore


f ′ =
⊔
fn


=
⊔
n


(f ◦ idn)


= f ◦
⊔
n


idn


= f ◦ idX
= f.


(2): Dual to (1). �
Thus, in order to to find a recursive definition of a function f : X → A we
can try to find an algebra a such that f : α → a is a homomorphism, and in
order to find a recursive definition of a function g : B → X we can try to find
a coalgebra b such that g : b→ β is a homomorphism. If we succeed in finding
such algebra a and coalgebra b, then we obtain a definition of f by structural
recursion and a definition of g by structural corecursion.


5.3 Biquotients of bifree algebras


This section also contains results developed in collaboration with Thomas Streicher.
We have seen that any F-inductive retraction


X
α
�
β


FX


appears as a retract of the bifree F-algebra i : FC → C via r : i → α and
s : β → i−1 with r ◦ s = idX . We now characterize for a bifree algebra
i : FC → C the idempotents e : C → C which admit a splitting e = s ◦ r of the
kind just described.


Definition 5.11 Let e : C → C be an idempotent and define C
a
�
b


FC by


a = e ◦ i and b = i−1 ◦ e.


We say that e is a biquotient of the bifree algebra i : FC → C if the following
conditions hold:


(i) e : i→ a
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(ii) e : b→ i−1


(iii) h = a ◦Fh ◦ b iff h = e. �


Theorem 5.12


1. If X
α
�
β


FX is an F-inductive retraction, r : i → α and s : β → i−1 then


e
def= s ◦ r is a biquotient of i. Moreover, α and β can be recovered from r


and s as
α = r ◦ i ◦ Fs β = Fr ◦ i−1 ◦ s.


2. If e : C → C is a biquotient of i and e = s ◦ r with r ◦ s = idX then the
maps


α
def= r ◦ i ◦ Fs : FX → X


β
def= Fr ◦ i−1 ◦ s : X → FX


constitute an F-inductive retraction. Moreover, we have r : i → α and
s : β → i−1.


Proof (1): Conditions (i) and (ii) hold by the following equational reasoning:


e ◦ i ◦Fe = s ◦ r ◦ i ◦Fs ◦ Fr
= s ◦ α ◦ Fr ◦ Fs ◦ Fr


= s ◦ α ◦ Fr


= s ◦ r ◦ i
= e ◦ i,


Fe ◦ i−1 ◦ e = Fs ◦ Fr ◦ i−1 ◦ s ◦ r
= Fs ◦ Fr ◦ Fs ◦ β ◦ r
= Fs ◦ β ◦ r
= i−1 ◦ s ◦ r
= i−1 ◦ e.


From this we get immediately that


e ◦ i ◦ Fe ◦ i−1 ◦ e = e ◦ i ◦ i−1 ◦ e = e ◦ e = e.


For the other implication of condition (iii), let h : C → C with e◦i◦Fh◦i−1 ◦e =
h It follows that r ◦ i ◦ Fh ◦ i−1 ◦ s = r ◦ h ◦ s and so we get


r ◦ h ◦ s = r ◦ i ◦ Fh ◦ i−1 ◦ s
= α ◦Fr ◦ Fh ◦ Fs ◦ β
= α ◦F(r ◦ h ◦ s) ◦ β,


which entails r ◦ h ◦ s = idX as α and β form an F-inductive retract. Thus we
get


h = e ◦ h ◦ e = s ◦ r ◦ h ◦ s ◦ r = s ◦ r = e.
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The proposed reconstruction of α and β from r and s can be seen as follows:


r ◦ i ◦ Fs = α ◦ Fr ◦ Fs = α,


Fr ◦ i−1 ◦ s = Fr ◦ Fs ◦ β = β.


(2): We have that


(a) r ◦ i = r ◦ i ◦ F(s ◦ r),
(b) i−1 ◦ s = F(s ◦ r) ◦ i−1 ◦ s,
(c) s ◦ r ◦ i ◦ Fh ◦ i−1 ◦ s ◦ r = h iff h = e,


and hence that


α ◦ β = r ◦ i ◦ Fs ◦ Fr ◦ i−1 ◦ s
= r ◦ i ◦ F(s ◦ r) ◦ i−1 ◦ s
= r ◦ i ◦ i−1 ◦ s
= r ◦ s
= idX .


Let f : X → X with f = α ◦ Ff ◦ β. As


α ◦ Ff ◦ β = r ◦ i ◦ F(s ◦ f ◦ r) ◦ i−1 ◦ s,


for h def= s ◦ f ◦ r we get


h = s ◦ r ◦ i ◦ Fh ◦ i−1 ◦ s ◦ r = e ◦ i ◦ Fh ◦ i−1 ◦ e,


from which we get by (c) that h = e. But then


f = r ◦ s ◦ f ◦ s ◦ r = r ◦ h ◦ s = r ◦ e ◦ s = idX


as desired. It remains to show that r : i→ α and s : β → i−1:


α ◦ Fr = r ◦ i ◦Fs ◦ Fr = r ◦ i by (a),
Fs ◦ β = Fs ◦ Fr ◦ i−1 ◦ s = i−1 ◦ s by (b).�
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Chapter 6


Equivalence of effectively
given domains


Kanda and Park [KP79] have shown that, in general, it is possible to present
an effectively given algebraic domain in essentially different ways. This fact led
them to introduce and investigate a notion of equivalence of effectively given
algebraic domains. This notion does not generalize to effectively given domains
in the sense of Smyth [Smy77], and it is rather involved as it considers directly
the enumerations of basis elements.


In this chapter we introduce a more abstract and simpler definition of equi-
valence, which also works for continuous domains. In some sense, our notion is
not new at all, because it is simply an instance of the notion of equivalence of
objects of concrete categories [AHS90]. But we claim that the idea of applying
this notion to effectively given domains is original.


The results of this chapter are applied in Chapter 12 of Part IV to show
that there is an essentially unique effective presentation of the real numbers type
hierarchy which makes the Real PCF primitive operations formally computable.
In particular, Theorem 6.12 together with the results of Chapter 10 of Part III
directly entail the result.


6.1 A non-standard effective presentation of Bω


An effective presentation of Bω in the sense of Definition 3.16 is given by
(idBω , idBω ). Let f : ω → ω be a non-recursive permutation of ω, and define
φ : Bω → Bω by φ(p) = p ◦ f . Then


(φ, φ−1) is an effective presentation of Bω,


because φ◦φ−1 = idBω . But this effective presentation is intuitively not “really”
effective, by construction.


One might suspect that this may have something to do with the defini-
tion of the notion of effective presentation via section-retraction pairs given in
Definition 3.16. But the same phenomenon takes place for the usual notion of
effectively given algebraic domain. If we define b′n = bf(n), where b is the stand-
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ard algebraic effective presentation of Bω, it is easy to check that the axioms for
effectively given algebraic domains given in Definition 3.14 are satisfied by b′.


One might conclude that the solution to this paradox would lie in the fact
that (Bω, id, id) and (Bω, φ, φ−1) are not isomorphic objects of ECDom. An
examination of this possibility seems to make the paradox even worse:


φ : (Bω, id, id)→ (Bω, φ, φ−1) is an isomorphism in ECDom


Proof By definition, we have that a function f : Bω → Bω is computable with
respect to effective presentations (s1, r1) and (s2, r2) respectively iff s1 ◦ f ◦ r2 :
Bω → Bω is computable with respect to the standard effective presentation
of Bω . If we take (s1, r1) = (idBω , idBω), (s2, r2) = (φ, φ−1) and f = φ then
s1 ◦ f ◦ r2 = id ◦ φ ◦ φ−1 = id which is certainly computable with respect to
the standard effective presentation. If we take (s1, r1) = (φ, φ−1), (s2, r2) =
(idBω , idBω ) and f = φ−1 then s1 ◦ f ◦ r2 = φ ◦ φ−1 ◦ id = id. Therefore φ and
its inverse are computable! �
Again, in the category of effectively given algebraic domains and computable
maps, (Bω, b) and (Bω, b′) are isomorphic objects, with φ as an isomorphism.
We omit the argument, which is similar.


On the other hand,


The identity of Bω is not computable as a morphism (Bω, id, id) →
(Bω, φ, φ−1) or as a morphism (Bω, φ, φ−1)→ (Bω, id, id).


This is reasonable and solves the paradox, because it shows that we cannot
access within Bω “correctly presented” the computable elements of Bω “incor-
rectly presented”, which are not computable in Bω “correctly presented”.


We can summarize the above remarks by saying that effective domain theory
does not give an absolute notion of effectivity. In the following sections we
investigate the concept introduced in the definition below, and we show that
we can achieve absoluteness by imposing additional structure on effectively
given domains.


Definition 6.1 We say that two effective presentations (s1, r1) and (s2, r2) of
a coherently complete domain D induce the same notion of computability
on D if the following conditions hold:


1. For every effectively given domain (C, s, r), a function f : C → D is
computable w.r.t. (s, r) and (s1, r1) iff it is computable w.r.t. (s, r)
and (s2, r2).


2. For every effectively given domain (E, s, r), a function f : D → E is
computable w.r.t. (s1, r1) and (s, r) iff it is computable w.r.t. (s2, r2)
and (s, r).


By taking C = 1 we see that if (s1, r1) and (s2, r2) induce the same notion of
computability on D, then an element of D is computable w.r.t. (s1, r1) iff it is
computable w.r.t. (s2, r2). �
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6.2 Equivalence of effectively given domains


We recall the following definitions from [AHS90], and we make explicit a notion
which we call representability:
Definition 6.2


1. A concrete category over a category X is a category A together with a
faithful functor U : A→ X, called the underlying functor.


2. Let (A,U) be a concrete category over X. If A and B are objects in A
then a morphism f : UA → UB in X is (A,B)-representable if there
is a (necessarily unique) morphism f̄ : A → B in A such that U(f̄) = f ,
called the (A,B)-representation of f .


3. We write f : A → B to denote the fact that a morphism f : UA → UB
is (A,B)-representable, and we notationally identify f with its (A,B)-
representation f̄ .


4. The fibre of an object X in X is the preordered class consisting of all
objects A in A with U(A) = X , with order given by:


A ≤ B iff idX : A→ B, where idX : X → X is the identity.


5. Let A and B in A be objects in the same fibre. The we define


A ≡ B iff A ≤ B and B ≤ A,


and in this case we say that A and B are equivalent objects of (A,U).
�


Clearly, ECDom is concrete over CDom, with the underlying functor given
by the forgetful functor which forgets effective presentations. Using the lan-
guage of the above definition, we have that


(Bω, id, id) and (Bω, φ, φ−1) are isomorphic objects of the category
ECDom, but inequivalent objects of the concrete category (ECDom,U).


Clearly, ifD and E are objects in ECDom, a function f : UD → UE in CDom
is (D,E)-representable iff it is computable w.r.t the effective presentations of
D and E.


Definition 6.3 We say that two effective presentations (s1, r1) and (s2, r2) of
a coherently complete domain D are equivalent if (D, s1, r1) and (D, s2, r2)
are equivalent objects of the concrete category (ECDom,U). �


It is immediate that (s1, r1) and (s2, r2) are equivalent iff s1 ◦ r2 and s2 ◦ r1 are
computable w.r.t. the standard effective presentation of Bω.


Proposition 6.4 Let (A,U) be a concrete category over X, let X be an X-
object, and let B and B′ be A-objects in the fibre of X . Then the following are
equivalent:
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1. B ≤ B′.


2. For all A in A and f : UA→ X in X, if f : A→ B then f : A→ B′.


3. For all C in A and f : X → UC in X if f : B′ → C then f : B → C.
Proof (1 ⇒ 2): Assume that f : UA → X is (A,B)-representable, let
f̄ : A→ B be the (A,B)-representation of f , and idX : B → B′ be the (A,B′)-
representation of idX . Then f ′ = idX ◦ f̄ is a (B,B′)-representation of f ,
because U(f ′) = U(idX ◦ f̄) = U(idX) ◦U(f̄) = idX ◦ f = f . (1⇒ 3): Similar.
(2⇒ 1): Take A = B and f = idX . (3⇒ 1): Similar. �
This shows that our notion of equivalence is appropriate:


Corollary 6.5 Two effective presentations of a coherently complete domain
are equivalent iff they induce the same notion of computability on the domain.


The following definition is also taken from [AHS90]:


Definition 6.6 A concrete category (A,U) over X is called concretely cartesian
closed provided the following hold:


1. A and X are cartesian closed,


2. U preserves finite products, exponentials, and evaluation.
�


Clearly, (ECDom,U) is concretely cartesian closed. The following results are
routinely proved, as Proposition 6.4:


Proposition 6.7 Let (A,U) be a concretely cartesian closed category over X.
If 1 and 1′ are terminal objects of A in the same fibre then 1 ≤ 1′, and if A ≤ A′
and B ≤ B′ are objects of A in the same fibre then


1. A×B ≤ A′ × B′,


2. (A⇒ B′) ≤ (A′ ⇒ B).


We can thus say that equivalence is a “cartesian closed congruence”.


Proposition 6.8 Let (A,U) be a concretely cartesian closed category over X,
and let A and B and be A-objects. Then


1. Any two products of A and B which are in the same fibre are equivalent.


2. Any two exponentials of B to the power A which are in the same fibre are
equivalent.


Thus, as soon as effective presentations of D and E are specified, the effective
presentations of D ×E and D ⇒ E are uniquely specified up to equivalence.


It is clear that any coherently complete finite domain has some effective
presentation.


Proposition 6.9 Any two effective presentations of a finite coherently com-
plete domain are equivalent.
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Proof Let D be a finite coherently complete domain and (s1, r1) and (s2, r2)
be effective presentations of D. We have to show that s1 ◦ r2 and r2 ◦ s1 are
computable w.r.t. the standard effective presentation of Bω. Let d ∈ D, and
i ∈ {1, 2}. Since d = ri(si(d)) is finite and ri is continuous, there is some finite
pdi v si(d) in Bω such that already d = ri(pdi ). Hence


ri =
⊔
d∈D


pdi Z⇒ d and si =
⊔
d∈D


d Z⇒ si(ri(pdi )),


because si(d) = si(ri(pdi )). Hence, if j ∈ {1, 2}\{i},


si ◦ rj(x) =
⊔


dvrj (x)


si(ri(pdi )) =
⊔


dv
F
pe
j
vx e


si(ri(pdi )).


But si(ri(pdi )) is computable because pdi is finite and si ◦ ri is computable by
definition of effective presentation. Therefore si ◦ rj is computable, because
there are finitely many d’s and e’s. �
Thus, we don’t need to specify the effective presentation of a finite domain.


6.3 Characterizations of some effective presentations


How can we isolate the “correct” effective presentation of a domain D among
all possible effective presentations? As we have seen, there is no absolute notion
of computability for domain theory, and from the categorical point of view this
is not a worry. However, in practice we need specific effective presentations.
One way to achieve absoluteness is:


1. find some basic operations on D which are concretely computable (in our
case these will be the Real PCF definable primitive operations),


2. find an effective presentation which makes the operations formally com-
putable, and


3. show that any two effective presentations of D which make the operations
formally computable are equivalent.


We first illustrate this idea in the case of D = Bω . The operations defined in
the following proposition are concretely computable, and formally computable
w.r.t. the standard presentation of Bω, as it is shown in [Plo78]. This establishes
(1) and (2). The proposition itself establishes (3):


Proposition 6.10 Define continuous maps


cons : B × Bω → Bω , head : Bω → B, tail : Bω → Bω


by
cons(t, p)(0) = t, head(p) = p(0),


cons(t, p)(n+ 1) = p(n), tail(p)(n) = p(n+ 1).


Then any two effective presentations of Bω which make cons, head, and tail
computable are equivalent.


50







Here we assume any effective presentation of B, and we notationally identify
the domain B with the domain B endowed with the effective presentation.
Proof Let D and D′ in ECDom be objects in the fibre of Bω such that


cons : B ×D→ D, head : D→ B, tail : D → D


and
cons : B ×D′ → D′, head : D′ → B, tail : D′ → D′


The identity of Bω is the least fixed-point of F : (Bω ⇒ Bω) → (Bω ⇒ Bω)
defined by


F (f)(p) = cons(head(p), f(tail(p))).


Since head : D → B, tail : D → D and cons : B × D′ → D′, we have that
F : (D ⇒ D′) → (D ⇒ D′). And since head : D′ → B, tail : D′ → D′


and cons : B × D → D, we have that F : (D′ ⇒ D) → (D′ ⇒ D). Hence
idBω : D → D′ and idBω : D′ → D. But idBω = fix F is computable because F
is computable and the fixed-point combinator is always computable. Therefore
D and D′ are equivalent. �
That is, there is a unique notion of computability for Bω such that cons, head,
and tail are computable.


Since cons : B×Bω → Bω is a bifree algebra, we see that Proposition 6.10 is a
special case of Theorem 6.11 below. We already know that a locally computable
functor has a computable bifree algebra.


Theorem 6.11 Let F : SDom → SDom be a locally continuous functor
which restricts to a locally computable functor G : ESDom→ ESDom, and let
i : FC → C be a bifree algebra. Then there is at most one effective presentation
of C which makes i and i−1 computable, up to equivalence.
Proof As in Proposition 6.10, observing that the identity of C is the unique
algebra homomorphism from i to itself, which is the least fixed-point of the
functional F defined by F (f) = i ◦Gf ◦ i−1. �
This theorem further generalizes to inductive retractions with the same proof,
by virtue of Lemma 5.6:


Theorem 6.12 Let F : SDom → SDom be a locally continuous functor
which restricts to a locally computable functor G : ESDom → ESDom, and
let 〈α : FC → C, β : C → FC〉 be an F-inductive section-retraction pair.
Then there is at most one effective presentation of C which makes α and β
computable, up to equivalence.


We apply this theorem in Section 12.1 in order to show that there an essentially
unique effective presentation of the real numbers type hierarchy which makes
the Real PCF definable elements computable.
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Chapter 7


Coherently complete domains


In our investigation of computational completeness in Chapter 12 of Part IV, we
are led to consider bounded complete domains D with the following property:
for every element d of D (or perhaps of some basis of D) there is a continuous
map joind : D→ D such that


joind(x) = d t x for every x consistent with d.


Such a map joind is called a joining map and such a domain D is called a
J-domain. In the above definition, if x is inconsistent with d, then there is
a certain degree of freedom in what joind(x) can be. Therefore, in general, an
element can have more than one joining map, if it has a joining map at all.


In this chapter we characterize the J-domains exactly as the coherently com-
plete domains. Moreover, we show that every element of a coherently complete
domain has a least joining map. We also investigate joining maps of function
spaces with respect to the joining maps of their source and target.


The results of this chapter are applied in Chapter 12 to show that Real PCF
(without the existential quantifier) is first-order computationally complete.


7.1 Joining maps


Definition 7.1 A joining map of an element d of a bounded complete do-
main D is a continuous function joind : D → D such that


joind(x) = d t x for every x↑↑d.


A bounded complete domain D has internal joins if each d ∈ D has a joining
map joind. �


Proposition 7.2 Flat domains have internal joins.
Proof For bottom, the unique joining map is the identity, and for a non-
bottom element x, the unique joining map is the constant map x. �


Proposition 7.3 If a bounded complete domain D has internal joins, so does Dω.
Proof Let d ∈ Dω, and define joind : Dω → Dω by joind(x) =


〈
joindi(xi)


〉
i∈ω .


Then joind is clearly a joining map for d, because d↑↑x iff di↑↑xi for every i ∈ ω,
and joins are computed componentwise. �
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Proposition 7.4 Domains with internal joins are closed under the formation
of retracts.
Proof Let D be a retract of a domain E with internal joins, with respect to a
section s : D→ E and a retraction r : E → D, and for each d ∈ D define joind :
D → D by joind = r◦joins(d)◦s, where joins(d) is a joining map for s(d) ∈ E. Let
x be consistent with d. Then s(x)↑↑s(d). Hence joind(x) = r(s(d)ts(x)) = dtx,
by a general property of section-retraction pairs. Therefore joind is a joining
map for d. �
Recall that a domain is coherently complete if every pairwise consistent subset
has a least upper bound, and recall that the coherently complete, countably
based domains are characterized as the retracts of Bω.


Theorem 7.5 A bounded complete countably based domain has internal joins
iff it is coherently complete.
Proof (⇒): Let {a, b, c} be a pairwise consistent subset of D, and joina be a
joining map for a. Since joina is monotone, it preserves consistency. Thus a t
b↑↑atc, because b↑↑c. Hence {a, b, c} is consistent, and by bounded completeness
it has a least upper bound. By induction, every finite pairwise consistent subset
has a least upper bound. Therefore, for every pairwise consistent set there is a
cofinal directed set, obtained by adding the joins of finite subsets.


(⇐) : Since B is a flat domain it has internal joins and hence so do Bω and
every retract of Bω . �
We shall see that the countability hypothesis is not really necessary in the above
theorem.


We shall need domains which have joining maps only for elements of a
countable basis.


Definition 7.6 A J-domain is a bounded complete domain with a countable
basis B such that each b ∈ B has a joining map. �


But these turn out to be the coherently complete countably based domains
again. Recall that ↓↓↑↑d is the set of elements consistent with d.


Lemma 7.7 Let D be a bounded complete domain, x and y be elements of D,
and let Z ⊆ D be directed. Then the following statements hold:


1. If a↑↑b for all a� x and b� y then x↑↑y.


2. The intersection of the closed neighbourhoods of x is ↓↓↑↑x.


3. If x↑↑z for every z ∈ Z then x↑↑
⊔↑Z.


Proof (1): Assume that every a� x is consistent with every b� y, and let
Z = {a t b|a � x, b � y}. Then Z is non-empty because it contains ⊥. Let
a1 and a2 be way-below x, and b1 and b2 be way-below y. Then there is some
u� x above a1 and a2, and there is some v � y above b1 and b2. Hence u t v
is a member of Z above the members a1 t a2 and b1 t b2. This shows that Z is
directed. Therefore x and y are consistent, because


⊔
Z is above them.
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(2): Any closed neighbourhood of x contains ↓↓↑↑x, because open sets are
upper sets and closed sets are lower sets. If y 6∈ ↓↓↑↑x then y is apart from x,
and there are disjoint open neighbourhoods U and V of x and y respectively,
by (1). In fact, the contrapositive of (1) states that if x and y lie apart then
there are a � x and b � y such that a and b already lie apart; thus we can
take U = ↑↑a and V = ↑↑b. Therefore y is not in the closure of U .


(3): This follows from (2), because Z ⊆ ↓↓↑↑x and closed sets contain the
least upper bounds of their directed subsets. �


Proposition 7.8 Any J-domain is coherently complete.
Proof Let B be a countable basis of a coherently complete domain D such
that every element b of B has a joining map joinb, let {a, b, c} be a pairwise
consistent subset of D, and let a′ � a in B. Since joina′ is monotone, it
preserves consistency. Thus a′ t b↑↑a′ t c, because b↑↑c. Hence a′ t b↑↑a′ t c for
every a′ � a in B. Since


⊔
a′∈↓↓a∩B a


′tx = atx for any x↑↑a, by two applications


of Lemma 7.7 we conclude that atb↑↑atc. Therefore {a, b, c} is consistent, and
we can finish the proof as in Theorem 7.5. �


Corollary 7.9 A countably based bounded complete domain is a J-domain iff
it is coherently complete.


7.2 Canonical joining maps


In general, an element of a coherently complete domain can have more than one
joining map. For example, let D be the flat domain of truth values with a new
element tt′ above tt. Then any joining map of tt has to map ⊥ and tt to tt,
and tt′ to tt′, but we can choose to map ff to either tt or else tt′. However,
Theorem 7.13 below shows that there is a canonical way of choosing joining
maps. Moreover, it shows how to construct joining maps directly instead of
indirectly via the joining maps of the coherently complete domain Bω.


Proposition 7.10 If joind is a joining map for an element d of a bounded
complete domain D, then joind is an idempotent with image ↑↑d.
Proof joind(⊥) = d. By monotonicity, joind(x) ∈ ↑↑d. If x ∈ ↑↑d then x↑↑d and
joind(x) = d t x = x. �
Recall that a kernel operator on a dcpo D is a continuous idempotent below
the identity of D [AJ94, GHK+80], and that a kernel operator is uniquely
determined by its image.


Proposition 7.11 If joind is a joining map of an element d of a bounded
complete domain D, then the map consistd : D→ D defined by


consistd(x) = joind(x) u x


is a kernel operator with image ↓↓↑↑d.
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Proof The binary meet operation is well-defined and continuous in any
bounded complete domain. Hence so is consistd. For any x, consistd(x) is con-
sistent with d, because joind(x) is clearly above consistd(x), and it is above d
by Proposition 7.10. Conversely, if x is consistent with d then consistd(x) =
(dtx)ux = x. Therefore consistd is a continuous idempotent with image ↓↓↑↑d.�


Proposition 7.12 For any coherently complete domain D and any d ∈ D
there is a kernel operator consistd : D → D with image ↓↓↑↑d, given by


consistd(x) = max (↓↓x ∩ ↓↓↑↑d) .


That is, consistd(x) is the greatest element below x which is consistent with d.
Proof For each x ∈ D define Yx = ↓↓x∩↓↓↑↑d. The set Yx is non-empty, because
it has bottom as a member. Let a, b ∈ Yx. This means that a and b are bounded
by x and consistent with d. By coherence, {a, b, d} has a join. Hence a t b is
consistent with d. Therefore Yx is directed. But it is also closed, because ↓↓x and
↓↓↑↑x are closed by Lemma 7.7. Therefore it contains its least upper bound, which
has to be its greatest member. In order to show that consistd is continuous, we
use the ε-δ characterization of continuity. Let y �


⊔
Yx. We have to show that


there is some x′ � x such that already y �
⊔
Yx′ . By a basic property of the


way-below order on continuous dcpos, y � a for some a ∈ Yx. By interpolation,
y � a′ � a for some a′, which belongs to Yx as Yx is closed. By transitivity,
a′ � x, and again by interpolation, we can find x′ such that a′ � x′ � x.
But a′ ∈ Yx′ . Hence y �


⊔
Yx′ , because y � a′. Therefore consistd is a kernel


operator with image ↓↓↑↑d. �


Theorem 7.13 Every element d of a coherently complete domain D has a
least joining map joind, given by


joind(x) = d t consistd(x).
Proof The map is well-defined because consistd(x) is consistent with d by
construction, and it is clearly continuous. Therefore joind is a joining map of d,
because x = consistd(x) iff x is consistent with d, again by construction. It
remains to show that it is below any other joining map join′d of d. By Propos-
ition 7.11, we know that consistd(x) = join′d(x) u x, because kernel operators
are uniquely determined by their image. Hence joind(x) = d t (join′d(x) u x).
We have that d is below join′d(x) by Proposition 7.10 , and we clearly have that
join′d(x)ux is below join′d(x). Hence the join of d and join′d(x)ux is itself below
join′d(x). Therefore joind(x) v join′d(x). �


We have already shown that a bounded complete, countably based domain
has internal joins iff it is coherently complete. The above theorem implies that
this is true also when the countability hypothesis is omitted:


Corollary 7.14 A bounded complete domain has internal joins iff it is coher-
ently complete.


Also, notice that the proof of this more general fact does not use the universality
of Bω.
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7.3 Universality of Bω via internal joins


We give a new proof of the fact that Bω is a universal coherently complete
countably based domain (in the sense that is has every coherently complete
countably based domain as a retract). The proof is based on internal joins. The
advantage of the new proof is that it can be effectivized in order to establish
first-order computational completeness of Real PCF and full computational
completeness of extensions of PCF with ground types interpreted as algebraic
domains.


Theorem 7.15 A bounded complete countably based domain D is coherently
complete iff it is a retract of Bω.
Proof Only the left-to-right implication is non-trivial. Let B be a countable
basis of D and let {bn|n ∈ ω} be an enumeration of B. The function s : D→ Bω
defined by


s(x)(n) =



tt if bn � x,
ff if bn #x,
⊥ otherwise.


is easily seen to be continuous. If p = s(x) then p−1(tt) is an enumeration of
↓↓x∩B. We thus define j : N→ (D⇒ D), f : Bω → (N⇒ D), and r : Bω → D
by


j(n) = joinbn
f(p)(n) = pif p(n) then j(n)(f(p)(n+ 1)) else f(p)(n+ 1),


r(p) = f(p)(0).


Here f is assumed to be the least fixed point of an implicitly defined functional,
and pif is the parallel conditional defined in Section 3.4. The idea is that f
recursively joins the elements enumerated by p−1(tt). The function j is clearly
continuous (N with discrete topology), and f and r are continuous because
they are defined by composition of continuous functions. We clearly have that
f =


⊔
k∈ω f


(k), for f (k) inductively defined by


f (0)(p)(n) = ⊥,
f (k+1)(p)(n) = pif p(n) then j(n)


(
f (k)(p)(n+ 1)


)
else f (k)(p)(n+ 1).


We prove by induction on k that for all x ∈ D and k, n ∈ ω,


f (k)(s(x))(n) =
⊔


n≤i<k+n
bi�x


bi.


This implies that


r(s(x)) = f(s(x))(0) =
⊔
k∈ω


f (k)(s(x))(0) =
⊔
k∈ω


⊔
i<k
bi�x


bi =
⊔
k∈ω
bk�x


bk = x,


56







establishing that D is a retract of Bω. For k = 0 the claim is immediate. For
the inductive step, define


z =
⊔


n+1≤i<k+n+1
bi�x


bi,


y = jn(z).


By the induction hypothesis,


f (k+1)(s(x))(n) = pif s(x)(n) then y else z.


We consider the following three cases for x:
Case (1): bn � x. Then s(x)(n) = tt, and bn↑↑z, because z v x. Thus


f (k+1)(s(x))(n) = y = bn t z =
⊔


n≤i<(k+1)+n
bi�x


bi.


Case (2): bn #x. Then s(x)(n) = ff and bn 6� x. Thus


f (k+1)(s(x))(n) = z =
⊔


n≤i<(k+1)+n
bi�x


bi.


Case (3) Otherwise. Then s(x)(n) = ⊥, bn↑↑x, bn 6� x, and bn↑↑z, because
z v x. Thus


f (k+1)(s(x))(n) = y u z = (bn t z) u z = z =
⊔


n≤i<(k+1)+n
bi�x


bi.�


7.4 Function spaces of J-domains


We already know that the category of coherently complete countably based
domains is cartesian closed. The point of the following theorem is to show how
to construct joining maps for a basis of a function space D⇒ E from the joining
maps for bases of D and E. Of course, we cannot define joinD⇒Ef (g)(x) =
joinEf(x)(g(x)), because the map e 7→ joinEe is not continuous; in fact, it is easy
to see that it is not even monotone.


Lemma 7.16 A bounded complete domain is a J-domain iff it has a countable
subbasis S such that each s ∈ S has a joining map.
Proof IfA = {s1, . . . , sn} is a bounded subset of S and s1, . . . , sn have joining
maps joins1, . . . , joinsn respectively, then the element


⊔
A of the induced basis


has a joining map joins1 ◦ · · · ◦ joinsn. Notice that for n = 0 we have that⊔
A = ⊥ and that joins1 ◦ · · · ◦ joinsn is the identity. �
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Theorem 7.17 The category of J-domains is cartesian closed.
Proof Let D and E be J-domains w.r.t. countable bases A and B respect-
ively.


The identity function of a one-point domain is a joining map for the unique
element of the domain. Hence it is a J-domain. A countable basis of D × E
is A × B. If (a, b) ∈ A × B then a and b have joining maps joinDa and joinEb
respectively, and it is easy to see that then (a, b) has a joining map joinD×E(a,b)


def=
joinDa ×joinEb . Therefore the category of J-domains is closed under the formation
of finite products.


Recall that a countable subbasis of D⇒ E is given by the set of single-step
functions A⇒s B = {a Z⇒ b|a ∈ A, b ∈ B}, where


(a Z⇒ b)(x) =


{
b if a� x,
⊥ otherwise.


Let a Z⇒ b ∈ A ⇒s B, let joinEb be a joining map for b, and define a map
way-belowD


a : D→ B by


way-belowD
a (x) =



tt if x is in ↑↑a,
ff if x is in the exterior of ↑↑a,
⊥ if x is in the boundary of ↑↑a.


Here the exterior of a set is the largest open set disjoint from it, namely
the interior of its complement. Therefore this function is continuous. Define
joinD⇒Ea Z⇒b : (D ⇒ E)→ (D⇒ E) by


joinD⇒Ea Z⇒b (f)(x) = pifE way-belowD
a (x) then joinEb (f(x)) else f(x),


and let f be an element of D⇒ E consistent with a Z⇒ b. In order to prove that
joinD⇒Ea Z⇒b (f) = (a Z⇒ b)t f , we show that joinD⇒Ea Z⇒b (f)(x) = ((a Z⇒ b)t f)(x) for
every x ∈ D, by considering the following three cases:


(1) x is in ↑↑a: In this case x is (trivially) consistent with a and hence b =
(a Z⇒ b)(x)↑↑f(x). Therefore joinD⇒Ea Z⇒b (f)(x) = joinEb (f(x)) = b t f(x) =
((a Z⇒ b) t f)(x).


(2) x is in the exterior of ↑↑a: Then joinD⇒Ea Z⇒b (f)(x) = f(x) = ⊥ t f(x) =
((a Z⇒ b) t f)(x).


(3) x is in the boundary of ↑↑a: We first show that b↑↑f(x). By hypothesis,
every neighbourhood of x intersects ↑↑a. In particular, every x′ � x is way-
consistent with a. Let x′ � x and u ∈ ↑↑x′∩↑↑a. Then (a Z⇒ b)(u) = b↑↑f(u),
because function application preserves consistency. Since x′ v u and
hence f(x′) v f(u), b↑↑f(x′). This shows that b↑↑f(x′) for every x′ � x.
Hence, by continuity of f and Lemma 7.7, b↑↑


⊔
x′�x f(x′) = f(x). It


follows that joinD⇒Ea Z⇒b (f)(x) = joinEb (f(x)) u f(x) = (b t f(x)) u f(x) =
f(x) = ((a Z⇒ b) t f)(x).


Therefore, by Lemma 7.16, the category of J-domains is closed under the form-
ation of function spaces. �
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We don’t pause to check whether the joining maps constructed above are min-
imal whenever the given joining maps are minimal. But we conjecture that this
is the case.


The above theorem gives a particularly simple construction of joining maps
for function spaces of algebraic J-domains. By Lemma 7.7, if d is an element of
a bounded complete domain D, then the set d] of elements apart from d is an
open set disjoint from the open set ↑↑d; that is, d] is contained in the exterior
of ↑↑d. In general, there is no reason why these sets should be equal. In fact, it
seems to be hard to characterize the exterior of ↑↑d in order-theoretical terms.
But a simple characterization is available when d is compact and D is algebraic:


Lemma 7.18 If d is a compact element of a bounded complete algebraic do-
main D, then the exterior of the open set ↑↑d = ↑↑d is d].
Proof Let x be an exterior point of ↑↑d. Then x has an open neighbourhood O
disjoint from ↑↑d. By algebraicity of D, O contains a compact element b v x.
Hence b is apart from d, because O is an upper set, and therefore x itself is
apart from d, because it is above b. �
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Part III


The partial real line
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In Chapter 8 we introduce the partial real line. We include both standard
facts and new results. In Chapter 9 we develop the idea that partial real
numbers are “continuous words”, which is applied to obtain an operational
semantics for Real PCF in Chapter 11 of Part IV. In Chapter 10 we introduce
induction principles and recursion schemes for the partial real line, which are
related to the interpretation of partial real numbers as continuous words.
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Chapter 8


Partial real numbers


In Section 8.1 we introduce the interval domain and its basic structure. In
Section 8.2 we relate the Scott topology on the interval domain to the Euclidean
topology on the real line. Since the subspace of maximal points of the interval
domain is homeomorphic to the Euclidean real line, we decide to refer to is
as the partial real line. In Section 8.3 we discuss extensions of continuous real
valued functions of real valued variables to Scott continuous partial real valued
functions of partial real variables. The material of these first three sections is
standard.


In Section 8.4 we introduce new results about partial real valued functions.
In Section 8.5 we relate discontinuous functions in analysis to continuous func-
tions in domain theory. In Section 8.6 we discuss order of magnitude on partial
real numbers. In Section 8.7 we show that every partial real number has a
unique joining map (cf. Chapter 7 of Part II), and we conclude in particular
that the partial real line is a coherently complete domain. In Chapter 8.8 we
discuss a “parallel effect” on the partial real line which forces us to use the
so-called parallel conditional, which is informally discussed in [BC90]. We give
a simple topological explanation of the parallel effect.


Sections 8.9–8.13 are included as an appendix to this chapter. They can be
omitted as they are not needed in the development which follows. Section 8.9
relates the partial real line to the Euclidean plane. Section 8.10 generalizes
the construction of the real line by Dedekind cuts to the partial real line. Sec-
tion 8.11 constructs the partial real line by round ideals, and it does not contain
any new material. Section 8.12 discuss an algebraic version of the partial real
line. Section 8.13 presents the partial real line as a quasi-metric space.


8.1 The interval domain


In this section we discuss standard facts about the interval domain introduced
in [Sco72b], which is the main domain of interest in this thesis.


The set R = IR of non-empty compact subintervals of the Euclidean real
line ordered by reverse inclusion


x v y iff x ⊇ y
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is a domain, referred to as the interval domain. If we add an artificial bot-
tom element to R, which can be concretely taken as the non-compact interval
(−∞,+∞), then R becomes a bounded complete domain R⊥.


For any interval x ∈ R, we write


x = inf x and x = supx


so that x = [x, x]. A subset A ⊆ R has a least upper bound iff it has non-empty
intersection, and in this case⊔


A =
[
sup
a∈A


a, inf
a∈A


a


]
=
⋂
A.


Any subset A ⊆ R with a lower bound has a greatest lower bound, given by


l
A =


[
inf
a∈A


a, sup
a∈A


a


]
⊇
⋃
A.


The way-below relation of R is given by


x� y iff x < y and y < x


iff the interior of x contains y.


The way-below relation of R is multiplicative, in the sense that


x� y and x� z together imply x� y u z.


A basis of R is given by the intervals with distinct rational (respectively dyadic)
end-points. Recall that a dyadic number is a rational number of the formm/2n.


The unit interval domain


The set I= I[0, 1] of all non-empty closed intervals contained in the unit in-
terval [0, 1] is a bounded complete, countably based domain, referred to as the
unit interval domain. The bottom element of I is the interval [0, 1]. Its
way-below order is given by


x� y iff x = 0 or x < y, and y < x or y = 1
iff the interior of x contains y.


The extended interval domain


Let R? = [−∞,+∞] be the two-point compactification of the real line, also
referred to as the extended real line. Then the set R?= IR? of all non-empty
compact intervals of the extended real line is a bounded complete, countably
based domain, referred to as the extended interval domain. Its way-below
relation is given similarly.
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8.2 The partial real line


Let s : R → R denote the singleton-map r 7→ {r}. This is a function onto
the maximal elements of R. Since the sets ↑↑x, for x ∈ R, form a basis of the
Scott topology of R, and since


↑↑x ∩MaxR = {{r}|x < r < x} = {s(r)|r ∈ (x, x)},


the sets {s(r)|r ∈ (a, b)}, for open intervals (a, b), form a base of the relative
topology on MaxR. This shows that MaxR is homeomorphic to the real line,
and that the singleton map is a subspace inclusion, because the open intervals
(a, b) form a base of the topology of the real line.


Similarly, MaxI and MaxR? are homeomorphic to the unit interval and
the extended real line.


Therefore non-singleton intervals can be regarded as approximations of real
numbers, and we refer to them as partial real numbers and to the interval
domain as the partial real line. Similarly, we refer to the unit interval do-
main as the partial unit interval and to the extended interval domain as the
extended partial real line.


Remark 8.1 In interval analysis [Moo66] one works with R endowed with
the topology induced by the Hausdorff metric on intervals. We refer to the
resulting space as the interval space. For topological connections between
domain theory and interval analysis see [EC93]. In particular, it is shown
that the Scott open sets of the interval domain are the open upper sets of the
interval space. Conversely, the open sets of the interval space are the Lawson
open sets of the interval domain. Since in interval analysis one restricts oneself
to monotone functions, many results presented in [Moo66] go through if one
replaces the topology induced by the Hausdorff metric by the Scott topology.
See also Acióly [Aci91] for more connections between domain theory and interval
analysis. �


8.3 Canonical extensions of real valued maps of real
variables


Every continuous map f : Rn → R extends to a continuous map If : Rn → R
defined by


If(x1, . . . , xn) = {f(r1, . . . , rn)|r1 ∈ x1, . . . , rn ∈ xn},


called its canonical extension. For n = 1 we reason as follows. Since f
is continuous, it maps connected sets to connected sets, and compact sets to
compact sets. Hence it maps compact intervals to compact intervals. Therefore
If is well-defined. But extensions of maps to powersets preserve intersections of
⊇-directed sets. Therefore If is Scott continuous. For n arbitrary the argument
is analogous.


It is easy to see that the canonical extension is the greatest monotone ex-
tension. Since it is continuous and every continuous function is monotone, it is
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also the greatest continuous extension. Notice however that the above extension
property doesn’t follow from the injectivity properties discussed in Section 2.8,
because R is not bounded complete as it lacks a bottom element.


If the function f is increasing in each argument with respect to the natural
order of R, then If is given pointwise:


If(x1, . . . , xn) = [f(x1, . . . , xn), f(x1, . . . , xn)].


If f is decreasing in each argument, then If is given “antipointwise”:


If(x1, . . . , xn) = [f(x1, . . . , xn), f(x1, . . . , xn)].


Convention 8.2 We often notationally identify the function f : Rn → R with
its extension If : Rn → R, and a number r ∈ R with its inclusion {r} ∈ R.
Moreover, we often define a function f : Rn → R by first defining a function
f : Rn → R and then implicitly taking its canonical extension. The same
convention applies to functions denoted by operator symbols, such as addition
denoted by +. �


For example,


x+ y = [x+ y, x+ y],
1− 2x = [1− 2x, 1− 2x].


Of course, the extension properties discussed for the interval domain also apply
to the partial unit interval.


For the extended partial real line we can reason as follows. The closure of
R in R? is R?. Hence the singleton map r 7→ {r} : R → R? embeds the real
line as a dense subspace of R?. Therefore, by the injective property of bounded
complete domains (cf. Section 2.8), every continuous function f : R → R has
a greatest continuous extension f? : R? → R?. If the limits of f at ±∞ exist,
then the values of f? at ±∞ are these limits, as discussed in the next section.


8.4 Partial real valued functions


In this section we consider functions defined on any space with values on the
extended partial real line.


The projections π, π : R? → R? defined by


π(x) = x and π(x) = x


are not continuous because they do not preserve the specialization order, as the
specialization order of R? is discrete.


The set of extended real numbers endowed with its natural order ≤ is a
continuous lattice, and so is its opposite (see [GHK+80]). Moreover, for any
space X , a function f : X → R? is lower semicontinuous iff it is continuous with
respect to the Scott topology on R? induced by ≤, and it is upper semicontinu-
ous iff it is continuous with respect to the Scott topology on R? induced by ≥. It
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is clear from this observation that the above projections are respectively lower
and upper semicontinuous.


In order to avoid the rather long terms “lower semicontinuous” and “upper
semicontinuous”, we denote by R and R the set of extended real numbers en-
dowed with the Scott topologies induced by ≤ and ≥ respectively, and we refer
to the points of these topological spaces as respectively lower and upper real
numbers. Thus, the above projections are continuous functions π : R? → R
and π : R? → R.


The projections satisfy
π ≤ π


pointwise. Thus, given any continuous function f : X → R?, we can define
continuous functions f : X → R and f : X → R by composition with the
projections, and we have that f ≤ f pointwise. Conversely,


Lemma 8.3 For any space X and all continuous maps f : X → R and f :
X → R with


f ≤ f


pointwise, there is a unique continuous map f : X →R? such that


f = π ◦ f and f = π ◦ f,


namely [f, f] defined by


[f, f ](x) = [f(x), f(x)].


Proof It suffices to show that [f, f] is continuous. Given a basic open set ↑↑y
in R?, we have that


[f, f]−1(↑↑y) = {x ∈ X |y� [f, f](x)}
= {x ∈ X |y�Rf(x) and y �


R
f(x)}


= {x ∈ X |y�Rf(x)} ∩ {x ∈ X |y�
R
f(x)}


= f−1(↑↑Ry) ∩ f−1
(↑↑
R
y)


is an open set, because ↑↑Ry and ↑↑
R
y are open sets in R and R respectively.


Therefore [f, f] is continuous. �
Thus, for any space X , a continuous function f : X → R? is essentially the
same as a pair of continuous maps 〈f : X → R, f : X → R〉 with f ≤ f
pointwise.


We can thus say that an extended partial real number is given by a pair
〈x, x〉 of respectively lower and upper real numbers such that x ≤ x.


Corollary 8.4 R? is homeomorphic to the subspace of R × R consisting of
pairs of extended real numbers 〈x, x〉 with x ≤ x.


Since R? is a bounded complete domain, it is a densely injective space (cf.
Section 2.8).
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Proposition 8.5 Let X be a dense subspace of a metric space Y and f : X →
R? be a continuous map. Then the greatest continuous extension f̂ : Y → R?
of f is given by


f̂(y) =
[
lim inf
x→y


f(x), lim sup
x→y


f(x)
]
.


Here x→ y is a short-hand for x ∈ X and x→ y.
Proof


f̂(y) =
⊔↑


y∈O∈ΩY


l
x∈X∩O


f(x)


=
⊔↑
ε>0


l
0<d(x,y)<ε


[
f(x), f(x)


]
=


⊔↑
ε>0


[
inf


0<d(x,y)<ε
f(x), sup


0<d(x,y)<ε
f(x)


]


=


[
sup
ε>0


inf
0<d(x,y)<ε


f(x), inf
ε>0


sup
0<d(x,y)<ε


f(x)


]


=
[
lim inf
x→y


f(x), lim sup
x→y


f(x)
]
.�


In particular, if f : X → R? is a continuous map, then the above theorem
applied to the coextension s◦ f : X →R? of f to R?, where s : R? →R? is the
singleton embedding, produces a greatest extension f̂ : Y →R? of f , given by


f̂(y) =
[
lim inf
x→y


f(x), lim sup
x→y


f(x)
]
.


Let f : R→ R be continuous. By the above remark, if f has a limit at ∞, then
f̂(∞) = limx→∞ f(x). For a pathological example, consider f : (R− {0})→ R
defined by f(x) = sin(1/x). Then f̂ (0) = [−1, 1], so that f̂ behaves as the
so-called topologist’s sine curve [HY88]. Also, f̂(±∞) = 0.


Lemma 8.6 Every continuous map f : R → R has a greatest continuous
extension f̂ : R→ R, given by


f̂(x) =
l
f(x).


Proof Since this is clearly the greatest monotone extension, it suffices to
show that it is continuous. In this proof we make use of techniques not intro-
duced in the background Part I, which can be found in [Sch93] (see also [Smy83,
Vic89, Eda95e]). Let U be the endofunctor on the category of topological spaces
which assigns to a space X its upper space, whose points are the non-empty com-
pact saturated sets of X , and which assigns to a continuous map f : X → Y
the continuous map Uf : UX → UY defined by Uf(Q) = ↑↑f(Q). Then for
any space X the map x 7→ ↑↑x : X → UX is continuous, and for any continuous
u-semilattice D, the meet map


d
: UD → D is well-defined and continuous.
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Since R is a continuous u-semilattice and a subspace of UR, the map f̂ is con-
tinuous, because it can be expressed as the following composition of continuous
maps:


R ⊂ - UR
Uf- UR


d
- R


x 7→ x 7→ ↑↑f(x) 7→
l
↑↑f(x) =


l
f(x).


(Note: This also shows that the assignment f 7→ f̂ is Scott continuous, and
is a particular case of a much more general fact about injectivity established
in [Esc97]). �


8.5 Discontinuous functions in real analysis versus
continuous functions in domain theory


This section contains new results about extensions of arbitrary real valued func-
tions to continuous partial real valued functions.


In real analysis one often considers discontinuous functions f : R→ R, but
in many cases only the points of continuity of f are interesting. For instance,
a function f : R → R is Riemann integrable on any compact interval iff it
is bounded on compact intervals and continuous almost everywhere [Roy88].
Moreover, the integral of f depends only on its points of continuity. The fol-
lowing theorem shows that such uses of ad hoc discontinuity can be avoided in
domain theory.


Lemma 8.7 For any function f : X → R? defined on a metric space X there
is a continuous map f̃ : X → R? agreeing with f at every point of continuity
of f , given by


f̃(x) =
[
lim inf
y→x


f(y), lim sup
y→x


f(y)
]
.


Proof We know from classical topology and analysis that


g(y) = lim inf
x→y


f(x)


is the greatest lower semicontinuous function below f , and that


g(y) = lim sup
x→y


f(x)


is the least upper semicontinuous function above f (see e.g. [Bou66, Roy88]).
Since f̃ is [g, g], it is continuous. Since f is continuous at y iff limx→y g(x)
exists iff lim infx→y f(x) = lim supx→y g(x), f̃ agrees with f at every point of
continuity of f . �
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Theorem 8.8 For any function f : R→ R bounded on compact intervals there
is a continuous map f̈ : R → R agreeing with f at every point of continuity
of f , given by


f̈(x) = [inf g(x), sup g(x)],


where g : R→ R and g : R→ R are continuous maps defined by


g(y) = lim inf
x→y


f(x) and g(y) = lim sup
x→y


f(x).


Proof Since f is bounded on compact intervals, the function f̃ : R → R?
defined in Lemma 8.7 corestricts to R. By Lemma 8.6, the corestriction can be
extended to a function f̈ : R→ R, given by


f̈(x) =
l
f̃(x) = [inf g(x), supg(x)]. �


8.6 Order of magnitude on the partial real line


We define a strict order < on partial numbers by


x < y iff x < y.


This relation is clearly irreflexive, transitive, and asymmetric (in the sense that
x < y together with x > y is impossible). The following lemma is immediate:


Lemma 8.9 For all partial real numbers x and y, exactly one of the relations
x < y, x↑↑y and x > y holds.


Lemma 8.10 For all x, y, u, v ∈ R,


1. u < x u y iff u < x and u < y,


2. x u y < v iff x < v and y < v.
Proof (1): u < x u y iff u < x u y iff u < min(x, y) iff u < x and u < y iff
u < x and u < y. (2): Similar. �


Let B= {tt,ff} be the discrete space of truth values. The characteristic
function χ< : R × R → B of the inequality predicate < is discontinuous at
each point 〈x, x〉. This reflects the fact that equality of real numbers is unde-
cidable [ML70, PeR83, Wei87, Wei95]. Recall that B= B⊥ is the flat domain
of partial truth values. Since the points of continuity of χ< form a dense set,
χ< restricted to its points of continuity has a greatest continuous extension
(x, y) 7→ (x<⊥y) : R⊥ ×R⊥→ B. This extension is given by


(x<⊥y) =



tt if x < y,
ff if x > y,
⊥ if x↑↑y.


We define a relation ≤ on partial numbers by


x ≤ y iff x ≤ y.


The relation ≤ transtive and antisymmetric, but reflexive only on total real
numbers, and therefore the notation can be misleading.
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8.7 The partial real line as a J-domain


Recall from Chapter 7 that a joining map of an element d of a bounded complete
domain D is a continuous function joind : D → D such that


joind(x) = d t x for every x↑↑d,


and that a bounded complete domain is a J-domain iff it has a basis such that
every basis element has a joining map.


Proposition 8.11 Each a ∈ R⊥ has a unique joining map joina.
Proof If a = ⊥ the identity is the only joining map. Otherwise, if joina :
R⊥ →R⊥ is a joining map of a, then its monotonicity implies that joina(x) = a
for all x < a and joina(x) = a for all x > a. In fact, assume that x < a. This
means that x < a. Then [x, a] v x. Hence a = joina([x, a]) v joina(x).
Therefore a = joina(x), because a is maximal. The other case is similar. By
Lemma 8.9, if a has a joining map then it has to be joina defined by


joina(x) =



a if x < a,
a t x if x↑↑a,
a if a < x


= max(a,min(x, a)).


Notice that we are applying Convention 8.2. Since this map is continuous, it is
a joining map of a. �
Since a domain is coherently complete iff each of its elements has a joining map,
we have that


Corollary 8.12 R⊥ is a coherently complete domain.


8.8 A parallel effect in the partial real line


We say that a continuous predicate p : R⊥ → B is non-trivial if there are
total real numbers x and y such that p(x) = tt and p(y) = ff , and we say that
a function f : R⊥ → D is undefined at x if f(x) = ⊥.


Proposition 8.13 Let D be a domain, p : R⊥ → B be a continuous predicate,
g, h : R⊥→ D be continuous functions, and define a function f : R⊥→ D by


f(x) = if p(x) then g(x) else h(x).


If p is non-trivial then f is undefined at some total real number.


The proof depends only on the fact that Max (R⊥) is a connected space.
Proof The non-empty disjoint sets U = p−1(tt) ∩ Max (R⊥) and V =
p−1(ff) ∩ Max(R⊥) are open in Max (R), because p is continuous, and {tt}
and {ff} are open in B. Hence U ∪ V 6= Max (R⊥), because Max (R⊥) is con-
nected. Therefore there is some maximal element x such that p(x) = ⊥. �
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Thus, the sequential conditional is not appropriate for definition by cases of
total functions on the partial real line (or any domain with subspace of maximal
points homeomorphic to the real line) because it produces non-total functions
for non-trivial continuous predicates. We claim that the parallel conditional
overcomes this deficiency of the sequential conditional. This “parallel effect”
seems to be related to the “intensional effect” described in [Luc77].


In virtually all definitions by cases of the form


f(x) = pif p(x) then g(x) else h(x)


given in this work, one has that g(x) = h(x) for all maximal x with p(x) = ⊥.
In such a situation, if x is maximal and p(x) = ⊥, then


f(x) = g(x) u h(x) = g(x) = h(x).


The examples below illustrate this situation, and, moreover, they show that the
parallel conditional is useful to overcome the fact that equality of real numbers
is undecidable.


Example 8.14 The following definition gives an extension of the absolute
value function:


|x| = pif x<⊥0 then − x else x.


For the case x = 0 one has


|0| = pif ⊥ then − 0 else 0 = 0 u 0 = 0. �


Example 8.15 Let E be any domain, and let f, g : I → E be continuous
maps. Then f and g are (generalized) paths in the domain E. (The restrictions
of f and g to total real numbers are paths in the usual sense [HY88].) If
f(1) = g(0) the paths are said to be composable. Now define a continuous
map h : I → E by


h(x) = pif x <⊥ 1
2 then f(2x) else g(2x− 1)


If the paths are composable, then h is a (generalized) composite path. Let us
check the crucial case x = 1


2 :


h( 1
2) = pif 1


2 <⊥
1
2 then f(2 · 1


2) else g(2 · 1
2 − 1) = pif ⊥ then f(1) else g(0)


= f(1) u g(0) = f(1) = g(0)


Notice that the sequential conditional would produce ⊥ instead of f(1) u g(0),
and therefore h would be undefined at 1


2 .
If f and g are not composable, then h is a generalized composite path with a


jump at 1
2 , namely f(1)u g(0). For instance, if E = I and f and g are constant


maps with range 0 and 1 respectively, then h can be thought as a switch which
turns on at time 1


2 . In this case, the switch is in the transition state [0, 1] = 0u1
at time 1


2 . Notice that even in this case h is Scott continuous, because it is a
composition of continuous maps. �
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The following lemma is useful to prove properties of definitions involving
the parallel conditional. Recall that a function between two bounded complete
domains is multiplicative iff it preserves binary meets.


Lemma 8.16 Let f : D→ E be a continuous map between bounded complete
domains D and E. Then


f(pif p then x else y) = pif p then f(x) else f(y)


for all p ∈ B and all x, y ∈ D iff f is multiplicative.
Proof (⇒): Take p = ⊥. Then the left-hand side of the equation is f(xu y)
and the right-hand side is f(x) u f(y).


(⇐): If p = tt then lhs=f(x)=rhs, If p = ff then lhs=f(y)=rhs, and if
p = ⊥ then lhs=f(x u y) = f(x) u f(y)=rhs. �


Appendix


Section 8.9 relates the partial real line to the Euclidean plane. Section 8.10
generalizes the construction of the real line by Dedekind cuts to the partial real
line. Section 8.11 constructs the partial real line by round ideals, and it does
not contain any new material. Section 8.12 discuss an algebraic version of the
partial real line. Section 8.13 presents the partial real line as a quasi-metric
space.


8.9 The unit triangle and the half-plane


The partial unit interval can be presented in a geometrically convenient form
as follows. The unit square [0, 1] × [0, 1] under the componentwise order in-
duced by the usual order ≤ on [0, 1] is a continuous lattice, whose Lawson
topology coincides with the Euclidean topology on the unit square [GHK+80]
(see Remark 8.1). If we consider the points below (equivalently, on the left
of) the diagonal which goes from (0, 1) to (1, 0), that is, the points (x, y) with
x + y ≤ 1, we get a triangle, which we refer to as the unit triangle. The
unit triangle is easily seen to be a domain. Its maximal elements are the points
(x, y) with x+ y = 1, that is, the points on the diagonal.


It turns out that the unit triangle is isomorphic to the partial unit interval.
The isomorphisms can be taken as


(x, y) 7→ [x, 1− y],
[x, y] 7→ (x, 1− y).


We can think of the unit triangle as a coordinate system for the partial unit
interval.


We have a similar fact for the partial real line; a coordinate system for R
is given by the half-plane consisting of the points (x, y) with x + y ≤ 0. A
coordinate system for R⊥ is obtained by adding a point (−∞,−∞) to the
half-plane, and a coordinate system for R? is obtained similarly.
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8.10 A construction of the partial real line by Dede-
kind cuts


The real line can be constructed by Dedekind cuts [Rud76]. In this section we
extend this construction to the extended partial real numbers domain.


A Dedekind cut is a pair 〈L,R〉 of sets of rational numbers such that


1. L and R are non-empty.


2. L is a lower set with no greatest element, and R is an upper set with no
least element.


3. Every member of L is strictly below every element of R.


4. If p < q are rational numbers then p is a member of L or q is a member
of R.


The second axiom can be put in constructive form, by positively expressing the
negation of the universal quantification.


If the set R of real numbers is already given, then there is a bijection between
real numbers and cuts, given by the maps


x 7→ 〈{r ∈ Q|r < x}, {r ∈ Q|x < r}〉 ,
〈L,R〉 7→ supL (or, equivalently, inf R).


Otherwise, we can define R to be the set of cuts, and, indeed, this is one of the
approaches to the construction of real numbers. The idea is that a real number
is uniquely determined by its sets of rational lower and upper bounds.


If the first axiom is omitted, then we obtain the extended cuts. Only
two new cuts arise, namely 〈∅,Q〉 and 〈Q, ∅〉, which can be thought as −∞
and +∞.


If the last axiom is also omitted, we obtain the partial extended cuts, and
a construction of the partial extended real line. The information order on cuts
can be defined by 〈L,R〉 v 〈L′, R′〉 iff L ⊆ L′ and R ⊆ R′. We thus have an
isomorphism between partial extended real numbers and partial extended cuts,
given by


x 7→ 〈{r ∈ Q|r < x}, {r ∈ Q|x < r}〉 ,
〈L,R〉 7→ [supL, infR].


The partial real line can be constructed by keeping the first axiom and
omitting the last, but allowing the partial cut ⊥ = 〈∅, ∅〉. The lower and upper
real line R and R can be constructed by partial extended cuts of the form 〈L, ∅〉
and 〈∅, R〉 respectively.


If real numbers, extended real numbers, lower and upper real numbers,
partial real numbers, and partial extended real numbers are constructed in this
way, all of them coexist in a single universe, namely the domain of partial
extended cuts.
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Cuts have a natural computational interpretation. We can say that we
know a (partial extended) real number if we know which rationals are below it
and which rationals are above it. Then computability can be taken as effective
knowledge, and, in fact, for real numbers this coincides with the definition
of computability for the real line given in e.g. [PeR83, Wei87, Wei95]. The
information order as defined above gives a natural ordering between the degrees
of knowledge induced by partial cuts.


8.11 A construction of the partial real line by round
ideals


Here we consider the abstract basis of R consisting of intervals with distinct
rational end-points, referred to as the abstract rational basis. The order is
given by


x ≺ y iff x < y and x > y.


The treatment of the extended case is similar. It is easy to see that there
is a bijection between round ideals in the abstract rational basis and partial
Dedekind cuts, given by


A 7→ 〈{p| [p, q] ∈ A for some q}, {q| [p, q] ∈ A for some p}〉
〈L,R〉 7→ { [p, q]| p ∈ L and q ∈ R}.


Martin-Löf’s approach to constructive real analysis [ML70] is based on the
abstract rational basis. (Notice that a recursion-theoretic approach to con-
structivity is adopted in loc. cit.) He considers the elements of the abstract
rational basis as formal intervals , refers to them as neighbourhoods , and reads
the expression x ≺ y as y is finer than x. He refers to a round ideal as an approx-
imation, to its members as its neighbourhoods , positively defines the apartness
relation by


x#y iff x < y or x > y,


and defines


“An approximation a is maximal if, for every pair of neighbour-
hoods I and J such that I is finer than J, either I lies apart from
some neighbourhood of a or J is a neighbourhood of a. The max-
imal approximations form the constructive points of the space we
are considering.”


A non-constructive argument (using e.g. Zorn’s Lemma) is needed to prove
that maximality in his sense coincides with order-theoretic maximality.


In the domain-theoretic approach to real number computation, approxim-
ations and points coexist in a single space, and approximations are considered
as partial points. The construction of the partial real line by round ideals is
discussed in detail in [Aci91].
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8.12 An algebraic version of the partial real line


As we have seen in Section 2.7, every domain is a retract of the ideal completion
of any of its bases, in a canonical way. Here we consider the ideal completion R̃
of the basis B ofR consisting of intervals with (not necessarily distinct) rational
end-points. Then we have a section-retraction pair


R
p


�
e
R̃


defined by


e(x) = ↓↓x


p(X) =
⊔↑


X.


Since sections are subspace embeddings, if s : R→R is the singleton embedding
defined in Section 8.2, then e◦s : R→ R̃ is a subspace embedding, which is not
onto the maximal elements of R̃. In fact, if r ∈ R is rational, then the round
ideal


r◦ = e ◦ s(r) = {[a, b] ∈ B|a < r < b} = ↓↓{r}


has three ideals above it, namely


r� = {[a, b] ∈ B|a ≤ r ≤ b} = ↓↓{r}
r− = {[a, b] ∈ B|a < r ≤ b}
r+ = {[a, b] ∈ B|a ≤ r < b}.


Among these, the “square ideal” r� is maximal, and it is an open point of R̃,
simply because it is the principal ideal generated by a maximal basis element.
Therefore the map d : Q→ R̃ defined by


d(r) = r�


is an embedding of the discrete space of rational numbers into the maximal
elements of R̃.


Since the image of d is open in R̃, the closure of the image of e◦s is disjoint
from the image of d. Therefore the embedding e ◦ s is not dense. But it is
easily seen to be strongly isochordal (cf. Section 2.8). Since R̃⊥ is easily seen
to be a coherently complete domain (and hence isochordally injective), we have
that every continuous function f : R→ R extends to a continuous function f̃ :
R̃⊥ → R̃⊥. This justifies an approach to real number computation based on R̃,
or the similar algebraic domain considered by Pietro di Gianantonio [Gia93a].


8.13 The partial real line as a quasi-metric space


A quasi-metric space [Law73, Smy87, Smy89, Smy92b] is a set X together
with a function


d : X ×X → [0,∞]


such that
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1. d(x, x) = 0,


2. d(x, y) + d(y, z) ≥ d(x, z).


Any quasi-metric induces a topology, given by the basis of open balls


Bε(x) = {y ∈ X |d(x, y)< ε}.


The quasi-metric and specialization order induced by the topology are related
by


d(x, y) = 0 iff x v y.


If d is a quasi-metric then so is its opposite, defined by


dop(x, y) = d(y, x),


The symmetrization of d defined by


d∗(x, y) = max(d(x, y), dop(x, y))


is a metric, as it is immediate that


d∗(x, y) = d∗(y, x).


The topology induced by d∗ is the join of the topologies induced by d and dop.
The examples below show that a quasi-metric d has the following intuitive


interpretation:


d(x, y) tells us how much we have to degrade x so that it becomes
smaller than y in the specialization order.


We can define a quasi-metric on the extended real numbers by


d(x, y) = x
.
− y,


where
.
− is truncated subtraction, defined by


x
.
− y =


{
x− y if x ≥ y,
0 if x ≤ y


= inf{ε > 0 | x− ε ≤ y}.


Notice that a subtraction involving infinities can be ambiguous, but that the
last term of the definition eliminates the ambiguity if ε is assumed to be finite.
We call this the lower quasi-metric on the extended real numbers, as the
induced topology is the lower topology, because d(x, y) < ε iff x − ε � y, and
hence


Bε(x) = ↑↑(x− ε).
Dually, dop induces the upper topology and is called the upper quasi-metric.
Hence d∗ induces the the usual topology on the extended real numbers. In fact,


d∗(x, y) = max((x
.
− y), (y


.
− x)) = |y − x|,
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as one of x
.
− y and y


.
− x must be zero and the other must be |y − x|.


Limits of sequences and Cauchy sequences can be defined in the same way
as for metric spaces. Thus, a limit of a sequence xi on a quasi-metric space X
is a point y ∈ X such that for every ε > 0 there is an n such that d(xi, y) < ε
for all i ≥ n, and xi is a Cauchy sequence if for every ε > 0 there is an n
such that d(xi, xj) < ε for all i, j ≥ n. Although limits as defined above clearly
coincide with limits with respect to the induced topology, it is not true that
every convergent sequence is Cauchy. The following proposition is proved in a
more general form in [Smy89]:


Proposition 8.17 A sequence xi of extended real numbers converges to y with
respect to the lower quasi-metric iff


y ≤ lim sup
i∈ω


xi.


In particular, if xi is increasing then it converges to y iff


y ≤ sup
i∈ω


xi.


Proof xi converges to y


iff for every ε > 0 there is an n such that xi − ε < y for all i ≥ n,
iff for every ε > 0 there is an n such that sup


i≥n
xi − ε < y,


iff for every ε > 0, inf
n∈ω


sup
i≥n


xi − ε < y,


iff for every ε > 0, lim sup
i∈ω


xi − ε < y,


iff for every ε > 0, d(lim sup
i∈ω


xi, y) < ε,


iff d(lim sup
i∈ω


xi, y) ≤ 0,


iff y ≤ lim sup
i∈ω


xi.�


Thus, every sequence is convergent with respect to the lower quasi-metric.
This merely reflects the fact that every net is convergent in the lower real line,
because −∞ is the least limit of any net. The above proposition shows that
there is always a greatest limit too.


Given quasi-metrics on sets X and Y , we can define a quasi-metric on the
product X × Y by


d(〈x1, y1〉 , 〈x2, y2〉) = max(d(x1, x2), d(y1, y2)).


Then the metric on the product induces the product topology. In particular,
the product of the lower and upper quasi-metrics induces a quasi-metric on the
product space R×R. By the above remark, this quasi-metric induces the Scott
topology on R×R. In fact, we have that


d(x, y) =
⊔
{ε > 0 | xε v y},
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where the partial number
xε = 〈x− ε, x+ ε〉


is the ε-degradation of x. Hence the open balls are given by


Bε(x) = ↑↑xε.


This quasi-metric restricts to the subspaces R? and R of the quasi-metric space
R×R (cf. Section 8.4, where R? and R are identified with subspaces of R×R).
This quasi-metric onR coincides with the quasi-metric defined by Acióly [Aci91]
in a more direct way, and it is also induced by the quasi-metric defined by
Edalat [Eda95e] on the upper space of R. Under the identification of real
numbers and maximal elements of R, the restriction of the standard quasi-
metric to the maximal elements is the usual metric on real numbers. Therefore,
the limit of a Cauchy sequence of maximal elements w.r.t. the usual metric
coincides with the greatest limit w.r.t. the quasi-metric.


The symmetrization of the induced quasi-metric on R is the Hausdorff met-
ric


d(x, y) = max(|y − x|, |y− x|).
and therefore it induces the Lawson topology (see Remark 8.1 and Section 8.9).


By the above proposition and its dual, a sequence xi in R? converges to
y ∈ R? iff


y v
[
lim inf
i∈ω


xi, lim sup
i∈ω


xi


]
.


Thus, every sequence xi converges to a least limit [−∞,+∞] and to a greatest
limit [lim infi∈ω xi, lim supi∈ω xi]. Steve Vickers [Vic96] has defined a notion
of “flat completion” of a quasi-metric space. He also showed (personal com-
munication) that the completion of the rational intervals with respect to the
quasi-metric defined above produces the partial real line.


The above metric on R⊥ can be extended to R⊥ by stipulating that


1. d(⊥, x) = 0


2. d(x,⊥) =∞ if x 6= ⊥.


This coincides with a definition via ε-degradations as above if we understand
that


⊥ε = ⊥.
Now we consider a recursive definition of a limiting operator


lim : Rω⊥→ R⊥.


Definition 8.18 Let (X, d) be a quasi-metric space. A fast-converging
Cauchy sequence in X is sequence xi such that d(xm, xn) < 2−n for all
m ≤ n. �
There is nothing special about the particular sequence 2−n. We could have
used the sequence 1/(n + 1) (as it is done in Bishop and Bridges [BB85]), or
any other simple sequence of rational numbers converging to zero at a known
rate. Notice that a term of a fast-converging Cauchy sequence in R⊥ is bottom
iff all terms are bottom.
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Lemma 8.19 If xn is a fast-converging Cauchy sequence in R⊥, then its
greatest limit is given by ⊔↑


n


[xn − 2−n, xn + 2−n].


Proof Immediate consequence of the above observations, noting that the
interval [xn − 2−n, xn + 2−n] is the 2−n-degradation of xn. �


Define a map j : R3 → R by


j(x, y, z) = max(x,min(y, z)).


Then, given p ≤ q ∈ R, the map f : R→ R defined by


f(x) = j(p, x, q)


is idempotent,
p ≤ f(x) ≤ q,


and
f(x) = x iff p ≤ x ≤ q.


Let ĵ : R3
⊥ → R⊥ be the greatest extension of j : R3 → R defined by the


formula of Section 2.8:


ĵ(x, y, z) =
⊔↑


(x,y,x)∈V∈ΩR3
⊥


l
(p,q,r)∈(s×s×s)−1(V )


j(p, q, r)


=
⊔↑


(a,b,c)�(x,y,x)


l
(p,q,r)∈a×b×c


j(p, q, r),


where s : R→R⊥ is the singleton embedding. Hence, if x and y are non-bottom
intervals with x ≤ y and x ≤ y, then


j(x,⊥, y) = [x, y].


Thus, j is non-strict.


Proposition 8.20 Define a function L : Rω⊥ →R⊥ by


L(x) = M(0, 1, x)


where M : ω ×R⊥ ×Rω⊥ →R⊥ is recursively defined by


L(n, ε, x) = ĵ(xn − ε,M(n+ 1, ε/2, x), xn + ε).


If x ∈ Rω⊥ is a fast-converging Cauchy sequence, then L(x) is its greatest limit.
Proof (Sketch) M is the least upper bound of the sequence of functions
defined by


M0(n, ε, x) = ⊥
Mi+1(n, ε, x) = ĵ(xn − ε,Mi(n+ 1, ε/2, x), xn+ ε).


By induction,
Mi(n, ε, x) =


⊔
n≤k<n+i


[x− ε/2n, x+ ε/2n].


Therefore the result follows from Lemma 8.19. �
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Chapter 9


Partial real numbers
considered as continuous
words


This chapter is the basis of the operational semantics of the programming lan-
guage Real PCF, introduced in Chapter 11 of Part IV. In Section 9.1 we briefly
motivate and outline the programme of the following sections by considering
discrete words first.


9.1 Discrete words


Consider a (deterministic) device that outputs symbols of a finite alphabet in
sequence. We assume that the device can either produce output forever, or else
stop producing output after some (possibly none) output has been produced.
But we don’t assume that the device gives an indication when it stops produ-
cing output. Rather, we assume that the typical reason why the device stops
producing output, if it stops at all, is that its internal machinery loops forever,
without being able to produce more symbols. Such a device may have been
designed, for example, to print the decimal expansion of some real number,
giving as many digits as we are patient to wait for.


If the device never stops, its potentially infinite output is represented by
an infinite sequence of symbols. Otherwise, its finite output is represented by
a finite sequence. The empty sequence represents the situation in which the
device fails to produce any output. We refer to a finite or infinite sequence of
symbols as a word. Recall that a word x is a prefix of a word y if x is an initial
subsequence of y. In this case, if x is infinite then it must be the same as y. If
two devices X and Y as above produce outputs respectively x and y such that
x is a prefix of y, this means Y produces more output than X . Since the set of
words ordered by prefix forms a domain, we can use domain theory in order to
account for the external behaviour of such devices.


Now suppose that we are interested in the internal behaviour of such a
device, and consider the case when it is specified by a program in a functional
programming language. Then there are two main questions: First, what are
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the primitive operations on words from which we can define more complex
operations? Second, how is the functional program interpreted as an algorithm?


The answer to the first question is more or less simple. Let Σ be a finite
alphabet, let Σ∞ denote the domain of words ordered by prefix, and let σ
range over Σ. The primitive operations that one finds in a typical functional
programming language with features for infinite word processing are essentially
the functions consσ, tail : Σ∞→ Σ∞ and head : Σ∞ → Σ⊥ defined by


consσ(x) = σx


tail(ε) = ε


tail(σx) = x


head(ε) = ⊥
head(σx) = σ.


By combining these operations with the aid of the conditional and recursion,
one can define more complex operations.


In order to answer the second question, suppose that such a complex com-
bination of primitive operations denoting the intended external behaviour of
some device is given. As an example, we consider the (not very complex) com-
bination x = consa(x), where a is some symbol. Since the only word x satisfying
this equation is the infinite word aaa · · · , the device is supposed to repeatedly
output the symbol a forever. But how can the device work out the symbols
to be printed from an expression as above, in a mechanical fashion? That is,
what is the operational semantics of our (informally and imprecisely specified)
language? A simple idea is the following. Given an expression e, the device
tries to mechanically reduce it to an expression of the form consσ(e′). Whatever
e′ is, the value of the expression consσ(e′) is some word whose first symbol is σ.
Therefore the device can output the symbol σ, and proceed to evaluate the
expression e′, repeatedly using the same principle. We can ignore the reduction
rules for the conditional and recursion, because they are the same for any data
type. The rules specific to our data type can be:


tail(consσ(x)) → x


tail(e) → tail(e′) if e→ e′


head(consσ(x)) → σ


head(e) → head(e′) if e→ e′.


In the following sections we introduce similar primitive operations for the partial
real line. As opposed to the case of words, it is perhaps not obvious how to
combine these primitive operations with the aid of the conditional and recursion
in order to obtain more complex operations. We develop some techniques to
systematically derive recursive definitions in the next chapter.


9.2 The prefix preorder of a monoid


Recall that a monoid is a set together with a binary associative operation and a
neutral element for this operation. It is customary to refer to this operation as
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multiplication, but in this work it is convenient to refer to it as concatenation.
By a word over an alphabet Σ we mean either a finite word in Σ∗ or an


infinite word in Σω. We denote the set of all words by Σ∞. Usual concatenation
of words, with the convention that xy = x if x is infinite, makes Σ∞ into a
monoid with neutral element the empty word ε.


In any monoid (M, ·, e) we can define a preorder, called its prefix preorder,
by x v z iff xy = z for some y. In this case x is called a prefix of z and y is called
a suffix. This relation is reflexive because e is right neutral, and it is transitive
because the concatenation operation is associative. It has e as its least element
because e is left neutral. Monoid homomorphisms preserve the least element
and the prefix preorder, by the very definition of monoid homomorphism. An
element x is maximal iff it is left dominant, in the sense that xy = x for
every y. The meet of a set, when it exists, is the greatest common prefix of the
elements of the set.


The prefix preorder of the monoid Σ∞ makes the set Σ∞ into a Scott do-
main [Smy92b]. In particular, the prefix preorder is a partial order; that is, it
is antisymmetric. An element of Σ∞ is maximal iff it is an infinite word, and it
is finite in the domain-theoretic sense iff it is a finite word. The concatenation
operation seen as a function Σ∞ × Σ∞ → Σ∞ is not continuous, because it is
not even monotone. But it is continuous in its second argument. This can be
expressed by saying that left translations x 7→ ax are continuous for all words a.


9.3 Left translations of a monoid


We denote a left translation x 7→ ax of a monoid (M, ·, e) by consa. Left
translations are monotone and consa(M) = ↑↑a, where ↑↑a = {x ∈ M |a v x}.
An element a is left-cancelable iff the translation consa is injective.


If x is left-cancelable and x v z, we denote the unique y such that xy = z
by z\x, so that x(z\x) = z. The basic properties of this (partially defined)
quotient operation are:


x\e = x for all x,
x\x = e for all left-cancelable x,


(y\x)(z\y) = z\x for all z and all left-cancelable x, y with x v y v z,
(xy)\z = (x\z)y for all x, y and all left-cancelable z with z v x.


Let a be a left-cancelable element of a monoid M . Then the corestriction
of consa to its image is a bijection between the sets M and ↑↑a, with inverse
x 7→ x\a. Therefore M is a preordered set isomorphic to the set ↑↑a under the
inherited order, because consa is monotone.


The left-cancelable elements of Σ∞ are the finite words. It follows that
↑↑a is a domain isomorphic to Σ∞ for every finite word a. The subsection
below shows that the partial unit interval has the same property for every non-
maximal partial number a, for a suitable concatenation operation on partial
numbers.
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9.4 Concatenation of partial real numbers


Define a binary operation (x, y) 7→ xy on the partial unit interval by


xy = [(x− x)y + x, (x− x)y + x].


That is, given x, y ∈ I, rescale and translate the unit interval so that it be-
comes x, and define xy to be the interval which results from applying the same
rescaling and translation to y. Then it is immediate that xy is a subinterval
of x. The rescaling factor is the diameter of x, namely x−x, and the translation
constant is the left end-point of x. If x is maximal, then its diameter is zero,
so that xy = x. In order to simplify notation, we let κx stand for the diameter
of x and µx stand for the left end-point of x, so that


x = [µx, µx + κx].


Thus, a left translation consa : I → I is the canonical extension of the unique
increasing affine map [0, 1]→ [0, 1] with image a, namely


r 7→ κar + µa : [0, 1]→ [0, 1].


Recall that an affine map is a function of the form r 7→ pr + q. Hence, by
Convention 8.2, we can write


xy = κxy + µx.


Notice that in some cases there can be some ambiguity with the usual notation
for multiplication. In these cases we will denote multiplication by ×.


Theorem 9.1 (I, ·,⊥) is a monoid with the following properties:


1. Its prefix preorder coincides with the information order of the domain I.


2. Its left-cancelable elements are the non-maximal ones.


3. Its left translations preserve all meets and all existing joins.
Proof Let x, y, z ∈ I. Then


xy = κxy + µx = κx[µy, µy + κy] + µx = [κxµy + µx, κx(µy + κy) + µx].


Hence µxy = κxµy + µx and κxy = κxκy. Therefore


(xy)z = κxyz + µxy = κxκyz + κxµy + µx = κx(κyz + µy) + µx = x(yz).


Now, clearly x⊥ = x, because by definition ⊥ = [0, 1] is rescaled and translated
so that it becomes x. Also, ⊥x = x because by definition ⊥ = [0, 1] is rescaled
and translated so that it becomes itself; hence ⊥x is the application of the
identity to x. Therefore (I, ·,⊥) is a monoid.


(1) We have already seen that a maximal element is not left-cancelable.
The proof of item (2) shows that if x v z in the information order and x is
non-maximal then there is a (unique) y such that xy = z.
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(2) A rescaling is reversible iff the rescaling factor is non-zero, a translation
is always reversible, and an element has diameter zero iff it is maximal.


(3) The linear map r 7→ κar+µa : [0, 1]→ [0, 1] is either an increasing order
isomorphisms between [0, 1] and its image (if κx > 0) or else constant map (if
κx = 0), and the canonical extension of such a function is computed pointwise
(cf. Section 8.3). �


Remark 9.2 The fact that a left translation preserves all existing meets does
not imply that it has a lower adjoint, which would preserve all joins and hence
would be continuous, because I is not a complete lattice, as it lacks a top
element [AJ94, GHK+80]. In fact, if consa had a lower adjoint, it would be
given by x 7→


d
cons−1


a (↑↑x); but cons−1
a (↑↑x) is empty if x is apart from a, and


in this case the meet would be the missing top element. In Section 9.7 we show
that if a is non-maximal then consa has a continuous left inverse taila, however.


�


The above proof shows that the concatenation operation on partial numbers
“multiplies diameters”, in the sense that κxy = κxκy. Therefore κxy ≤ κx and
κxy ≤ κy, the equalities holding iff x = ⊥ or y = ⊥.


Concatenation of partial numbers has the following geometrical and com-
putational interpretations. In a concatenation xy, the interval y refines the
information given by x by selecting a subinterval of x. For example, the partial
numbers [0, 1], [0, 1


2 ], [ 1
2 , 1], and [1


3 ,
2
3 ] respectively select the whole interval, the


first half, the second half, and the middle third part. Thus, concatenation of
partial numbers allows for incremental computation on partial real numbers,
also known as lazy evaluation (cf. Proposition 9.4).


There is yet another geometrical interpretation of concatenation, induced
by the isomorphism between the partial unit interval and the unit triangle. The
upper set of any non-maximal element x of the unit triangle is clearly a triangle,
isomorphic to the unit triangle via a rescaling of the unit triangle followed by
a translation. Thus, any element y can be interpreted either as an absolute
address of a point in the unit triangle or else as a relative address of a point in
the smaller triangle generated by x, namely the point xy, obtained by applying
the same rescaling and translation to y.


We finish this section with the following lemma:


Lemma 9.3 The bases of the partial unit interval consisting of respectively
all non-maximal partial numbers and all non-maximal partial numbers with
rational end-points are submonoids of (I, ·,⊥) closed under existing quotients,
in the sense that if b and c are basis elements with b v c then c\b is a basis
element too.
Proof Existing quotients are given by


y\x = (y− µx)/κx = [(y − µx)/κx, (y− µx)/κx].


Therefore, if x and y have distinct (rational) end-points, so does y\x. �
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The basis consisting of all non-maximal partial numbers with dyadic end-
points is a submonoid, but it is not closed under existing quotients.


9.5 Infinitely iterated concatenations


Let M be a monoid with a partial prefix order and joins of increasing ω-chains,
and let 〈xn〉n≥1 be a sequence of elements of M . Then we have that


x1 v x1x2 v · · · v x1x2 · · ·xn v · · · .


The infinitely iterated concatenation of 〈xn〉n≥1 is defined to be the join
of these partial concatenations, informally denoted by x1x2 · · ·xn · · · . It is also
convenient to use the informal notation y1 t y2 t · · · t yn t · · · for the join of a
chain y1 v y2 v · · · v yn v · · · .


An interval expansion of a partial real number x is a sequence of intervals
〈xn〉n≥1 such that x = x1x2 · · ·xn · · · . For example, interval expansions formed
from the intervals[


0,
1
10


]
,


[
1
10
,


2
10


]
, . . . ,


[
8
10
,


9
10


]
,


[
9
10
, 1
]


are essentially decimal expansions.
If we think of an infinitely iterated concatenation as a computation, the


following proposition shows that we can compute in an incremental fashion if
left translations are continuous:


Proposition 9.4 (Infinite associativity) Let M be a monoid with infinitely
iterated concatenations. Then M satisfies the ω-associativity law


x1(x2 · · ·xn · · · ) = x1x2 · · ·xn · · ·


iff left translations preserve joins of increasing ω-chains.
Proof (⇒) Assume that the ω-associativity law holds, let 〈yn〉n≥1 be an
increasing ω-chain of elements of M , and let 〈xn〉n≥1 be a sequence of elements
of M such that ynxn = yn+1. Then the join of the chain is the same as the
infinitely iterated concatenation of the sequence 〈xn〉n≥1 with y1 added as a
new first element, because y1x1x2 · · ·xn = yn, as an inductive argument shows.
Therefore


a(y1 t y2 t · · · t yn t · · · ) = a(y1x1x2 · · ·xn · · · )
= ay1x1x2 · · ·xn · · ·
= a t ay1 t ay1x1 t · · · t ay1x1 · · ·xn t · · ·
= a t ay1 t ay2 t · · · t ayn t · · ·
= ay1 t ay2 t · · · t ayn t · · · .
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(⇐) Assume that left translations preserve joins of increasing ω-chains. Then
we have that


x1(x2 · · ·xn · · · ) = x1(x2 t x2x3 t · · · t x2x3 · · ·xn t · · · )
= x1x2 t x1x2x3 t · · · t x1x2x3 · · ·xn t · · ·
= x1 t x1x2 t x1x2x3 t · · · t x1x2x3 · · ·xn t · · ·
= x1x2 · · ·xn · · · .�


We denote the infinitely iterated concatenation xx · · ·x · · · of a constant
sequence with range x by xω. An immediate consequence of the above propos-
ition is that xω is the least fixed point of consx for any monoid with infinite
concatenations.


Now let y1 v y2 v · · · v yn v · · · be a chain of left-cancelable elements.
Then the sequence y1, y2\y1, y3\y2, . . . , yn+1\yn, . . . has the elements of the
chain as partial concatenations. Therefore the join of the chain is the same as
the infinite concatenation of the induced sequence.


Proposition 9.5 Consider the bases of I consisting of respectively all non-
maximal partial numbers and all non-maximal partial numbers with rational
end-points. Then there is a bijection between ω-chains of basis elements and
sequences of basis elements, taking any chain to a sequence whose infinitely
iterated concatenation is the join of the chain. �


Therefore we can replace ω-chains of basis elements by (arbitrary) sequences of
basis elements and work with infinitely iterated concatenations instead of joins.


For monoids with infinitely iterated concatenations, it is natural to ask
homomorphisms to preserve them.


Proposition 9.6 A monoid homomorphism preserves infinitely iterated con-
catenations iff it preserves joins of increasing ω-chains
Proof Let h : L → M be a monoid homomorphism between monoids L
and M .
(⇒) Let 〈yn〉n≥1 be an increasing ω-chain of elements of L having a join and
let 〈xn〉n≥1 be a sequence of elements of L such that ynxn = yn+1. Then we
have that


h(y1 t · · · t yn t · · · )
= h(y1x1 · · ·xn · · · )
= h(y1)h(x1) · · ·h(xn) · · ·
= h(y1) t h(y1)h(x1) t · · · t h(y1)h(x1) · · ·h(xn) t · · ·
= h(y1) t · · · t h(yn) t · · · .


because h(yn)h(xn) = h(yn+1).
(⇐) Let 〈xi〉i≥1 be a sequence of elements of L having an infinitely iterated
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concatenation. Then we have that


h (x1x2 · · ·xn · · · ) = h (x1 t x1x2 t · · · t x1x2 · · ·xn t · · · )
= h(x1) t h(x1x2) t · · · t h(x1x2 · · ·xn) t · · ·
= h(x1) t h(x1)h(x2) t · · · t h(x1)h(x2) · · ·h(xn) t · · ·
= h(x1)h(x2) · · ·h(xn) · · · .�


9.6 Partial real numbers considered as continuous
words


Concatenation of partial numbers in the partial unit interval generalizes con-
catenation of words over any finite alphabet, in the following sense:


Proposition 9.7 For every finite n-letter alphabet Σ, the monoid Σ∞ is iso-
morphic to a finitely generated submonoid of I. Moreover, the induced embed-
ding of Σ∞ into I is a continuous monoid homomorphism.
Proof Without essential loss of generality, we prove the claim for the two-
letter case Σ = {0, 2}. Let C be the submonoid of I finitely generated by the
partial numbers [0, 1/3] and [2/3, 1]. Then C clearly contains the partial num-
bers corresponding to the intervals successively produced in the construction of
the Cantor set. Hence the joins of strictly increasing ω-chains of elements of C
are the elements of the Cantor set. But these joins are the infinitely iterated
concatenations of the generators. The set C of finite and infinite concatenations
of the generators is also a submonoid of I, which can be considered as the
monoid of partial Cantor numbers. It is easy to see that {0, 2}∞ is isomorphic
to C. We know that {0, 2}∗ is the free monoid over {0, 2}. Hence there is a
unique monoid homomorphism h : {0, 2}∗ → C such that h(0) = [0, 1/3] and
h(2) = [2/3, 1]. But h has a unique continuous extension to {0, 2}∞, because
monoid homomorphisms are monotone and {0, 2}∗ consists of the finite ele-
ments (in the domain-theoretic sense) of {0, 2}∞. The resulting extension is a
monoid homomorphism. Since it takes an infinite word x to the element of the
Cantor set whose ternary expansion is x, it follows that h is a bijection, and
therefore a monoid isomorphism.


(For general n, we repeat the above construction for n non-overlapping
intervals of the same diameter.) �


Therefore, the elements of the partial unit interval can be considered as
“continuous words”. For any word x ∈ Σ∞ let length(x) ∈ [0,∞] denote the
length of x defined in the usual way. For any continuous word x ∈ I and
any real number b > 1 we define lengthb(x) ∈ [0,∞] to be − logb(κx). Thus,
lengthb(x) =∞ iff x is maximal, and lengthb(x) = 0 iff x is bottom.


If a continuous word x is a partial realization of an unknown real number y,
then lengthb(x) is the number of correct digits of an expansion to base b of y
that x allows us to know. For example, if we consider x = [0.143, 0.145] as a
partial realization of an unknown real number y then length10(x) is roughly 2.7,
meaning that x allows us to know two decimal digits of y.
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Although it is possible to show that Proposition 9.7 holds even for countably
infinite alphabets (by considering countably many non-overlapping intervals),
the following proposition holds only for the finite case.


Proposition 9.8 Consider [0,∞] as a monoid under addition and as a do-
main under its prefix preorder (which coincides with its natural order).


1. For every real number b > 1, lengthb : I → [0,∞] is a continuous monoid
homomorphism.


2. Let h be the embedding of the monoid of words over a finite n-letter al-
phabet into I defined in Proposition 9.7. Then length = lengthn+1 ◦ h.


Proof Routine verification. The first part follows from the fact that the
concatenation operation multiplies diameters and that logarithms take multi-
plication to addition. �


Corollary 9.9 The infinitely iterated concatenation of a sequence of continu-
ous words is maximal iff the sum of the lengths of the continuous words is ∞.
Proof The length function is a continuous monoid homomorphism and a
partial number has infinite length iff it is maximal. �


The following proposition allows us to prove some properties of real number
programs. We say that a map f : I → I is guarded if there is a real number
δ > 0 such that length(f(x)) ≥ length(x) + δ, called a guarding constant
for f . Clearly, left translations consa with a 6= ⊥ are guarded, with guarding
constant length(a).


Proposition 9.10 Any continuous guarded map f : I → I has a maximal
partial number as its unique fixed point.
Proof Since length(fn(⊥)) ≥ nδ for every n and length is a continuous
homomorphism, length (


⊔
n f


n(⊥)) ≥ supn nδ =∞. This means that the least
fixed point of f is maximal. Therefore it is the unique fixed point of f . �


9.7 Heads and tails of continuous words


The tail map on discrete words removes a prefix of length 1 from its argument,
if such a prefix exists. The length 1 plays no distinguished rôle in continuous
words, and, moreover, length is not an absolute notion in the case of continuous
words as it depends on the choice of a base. Thus, in order to obtain an analogue
of the tail map for continuous words, we consider other properties of the tail
map on discrete words.


The main property of the tail map on discrete words is that


tail(consσ(x)) = x.


In fact, it gives rise to the computation rule for tail discussed in Section 9.1.
In other words, this property says that tail is a left inverse of consσ (for every
symbol σ). However, it is not hard to see that there is no continuous map
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tail on continuous words which is a left inverse of consa for every continuous
word a. Nevertheless, it will be enough to consider a continuous left inverse
taila of consa for each left-cancelable continuous word a. That is, we consider
a map taila which removes the prefix a of its argument, if such a prefix exists:


taila(ax) = x.


This specification fails to uniquely characterize taila, because it doesn’t say
what taila(x) should be if x doesn’t have a as a prefix. A näıve attempt would
be to let taila(x) be bottom in this case. But then taila wouldn’t be continuous,
because we would have that taila(↓↓a) = {⊥} as a 6v x for all x� a with x 6= ⊥.


Since the equation taila(ax) = x means that taila ◦ consa = id, we see that
taila is a retraction of consa.


Proposition 9.11 Let a ∈ I be left-cancelable. The retractions of consa are
the maps taila of the form


taila(x) = ea(x)\a,


for ea : I → I a continuous idempotent with image ↑↑a.
Proof Lemmas 9.12 and 9.13 below. �


Lemma 9.12


1. Let f : D → E be a continuous map such that its corestriction f◦ : D →
f(D) is an isomorphism. If the inclusion f◦ : f(D)→ E has a retraction
r : E → f(D) then f has a retraction g


def= (f◦)−1 ◦ r, as illustrated in the
following diagram:


D
g


�
f
E = D


(f◦)−1


�
f◦


f(D)
r
�
f◦
E


2. Any retraction r : E → D of a continuous map s : D → E is uniquely
determined by its induced idempotent s ◦ r.


Proof (1) This follows from the fact that for all arrows X
s
�
r
Y


s′


�
r′
Z of any


category, if r, r′ are retractions of s, s′ respectively then r′ ◦ r is a retraction of
s ◦ s′.


(2) Assume that r′ : E → D is a retraction of s with the same induced
idempotent, i.e., s◦r′ = s◦r. Since r◦s= id, we conclude that r◦s◦r′ = r◦s◦r
and hence r′ = r. �


Lemma 9.13 Let a ∈ I be left-cancelable.


1. If taila is a retraction of consa then the induced idempotent consa ◦ taila
has image ↑↑a.
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2. Conversely, for every idempotent ea : I → I with image ↑↑a, there is a
unique retraction taila of consa with ea = consa ◦ taila, given by


taila(x) = ea(x)\a
Proof (1) a v consa(taila(x)) by Theorem 9.1, which shows that the image
is contained in ↑↑a. If a v x then x = a(x\a) and consa(taila(a(x\a))) =
consa(x\a) = x, which establishes the inclusion in the other direction.


(2) x 7→ x\a : ↑↑a → I is the inverse of consa corestricted to its image.
Hence taila is a retraction of consa by Lemma 9.12(1), because every idempotent
factors through its image as a retraction followed by a section. Uniqueness
follows from Lemma 9.12(2). �


Recall that joina : I → I constructed in Proposition 8.11 is an idempotent
with image ↑↑a by virtue of Proposition 7.10.


Definition 9.14 For every left cancelable a ∈ I, we denote by taila : I → I
the unique continuous map such that


taila ◦ consa = id and consa ◦ taila = joina.


That is,
taila(x) = joina(x)\a. �


By Proposition 8.11, using the fact that


(max(a,min(r, a))− µa)/κa = max(0,min((r− µa)/κa, 1)),


we see that the map taila is the canonical extension of the map


r 7→ max(0,min((r− µa)/κa, 1)).


Remark 9.15 If in the case of discrete words we define taila(x) = tailn(x),
where n is the length of the finite word a, then taila is a retraction of consa and
the induced idempotent is the unique joining map of a. �


Lemma 9.16 taila is a multiplicative function.
Proof This follows from the fact the taila is the canonical extension of an
increasing continuous function, and any such canonical extension preserves all
meets. �


Let h : Σ∞ → I be the submonoid embedding defined in Proposition 9.7,
for the two-letter alphabet Σ = {0, 2}. If we identify 0 with tt and 2 with ff so
that Σ⊥ = B, then for every x ∈ Σ∞ we have that


head(x) = (h(x)<⊥1/2).


We are thus tempted to define head : I → B by head(x) = (x<⊥1/2). Since
the number 1/2 is an accidental feature of our construction of h, and since we
don’t want to commit ourselves to this arbitrary choice at this stage, we instead
define headr : I → B for each real number r ∈ [0, 1] by


headr(x) = (x<⊥r).


Lemma 9.17 headr is a multiplicative function.
Proof Immediate consequence of Lemma 8.10. �
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In the next section we show that the generalized versions of the primit-
ive operations on discrete words have simple computation rules. In the next
chapter we show how to combine them by means of the (parallel) conditional
and recursion in order to obtain more complex operations.


9.8 Computation rules for continuous words


The following lemma shows how to reduce expressions e denoting non-bottom
partial numbers to expressions of the form consa(e′) with a 6= ⊥. Such an
expression is called a head-normal form. The idea is that if an expression e
has a head-normal form consa(e′) then we know that its value is contained in
the interval a. Thus, a head-normal form is a partially evaluated expression.
A better partial evaluation of e is obtained by partially evaluating e′, obtaining
a head-normal form consb(e′′), and applying rule (1) below to consa(consb(e′′))
in order to obtain the more informative head-normal form consab(e′′) of e, and
so on.


Lemma 9.18 For all non-maximal a, b ∈ I and all x ∈ I,


1. consa(consb(x)) = consab(x)


2. taila(consb(x)) = 0 if b ≤ a


3. taila(consb(x)) = 1 if b ≥ a


4. taila(consb(x)) = consb\a(x) if a v b


5. taila(consb(x)) = cons(atb)\a(tail(atb)\b(x)) if a↑↑b


6. headr(consa(x)) = tt if a < r


7. headr(consa(x)) = ff if a > r


8. pif tt then x else y = x


9. pif ff then x else y = y


10. pif p then consa(x) else consb(y) =
consaub(pif p then consa\(aub)(x)


else consb\(aub)(y)).
Proof (1) This is the associativity law expressed in terms of left translations.
(2)–(3) Immediate


(4) This is a special case of (5) below. But it is also equivalent to the fact
that (bx)\a = (b\a)x.


(5) For all c↑↑x, consb(joinc(x)) = consb(c t x) = consb(c) t consb(x) =
joinbc(consb(x)), because left-translations preserve existing joins. Hence


taila(consb(x)) = joina(consb(x))\a = joinatb(consb(x))\a
= joinb((atb)\b)(consb(x))\a = consb(join(atb)\b(x))\a
= consb(cons(atb)\b(tail(atb)\b(x)))\a
= consatb(tail(atb)\b(x))\a = cons(atb)\a(tail(atb)\b(x)).
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The second step follows from the fact that joina(y) = joinatb(y) if a↑↑b and
b v y. The last step follows from the fact that (cy)\a = (c\a)y.


(6–9) Immediate. (10) It suffices to show that


consa(x) u consb(y) = consaub(consa\(aub)(x) u consb\(aub)(y)).


Since left translations preserve meets and a = c(a\c) for all c v a, the result
follows by taking c = a u b. �


9.9 The partial unit interval acting on the partial
real line


In this section we extend the results of the previous subsections from the partial
unit interval to the partial real line.


The concatenation operation


xy = κxy + µx,


originally defined for x and y in the partial unit interval, makes sense for x and y
ranging over the partial real line. With this extension, R becomes a monoid
too. But its prefix preorder does not coincide with its information order, and
it is due to this reason that we initially restricted ourselves to the partial unit
interval. In fact, if y = ax this does not mean that y is contained in a. However,
if we know that x is in the partial unit interval then y = ax does imply that y
is contained in a, even if y is not in the partial unit interval. This is the content
of the following theorem.


Theorem 9.19 The map (x, y) 7→ xy : R × I → R is a (right) action of
the monoid (I, ·,⊥) on the monoid (R, ·, [0, 1]), inducing the information order
of R:


1. For all x ∈ R and all y, z ∈ I, x⊥ = x and (xy)z = x(yz).


2. For all x, z ∈ R, x v z iff xy = z for some y ∈ I, such a y being unique
iff x is non-maximal.


Moreover, for all a ∈ R, the map riconsa : I → R⊥ defined by riconsa(x) = ax
preserves all meets and all existing joins. �


Given x, z ∈ R with x v z and x non-maximal, denote the unique y ∈ I such
that xy = z by z\x.


For each non-maximal a ∈ R, define a strict continuous map irtaila : R⊥ →
I as in Definition 9.14 so that for all non-maximal a ∈ R, the maps riconsa and
irtaila form a section-retraction pair, with joina as the induced idempotent, and


irtaila(x) = x\a if a v x.
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Finally, for each non-maximal a ∈ R define a strict continuous map rrconsa :
R⊥ →R⊥ by


rrconsa(x) = ax.


Thus, I is a retract of R⊥, in many ways. In particular,


1. ricons[0,1] : I → R⊥ is the inclusion,


2. irtail[0,1] : R⊥ → I is a “truncated projection”, and


3. join[0,1] : R⊥→ R⊥ is the coextension of the truncated projection.


The head-normal forms for R⊥ are taken as the expressions of the form
riconsa(e).


Lemma 9.20 For all non-maximal a ∈ R and b ∈ I, and all x ∈ I,


1. (a) rrconsa(rrconsb(x)) = rrconsab(x)


(b) rrconsa(riconsb(x)) = riconsab(x)


(c) riconsa(consb(x)) = riconsab(x)


2. irtaila(riconsb(x)) = 0 if b ≤ a


3. irtaila(riconsb(x)) = 1 if b ≥ a


4. irtaila(riconsb(x)) = consb\a(x) if a v b


5. irtaila(riconsb(x)) = cons(atb)\a(tail(atb)\b(x)) if a↑↑b


6. rheadr(riconsa(x)) = tt if a < r


7. rheadr(riconsa(x)) = ff if a > r


8. pif tt then x else y = x


9. pif ff then x else y = y


10. pif p then riconsa(x) else riconsb(y) =
riconsaub(pif p then riconsa\(aub)(x)


else riconsb\(aub)(y)),


where the parallel conditional, the comparison map, and the head map for R⊥
are defined in the same way as for I. Notice that the above lemma is Lemma 9.18
with “r” and “i” inserted in appropriate places.
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Chapter 10


Induction and recursion on
the partial real line


At this point, it is possible to proceed directly to Chapter 11 of Part IV, which
introduces Real PCF. This chapter has Chapter 5 of Part II as a prerequisite.
It introduces recursion on the real line, a technique which can be used to derive
Real PCF programs. This technique is used in Chapter 12 of Part IV in order
to respectively establish existence of a unique sound effective presentation of
the partial real line, up to equivalence, and computational completeness of Real
PCF (cf. Section 1.1). Several examples of recursive definitions given in the
present chapter immediately give rise to Real PCF programs for computing the
recursively defined entities. Thus, this chapter is implicitly about programming
in Real PCF.


In Section 10.1 we characterize the partial unit interval by axioms similar
to the so-called Peano axioms for natural numbers. In Section 10.2 we in-
troduce structural recursion for the partial unit interval. In Section 10.3 we
generalize binary expansions of real numbers to what we call bifurcated binary
expansions of partial real numbers; this material is needed in Chapter 12 of
Part IV. In Section 10.4 we briefly discuss coinduction on the partial unit in-
terval. In Section 10.5 we briefly introduce structural recursion on the partial
real line. Finally, in Section 10.6 we give some examples of recursive definitions
(in addition to those given in Section 10.3).


10.1 Peano-like axioms for the partial unit interval


Recall that consL, consR : I → I are defined by


consL(x) = x/2 consR(x) = (x+ 1)/2.


and that these are the unique increasing affine maps such that


consL(⊥) = L consR(⊥) = R,


where
L = [0, 1/2] R = [1/2, 1].
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In this section we consider consL and consR as partial real number “construct-
ors”, in a similar fashion as zero and successor are considered as natural number
constructors. A main difference is that the natural numbers together with zero
and successor form a free algebra, whereas I together with consL and consR
will form a kind of quotient of a bifree algebra with respect to some equations.
The main such equation is


consL(1) = consR(0),


which simply means that 1/2 = (0 + 1)/2.
Another main difference is that natural numbers are constructed from zero


by finitely many applications of the successor function, whereas elements of I
are constructed “from nothing” by infinitely many applications of consL and
consR. This observation will be made precise in the development that follows.
For the moment, we remark that 0 and 1 are constructed by infinitely many
applications of consL and consR in the sense that:


0 =
⊔↑
n


consnL(⊥) and 1 =
⊔↑
n


consnR(⊥).


In fact, 0 and 1 are the unique fixed points of consL and consR respectively:
consL(x) = x iff x/2 = x iff x = 0, and consR(y) = y iff (y + 1)/2 = y iff y = 1.
More generally, every total x ∈ I can be written in the form


x =
⊔↑
n


consa1 ◦ · · · ◦ consan(⊥)


for some sequence ai ∈ {L,R}, corresponding to a binary expansion of x. Partial
real numbers are obtained by iterating consL and consR in a more complicated
way (see Section 10.3 below).


Pursuing our analogy with natural numbers, we now observe that every
natural number is either zero or else the successor of a unique number.


Lemma 10.1 For every x ∈ I,


1. if x ≤ 1/2 then x = consL(y) for a unique y,


2. if x ≥ 1/2 then x = consR(z) for a unique z,


3. if x ↑↑ 1/2 then x = consL(y) u consR(z) for unique y v 1 and z v 0.


Notice that x↑↑1/2 iff x v 1/2, because 1/2 is maximal.
Proof (1): consL is bijective onto its image. Hence there is at most one y
with x = consL(y). The image of consL is ↑↑L by definition. But x ≤ 1/2 iff
L v x. (2): Similar. (3): In this case 1/2 ∈ x. Hence x = [x, 1/2] u [1/2, x] =
consL([2x, 1]) u consL([0, 2x− 1]). �


95







The fact that every number is either zero or a successor can be expressed
by the equation


n = if n = 0 then 0 else succ(pred(n)).


where
pred(0) = 0 (say) and pred(succ(n)) = n.


Recall that in Section 9.7 we defined maps taila : I → I for a ∈ I non-maximal,
and maps headr : I → B for r ∈ [0, 1]. For notational simplicity we write


head = head1/2.


Lemma 10.2


tailL(consL(x)) = x tailR(consL(x)) = 0
tailL(consR(y)) = 1 tailR(consR(y)) = y


tailL(consL(x) u consR(y)) = x u 1 tailR(consL(x) u consR(y)) = 0 u y,


head ◦ consL(x) v tt head ◦ consL(x) = ⊥ iff x v 1
head ◦ consR(y) v ff head ◦ consR(y) = ⊥ iff y v 0


x = pif head(x) then consL(tailL(x)) else consR(tailR(x)).
Proof Routine verification, included for the sake of completeness. The equa-
tion taila ◦ consa = id holds by construction. By definition,


taila(x) = joina(x)\a = max(0,min((x−µa)/κa, 1)) = max(0,min((x−a)/(a−a), 1)).


Hence


tailL(x) = max(0,min((x− 0)/(1/2), 1)) = max(0,min(2x, 1)) = min(2x, 1),
tailR(x) = max(0,min((x− 1/2)/(1/2), 1)) = max(0,min(2x− 1, 1)) = max(0, 2x− 1),


because x lies in the unit interval. Hence


tailL(consR(y)) = min(2((y + 1)/2), 1) = min(y + 1, 1) = 1
tailR(consL(x)) = max(0, 2(x/2)− 1) = max(0, x− 1) = 0.


Since for all p, q ∈ [0, 1] we have that p/2 ≤ (q+1)/2, as p/2 ∈ L and (q+1)/2 ∈
R, it follows that


consL(x) u consR(y) = [x/2, x/2] u [(y + 1)/2, (y+ 1)/2] = [x/2, (y + 1)/2].


Hence


tailL(consL(x) u consR(y)) = tailL([x/2, (y+ 1)/2]) = [x, 1] = x u 1.


Similarly, tailR(consL(x) u consR(y)) = 0 u y. The statements about head
follow from the fact that head(x) = (x<⊥1/2) by definition, consL(x) ≤ 1/2,
and consL(x) < 1/2 iff x/2 < 1/2 iff x < 1 iff x 6v 1. Similarly, consR(x) ≥ 1/2,
and consR(y) < 1/2 iff y 6v 0. For the last equation, only the case head(x) = ⊥
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is not immediate. In this case x↑↑1/2, which is equivalent to x v 1/2 as 1/2 is
maximal and means that 1/2 ∈ x. Hence


x = [x, 1/2]u [1/2, x]
= ([0, 1/2]t [x, x]) u ([1/2, 1]t [x, x])
= joinL(x) u joinR(x)
= consL(joinL(x)\L) u consR(joinR(x)\R)
= consL(tailL(x)) u consR(tailR(x))
= pif head(x) then consL(tailL(x)) else consR(tailR(x)).�


Given a set X , an element x ∈ X , and a function g : N → X , there is
a unique function f : N → X such that f(0) = x and f(n + 1) = g(n). A
similar fact holds for I equipped with consL and consR, but we have to take
into account the equation consL(0) = consR(1).


Lemma 10.3 (Definition by cases) Let D be a bounded complete domain
and gL, gR : I → D be continuous maps such that


gL(1) = gR(0).


Then there is a unique continuous map f : I → D such that


f(consL(x)) = gL(x)
f(consR(y)) = gR(y)


f(consL(x) u consR(y)) = gL(x) u gL(y) for x v 1 and y v 0,


namely the function f defined by


f(x) = pif head(x) then gL(tailL(x)) else gR(tailR(x)).
Proof It is clear from Lemma 10.1 that there is at most one such func-
tion. We show that f as defined above is such a function. If x 6v 1 then
head(consL(x)) = tt and


f(consL(x)) = gL(tailL(consL(x))) = gL(x).


Otherwise head(consL(x)) = ⊥ and


f(consL(x)) = gL(tailL(consL(x))) u gR(tailR(consL(x)))
= gL(x) u gR(0) = gL(x) u gL(1) = gL(x),


because gL(x) v gL(1), by monotonicity. Similarly, a case analysis on y shows
that f(consR(y)) = gR(y). Assume that x v 1 and y v 0. Then


f(consL(x) u consR(y))
= gL(tailL(consL(x) u consR(y)))u gR(tailR(consL(x) u consR(y)))
= gL(x u 1) u gR(0 u y) = gL(x) u gR(y),


which concludes the proof. �
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Remark 10.4 Definition by cases is the same as path composition as defined
in Example 8.15. �


The natural numbers enjoy an induction principle, which can be expressed
by saying that if a set of natural numbers contains zero and is closed under the
successor operation, then it contains all natural numbers. A similar principle
is enjoyed by the partial unit interval endowed with the operations consL and
consR.


Definition 10.5 Let D be a domain. A set A ⊆ D is called inductive if it
closed under the formation of least upper bounds of directed subsets; that is, if
X ⊆ A for X directed implies


⊔↑X ∈ A. �


Lemma 10.6 (Dyadic induction)
Let A ⊆ I be inductive, and assume that the following conditions hold:


1. (Base case) ⊥ ∈ A.


2. (Inductive step) x ∈ A and y ∈ A together imply


(a) consL(x) ∈ A,


(b) consR(y) ∈ A,


(c) consL(x) u consR(y) ∈ A if x v 1 and y v 0.


Then A = I.
Proof Let B be the basis of I consisting of intervals with distinct dyadic
end-points. In order to show that A = I, it suffices to conclude that B ⊆ A,
because B is a basis of I. But since


B =
⋃
n


Bn, where Bn = {[l/2n, m/2n]|0 ≤ l < m ≤ 2n},


it suffices to show that Bn ⊆ A for all n by induction on n. For n = 0 this is
immediate because B0 = {⊥} and ⊥ ∈ A by hypothesis. Assume that Bn ⊆ A,
and define


Ln = consL(Bn),
Rn = consR(Bn),
Cn = {consL(x) u consR(y)|x, y ∈ Bn ∧ x v 1 ∧ y v 0}.


Then Ln ⊆ consL(A) ⊆ A because x ∈ A implies consL(x) ∈ A by hypothesis.
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Similarly, Rn ⊆ A and Cn ⊆ A. Hence Ln ∪ Rn ∪Cn ⊆ A. But


Ln ∪Rn ∪Cn


=
{[


l


2n+1 ,
m


2n+1


]∣∣∣∣ 0 ≤ l < m ≤ 2n
}
∪
{[


l+ 2n


2n+1 ,
m+ 2n


2n+1


]∣∣∣∣0 ≤ l < m ≤ 2n
}


∪
{[


l


2n+1 ,
1
2


]
u
[


1
2
,
m+ 2n


2n+1


]∣∣∣∣0 ≤ l < 2n ∧ 0 < m ≤ 2n
}


=
{[


l


2n+1 ,
m


2n+1


]∣∣∣∣ 0 ≤ l < m ≤ 2n
}
∪
{[


l


2n+1 ,
m


2n+1


]∣∣∣∣ 2n ≤ l < m ≤ 2n+1
}


∪
{[


l


2n+1 ,
m


2n+1


]∣∣∣∣ 0 ≤ l < 2n < m ≤ 2n+1
}


=
{[


l


2n+1 ,
m


2n+1


]∣∣∣∣ 0 ≤ l < m ≤ 2n∨2n ≤ l < m ≤ 2n+1∨0 ≤ l < 2n < m ≤ 2n+1
}


=
{[


l


2n+1 ,
m


2n+1


]∣∣∣∣ 0 ≤ l < m ≤ 2n+1
}


= Bn+1.


Therefore Bn+1 ⊆ A, which concludes the inductive argument. �


Corollary 10.7 Let D be a domain and f, g : I → D be continuous maps. In
order to show that f = g it suffices to show that the following conditions hold:


1. (Base case) f(⊥) = g(⊥).


2. (Inductive step) f(x) = g(x) and f(y) = g(y) together imply


(a) f(consL(x)) = g(consL(x)),


(b) f(consR(y)) = g(consR(y)),


(c) f(consL(x)uconsR(y)) = g(consL(x)uconsR(y)) if x v 1 and y v 0.
Proof If f and g are continuous, then the set A = {x|f(x) = g(x)} is
inductive. �


Remark 10.8 If we omit condition (c) of the inductive step, then in Lemma 10.6
we conclude that MaxI ⊆ A, and in Corollary 10.7 we conclude that f|MaxI =
g|MaxI . A slight reformulation of Corollary 10.7 in these lines may be useful
to prove that a continuous function f̄ : I → I is an extension of a continuous
function f : [0, 1]→ [0, 1], but not necessarily the canonical extension of f . �


Lemma 10.9 Let D be a bounded complete domain, gL, gR : D → D be con-
tinuous maps, and f : I → D be a continuous solution to the functional equation


f(x) = pif head(x) then gL(f(tailL(x))) else gR(f(tailR(x))).


Then the following statements hold:


1. f(0), f(1) and f(⊥) are fixed points of gL, gR and gL u gR respectively.


2. f is uniquely determined by the values that it assumes at 0, 1, and ⊥.
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3. f is the least solution iff


f(0) = fix gL f(1) = fix gR f(⊥) = fix (gL u gR).


4. In particular, if gL, gR, and gLugR have unique fixed points then f is the
unique solution.


Proof (1): f(0) = gL(f(0)) because head(0) = tt and tailL(0) = 0. Simil-
arly, f(1) = gR(f(1)). Since head(⊥) = ⊥ and tailL(⊥) = tailR(⊥), we have
that f(⊥) = gL(f(⊥)) u gR(f(⊥)) = (gL u gR)(f(⊥)).


(2): We show by dyadic induction as in Corollary 10.7 that if f ′ is a con-
tinuous solution agreeing with f at 0, 1 and ⊥ then f = f ′. (Base case): By
hypothesis. (Inductive step): Assume that f(x) = f ′(x) and f(y) = f ′(y). If
head ◦ consL(x) = tt then


f(consL(x)) = gL(f(tailL(consL(x)))) = gL(f(x))
= gL(f ′(x)) = gL(f ′(tailL(consL(x)))) = f ′(consL(x)).


Otherwise head(consL(x)) = ⊥ and x v 1. Therefore,


f(consL(x)) = gL(f(tailL(consL(x)))) u gR(f(tailR(consL(x))))
= gL(f(x)) u gR(f(0)) = gL(f ′(x)) u gR(f ′(0))
= gL(f ′(tailL(consL(x))))u gR(f ′(tailR(consL(x))))
= f ′(consL(x)).


Similarly, a case analysis on head◦consR(y) shows that f(consR(y)) = f ′(consR(y)).
Assume that x v 1 and y v 0. Then


f(consL(x) u consR(y))
= gL(f(tailL(consL(x) u consR(y)))) u gR(f(tailR(consL(x) u consR(y))))
= gL(f(x u 1)) u gR(f(0 u y)) = gL(f(x)) u gR(f(y))
= gL(f ′(x)) u gR(f ′(y)) = gL(f ′(x u 1)) u gR(f ′(0 u y))
= gL(f ′(tailL(consL(x) u consR(y))))u gR(f ′(tailR(consL(x) u consR(y))))
= f ′(consL(x) u consR(y)).


(3): In view of (1) and (2), it suffices to show that if f is the least solution
then it satisfies the condition. Assume that f is the least solution. Then
f =


⊔↑
n fn where


f0(x) = ⊥
fn+1(x) = pif head(x) then gL(fn(tailL(x))) else gR(fn(tailR(x))).


But fn(0) = gnL(⊥) because head(0) = tt and tailL(0) = 0. Hence f(0) = fix gL.
Similarly, f(1) = fix gR. Also, fn+1(⊥) = (gL u gR)n(⊥), because


fn+1(⊥) = gL(fn(⊥)) u gR(fn(⊥)) = (gL u gR)(fn(⊥)).


Therefore f(⊥) = fix (gL u gR).
(4): Immediate consequence of (1), (2) and (3) above. �
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We can define functions on natural numbers by iteration. If X is a set, x is
an element of X , and g : X → X is a function, then there is a unique function
f : N→ X such that f(0) = x and f(n+ 1) = g(f(n)). A similar fact holds for
the partial unit interval equipped with consL and consL.


Lemma 10.10 (Dyadic recursion) Let D be a bounded complete domain,
and gL, gR : D→ D be continuous maps such that


gL(fix gR) = gR(fix gL).


Then there is a unique continuous map f : I → D satisfying the equations


(Base case)


f(0) = fix gL


f(1) = fix gR


f(⊥) = fix (gL u gR)


(Recursion step)


f(consL(x)) = gL(f(x))
f(consR(y)) = gR(f(y))


f(consR(x) u consR(y)) = gL(f(x)) u gR(f(y)) if x v 1 and y v 0,


namely the least continuous solution to the equation


f(x) = pif head(x) then gL(f(tailL(x))) else gR(f(tailR(x))).


Proof Define F : (I ⇒ D)→ (I ⇒ D) by


F (f)(x) = pif head(x) then gL(f(tailL(x))) else gR(f(tailR(x))),


and let f : I → D be a continuous map satisfying the base case. By Lemma 10.9,
it suffices to show that f satisfies the recursion step iff f = F (f). But, by
Lemma 10.3, this is equivalent to show that


F (f)(consL(x)) = gL(f(x))
F (f)(consR(y)) = gR(f(y))


F (f)(consR(x) u consR(y)) = gL(f(x)) u gR(f(y)) if x v 1 and y v 0.


In fact, assuming that these equations hold, if f = F (f) then f satisfies the
recursion step; and, conversely, if f satisfies the recursion step both f and F (f)
satisfy the same definition by cases, and therefore they have to be the same by
Lemma 10.3. If x 6v 1 then head(consL(x)) = tt and


F (f)(consL(x)) = gL(f(tailL(consL(x)))) = gL(f(x)).
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Otherwise head(consL(x)) = ⊥ and


F (f)(consL(x)) = gL(f(tailL(consL(x)))) u gR(f(tailR(consL(x))))
= gL(f(x)) u gR(f(0)) = gL(f(x)) u gR(fix gL)
= gL(f(x)) u gL(fix gR) = gL(f(x)) u gL(f(1))
= gL(f(x)),


because gL(f(x)) v gL(f(1)), by monotonicity. Similarly, a case analysis on y
shows that F (f)(consR(y)) = gR(f(y)). Assume that x v 1 and y v 0. Then


F (f)(consL(x) u consR(y))
= gL(f(tailL(consL(x) u consR(y))))u gR(f(tailR(consL(x) u consR(y))))
= gL(f(x u 1)) u gR(f(0 u y)) = gL(f(x)) u gR(f(y)),


which concludes the proof. �
Finally, the set of natural numbers is uniquely specified, up to isomorphism,


by the so called Peano axioms, which are essentially the properties that we
informally considered above for the sake of motivation. This idea is made
formal in e.g. Stoll [Sto66], where unary systems are used as a tool (a unary
system is a set X together with an element x ∈ X and a function s : X → X).


In the following definition, the domainD generalizes the partial unit interval
and the maps aL and aR generalize the maps consL and consR respectively.


Definition 10.11 A binary system is a bounded complete domainD equipped
with a pair of continuous maps aL, aR : D → D such that


aL(1) = aR(0),


where
0 = fix aL 1 = fix aR.


We also impose the technical condition


fix (aL u aR) = ⊥,


which ensures that homomorphisms defined below, as Lemma 10.10 suggests,
make binary systems into a category under ordinary function composition.


A homomorphism from a binary system (D, aL, aR) to a binary system
(E, bL, bR) is a continuous map f : D → E such that


f(0) = 0
f(1) = 1
f(⊥) = ⊥


f(aL(x)) = bL(f(x))
f(aR(y)) = bR(f(y))


f(aL(x) u aR(y)) = bL(f(x)) u bR(f(y)) if x v 1 and y v 0.�
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Binary systems were introduced and investigated in the context of uniform
spaces in the extended abstract [Esc94], which contains some mistakes.


Remark 10.12 Recall that an iterated function system (IFS) [Hut81]
consists of a complete metric space X together with a finite list of contracting
maps f1, . . . , fn : X → X . Several generalizations of this concept have been in-
troduced and investigated. Hayaschi [Hay85] has investigated the case where X
is a compact Hausdorff space. Edalat [Eda95e, Eda96a] has investigated the
case where X is the upper space of a complete metric space. In this general-
ized setting, a binary system is an IFS. Moreover, the notion of homomorphism
between binary systems coincides with the notion of conjugacy of IFS’s in-
vestigated in Devaney [Dev89]. �


Lemma 10.10 can be formulated as


Theorem 10.13 (I, consL, consR) is an initial object in the category of binary
systems.


Compare the following lemma to Lemmas 10.2 and 10.3, were cL, cR, h, tL,
tR play the rôle of consL, consR, head, tailL, and tailR respectively:


Lemma 10.14 Let D = (D, cL, cR) be a binary system. Then there is at most
one triple of continuous maps h : D → B and tL, tR : D→ D such that


tL(cL(x)) = x tR(cL(x)) = 0
tL(cR(y)) = 1 tR(cR(y)) = y


tL(cL(x) u cR(y)) = x u 1 tR(cL(x) u cR(y)) = 0 u y


h(cL(x)) v tt, h(cL(x)) = ⊥ iff x v 1
h(cR(y)) v ff , h(cR(y)) = ⊥ iff y v 0


x = pif h(x) then cL(tL(x)) else cR(tR(x)).


Moreover, in this case D admits definition by cases, in the sense that for each
bounded complete domain E and each pair of continuous maps gL, gL : D → E
with


gL(1) = gR(0)


there is a unique map f : D→ E such that


f(cL(x)) = gL(x)
f(cR(y)) = gR(y)


f(cR(x) u cL(y)) = gL(x) u gR(y) if x v 1 and y v 0
Proof Assume that such maps exist. Claim: For every x ∈ I,


1. if h(x) = tt then x = cL(y) for a unique y,


2. if h(x) = ff then x = cR(z) for a unique z,


3. if h(x) = ⊥ then x = cL(y) u cR(z) for unique y v 1 and z v 0.
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(1): There is at most one such y because tL is a left inverse of cL. Since


x = pif tt then cL(tL(x)) else cR(tR(x)) = cL(tL(x)),


We can take y = tL(x). (2): Similar. (3): (Uniqueness) Assume that cL(y) u
cR(z) = cL(y′)u cR(z′) for y, y′ v 1 and z, z′ v 0. Then, by applying tL to both
sides, we obtain y u 1 = y′ u 1. But y u 1 = y and y′ u 1 = y′. Therefore y = y′.
Similarly, z = z′. (Existence):


x = pif ⊥ then cL(tL(x)) else cR(tR(x)) = cL(tL(x) u cR(tR(x))).


Hence tL(x) = tL(x) u 1 and tR(x) = 0 u tR(x). We can thus let y = tL(x) and
z = tR(x), and the proof of the claim is concluded.


It follows that there is at most one f satisfying the definition-by-cases
scheme. Therefore there is at most one triple of maps as specified above, because
tL and tR satisfy the definition-by-cases scheme, and h is completely specified
by the above clauses by virtue of the claim (the inequality h(cL(x)ucR(y)) v ⊥
holds by monotonicity). Finally, a function f satisfying the definition-by-cases
scheme can be constructed as in Lemma 10.3, because it only uses the abstract
properties of consL, consR, head, tailL, and tailR considered in the statement
of the present lemma (and proved in Lemma 10.2). �


Definition 10.15 If such maps exist, then they are called the destructors
of (D, cL, cR). �


Definition 10.16 A binary system (D, cL, cR) satisfies the dyadic induction
principle if for any inductive set A ⊆ D the conditions


1. (Base case) ⊥ ∈ A,


2. (Inductive step) x ∈ A and y ∈ A together imply


(a) cL(x) ∈ A,


(b) cR(y) ∈ A,


(c) cL(x) u cR(y) ∈ A if x v 1 and y v 0,


together entail that A = D. �


Definition 10.17 A binary system (D, cL, cR) is inductive if


1. 0 and 1 are the unique fixed points of cL and cR.


2. 0 6= 1 and 0 u 1 = ⊥.


3. It has destructors.


4. It satisfies the dyadic induction principle. �


The following theorem axiomatically characterizes the binary system
(I, consL, consR) up to isomorphism, without explicit reference to real num-
bers or intervals.
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Theorem 10.18 A binary system is inductive iff it is initial. In particular,
any two inductive binary systems are isomorphic.
Proof The inductiveness property is clearly preserved by binary system iso-
morphisms. Since (I, consL, consR) is an initial inductive binary system, every
initial binary system is inductive, because any two initial objects are isomorphic.
The proof of Lemma 10.10 only uses the axioms for inductive binary systems,
without mentioning any particular property of (I, consL, consR), except for the
equations


head(0) = tt head(1) = ff
tailL(0) = 0 tailR(1) = 1


tailL(⊥) = ⊥ tailR(⊥) = ⊥,
indirectly in Lemma 10.9, which easily follow from the axioms. �


10.2 Structural recursion on the partial unit interval


Definition 10.19 Define T : SDom→ SDom by


TD = B ×D ×D,


and define
I


cons
�


destr
T I


by


cons = pif ◦ (id× consL × consR),
destr = 〈head, tailL, tailR〉;


that is,


cons(p, y, z) = pif x then consL(y) else consR(z),
destr(x) = 〈head(x), tailL(x), tailR(x)〉.�


Theorem 10.20 〈destr, cons〉 is a T -inductive section-retraction pair.
Proof The equation


f = cons ◦T f ◦ destr.


is equivalent to the equation


f(x) = pif head(x) then consL(f(tailL(x))) else consR(f(tailR(x))).


By Lemma 10.2, f = id is a solution. But consL and consR and consR u consL
have unique fixed-points. Therefore there is a unique solution by virtue of
Lemma 10.9. �
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Recall from Section 5.2 that this gives rise to structural recursion and corecur-
sion on I.


We leave as an open problem to characterize the T -algebras a such that
there is a (necessarily unique) homomorphism from cons to a in a neat way,
without referring to the bifree algebra for the functor T .


We now relate the algebra cons : T I → I to the binary system (I, consL, consR).


Definition 10.21 A binary T -algebra is a T -algebra a : TD → D of the
form


pif ◦ (id× aL × aR)


for (necessarily unique) aL, aR : D → D. �


Such maps are necessarily unique because they have to satisfy the equations


aL(x) = a(tt, x,⊥),
aR(y) = a(ff ,⊥, y).


Compare the following proposition to Lemma 10.10 and Definition 10.11:


Proposition 10.22 Let a : TD → D be a binary T -algebra. Then a strict
continuous map f : I → D is a homomorphism from cons to a iff


f(consL(x)) = aL(f(x))
f(consR(y)) = aR(f(y))


f(consR(x) u consR(y)) = aL(f(x)) u aR(f(y)).
Proof f is a homomorphism from cons to a iff


f(pif p then consL(x) else consR(y)) = pif p then aL(f(x)) else aR(f(y))


for all p, x, y. By considering the cases p = tt,ff ,⊥ respectively, this equation
is seen to be equivalent to the above equations together. �


Compare the following proposition to Lemmas 10.9 and 10.10.


Proposition 10.23 If there is a homomorphism from cons to a binary T -
algebra a : TD → D then it is the least continuous map f : I → D such
that


f(x) = pif head(x) then aL(f(tailL(x))) else aR(f(tailR(x))).
Proof By Proposition 5.8 we know that if there is a homomorphism from
cons to a, then it is the least continuous function f such that


f = a ◦T f ◦ destr,


which is equivalent to the above equation. �
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Compare the following proposition to Definition 10.11:


Proposition 10.24 Let a : TD → D be a binary T -algebra. If there is a
homomorphism from cons to a then


aL(fix aR) = aR(fix aL).
Proof Let f be a homomorphism. Then f satisfies the equations of Lemma 10.22.
Hence


f(consL(1)) = aL(f(1)) = aL(fix aR)
f(consR(0)) = aR(f(0)) = aR(fix aL)


by Lemma 10.23. But consL(1) = consR(0). �
Is the converse true? No, because cons makes more identifications than


consL and consR do. For example, cons(⊥, x, y) = cons(tt, x,⊥) if y v 1, and
cons(⊥, x, y) = cons(ff ,⊥, y) if x v 0. We leave as an open problem to give
a necessary and sufficient condition on a binary algebra a for the existence of
a homomorphism from cons to a. This amounts to the classification of these
identifications, which shouldn’t be very difficult.


In order to consider recursive definitions of functions f : I ×I → E, we can
try to develop the analogue of Lemma 10.10 for two variables, as in the following
proposition. Unfortunately, in practice it turns that one of the hypotheses is
hardly ever satisfied (namely that the transpose of f is strict).


Proposition 10.25 Let f : I × I → D be a continuous map multiplicative in
each argument such that its transpose g : I → (I ⇒ D) is strict, let


aij : E → E, i, j ∈ {L,R}


be continuous functions such that


f ◦ (consi × consj) = aij ◦ f


and define a : T (I ⇒ E)→ (I ⇒ E) by


a = id× (pif ◦ (id× aLL × aLR) ◦ destr)× (pif ◦ (id× aRL × aRR) ◦ destr).


Then g is the unique homomorphism from cons to the algebra a. In particular,
f is the least solution to the functional equation


f(x, y) = pif head(x) then pif head(y) then aLL(f(tailL(x), tailL(y)))
else aLR(f(tailL(x), tailR(y)))


else pif head(y) then aRL(f(tailR(x), tailL(y)))
else aRR(f(tailR(x), tailR(y))).


Proof The condition on f implies that


g(consi(x))(consj(y)) = aij(g(x)(y)),


and by Lemma 10.2 we know that the identity


z = pif head(z) then consL(tailL(z)) else consR(tailR(z))
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holds. This and the fact that f is multiplicative in its second argument together
imply that


g(consi(x))(z)
= g(consi(x))(pif head(z) then consL(tailL(z)) else consR(tailR(z)))
= pif head(z) then g(consi(x))(consL(tailL(z))) else g(consi(x))(consR(tailR(z)))
= pif head(z) then aiL(g(x)(z)) else aiR(g(x)(z)).


Since the definition of a can be written


a(p, h, k)(z) = pif p then pif head(z) then aLL(h(tailL(z)))
else aLR(h(tailR(z)))


else pif head(z) then aRL(k(tailL(z)))
else aRR(k(tailR(z)))


and f is multiplicative in its first argument, we have that


(g ◦ cons(p, x, y))(z) = g(pif p then consL(x) else consR(y))(z)
= (pif p then g(consL(x)) else g(consR(y)))(z)
= pif p then g(consL(x))(z) else g(consR(y))(z)
= a(p, g(x), g(y))(z)
= (a ◦Tg(p, x, y))(z).


Therefore g ◦ cons = a ◦T g, which means that g is an algebra homomorphism
from cons to a. From Proposition 5.8, we know that g is the least solution of
the equation


g = a ◦T g ◦ destr.


Therefore g is the least solution to the equation


g(x)(y) = pif head(x) then pif head(y) then aLL(g(tailL(x))(tailL(y)))
else aLR(g(tailL(x))(tailR(y)))


else pif head(y) then aRL(g(tailR(x))(tailL(y)))
else aRR(g(tailR(x))(tailR(y)))


and f is the least solution to the above equation. �
Notice that the multiplicativity hypothesis in the statement of the proposition
is stronger than necessary.


10.3 Bifurcated binary expansions


The canonical solution to the domain equation


D ∼= TD,


for the functor TD = B × D × D considered in Definition 10.19, is the do-
main BTree of infinite binary trees with nodes labelled by truth values, ordered
nodewise, together with the bifree algebra


mktree : TBTree→ BTree
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which sends a list 〈p, s, t〉 to the tree with root labelled by p, and with left and
right subtrees s and t respectively:


mktree(p, s, t) =
p


↙ ↘
s t


Definition 10.26 Let num : BTree → I be the unique algebra homomorph-
ism from mktree to cons, and bin : I → BTree be the unique coalgebra homo-
morphism from destr to mktree−1, as indicated in the following diagrams:


TBTree
mktree- BTree


T I


T num
?


cons
- I
?
num


I
destr - T I


BTree


bin
?


mktree−1
- TBTree


?
T bin


�


Then we have that


num


(
p


↙ ↘
s t


)
= pif p then consL(num(s)) else consR(num(t)),


bin(x) =
head(x)


↙ ↘
bin(tailL(x)) bin(tailR(x)).


By Proposition 5.5,
num ◦ bin = id.


Definition 10.27 We refer to the tree bin(x) as the bifurcated binary ex-
pansion of x. �


By the above recursive definition of bin, we have that


bin(0) =
tt


↙ ↘
bin(0) bin(0)


bin(1) =
ff


↙ ↘
bin(1) bin(1)


bin(1/2) =
⊥


↙ ↘
bin(1) bin(0)
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Thus the bifurcated binary expansions of 0 and 1 are the binary trees with all
nodes labelled by tt and ff respectively. Also,


bin(x) =





tt
↙ ↘


bin(tailL(x)) bin(0)
if x < 1/2,


ff
↙ ↘


bin(1) bin(tailR(x))
if x > 1/2,


⊥
↙ ↘


bin(tailL(x)) bin(tailR(x))
if x↑↑1/2,


because tailL(consR(x)) = 1 and tailR(consL(x)) = 0.
Now, recall that a binary expansion of a real number x ∈ [0, 1] is a


sequence 〈an〉n≥1 of bits (binary digits 0 and 1) with∑
n≥1


an2−n = x


(see e.g. Bourbaki [Bou66]). A binary expansion 〈an〉n≥1 of a number x ∈ [0, 1]
can be found by the following non-deterministic inductive procedure, which is
also non-effective as equality of real numbers is undecidable:


1. Let x0 = x.


2. If xn ≤ 1/2 let an = 0 and xn+1 = tailL(xn).


3. If xn ≥ 1/2 let an = 1 and xn+1 = tailR(xn).


If we denote the multi-valued function which sends a number to its set of binary
expansions by Bin, and if we write sequences vertically, the above process can
be described by the following informal recursive definition:


Bin(x) =





0
↓


Bin(tailL(x))
if x ≤ 1/2,


1
↓


Bin(tailR(x))
if x ≥ 1/2.


Thus, the main differences between bifurcated binary expansions and usual
binary expansions are that


1. bifurcated binary expansions capture partial numbers in addition to total
numbers,
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2. bifurcated binary expansions are obtained by a deterministic process (the
above recursive definition of bin),


3. bifurcated binary expansions are obtained by an effective process, which
replaces the non-effective tests x ≤ 1/2 and x ≥ 1/2 by the effective test
head(x) = (x<⊥1/2).


On the other hand, not every binary tree is a bifurcated binary expansion.
However, the idempotent


norm = bin ◦ num : BTree→ BTree


has the bifurcated binary expansions as its fixed-points. Moreover, by general
properties of retracts, the set of bifurcated binary expansions endowed with the
order inherited from BTree is a domain isomorphic to I.


In the remaining of this section we look for a recursive definition of


BTree �
norm BTree = BTree �


bin I �num BTree


not involving the intermediate domain I. Such a recursive definition is applied
in Section 12.1 in order to find an appropriate effective presentation of the
partial real line.


If we have an algebra cons′ : TBTree → BTree such that bin is a homo-
morphism from cons to cons′, as indicated in the diagram


T I cons - I


TBTree


T bin
?


cons′
- BTree


?
bin


then norm is a homomorphism from mktree to cons′, because num is a homo-
morphism from mktree to cons, by definition, and homomorphisms compose.
Therefore norm can be recursively defined by


norm ◦mktree = cons′ ◦T norm,


or, equivalently, by


norm


(
p


↙ ↘
s t


)
= cons′(p, norm(s), norm(t)).


Moreover, if cons′ is a binary T -algebra (Definition 10.21), in the sense that
we can find maps cons′L, cons′R : BTree→ BTree such that


cons′ = pif ◦ (id× cons′L × cons′R),


then we can recursively define norm by


norm


(
p


↙ ↘
s t


)
= pif p then cons′L(norm(s)) else cons′R(norm(t)).
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Lemma 10.28 bin is a multiplicative function.
Proof bin is the least fixed-point of the continuous functional F defined by


F (f) = mktree ◦T f ◦ destr.


The function mktree is multiplicative because binary meets of triples are com-
puted componentwise, and binary meets of trees are computed nodewise. If
f is multiplicative so is T f . Also destr = 〈head, tailL, tailR〉 is multiplicat-
ive because head, tailR and tailL are multiplicative by Lemmas 9.17 and 9.16
respectively. Hence, since a composition of multiplicative functions is multi-
plicative, if f is multiplicative so is F (f). Therefore the least fixed-point of F
is multiplicative, because the binary meet operation preserves directed joins.�


Lemma 10.29 Let cons′L, cons′R : BTree → BTree be continuous maps, and
define


cons′ = pif ◦ (id× cons′L × cons′R).


If the diagrams


I consL- I


BTree


bin
?


cons′L
- BTree


?
bin


I consR- I


BTree


bin
?


cons′R
- BTree


?
bin


commute then bin is an algebra homomorphism from cons to cons′.
Proof By Lemmas 8.16 and 10.28, if the diagrams commute then


bin ◦ cons(p, y, z) = bin(pif p then consL(y) else consR(z))
= pif p then bin(consL(y)) else bin(consR(z))
= pif p then cons′L(bin(y)) else cons′R(bin(z))
= cons′(p, bin(y), bin(z))
= cons′ ◦T Bin(p, y, z),


and hence bin is a homomorphism from cons to cons′. �
In order to construct such maps cons′L and cons′R, we first consider the


following construction:


Lemma 10.30 Let head′0, head′1 : BTree → B be recursively defined by


head′0


(
p


↙ ↘
s t


)
= pif p then head′0(s) else ff ,


head′1


(
p


↙ ↘
s t


)
= pif p then tt else head′1(t).


Then
head′0 = head0 ◦ num and head′1 = head1 ◦ num.
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Proof Define


f0 = ⊥ fn+1 (mktree(p, s, t)) = pif p then fn(s) else ff ,
id0 = ⊥ idn+1 (mktree(p, s, t)) = mktree(p, idn(s), idn(t)).


Then head′0 and id : BTree → BTree are the least upper bounds of the chains
fn and idn respectively. We show by induction on n that head0◦num◦ idn = fn.
For the base case this is immediate, because head0 and num are both strict. For
the inductive step, recall that head0 is multiplicative by Lemma 9.17, and that
hence it distributes over the parallel conditional in the sense of Lemma 8.16.
Also, notice that head0 ◦ consL = head0, because x < 0 iff x/2 < 0, and that
head0 ◦ consR(x) = ff , because consR(x) ≥ 1/2. Hence


head0 ◦ num ◦ idn+1 (mktree(p, s, t))
= head0 ◦ num (mktree(p, idn(s), idn(t)))
= head0(pif p then consL(num(idn(s))) else consR(num(idn(s)))
= pif p then head0(consL(num(idn(s)))) else head0(consR(num(idn(s))))
= pif p then head0(num(idn(s))) else ff


= pif p then fn(s) else ff


= fn+1 (mktree(p, s, t)) ,


which finishes our inductive argument. Therefore


head′0 =
⊔↑
n


fn =
⊔↑


head0 ◦ num ◦ idn = head0 ◦ num ◦
⊔↑


idn = head0 ◦ num.


The proof for head′1 is symmetric. �
The continuous maps of the hypothesis of Lemma 10.29 can be constructed


as follows:


Lemma 10.31 Let cons′L, cons′R : BTree→ BTree be defined by


cons′L(t) =
head′1(t)


↙ ↘
t bin(0)


cons′R(t) =
head′0(t)


↙ ↘
bin(1) t


Then the diagrams displayed in Lemma 10.29 commute.
Proof Since head′1 = head1 ◦ num by Lemma 10.30, and since num ◦ bin,
we conclude that head1 = head′1 ◦ bin. Since head ◦ consL(x) = (x/2<⊥1/2) =
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(x<⊥1) = head1(x),


bin ◦ consL(x)
= mktree(head ◦ consL(x), bin(tailL(consL(x))), bin(tailR(consL(x))))
= mktree(head1(x), bin(x), bin(0))
= mktree(head′1(bin(x)), bin(x), bin(0))
= cons′L ◦ bin(x).


The proof for consR is symmetric. �
We have thus established


Theorem 10.32 The idempotent norm can be recursively defined by


norm


(
p


↙ ↘
s t


)
= pif p then cons′L(norm(s)) else cons′R(norm(t)).


Compare the following lemma to Definition 3.16(3b), where BTree plays the
rôle of Bω :


Lemma 10.33 Let tail′L, tail′R : BTree → BTree and head′ : BTree → B be
defined by


head′
(


p
↙ ↘


s t


)
= pif p then head′1(s) else head′0(t)


tail′L


(
p


↙ ↘
s t


)
= pif p then s else bin(1)


tail′R


(
p


↙ ↘
s t


)
= pif p then bin(0) else t.


Then, for each a ∈ {L,R},


consa = (bin⇒ num)(cons′a)
head = (bin⇒ id)(head′)
taila = (bin⇒ num)(tail′a).


Proof By Lemma 10.31, we have that bin ◦ consa = cons′a ◦ bin. Hence


consa = num ◦ consa ◦ bin = (bin⇒ num)(cons′a),


because num ◦ bin = id. For head we have that


(bin⇒ id)(head′)(x)
= head′ ◦ bin(x)
= head′(mktree(head(x), bin(tailL(x)), bin(tailR(x))))
= pif head(x) then head′1(bin(tailL(x))) else head′0(bin(tailR(x)))
= pif head(x) then head1(tailL(x)) else head0(tailR(x)),
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by virtue of Lemma 10.30. If head(x) = tt then x < 1/2 and hence tailL(x) < 1.
Thus, in this case the last term is


head1(tailL(x)) = tt = head(x).


Similarly, if head(x) = ff then


head1(tailR(x)) = ff = head(x).


Otherwise head(x) = ⊥. Then x v 1/2 and hence tailL(x) v 1 and tailR(x) v 0.
Therefore in this case the last term is


head1(tailL(x)) u head0(tailR(x)) = ⊥u ⊥ = ⊥ = head(x).


For tailL we have that


(bin⇒ num)(tail′L)(x)
= num ◦ tail′L ◦ bin(x)
= num ◦ tail′L(mktree(head(x), bin(tailL(x)), bin(tailR(x))))
= num(pif head(x) then bin(tailL(x)) else bin(1))
= num ◦ bin(pif head(x) then tailL(x) else 1)
= pif head(x) then tailL(x) else 1


If head(x) = tt then the last term is tailL(x). If head(x) = ff then the last
term is 1 = tailL(x). Otherwise, head(x) = ⊥. Then x v 1/2 and tailL(x) v 1.
Hence in this case the last term is


tailL(x) u 1 = tailL(x).


For tailR we have a symmetric proof. �


10.4 Coinduction on the partial unit interval


Dana Scott suggested to the author that he should also consider a characteriz-
ation of the partial unit interval by “co-Peano axioms”, based on some form of
coinduction and corecursion. Although we don’t have such a characterization
yet, we have a coinduction principle based on the ideas of Smyth [Smy92a] and
Fiore [Fio93, Fio96].


Definition 10.34 A bisimulation on I is a binary relation ∼⊆ I × I such
that


x ∼ y implies that head(x) = head(y) and taila(x) ∼ taila(y) for
a ∈ {R, L}.


We say that x and y are bisimilar if they are related by some bisimulation.�


Theorem 10.35 (Coinduction) If x, y ∈ I are bisimilar then x = y.
Proof (Sketch) Assume that x and y are bisimilar. Then bin(x) = bin(y).
Since bin is split mono, x = y. �
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So far we don’t have any application of this coinduction principle.
Of course, we can replace equalities by inequalities thus obtaining the no-


tion of simulation and a more general coinduction principle for establishing
inequalities.


10.5 Structural recursion on the partial real line


The domain R⊥ is treated similarly, by considering the primitive operations


rconsL(x) = x/2, rtailL(x) = 2x,
rconsR(x) = (x+ 1)/2, rtailR(x) = 2x− 1,


trunc(x) = max(0,min(x, 1)), incl(x) = x.


Here incl : I → R and trunc : R⊥ → I form a section-retraction pair.
We omit the routine details, because they are formally similar to those of


the treatment of I. The crucial idea is that the identity of R⊥ is the unique
continuous function such that


f(x) = pif x<⊥0 then rconsR(f(rtailR(x)))
pif 1<⊥x then rconsL(f(rtailL(x)))


else incl(trunc(x)).


Roughly, the idea is that if x < 0 then there is some n such that rtailnR(x)
belongs to I, and, similarly, if x > 1 then there is some n such that rtailnL(x)
belongs to I, so that we can reduce the treatment to the previous case. This
leads us to define a functor T : SDom→ SDom by


TD = B × B ×D ×D × I


functions
R⊥


cons
�


destr
TR⊥


by
cons(p, q, x, y, z) = pif p then rconsR(x)


pif q then rconsL(y)
else incl(z).


destr(x) = 〈x<⊥0, 1<⊥x, rtailR(x), rtailL(x), trunc(x)〉.


Theorem 10.36 〈destr, cons〉 is a T -inductive section-retraction pair.


It is easy to derive the analogue of Theorem 10.32 and Lemma 10.33, which are
necessary to establish computational completeness of Real PCF.


10.6 Examples of recursive definitions


We have already seen several examples of recursive definitions in Section 10.3.
In this section we show how to derive recursive definitions of basic real functions
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using the principles introduced in Sections 10.1, 10.2, and 10.5. For the sake of
brevity, some routine proofs and constructions are only sketched.


Unless otherwise stated, when we refer to a real function as a partial real
function, we mean its canonical extension, as in Convention 8.2.


Proposition 10.37 The complement map compl : I → I defined by


compl(x) = 1− x


can be recursively defined by


compl(x) = pif head(x) then consR(compl(tailL(x)))
else consL(compl(tailR(x))).


Proof There are two ways to prove this fact, based on Sections 10.1 and 10.2
respectively, but they are essentially equivalent:


First way: If (D, cL, cR) is a binary system, so is (D, cR, cL), because the
definition is symmetric. Thus, it suffices to show that compl is a homomorphism
from (I, consL, consR) to (I, consR, consL), and apply Lemma 10.10, obtaining
the above recursive definition. The base case clearly holds because it simply
says that compl(0) = 1, compl(1) = 0, and compl(⊥) = ⊥, which is immediately
true. The first two equations of the recursion step are proved by


compl(consL(x)) = 1− x/2 = (2− x)/2 = ((1− x) + 1)/2
= consR(compl(x)),


compl(consR(x)) = 1− (x+ 1)/2 = (2− (x+ 1))/2 = (1− x)/2
= consL(compl(x)).


For the third equation of the recursion step, it suffices to observe that compl is
multiplicative, simply because it is an isomorphism.


Second way: If compl is a homomorphism from the algebra cons to the al-
gebra cons′ defined by


cons′ = pif ◦ (id× consR × consL),


then the result follows from Proposition 10.23. But the hypothesis follows from
the arguments above and Proposition 10.22. �
Proposition 10.38


1. The logarithm function log2 : I[1, 2]→ I[0, 1] can be recursively defined by


log2(x) = pif x<⊥
√


2 then consL(log2(x2))
else consR(log2(x2/2)),


where x2 and x2/2 stand for min(x2, 2) and max(1, x2/2) respectively, by
an abuse of notation.
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2. The inverse exp2 : I[0, 1]→ I[1, 2] of log2 can be recursively defined by


exp2(x) = pif head(x) then
√


exp2(tailL(x))
else


√
2 exp2(tailL(x)).


Proof Define aL, aR : I[1, 2]→ I[1, 2] by


aL(x) =
√
x aR(x) =


√
2x.


Then


log2 ◦aL(x) = log2(
√
x) = log2(x)/2 = consL ◦ log2(x)


log2 ◦aR(x) = log2(
√


2x) = (log2(x) + 1)/2 = consR ◦ log2(x).


Since exp2 is the inverse of log2,


exp2 ◦consL = aL ◦ exp2


exp2 ◦consR = aR ◦ exp2 .


It follows that (I[1, 2], aL, aR) is a binary system isomorphic to (I, consL, consR)
and hence it is also initial by Theorem 10.18. Hence


a = pif ◦ (id× aL × aR)


is a bifree algebra. But since log2 and exp2 are isomorphisms, they are multiplic-
ative. Hence Proposition 10.22 shows that log2 : a→ cons and exp2 : cons→ a.
The destructors of (I, aL, aL) are


h(x) = x<⊥
√


2
tL(x) = min(x2, 1)
tR(x) = max(0, x2/2).


Therefore the result follows from Proposition 10.23. �


Proposition 10.39 The the average map ⊕ : I × I → I defined by


x⊕ y = (x+ y)/2


can be recursively defined by


x⊕ y = pif head(x) then pif head(y) then consL(tailL(x)⊕ tailL(y))
else consC(tailL(x)⊕ tailR(y))


else pif head(y) then consC(tailR(x)⊕ tailL(y))
else consR(tailR(x)⊕ tailR(y)).


where
C = [1/4, 3/4].
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Proof First, notice that average satisfies the following exchange law:


(a⊕ x)⊕ (b⊕ y) = ((a+ x)/2 + (b+ y)/2)/2 = ((a+ b)/2 + (x+ y)/2)/2
= (a⊕ b)⊕ (x⊕ y).


Since


consL(x) = 0⊕ x, consC(x) = 1/2⊕ x, consR(x) = 1⊕ x,


and since 0⊕ 0 = 0, 1/2 = 0⊕ 1 = 1⊕ 0, and 1⊕ 1 = 1, it follows that


consL(x)⊕ consL(y) = consL(x⊕ y)
consL(x)⊕ consR(y) = consC(x⊕ y)
consR(x)⊕ consL(y) = consC(x⊕ y)
consR(x)⊕ consR(y) = consR(x⊕ y).


A routine verification shows that average is multiplicative in each argument
(it suffices to check one argument because it is commutative). Hence, if the
transpose of average were strict, which unfortunately it isn’t, the result would
immediately follow from Proposition 10.25. We thus proceed as follows: (1) We
show that average satisfies the recursive equation, and (2) we show that any
two functions satisfying the recursive equation are equal. Step (1) can be done
directly using the above equations and the fact that average is multiplicative.
Step (2) can be done by nested dyadic induction. We omit the details. �


Ternary average, needed in the recursive definition of multiplication given
in Proposition 10.40 below, can be recursively defined in essentially the same
way as binary average (with an extra level in the nesting of conditionals).


A routine verification shows that the multiplication map (x, y) 7→ x × y :
I × I → I satisfies the following equations:


consL(x)× consL(y) = consLL(x× y)


consL(x)× consR(y) = consL


(
x + x× y


2


)
consR(x)× consL(y) = consL


(
x × y + y


2


)
consR(x)× consR(y) = consRL


(
x+ x× y + y


3


)
If we informally apply Proposition 10.25 in order to reduce these four equations
to a single equation, and formally proceed as in the proof of Proposition 10.39,
we obtain:


Proposition 10.40 The multiplication map (x, y) 7→ x × y : I × I → I can
be recursively defined by


x× y = pif head(x)
then pif head(y) then consLL (tailL(x)× tailL(y))
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else consL


(
tailL(x) + tailL(x)× tailR(y)


2


)
else pif head(y) then consL


(
tailR(x)× tailL(y) + tailL(y)


2


)
else consRL


(
tailR(x) + tailR(x)× tailR(y) + tailR(y)


3


)
.


Similarly, we have that


max(consL(x), consL(y)) = consL(max(x, y))
max(consL(x), consR(y)) = consL(x)
max(consR(x), consL(y)) = consL(y)
max(consR(x), consR(y)) = consR(max(x, y)),


and we conclude that


Proposition 10.41 max can be recursively defined by


max(x, y) = pif head(x) then pif head(y) then consL(max(tailL(x), tailL(y)))
else y


else pif head(y) then x
else consR(max(tailR(x), tailR(y))).


The operation min can be defined in a similar way, or simply by


min(x, y) = 1−max(1− x, 1− y).


Proposition 10.42 The function (x, y) 7→ (x<⊥y) : I ×I → I can be recurs-
ively defined by


(x<⊥y) = pif head(x) then pif head(y) then tailL(x)<⊥tailL(y)
else tt


else pif head(y) then ff
else tailR(x)<⊥tailR(y)


We now consider some recursive definitions on R⊥. We obtain a recursive
definition of addition in R⊥ by reducing addition to the average operation on I
defined in Proposition 10.39. In the following proposition, the symbol ∨ denotes
parallel-or, defined by


p ∨ q = pif p then tt else q.


Also, the affine maps in the recursive definition correspond to operations rrconsa
for appropriate a.


Proposition 10.43 Addition on R⊥ can be recursively defined by


x + y = pif x <⊥ 0 ∨ y <⊥ 0 then 2
(
x+1


2 + y+1
2


)
− 2


else pif x >⊥ 1 ∨ y >⊥ 1 then 2
(
x
2 + y


2


)
else 2 trunc(incl(x)⊕ incl(y)).
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Proof We only observe that the above equation is equivalent to


x + y = pif x < 0 ∨ y < 0 then 2
(
x+1


2 + y+1
2


)
− 2


else pif x > 1 ∨ y > 1 then 2
(
x
2 + y


2


)
else 2


(x+y
2


)
,


with some slight abuse of notation. The idea is to “normalize” x and y to
fractions, compute average, and then rescale the result back. �
Maximum, minimum, and multiplication on R⊥ can be obtained in a similar
way from the corresponding operations on I.


Proposition 10.44 If b > 1 then the logarithm function logb : R⊥ → R⊥,
with the convention that logb(x) = ⊥ if x is consistent with a non-positive
number, can be recursively defined by


logb(x) = pif x >⊥ b then logb(x/b) + 1
else pif x <⊥ 1 then logb(bx)− 1
else join[0,1]


(
pif x2 <⊥ b then logb(x2)


2 else logb(x2/b)+1
2


)
For a treatment of some trigonometric functions see [Esc94].
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Part IV


Computation on the partial
real line
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In Chapter 11 we introduce Real PCF and its operational and denotational
semantics, and we establish computational adequacy. In Chapter 12 we show
that the real numbers type hierarchy has a unique sound effective presentation,
and we establish computational completeness of Real PCF.
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Chapter 11


The programming language
Real PCF


We introduce two successive extensions of PCF, first with a type for the partial
unit interval (Section 11.1) and then with a further type for the partial real line
(Section 11.2). We prove that the operational semantics enjoys the following
adequacy property: a program of real number type evaluates to a head-
normal form iff its value is different from ⊥; if its value is different from ⊥ then
it successively evaluates to head-normal forms giving better and better partial
results converging to its value.


11.1 The programming language PCFI


We let L range over the languages LDA, LPA and LPA+∃, and LI denote the
extension of L with a new ground type I and the following new constants:


1. consa : I→ I


2. taila : I→ I


3. headr : I→ T


4. pifI : (T, I, I, I)


for each non-bottom a ∈ I with distinct rational end-points, so that the inter-
pretation of taila given below is well-defined, and each rational r ∈ (0, 1). We
refer to the ground type I as the real number type, and to programs of real
number type as real programs.


Denotational semantics


We let DI = I and we extend the standard interpretation A of L to LI by


1. AJconsaK = consa


2. AJtailaK = taila


3. AJheadrK = headr
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4. AJpif IKpxy = pif p then x else y.


Operational semantics


We extend the immediate reduction relation → of L to LI by the following
rules:


1. consa(consbM)→ consabM


2. taila(consbM)→ YconsL if b ≤ a


3. taila(consbM)→ YconsR if b ≥ a


4. taila(consbM)→ consb\aM if a v b and a 6= b


5. taila(consbM)→ cons(atb)\a(tail(atb)\bM)


if a↑↑b, a 6v b, b 6v a, b 6≤ a, and a 6≤ b


6. headr(consaM)→ tt if a < r


7. headr(consaM)→ ff if a > r


8. pif ttMN →M , pif ffMN → N


9. pif L (consaM) (consbN ) →
consaub(pif L (consa\(aub)M) (consb\(aub)N ))


if a u b 6= ⊥


10. N → N ′


MN →MN ′
if M is consa, taila, headr or pif


11. L→ L′


pifL→ pifL′
M →M ′


pifLM → pifLM ′
N → N ′


pifLMN → pifLMN ′
.


These rules are well-defined by virtue of Lemma 9.3 and because the extra
conditions on them which are not present in Lemma 9.18 ensure that no bottom
elements and no maximal elements are produced as subscripts of cons or tail.
It may seem that there is a missing self-evident reduction rule for taila, namely
the rule taila(consaM)→M ; see remark after Lemma 11.6.


The basic idea behind the above reduction rules is to reduce computations on
real numbers to computations on rational numbers, namely the subscripts of
the constants cons, head, and tail.


Notice that the immediate reduction rules for the parallel conditional are
non-deterministic. The following lemma shows that this non-determinism does
not produce inconsistencies:


125







Lemma 11.1 M → N implies JMK(ρ) = JNK(ρ) for all terms M and N and
any environment ρ.
Proof This is true for the language L, and remains true for the extended
language LI by virtue of Lemma 9.18. �


The partial map Eval on programs M of truth-value and natural num-
ber type is defined in the same way as for L. It is well-defined by virtue of
Lemma 11.1, because no two different constants have the same interpretation.
We extend Eval to a multi-valued map on real programs M by


Eval(M) = {a ∈ I|M →∗ consaM ′ for some M ′};


that is, a ∈ Eval(M) iff M has a head-normal form consaM ′.


Soundness of the operational semantics


Lemma 11.2 For all real programs M , a ∈ Eval(M) implies a v JMK.
Proof By Lemma 11.1, if M →∗ consaM ′ then JMK = JconsaM ′K = aJM ′K.
Therefore a v JMK, because the information order on partial numbers coincides
with the prefix preorder. �


Theorem 11.3 (Soundness) For any real program M ,⊔
Eval(M) v JMK.


Proof The join exists because JMK is an upper bound of the set Eval(M).
Therefore the result follows from Lemma 11.2. �


Completeness of the operational semantics


By virtue of Lemma 11.2, for any real program M we have that Eval(M) is
empty if JMK = ⊥. The following theorem states a stronger form of the con-
verse:


Theorem 11.4 (Completeness) For any real program M ,⊔
Eval(M) w JMK


Proof Lemma 11.6 below. �
The soundness and completeness properties in the senses of Theorems 11.3


and 11.4 can be referred together as the computational adequacy property
of LI .


Theorem 11.5 (Adequacy) LI is computationally adequate.


Several recursive definitions given in Section 10.6 immediately give rise to
PCF programs. It would be a formidable task to syntactically prove the cor-
rectness of the resulting programs by appealing to the operational semantics
given by the reduction rules. However, a mathematical proof of the correctness
of a recursive definition allows us to conclude that the induced programs indeed
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produce correct results, via an application of the Adequacy Theorem. In fact,
this is one of the main points of denotational semantics.


We extend the inductive definition of the predicates Compσ given in Sec-
tion 4.3 of Part I by the following clause:


A real program M has property CompI if for every non-bottom
partial number x � JMK (as close to JMK as we please) there is
some a ∈ Eval(M) with x v a.


If we read the relation x � y as “x is a piece of information about y” then
the above definition says that a real program is computable if every piece of
information about its value can be produced in a finite number of reduction
steps.


The domain-theoretic justificative for continuity of computable functions is
that it is a finiteness condition [Plo80, Sco72b, Smy83, Smy92b]; a function
f is continuous if a finite amount of information about f(x) depends only on
a finite amount of information about x. The continuity of a domain, which
amounts to its way-below order being well-behaved, gives us a general and
abstract framework for consistently talking about “pieces of information”. Then
it should come as no surprise that Lemma 11.6 makes essential use of the way-
below order and of the continuity of the primitive functions.


The following lemma, which extends Lemma 4.6, establishes the Complete-
ness Theorem:


Lemma 11.6 Every term is computable.
Proof It suffices to extend the inductive proof of Lemma 4.6. We have to:


1. slightly modify the proof for the case of abstractions, because it mentions
constants and we have added new constants;


2. extend the proof of computability of the terms Yσ to the new types; and


3. show that the new constants are computable.


(1) If M is computable so is λαM :
It is enough to show that the ground term LN1 · · ·Nn is computable when


N1, · · · , Nn are closed computable terms and L is a closed instantiation of λαM
by computable terms. Here L must have the form λαM̃ where M̃ is an in-
stantiation of all free variables of M , except α, by closed computable terms.
Since [N1/α]M̃ is computable, so is [N1/α]M̃N2 · · ·Nn. Since LN1 · · ·Nn →
[N1/α]M̃N2 · · ·Nn and the reduction relation preserves meaning, in order to
evaluate LN1 · · ·Nn it suffices to evaluate [N1/α]M̃N2 · · ·Nn.


(2) Yσ is computable for all new types:
In order to prove that Yσ is computable for all new types it suffices to show


that the term Y(σ1,...,σk,I)N1 · · ·Nk is computable whenever N1 : σ1, . . . , Nk : σk
are closed computable terms.


It follows from (1) above that the terms Y(n)
σ are computable for all new


types, because the proof of computability of Y(n)
σ for old types depends only on
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the fact that variables are computable and that the combination and abstraction
formation rules preserve computability.


The syntactic information order 4 on L extends to LI , and Lemma 4.5 is
easily seen to remain true by a routine extension of its inductive proof.


Let x� JYN1 · · ·NkK be a non-bottom partial number. By a basic property
of the way-below order of any continuous dcpo, there is some n such that
x � JY(n)N1 · · ·NkK, because JYK =


⊔
nJY(n)K. Since Y(n) is computable,


there is a c ∈ Eval(Y(n)N1 · · ·Nk) with x v c. Since there is a term M with
Y(n)N1 · · ·Nk →∗ conscM and Y(n) 4 Y, it follows from Lemma 4.5 that
YN1 · · ·Nk →∗ conscM for some M and therefore c ∈ Eval(YN1 · · ·Nk).


(3) The new constants are computable:
In order to prove that one of the new constants c is computable it suffices


to show that if M1, . . . ,Mn are closed computable terms such that cM1 . . .Mn


has real number type, then cM1 . . .Mn is computable.
(3)(a) consa is computable:
Let M be a computable real program and let x � JconsaMK = aJMK be


a non-bottom partial number. We have to produce c ∈ Eval(consaM) with
x v c. Let b� JMK with x� ab. If b = ⊥ then we can take c = a. Otherwise,
by computability of M we can find b′ ∈ Eval(M) with b v b′. Then we can take
c = ab′, because consaM →∗ consa(consb′M ′)→ consab′M ′ for some M ′.


(3)(b) taila is computable:
Let M be a computable real program and let y � JtailaMK = taila(JMK)


be a non-bottom partial number. We have to produce c ∈ Eval(tailaM) with
y v c. Since taila is continuous, there is some x� JMK such that y� taila(x).
Let b ∈ Eval(M) with x v b. It follows that b 6v a, because y 6= ⊥ and if b v a
then y � taila(x) v taila(b) v taila(a) = ⊥. Then exactly one of the following
four cases holds:


(t1) b ≤ a


(t2) a ≤ b


(t3) a v b


(t4) a↑↑b, a 6v b, b 6≤ a, and a 6≤ b


which have the following proofs:


(t1) In this case tailaM →∗ taila(consbM ′) → YconsL for some M ′. Hence
y � JtailaMK = JYconsLK. Since YconsL is a computable term, there
is some c ∈ Eval(YconsL) ⊆ Eval(tailaM) with y v c.


(t2) This case is handled similarly.


(t3) Since x v b, we have that taila(x) v taila(b) = b\a, and since y v taila(x),
we have that y v b\a. Therefore we can take c = b\a, because tailaM →∗
taila(consbM ′)→ consb\aM ′ for some M ′.


(t4) Since x v b, we have that taila(x) v taila(b) = (a t b)\a, and since
y v taila(x), we have that y v (a t b)\a. Therefore we can take c = (a t
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b)\a, because tailaM →∗ taila(consbM ′) → cons(atb)\a(tail(atb)\bM ′)
for some M ′.


(3)(c) headr is computable:
Assume that JheadrMK = headr(JMK) 6= ⊥ for a computable real pro-


gramM . Then there is an x� JMK such that either x < r or else x > r, because
headr is continuous. Let c ∈ Eval(M) with x v c. Then either c < r or else c >
r. Hence there is some M ′ such that either headrM →∗ headr(conscM ′)→ tt
or else headrM →∗ headr(conscM ′)→ ff respectively. Therefore if x < r then
Eval(headrM) = tt and if x > r then Eval(headrM) = ff .


(3)(d) pif is computable:
It suffices to show that pifLMN is computable whenever JLK = ⊥ and M


and N are computable programs, because the case JLK 6= ⊥ is immediate. Let
x � JpifLMNK. Then x � JMK u JNK. Hence x � JMK and x � JNK.
Let a ∈ Eval(M) and b ∈ Eval(N ) with x v a and x v b. Then x v a u b
and au b ∈ Eval(pifLMN ), because pifLMN →∗ pifL(consaM)(consbN )→
consaub(pifL(consa\(aub)M)(consb\(aub)N )).


This concludes the proof of Lemma 11.6. �
The proof for taila implicitly shows that a reduction rule taila(consaM)→


M would be useless. This can be explicitly explained as follows. If M denotes ⊥,
so does taila(consaM). Hence there is no point in reducing taila(consaM)
before reducing M to a head-normal form. If M has a head-normal form
conscM ′, then taila(consaM) reduces to taila(consacM ′), which in turn re-
duces to conscM ′. In practice, however, this rule (and possibly more rules) can
be included for efficiency reasons.


11.2 The programming language Real PCF


We let LR denote the extension of LI with a new ground type R and the
following new constants:


1. rrconsa : R→ R


2. riconsa : I→ R


3. irtaila : R→ I


4. rheadr : R→ T


5. pifR : (T,R,R,R)


for each a ∈ R with distinct rational end-points and each rational number r.
We let DR = R⊥ and we extend the standard interpretation A of LI to LR


in the obvious way:


1. AJrrconsaK = rrconsa


2. AJriconsaK = riconsa


3. AJirtailaK = irtaila
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4. AJrheadrKx = rheadr


5. AJpifRKpxy = pif p then x else y.


The reduction rules for LR are given by Lemma 9.20, with the same restrictions
as for the reduction rules for LI . The Computability Lemma 11.6 and the
Adequacy Theorem 11.5 routinely generalize to LR.


Definition 11.7 Real PCF is the programming language LR for L = LDA.
�


Theorem 11.8 (Adequacy) Real PCF is computationally adequate.
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Chapter 12


Computational completeness
of Real PCF


In Section 12.1 we show that there is a unique effective presentation of the
partial real line such that the basic operations for real number computation
are computable, up to equivalence in the sense of Chapter 6 of Part II. In
Section 12.2 we discuss a technique introduced by Thomas Streicher in order to
establish computational completeness; the technique relies of the fact that PCF
extended with ∃ is known to be computationally complete. In Section 12.3 we
apply the technique to show that Real PCF extended with ∃ is computationally
complete. A limitation of this technique is that it does not give information
about definability in the case that ∃ is not available. In Section 12.4 we discuss
a new technique for establishing computational completeness. As a corollary, in
Section 12.5 we obtain a very simple new proof of computational completeness
of PCF extended with ∃. The technique works in its full generality only for
algebraic domains in its present form. However, in Section 12.6 we are able to
apply the technique to show that ∃ is not necessary to define the first-order
computable functions in Real PCF, as it is the case for PCF, thus obtaining
more information about definability.


12.1 The unique sound effective presentation of the
partial real line


Recall that we defined a functor T : SDom→ SDom by


TD = B ×D ×D


(Definition 10.19). As we have seen in Chapter 10, the carrier of the bifree
T -algebra is the domain of infinite binary trees with nodes labelled by truth-
values. Since Bω is isomorphic to this domain, there is a bifree T -algebra with
Bω as its carrier.


Lemma 12.1 There is a computable bifree algebra mktree : TBω → Bω.
Proof Bω is the canonical solution to the domain equation D ∼= B × D. A
bifree algebra is given by cons : B × Bω → Bω defined in Proposition 6.10.
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Since Pair : Bω → Bω × Bω defined in Section 3.4 is an isomorphism, so is
mktree(t, p, q) = cons(t,Pair−1(p, q)). This isomorphism is clearly computable.
A routine verification shows that 〈mktree−1,mktree〉 is a T -inductive isomorph-
ism pair (cf. Definition 5.2). By Proposition 5.3, mktree is an initial algebra.�
Now, recall that we defined maps


I
cons
�


destr
T I


by


cons(p, y, z) = pif x then consL(y) else consR(z),
destr(x) = 〈head(x), tailL(x), tailR(x)〉


(Definition 10.19) and that these maps were shown to form a T -inductive
section-retraction pair in Theorem 10.20. Recall also that we defined num
to be the unique algebra homomorphism from mktree to cons, and bin to be
the unique coalgebra homomorphism from destr to mktree−1 (Definition 10.26),
and that 〈bin, num〉 is a section-retraction pair by virtue of Proposition 5.5.


Theorem 12.2 There is an effective presentation of I which makes consL,
consR, head, tailL, and tailR computable.
Proof By Theorem 10.32, the idempotent norm = bin ◦ num is computable
w.r.t. the standard effective presentation of Bω . Therefore 〈bin, num〉 is an
effective presentation of I. By Lemmas 10.31 and 10.33, the above functions
are computable. �


Theorem 12.3 Any two effective presentations of I which make consL, consR,
head, tailL, and tailR computable are equivalent.
Proof Any two effective presentations which make the above maps comput-
able also make destr and cons computable. Therefore the result follows from
Theorem 6.12. �
Similarly,


Theorem 12.4 There is an effective presentation of R⊥ which makes rconsL,
rconsR, rhead0, rhead1, rtailL, rtailR, incl and trunc computable.


Theorem 12.5 Any two effective presentations of R⊥ which make rconsL,
rconsR, rhead0, rhead1, rtailL, and rtailR, incl and trunc computable are equi-
valent.


Convention 12.6 Whenever we implicitly or explicitly speak about comput-
ability on I or R⊥, we assume any effective presentation which make the above
operations computable. �
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12.2 Computational completeness via universal do-
mains


Definition 12.7 We say that a programming language is computationally
complete if every computable element of its universe of discourse is definable
in the language. �


The term universal is also used to refer to this property (because of universal
Turing machines), but we avoid it as it is very overloaded (e.g. universal domain,
universal property of a categorical construction).


We prove that Real PCF extended with ∃ is computationally complete by
means of a technique introduced by Thomas Streicher [Str94] in order to prove
that PCF extended with recursive types, parallel-or and ∃ is computationally
complete. Here are the main steps of his proof:


1. Show that every definable element is computable.


2. Take a universal domain U of PCF, e.g. (N ⇒ B).


3. Show that for every domain D in the extended language there is a defin-
able section-retraction pair


D
rD
�
sD


U


4. Given d ∈ D computable, sD(d) ∈ U is computable because sD is com-
putable.


5. Since PCF extended with parallel-or and ∃ is computationally complete [Plo77]
and U is a PCF domain, sD(d) is definable.


6. Hence so is d, because d = rD(sD(d)).


7. Therefore every computable element is definable.


The crucial step consists in showing that D is a definable retract of U , and this
is not so simple in the presence of recursive types. But in our case the situation
is very simple:


Lemma 12.8 Let PCF’ be any extension of PCF with parallel-or, ∃, new
ground types and new constants such that


1. Every PCF’-definable element is computable.


2. Every ground domain of PCF’ is a definable retract of a PCF universal
domain U such that U ⇒ U is a computable retract of U .


Then PCF’ is computationally complete.
Proof In order to apply Streicher’s argument, it suffices to show by induction
on types that every domain D in PCF’ is a definable retract of U . The base
case holds by hypothesis. For the inductive step, assume that D and E are
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definable retracts of U . We have to show that D ⇒ E is a definable retract
of U . The function space D ⇒ E is a retract of U ⇒ U as indicated below,


D
sE⇒rD
�


rE⇒sD
(U ⇒ U),


because


(sE ⇒ rD) ◦ (rE ⇒ sD)(f) = (sE ⇒ rD)(sD ◦ f ◦ rE)
= rD ◦ sD ◦ f ◦ rE ◦ sE
= id ◦ f ◦ id = f.


Let
(U ⇒ U)


rU
�
sU
U ,


be a computable section-retraction pair. Then


D
(sE⇒rD)◦rU
�


sU ◦(rE⇒sD)
U ,


is a section-retraction pair, because section-retraction pairs compose. Therefore
D ⇒ E is a definable retract of U , because


(sE ⇒ rD) ◦ rU(u) = rD ◦ rU(u) ◦ sE ,
sU ◦ (rE ⇒ sD)(f) = sU(sD ◦ f ◦ rE),


and sU and rU are definable by computational completeness of PCF extended
with parallel-or and ∃.


�


12.3 Computational completeness of Real PCF


Definition 12.9 In PCF we don’t have product types, and hence we have to
work with curried maps in order to capture maps C × D → E, and we have
to work with pairs of maps in order to capture maps C → D × E. In order to
avoid unnecessary detailed constructions in the following proofs, we say that a
map is essentially definable if we can define it by eliminating product types
in this (standard) way. �


The uniqueness part of the following theorem appears to be new, but it is
certainly not unexpected:


Theorem 12.10 There is a unique notion of computability for PCF such that
every PCF definable element is computable.


By this we mean that there is a unique effective presentation of the PCF do-
mains with the above property, up to equivalence.
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Proof In [Plo77] it is shown that the following enumerations are effective
presentation of the PCF ground domains:


BB = B bB0 = ⊥
bB1 = tt


bBn+2 = ff


BN = N bN0 = ⊥
bNn+1 = n,


and it is also shown that the elements of LDA, LPA and LPA+∃ are computable
with respect to it.


Uniqueness for B follows from the fact that it is a finite domain. In order to
establish uniqueness for N , recall that it is the canonical solution of the domain
equation N ∼= 1+N . Then we can apply Theorem 6.11, because the (standard)
bifree algebra and its inverse are essentially definable.


Finally we can apply Proposition 6.8 to lift the effective presentations to
higher-order types in a unique way, up to equivalence. �


This result extends to Real PCF:


Theorem 12.11 There is a unique notion of computability for the real num-
bers type hierarchy such that every Real PCF definable element is computable.
Proof Immediate consequence of Theorems 12.2, 12.3, 12.4 and 12.5, and
Proposition 6.8. �


Proposition 12.12 ∃ is computable but not Real PCF definable.
Proof The inductive proof given in [Plo77] for the fact that ∃ is not definable
in PCF extended with parallel-or goes through for Real PCF, by adding obvious
inductive steps for the Real PCF constants. �


Theorem 12.13 Real PCF extended with ∃ is computationally complete.
Proof By virtue of Lemma 12.8, it suffices to show that every ground type
is a definable retract of some universal domain of PCF. The maps


Bω
p


�
e


(N ⇒ B)


defined by


e(x)(n) =


{
⊥ if n = ⊥,
xn otherwise,


p(f)(i) = f(i)


form a section-retraction pair (with the strict functions N → B as the fixed-
points of the induced idempotent). Hence U = (N ⇒ B) is a universal domain.
It is immediate that B and N are definable retracts of U .


In order to show that I is a definable retract of U , we apply Lemma 5.7.
Define


mktree′ = e ◦mktree ◦T p,


dstree′ = T e ◦ dstree ◦ p,
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where dstree = mktree−1. Then mktree′ and dstree′ are easily seen to be
essentially definable. Define bin : I → U and num : U → I recursively by


bin′ = cons ◦Tbin′ ◦ dstree′


num′ = mktree′ ◦T num′ ◦ ◦destr.


By Lemma 5.7, 〈bin′, num′〉 is a section-retraction pair. Since cons, destr,
mktree′ and dstree are essentially definable, bin′ and num′ are (strictly) defin-
able. Therefore I is a definable retract of U .
R⊥ is treated similarly. �
There is another way of showing that I and R⊥ are definable retracts


of U , based on Theorems 7.15 and 7.17. If we show that the maps joinDa and
way-belowD


a , for D ∈ {I,R⊥} are definable uniformly in the Gödel number
of a, then we can define


s(n)(x) = way-belowDn (x)


and the proof of Theorem 7.15 gives a construction of the desired definable
retraction. This is done in Section 12.6 below, with the purpose of obtaining
more information about Real PCF definability.


12.4 Computational completeness via joining maps


In this section we introduce a general technique for establishing universality
of extensions of PCF with ground types interpreted as algebraic coherently
complete domains. It particular, we obtain a new proof of universality of PCF
extended with the parallel conditional and the existential quantifier. It is an
open problem to extend the technique to the continuous case, but the technique
is intrinsically restricted to coherently complete domains, due to the results of
Chapter 7.1.


In this section we work with effectively given algebraic domains in the sense
of Definition 3.5.


Let LP be an extension of LDA with new ground types and a set of new
constants P ⊇ DA, and consider any extension of the standard interpretation
of LDA to LP such that


1. The interpretation of ground types is given by coherently complete algeb-
raic domains.


2. The interpretation is computationally feasible, in the sense that there
is an effective presentation of the new ground domains such that every LP -
definable element is computable w.r.t. the induced effective presentations
at higher-order types.


Definition 12.14 A JP -domain is a domain D for which there is an LP -
definable function


N → (D ⇒ D)
n 7→ joinDn
⊥ 7→ ⊥
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such that joinDn is a joining map of bDn . �


Lemma 12.15 If D is a JP -domain then every computable element of D is
LP -definable.
Proof Let x ∈ D be computable. Then there is a primitive recursive function
k 7→ nk such that x =


⊔
k∈Nb


D
nk


. Let Φ be the endomap on the function space


(N ⇒ (D⇒ D))⇒ D


defined by
Φ(F )(f) = f(0)(F (n 7→ f(n + 1))),


for F ∈ (N ⇒ (D ⇒ D)) ⇒ D and f ∈ N ⇒ (D ⇒ D). Then Φm(⊥)(f) =
f(0) ◦ f(1) ◦ · · · ◦ f(m)(⊥). Hence⊔


m∈N
Φm(⊥)


(
k 7→ joinDnk


)
=


⊔
m∈N


joinDn0
◦ joinDn1


◦ · · · ◦ joinDnm(⊥)


=
⊔
m∈N


bDn0
t bDn1


t · · · t bDnm


= x,


and thus x is the least fixed point of Φ applied to the map k 7→ joinDnk . Therefore
x is LP -definable, because Φ is LP -definable. �


We let way-belowDn be a short hand for way-belowDbDn . Recall that the
way-below maps were defined in the proof of Theorem 7.17.


Definition 12.16 A WP -domain is a domain D such that the map


N → (D ⇒ B)
n 7→ way-belowDn
⊥ 7→ ⊥


is LP -definable. �


Lemma 12.17 If D is a WP -domain and E is a JP -domain then D ⇒ E is
a JP+pif -domain.
Proof The construction given in Theorem 7.17 shows that there is a definable
map n 7→ joinD⇒En with the desired property. First, there is a LP+pif -definable
map n 7→ sjoinD⇒En such that sjoinD⇒En is a joining map of the subbasis element
sDn , because


sjoinD⇒E〈n,m〉 (f)(x) = pifE way-belowD
n (x) then joinEm(f(x)) else f(x).


Hence n 7→ joinD⇒En can be recursively given by


joinD⇒En (f)(x) = if “bD⇒En = ⊥” then f(x) else sjoinD⇒Eδ(n) (joinD⇒Eρ(n) (f)(x)).


where δ and ρ are recursive functions specified immediately after Definition 3.1,
and “bD⇒En = ⊥” is some term defining the recursive predicate bD⇒En = ⊥ of n.


�
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Define the bounded universal quantifier


N → (N ⇒ B) → B
n 7→ p 7→ ∀x∈∆n p(x)


by


∀x∈∆n p(x) =



tt if p(x) = tt for all x ∈ ∆n,
ff if p(x) = ff for some x ∈ ∆n,
⊥ otherwise,


where ∆n is specified in Definition 3.1.


Lemma 12.18 The bounded universal quantifier is LPA-definable.
Proof Recursively define the bounded quantifier by


∀x∈∆n p(x) = “∆n = ∅” ∨
(
p(δ(n)) ∧ ∀x∈∆ρ(n) p(x)


)
,


where δ and ρ are specified immediately after Definition 3.1, “∆n = ∅” stands
for the equality test n =⊥ 0, and ∨ and ∧ are parallel-or and parallel-and [Plo77].
Actually, a sequential version of disjunction would be enough. But parallel con-
junction is necessary, because p(x) can be ⊥ for some x ∈ ∆n and ff for another
x ∈ ∆n, and one has to ensure that in such cases ∀x∈∆n p(x) = ff . �


The following definability lemma depends on the fact that the function space
D ⇒ E is an algebraic domain, as it makes use of Lemmas 7.18 and 3.10:


Lemma 12.19 If D is a JP -domain and E is a WP -domain then D ⇒ E is
a WP+pif+∃-domain.
Proof If D is a JP -domain then there is a LP -definable function


N → (N → D)
n 7→ upDn


such that the range of upDn is ↑↑bDn ∩BD (and therefore upDn (⊥) = bDn ), given by


upDn (m) = joinDn ◦ joinDm(⊥).


By Lemmas 7.18 and 3.10,


way-belowD⇒E
n (f) = ∀〈a,b〉∈∆n


∀k∈N way-belowE
b (f(upDa (k))),


where ∀k∈N e = ¬∃λk.¬e. This establishes the LP+pif+∃-definability of the map
n 7→ way-belowD⇒E


n . �
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In joint work with Thomas Erker and Klaus Keimel [EEK97], we have ob-
tained a characterization of the way-below order on function spaces X → E
where X is a coherent space and E is a bounded complete domain. However,
we haven’t had the opportunity to consider the application of this character-
ization to the extension of the method of proof introduced in this section to
continuous domains.


12.5 Computational completeness of PCF revisited


In [Plo77] it is shown that LDA and LPA are not computationally complete, but
that LPA+∃ is. The proof given in [Plo77] is based on the fact that the ground
domains are flat. We offer another proof, based on the general results of the
previous section.


Lemma 12.20 Each PCF ground domain is a JDA-domain and a WDA-domain.
Proof Recall from Proposition 7.2 that every element of a flat domain has
a unique joining map, and that it is the identity for the bottom element and a
constant function for a non-bottom element. The map joinBn is given by


joinBn(x) = if x =⊥ 0 then x else ((n− 1) =⊥ 0).


The map joinNn is given by


joinNn (x) = if x =⊥ 0 then x else n− 1.


Therefore n 7→ joinDn is DA-definable for D ground. The map way-belowBn is
given by


way-belowBn(x) = n =⊥ 0 ∨ if n =⊥ 1 then x else ¬x.


The map way-belowNn is given by


way-belowNn (x) = (n =⊥ 0) ∨ ((n− 1) =⊥ x).


Therefore n 7→ way-belowD
n (x) is DA-definable for D ground. �


Theorem 12.21 LPA+∃ is computationally complete. Moreover, every first-
order computable function is LPA-definable.
Proof Every domain is a JPA+∃-domain and a WPA+∃-domain, by a simul-
taneous induction on the formation rules of the PCF domains; Lemma 12.20
establishes the base cases, and Lemmas 12.17 and 12.19 establish the inductive
steps. Then the result follows from Lemma 12.15. First-order computational
completeness follows from the fact that the existential quantifier is needed only
in the hypothesis of Lemma 12.19. �
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12.6 Computational completeness of Real PCF re-
visited


We know that Real PCF extended with ∃ is computationally complete. In this
section we show that ∃ is not necessary to define the first-order computable
functions, as it is the case for PCF. For the sake of brevity, we only treat the
type I, as the treatment of R⊥ is analogous.


We assume the notion of effectively given domain given in [Smy77] via enu-
merations of basis elements. Essentially, the axioms are the same as for effect-
ively given algebraic domains via enumerations of basis elements as in Defini-
tion 3.5, with some technical axioms which ensure that we obtain a cartesian
closed category. Since these technical axioms are not important for our purposes
as we are concerned with first-order types only, we adopt the näıve approach.


Recall that an enumeration {rn}n∈N of the rational numbers is standard if
there are recursive functions n 7→ sn, n 7→ pn and n 7→ qn such that rn =
(−1)sn pn/qn.


Lemma 12.22 An enumeration {rn}n∈N of the rational numbers is standard
iff the basic four operations and the (in)equality predicates are recursive with
respect to it.


For example, Cantor’s enumeration of the rational numbers is standard. In this
section {rn}n∈N is any standard enumeration of the rational numbers contained
in the unit interval.


Let B be the basis of I consisting of intervals with (not necessarily distinct)
rational end-points. Then the following enumeration of B gives rise to an
effective presentation of I:


b〈m,n〉 = [min(rm, rn),max(rm, rn)]


By Lemma 12.22, we see that the basic primitives for real number computation
are computable w.r.t. this presentation.


Lemma 12.23 The (strict) map n 7→ bn : N → I is Real PCF definable.
Proof By Lemma 12.22, for each a ∈ {L,R} there are recursive functions ga
and h such that


bga(n) = taila(bIn)


h(n) = head(bIn),


and we have that


bn = if h(n) then consL(bgL(n)) else consR(bgR(n)).�
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Lemma 12.24 I is a JRA-domain and WRA-domain.
Proof It is not hard to see that for every a,


joinIa(x) = max(a,min(x, a)),
way-belowIa(x) = (a = 0 ∨ a <⊥ x) ∧ (x <⊥ a ∨ a = 1),


and also that there are recursive maps f and g such that bfD(n) = bn and
bgD(n) = bn. Then n 7→ joinIn and n 7→ way-belowIn are given by


joinIn(x) = max(bf(n),min(x, bg(n))),


way-belowIn(x) = (bIf(n) = 0 ∨ bIf(n) <⊥ x) ∧ (x <⊥ bg(n) ∨ bg(n) = 1).�


Since R⊥ can be treated similarly, Real PCF is first-order computationally
complete, in the following sense:


Theorem 12.25 All first-order computable elements of the real numbers type
hierarchy are Real PCF definable.
Proof Lemmas 12.24, 12.17 and 12.15. �


In joint work with Abbas Edalat [EE96b], we have extended the above
method to second-order functions, by obtaining a suitable characterization of
the way-below order on the function space R⊥ → R⊥; but notice that the
existential quantifier is still needed for second-order functions, because function
spaces are handled by Lemma 12.19, which uses the existential quantifier.
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Part V


Integration on the partial real
line
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This part is based on joint work with Abbas Edalat [EE95, EE96a]. In
Chapter 13 we introduce interval Riemann integration. In Chapter 14 we show
how to handle interval Riemann integration in Real PCF.
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Chapter 13


Interval Riemann integrals


A generalization of the Riemann theory of integration based on domain theory
was introduced in [Eda95b]. Essentially, a domain-theoretic framework for the
integration of real-valued functions w.r.t. any finite measure on a compact
metric space was constructed using the probabilistic power domain of the upper
space of the metric space. In this work we are only concerned with integration
w.r.t. the Lebesgue measure (uniform distribution) in Rn.


In order to extend Real PCF with integration, we embark on a novel ap-
proach compared to [Eda95b] for integration w.r.t. the Lebesgue measure in R,
in that we consider integration of maps of type Rn → R rather than Rn → R.
We deduce various properties of integration defined in this way, which are in-
teresting in their own right as well.


In Section 13.1 we introduce simple interval Riemann integration. In Sec-
tion 13.2 we introduce multiple Riemann integration, which is related to simple
interval Riemann integration via a generalization of the so-called Fubini’s rule.
In Section 13.3 we introduce a supremum operator, which is used in Chapter 14
to obtain a fixed-point definition of Riemann integration.


13.1 Simple interval Riemann Integrals


Recall that addition in R is defined by


x + y = [x+ y, x+ y],


and that given a real number α ≥ 0 and an interval x, we have that


xα = αx = [xα, xα].


In this chapter it will be convenient to denote the diameter κx of an interval
x ∈ R by dx:


dx = x− x.


A partition of an interval [a, b] is a finite set of the form


P = {[a, x1], [x1, x2], . . . , [xn−1, xn], [xn, b]}.
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We denote by P [a, b] the set of all partitions of [a, b]. A partition Q refines a
partition P if Q is obtained by partitioning some elements of P , in the sense
that there is a (necessarily unique) family {Qx}x∈P such that Q is its disjoint
union and Qx is a partition of x for each x ∈ P . Such a family is called the
refinement witness.


Lemma 13.1 P [a, b] is directed by the refinement order. That is, for any two
partitions of [a, b] there is a third partition refining both.


Definition 13.2 Let f : R → R be a map and [a, b] be an interval. An
interval Riemann sum of f on [a, b] is a sum of the form∑


x∈P
f(x)dx for P ∈ P [a, b]. �


Lemma 13.3 Let f : R → R be a monotone map (w.r.t. the information
order). If a partition Q of an interval [a, b] refines a partition P then∑


x∈P
f(x)dx v


∑
x∈Q


f(x)dx.


Therefore, the set of interval Riemann sums of f on [a, b] is directed.
Proof If two compact intervals x1 and x2 just touch then


f(x1 u x2)d(x1 u x2) = f(x1 u x2)(dx1 + dx2)
= f(x1 u x2)dx1 + f(x1 u x2)dx2


v f(x1)dx1 + f(x2)dx2.


By induction, if successive elements of the sequence x1, . . . , xn just touch then


f(
nl
k=1


xk)d(
nl
k=1


xk) v
n∑
k=1


f(xk)dxk.


Hence, if {Qx}x∈P is the refinement witness, then for any x ∈ P ,


f(x)dx v
∑
y∈Qx


f(y)dy,


because x =
d
Qx. By monotonicity of addition and induction on the size of P ,∑


x∈P
f(x)dx v


∑
x∈P


∑
y∈Qx


f(y)dy.


Since Q is the disjoint union of the sets Qx and addition is associative,∑
x∈P


∑
y∈Qx


f(y)dy =
∑
y∈Q


f(y)dy.�
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Definition 13.4 The interval Riemann integral of a monotone map f :
R→ R on an interval [a, b] is defined by∫ b


a
f =


⊔↑
P∈P [a,b]


∑
x∈P


f(x)dx.


We sometimes denote
∫ b
a f by


∫ b
a f(x)dx. �


Proposition 13.5 For all continuous maps f, g : R→ R and all real numbers
α and β, ∫ a


a
f = 0,∫ b


a


f +
∫ c


b


f =
∫ c


a


f,∫ b


a
(αf + βg) = α


∫ b


a
f + β


∫ b


a
g.


Proof The first equation follows from the fact that {[a, a]} is the only par-
tition of [a, a]. If P and Q are partitions of [a, b] and [b, c] respectively, then
P ∪ Q is a partition of [a, c]. Conversely, if R is partition of [a, c], then there
are partitions P and Q of [a, b] and [b, c] respectively such that P ∪Q refines R.
Therefore∫ b


a


f +
∫ c


b


f =
⊔↑


P∈P [a,b]


∑
x∈P


f(x)dx +
⊔↑


Q∈P [b,c]


∑
y∈Q


f(y)dy


=
⊔↑


P∈P [a,b]


⊔↑
Q∈P [b,c]


∑
x∈P


f(x)dx+
∑
y∈Q


f(y)dy


=
⊔↑


P∈P [a,b]


⊔↑
Q∈P [b,c]


∑
z∈P∪Q


f(z)dz


=
⊔↑


R∈P [a,c]


∑
z∈R


f(z)dz


=
∫ c


a
f.


We omit the routine proof of the third equation. �
Clearly,


∫ b
a f depends only on the values that f assumes on I[a, b].


Theorem 13.6 For every interval [a, b], the integration map


f 7→
∫ b


a
f : (I[a, b]⇒R)→R


is continuous.
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Proof Let F be a directed subset of the domain I[a, b]⇒R. Then


b∫
a


⊔↑
F =


⊔↑
P


∑
x∈P


(⊔↑
F
)


(x)dx


=
⊔↑
P


∑
x∈P


 ⊔↑
f∈F


f(x)


dx


=
⊔↑
P


∑
x∈P


⊔↑
f∈F


f(x)dx


=
⊔↑
P


⊔↑
f∈F


∑
x∈P


f(x)dx


=
⊔↑
f∈F


⊔↑
P


∑
x∈P


f(x)dx


=
⊔↑
f∈F


b∫
a


f.�


Any dense subset A of [a, b] induces a basis


B = {[x, y]|x≤ y in A}


of I[a, b].


Lemma 13.7 Let [a, b] be an interval, let B be any basis of I[a, b] induced by
a dense subset of [a, b], and denote by PB[a, b] the partitions of [a, b] consisting
of basis elements. Then for any continuous function f : I[a, b]→ R,∫ b


a


f =
⊔↑


Q∈PB[a,b]


∑
x∈Q


f(x)dx.


Proof Let u�
∫ b
a f . It suffices to conclude that


u v
⊔↑


P∈PB[a,b]


∑
x∈P


f(x)dx.


Let P = {x1, . . . , xn} ∈ P [a, b] such that u �
∑


x∈P f(x)dx. W.l.o.g., we can
assume that [a, b] has non-zero diameter and that P consists of intervals of
non-zero diameter. Then for each x ∈ P there is some x′ � x in B such that
already


u�
∑
x∈P


f(x′)dx


because f , addition, and scalar multiplication are continuous. Wlog we can
assume that only successive elements of the sequence x′1, . . . , x


′
n do not overlap,


because otherwise we can shrink the intervals x′i in such a way that that the
above inequality still holds. Then the unique partition Q of [a, b] consisting of
intervals of non-zero diameter with the end-points of the intervals x′1, . . . , x


′
n is


of the form {y1, z1, y2, . . . , zn−1, yn} with
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1. zi = x′i t x′i+1 for 1 ≤ i ≤ n


2. (a) y1 u z1 = x′1 and zn−1 u yn = x′n
(b) zi−1 u yi u zi = x′i for 1 < i < n.


We claim that ∑
x∈P


f(x)dx v
∑
y∈Q


f(y)dy,


which implies that


u�
⊔↑


Q∈PB[a,b]


∑
x∈Q


f(x)dx,


by transitivity, and concludes the proof. For notational simplicity and w.l.o.g.,
we prove the claim for the case P = {x1, x2}. In this case the claim reduces to


f(x′1)dx1 + f(x′2)dx2 v f(y1)dy1 + f(z1)dz1 + f(y2)dy2,


and is proved by


f(x′1)dx1 + f(x′2)dx2


= f(x′1)(dy1 + dx1 − dy1) + f(x′2)(dx2 − dy2 + dy2)
= f(x′1)dy1 + f(x′1)(dx1 − dy1) + f(x′2)(dx2 − dy2) + f(x′2)dy2


v f(y1)dy1 + f(z1)(dx1 − dy1) + f(z1)(dx2 − dy2) + f(y2)dy2


= f(y1)dy1 + f(z1)dz1 + f(y2)dy2.�


Remark 13.8 Moore [Moo66] handles integration by considering sums which
are essentially interval Riemann sums for partitions consisting of n intervals
of the same length, but he restricts his definition to rational functions. The
integrand is assumed to be monotone w.r.t. inclusion and continuous w.r.t. the
Hausdorff metric on intervals. Since the Hausdorff metric induces the Lawson
topology on R, the integrand is Scott continuous [EC93, GHK+80] (cf. Re-
mark 8.1). Therefore Lemma 13.7 above and Theorem 13.13 below show that
our definition generalizes that of Moore to all Scott continuous functions, and
Theorem 13.9 below shows that our definition captures all Riemann integrable
functions. �


Recall that given any continuous function f : R→ R, the function If : R →
R defined by


If(x) = f(x)


is a continuous extension of f . Since continuous maps preserve connectedness
and compactness,


If(x) = [inf f(x), supf(x)].


Hence the end-points of an interval Riemann sum are given by lower and upper
Darboux sums respectively:


∑
x∈P


If(x)dx =


[∑
x∈P


inf f(x)dx,
∑
x∈P


sup f(x)dx


]
.
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Therefore the interval Riemann integral is a singleton in this case:∫ b


a
If =


[∫ b


a
f,


∫ b


a
f


]
=
{∫ b


a
f


}
,


where the symbols
∫ b
a and


∫ b
a denote lower and upper Riemann integrals respect-


ively. Any continuous map f : R → R has infinitely many distinct continuous
extensions to R → R. Recall that the extension If is characterized as the
greatest one. Theorem 13.13 below shows that If can be replaced by any con-
tinuous extension of f in the above equation. Moreover, Theorem 13.9 below
shows that the above equation can be generalized to any Riemann integrable
function. Recall that a function is Riemann integrable on compact intervals iff
it is bounded on compact intervals and continuous almost everywhere [Roy88],
and that in this case the value of the integral depends only on the points of
continuity of the function. Recall also that Theorem 8.8 shows that for any
function f : R → R bounded on compact intervals there is a continuous map
f̈ : R→ R agreeing with f at every point of continuity of f , given by


f̈(x) = [inf g(x), sup g(x)],


where g : R→ R and g : R→ R are continuous maps defined by


g(y) = lim inf
x→y


f(x) and g(y) = lim sup
x→y


f(x).


The following theorem shows that interval Riemann integration, even when
restricted to Scott continuous functions, captures all Riemann integrable func-
tions.


Theorem 13.9 Let f : R → R be Riemann integrable on compact inter-
vals [a, b], and let f̈ : R → R be the Scott continuous function defined in
Theorem 8.8. Then ∫ b


a
f̈ =


{∫ b


a
f


}
.


Proof By Theorem 8.8,∫ b


a
f̈ =


⊔↑
P∈P [a,b]


∑
x∈P


f̈(x)dx


=
⊔↑


P∈P [a,b]


∑
x∈P


[inf g(x), sup g(x)]dx


=
⊔↑


P∈P [a,b]


[∑
x∈P


inf g(x)dx,
∑
x∈P


sup g(x)dx


]


=


[
sup


P∈P [a,b]


∑
x∈P


inf g(x)dx, inf
P∈P [a,b]


∑
x∈P


sup g(x)dx


]


=


[∫ b


a
g,


∫ b


a
g


]


=
{∫ b


a
f


}
,
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because g and g agree with f at every point of continuity of f . �


Lemma 13.10 For every continuous function f : R → R there is a greatest
continuous function f̂ : R→ R such that


f|MaxR = f̂|MaxR,


given by
f̂(x) =


l
f(↑↑x ∩MaxR)


Proof We first restrict f to MaxR ∼= R, and then we find the greatest
continuous extension to R by an application of Lemma 8.6, obtained by a
formula which is essentially the same as the above one. �


Lemma 13.11 For any continuous f : R → R,∫ b


a
f =


∫ b


a
f̂ .


Proof
∫ b
a f v


∫ b
a f̂ because f v f̂ . For the other direction, we first prove


that


f̂(x)dx v
∫ x


x
f


for all x ∈ R. Let b� f̂(x)dx. It suffices to conclude that


b v
∫ x


x
f.


Since f̂(x) =
d
r∈xf({r}), by Lemma 13.10, we have that b � f({r})dx for


all r ∈ x. By continuity of f , for each r ∈ x there is a wr � {r} such that
already b� f(wr)dx. Since the interiors of the intervals wr form an open cover
of the compact interval x, there is a finite subset C of {wr}r∈x such that the
interiors of the members of C already cover x. Since the way-below order of R
is multiplicative, b �


d
y∈C f(y)dx . Now, there is a unique partition P of x,


consisting of non-singleton intervals, such that the set of end-points of elements
of P is the set of end-points of elements of C belonging to x, together with the
two points x and x. Since


f(z) v
l


y∈P,zvy
f(y),


we have that l
z∈C


f(z) v
l
z∈C


l
y∈P,zvy


f(y) =
l
y∈P


f(y).


Hence b�
d
y∈P f(y)dx. But


l
y∈P


f(y)dx v
∑
z∈P


f(z)dz,
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because l
y∈P


f(y)dx =
[
min
y∈P


f(y)dx,max
y∈P


f(y)dx
]
,


and hence the weighted average
∑


z∈P f(z)dz has to be contained in the latter
interval. Therefore b�


∑
z∈P f(z)dz v


∫ x
x f , which yields b v


∫ x
x f , as desired.


Finally, we have that∫ b


a
f̂ =


⊔↑
P∈P [a,b]


∑
x∈P


f̂(x)dx v
⊔↑


P∈P [a,b]


∑
x∈P


∫ x


x
f


=
⊔↑


P∈P [a,b]


∫ b


a


f =
∫ b


a


f,


which concludes the proof. �


Theorem 13.12 The interval Riemann integral of a continuous function f :
R→ R depends only on the value that f assumes at maximal elements, in the
sense that for any continuous function g : R → R,


f|Max (R) = g|Max (R) implies
∫ b


a
f =


∫ b


a
g.


Proof By Lemma 13.10, f|Max (R) = g|Max (R) implies f̂ = ĝ. Therefore the
result follows from Lemma 13.11. �


Theorem 13.13 If f : R→ R is Riemann integrable on compact intervals and
f̃ : R→ R is any Scott continuous map agreeing with f at points of continuity
of f , then ∫ b


a
f̃ =


{∫ b


a
f


}
.


Proof By Theorem 13.9, we know that this is true for the greatest such f̃ ,
namely f̈ . Therefore the result follows from Theorem 13.12. �
The significance of Theorems 13.12 and 13.13 is that sometimes it is easy to
obtain a Real PCF program for an extension of a function f but it is diffi-
cult or undesirable to obtain a program for its greatest continuous extension.
For instance, the distributive law does not hold for the greatest continuous
extensions of addition and multiplication, so that two different definitions of
the same function can give rise to two different extensions and two different
programs [Moo66].


13.2 Multiple interval Riemann integrals


A partition of a hyper-cube


~a = (a1, . . . , an) ∈ Rn
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is a cartesian product
~P = P1 × · · · × Pn


of partitions of a1, . . . , an respectively. We denote the set of partitions of ~a
by P~a. Refinements are defined coordinatewise. The volume of an n-dimensional
hyper-cube ~x is


d~x = dx1 · · ·dxn.


Definition 13.14 Let f : Rn → R be a map and ~a be an n-dimensional
hyper-cube. A multiple interval Riemann sum of f on ~a is a sum of the
form ∑


~x∈ ~P


f(~x)d~x for ~P ∈ P~a.�


Definition 13.15 The multiple interval Riemann integral of a monotone
map f : Rn →R on a hyper-cube ~a is defined by∫


~a
f =


⊔↑
~P∈P~a


∑
~x∈ ~P


f(~x)d~x. �


For n = 1 this definition reduces to our previous definition:∫
(a)
f =


∫ a


a
f.


Theorem 13.16 (Fubini’s Rule) For every natural number n > 1, every
continuous function f : Rn→R, and every n-dimensional hyper-cube ~a,∫


~a
f =


∫
(a1)


(∫
~a′
f(x)d~x′


)
dx1,


where ~a′ = (a2, . . . , an) and ~x′ = (x2, . . . , xn).
Proof For notational simplicity and without essential loss of generality, we
prove the claim for n = 2, which corresponds to the inductive step of the claim
for arbitrary n by induction on n:∫


(a,b)
f =


⊔↑
P×Q∈P(a,b)


∑
(x,y)∈P×Q


f(x, y)d(x, y)


=
⊔↑
P∈Pa


⊔↑
Q∈Pb


∑
x∈P


∑
y∈Q


f(x, y)dxdy


=
⊔↑
P∈Pa


∑
x∈P


⊔↑
Q∈Pb


∑
y∈Q


f(x, y)dy


dx


=
∫


(a)
λx


∫
(b)
λyf(x, y).�
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13.3 A supremum operator


In this section we define a supremum operator, which is used in Section 14.2 to
obtain a fixed-point definition of interval Riemann integration. The presenta-
tion follows the same pattern as Section 13.1, and therefore we omit the proofs
which are reworkings of previous proofs.


Lemma 13.17 Let f : R → R be a monotone map (w.r.t. the information
order). If a partition Q of an interval [a, b] refines a partition P then


max
x∈P


f(x) v max
x∈Q


f(x).


Definition 13.18 For a function f : R→ R we write


sup
[a,b]


f = sup
x∈[a,b]


f(x).


The supremum of a monotone map f : R→ R on an interval [a, b] is defined
by


sup
[a,b]


f =
⊔↑


P∈P [a,b]


max
x∈P


f(x). �


Proposition 13.19 For all continuous maps f, g : R → R and all real num-
bers α and β,


sup
[a,a]


f = f(a),


max(sup
[a,b]


f, sup
[b,c]


f) = sup
[a,c]


f,


sup
[a,b]


max(αf, βg) = max(α sup
[a,b]


f, β sup
[a,b]


g).


Clearly, sup[a,b] f depends only on the values that f assumes on I[a, b].


Theorem 13.20 For every interval [a, b], the supremum map


f 7→ sup
[a,b]


f : (I[a, b]⇒R)→R


is continuous.


Lemma 13.21 Let [a, b] be an interval, and let B be any basis of I[a, b]. Then
for any continuous function f : I[a, b]→R,


sup
[a,b]


f =
⊔↑


Q∈PB[a,b]


max
x∈Q


f(x).


Clearly, for f : R→ R continuous we have that


max
x∈P


If(x) =
[
max
x∈P


inf f(x),max
x∈P


sup f(x)
]
.


Therefore


sup
[a,b]


If =


{
sup
[a,b]


f


}
.
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Lemma 13.22 For any continuous f : R → R,


sup
[a,b]


f = sup
[a,b]


f̂ .


Theorem 13.23 The supremum of a continuous function f : R→ R depends
only on the value that f assumes at maximal elements.


Theorem 13.24 If f : R→ R is continuous and f : R → R is a continuous
extension of f then


sup
[a,b]


f =


{
sup
[a,b]


f


}
.


An infimum operator inf is defined similarly, by replacing max by min.
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Chapter 14


Integration in Real PCF


In Section 14.1 we extend Real PCF with a primitive for interval Riemann integ-
ration, and we establish computational adequacy for the extension. Similarly,
in Section 14.3 we extend Real PCF with a primitive for supremum, and we
establish computational adequacy for the extension. In Section 14.2 we show
how to recursively define integration from the supremum operator. Finally, in
Section 14.4 we discuss computational completeness of Real PCF extended with
integration or supremum.


For simplicity, in this chapter we are deliberately informal concerning syn-
tax.


14.1 Real PCF extended with interval Riemann in-
tegration


Again, for simplicity and without essential loss of generality, we restrict ourselves
to the unit interval. Clearly, the map


∫ 1
0 : (I ⇒ R) → R restricts to


(I ⇒ I)→ I. We denote the restriction by
∫


.


The programming language Real PCF
R


Instead of introducing integration as a constant, we introduce it as a term-
formation rule. This treatment of primitive operations is taken from Gunter [Gun92].
We could treat all primitive operations in this way, as he does, but we treat
only integration in this way, for simplicity.


Definition 14.1


1. Real PCF
R


is Real PCF extended by the following term-formation rule:


If Y : I is a term and x : I is a variable, then
∫
Y dx : I is a term,


with the same free variables as Y , except for x, which becomes
bound. Terms of this form are called integrals, whereas Y is
called the integrand.


Here the term Y must not be confused with the fixed-point combin-
ator Fix .
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2. The meaning of the term
∫
Y dx in an environment ρ is


∫
f , where f is


the meaning of λx.Y in ρ. �


Convention 14.2 We denote α-congruence by≡. Following Barendregt [Bar92],
we identify α-congruent terms, and we adopt the inductive definition of substi-
tution given in page 125 of loc. cit., extended by the rules


• c[α := M ] ≡ c for any constant c.


• (
∫
Y dx)[α := M ] ≡ (


∫
Y [α := M ]dx) provided α 6≡ x.


• (
∫
Y dx)[x := M ] ≡ (


∫
Y dx).


Notice that this definition assumes the so-called “[bound] variable convention”
in order to omit the cumbersome proviso which prevents the capture of free
variables [Bar84]. �


Operational semantics


Recall that ⊕ denotes binary average, which is a Real PCF definable operation.


Lemma 14.3 For any continuous map f : I → I,∫
consa ◦ f = consa


(∫
f


)
,∫


f =
∫
f ◦ consL ⊕


∫
f ◦ consR.


Proof The first equation is linearity. For the second equation we have∫
f =


∫ 1


0
f


=
∫ 1


2


0
f +


∫ 1


1
2


f


=
∫ 1


0
f
(
x
2


)
1
2dx+


∫ 1


0
f
(
x+1


2


)
1
2dx


=
∫
f ◦ consL ⊕


∫
f ◦ consR.�


Definition 14.4 The immediate reduction rules for integration are:


1. (Production)
∫
Y dx→


∫
Zdx if Y → Z,


2. (Output)
∫


consaY dx→ consa
(∫
Y dx


)
,


3. (Input)
∫
Y dx→


∫
YLdx ⊕


∫
YRdx,


where
Ya ≡ Y [x := consax]. �


Intuitively, the output rule produces partial output, the input rule supplies
partial input, and the production rule partially evaluates the integrand (with no
input or with the partial input supplied by the input rule in previous reduction
steps).
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Computational adequacy


Lemma 14.5 For every natural number n define a map
∫ (n) : (I ⇒ I) → I


by ∫ (n)
f =


2n∑
k=1


f


([
k − 1


2n
,
k


2n


])
1
2n
.


Then
∫ (n) is continuous, and ∫


f =
⊔↑
n≥0


∫ (n)
f.


Proof The right-hand side of the equation can be expressed as⊔↑
n≥0


∑
y∈Qn


f(y)dy,


where


Qn =
{[


k − 1
2n


,
k


2n


]∣∣∣∣ 1 ≤ k ≤ 2n
}
.


Let Dn = {k/2n|0 ≤ k ≤ 2n}. Then
⋃
n≥0 Dn is the set of dyadic numbers,


which is dense in [0, 1]. Hence intervals with distinct dyadic end-points form
a basis of I[0, 1], say B. Moreover, the end-points of the intervals in Qn are
contained in Dn. Hence for every partition P ∈ PB[0, 1] there is some n such
that Qn refines P . Therefore the result follows from Lemma 13.7. �


Lemma 14.6 For every natural number n,∫ (0)
f = f(⊥),∫ (n+1)
f =


∫ (n)
f ◦ consL ⊕


∫ (n)
f ◦ consR.


Proof For the first equation we have


∫ (0)
f =


20∑
k=1


f


([
k − 1


20 ,
k


20


])
1
20 = f([0, 1]) = f(⊥).
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For the second equation we have


∫ (n+1)
f =


2n+1∑
k=1


f


([
k − 1
2n+1 ,


k


2n+1


])
1


2n+1


=
2n∑
k=1


f


([
k − 1
2n+1 ,


k


2n+1


])
1


2n+1 +
2n+1∑


k=2n+1


f


([
k − 1
2n+1 ,


k


2n+1


])
1


2n+1


=
1
2


2n∑
k=1


f


([
k − 1
2n+1 ,


k


2n+1


])
1
2n


+
1
2


2n∑
k=1


f


([
(k + 2n)− 1


2n+1 ,
k + 2n


2n+1


])
1
2n


=
2n∑
k=1


f


([
k−1
2n ,


k
2n
]


2


)
1
2n
⊕


2n∑
k=1


f


([
k−1
2n ,


k
2n
]


+ 1
2


)
1
2n


=
∫ (n)


f
(x


2


)
dx⊕


∫ (n)
f


(
x+ 1


2


)
dx


=
∫ (n)


f ◦ consL ⊕
∫ (n)


f ◦ consR.�


As a corollary, we have that for every n there is a program in Real PCF
(without the integration primitive) defining


∫ (n). But, in order to establish
computational adequacy, it will prove simpler to introduce


∫ (n) as a primitive
construction.
Definition 14.7


1. Real PCF
R (n)


is Real PCF
R


extended with a constant Ωσ : σ for each type
σ and the following term-formation rule for each natural number n:


If Y : I is a term and x : I is a variable, then
∫ (n)


Y dx : I is
a term, with the same free variables as Y , except for x, which
becomes bound.


2. The meaning of Ωσ is the bottom element of the domain of interpretation
of σ. Notice that Ωσ is PCF-definable. We introduce it as a constant so
as to be able to prove Lemma 14.11 below.


3. The meaning of
∫ (n)


Y dx in an environment ρ is
∫ (n)


f , where f is the
meaning of λx.Y in ρ.


4. There is no reduction rule for Ωσ.


5. The immediate reduction rules for
∫ (n) are:


(a) (Production)
∫ (0)


Y dx→
∫ (0)


Zdx if Y → Z,


(b) (Output)
∫ (0) consaY dx→ consa


(∫ (0)
Y dx


)
,


(c) (Input)
∫ (n+1)


Y dx→
∫ (n)


YLdx ⊕
∫ (n)


YRdx.
�


158







Definition 14.8 A sublanguage of a language L is a subset of L-terms which
is closed under reduction. �


The following lemma is immediate:


Lemma 14.9 If every L-term is computable, so is every term of any sublan-
guage of L.


Thus, in order to prove that every term of Real PCF
R


is computable it suffices
to prove that every term of Real PCF


R (n)
is computable.


Definition 14.10 Let 4 be the least relation on terms such that:


1. If M : σ then Ωσ 4M .


2. If Y 4 Y ′ : I then
∫ (n)


Y dx 4
∫
Y ′dx and also


∫
Y dx 4


∫
Y ′dx.


3. M 4M .


4. If M 4M ′ : σ → τ and N 4 N ′ : σ, then (MN ) 4 (M ′N ′).


5. If M 4M ′ are terms (of the same type) then λα.M 4 λα.M ′.
�


This relation turns out to be reflexive and transitive, which justifies the nota-
tion, but we do not need this fact.


The following lemma is analogous to Lemma 4.5:


Lemma 14.11 If M 4 N and M → M ′ then M ′ 4 N ′ and N → N ′ for
some N ′.


This situation is summarized by the diagram below:


M 4 N


M ′
?
4 N ′


?


.....


Proof By structural induction on M , according to why M →M ′. �


Corollary 14.12 If M 4 N and M →∗ M ′ then M ′ 4 N ′ and N →∗ N ′ for
some N ′.
Proof By induction on the length of the reduction. �


Corollary 14.13 For each natural number n and all Y : I and x : I,


Eval


(∫ (n)
Y dx


)
⊆ Eval


(∫
Y dx


)
.


Proof Immediate consequence of Corollary 14.12, noticing that, by definition
of 4, if one has that consaZ 4 Z′ then Z′ has to be of the form consaZ′′. �
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The term Ωσ is trivially computable.


Lemma 14.14 For every n, if Y : I is computable so is
∫ (n)


Y dx for all x : I.
Proof By induction on n.


Base: Since the terms
∫ (0)


Y dx and Y [x := ΩI] have the same meaning in any
environment, namely


∫ (0)
f = f(⊥) where f is the meaning of λx.Y , and since


Y [x := ΩI ] is computable as it is an instantiation of a computable term by com-
putable terms, it suffices to conclude that Eval(Y [x := ΩI]) ⊆ Eval(


∫ (0)
Y dx).


Assume that Y [x := ΩI]→∗ consaZ. One easily checks by structural induction
that Y [x := ΩI] 4 Y . Hence, by Corollary 14.12 we conclude that Y →∗ Z′ for
some Z′ with consaZ 4 Z′. By definition of 4, Z′ has to be of the form consaZ′′.
Hence, by some applications of the production rule followed by an application
of the output rule,


∫ (0)
Y dx→∗


∫ (0) consaZ′′dx→ consa(
∫ (0)


Z′′dx).


Induction step: If Y is computable so is Ya for any a. Hence, by the induc-
tion hypothesis,


∫ (n)
Yadx is computable. Since ⊕ is a Real PCF term, it is com-


putable. By definition of computability, it follows that
∫ (n)


YLdx ⊕
∫ (n)


YRdx
is computable. Therefore


∫ (n+1)
Y dx is computable, because every reduction


from
∫ (n+1)


Y dx factors through
∫ (n)


YLdx⊕
∫ (n)


YRdx via the input rule, and∫ (n+1)
Y dx has the same meaning as


∫ (n)
YLdx ⊕


∫ (n)
YRdx, in any environ-


ment. �


Lemma 14.15 Every Real PCF
R (n)


term is computable.
Proof Extend the proof of Lemma 11.6 by including Lemma 14.14 as one of
the inductive steps. �


Theorem 14.16 (Adequacy) Every Real PCF
R


term is computable.
Proof Lemmas 14.5, Corollary 14.13, and Lemmas 14.15 and 14.9. �


14.2 A fixed-point definition of integration


It is natural to ask if the integration operator, added in Section 14.1 as primitive,
is already recursively definable in Real PCF.


Let D = (I ⇒ I)⇒ I. Then the second equation of Lemma 14.3 leads one
to consider the map G : D→ D defined by


G(F )(f) = F (f ◦ consL)⊕ F (f ◦ consR).


Thus the integration operator
∫


is a fixed point of G. However, the least fixed
point is the bottom element of D.


Peter Freyd suggested that if we restrict ourselves to the subspace D′ ⊆ D
of functions F ∈ D such that


inf f ≤ F (f) ≤ sup f,
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then G restricts to a map G′ : D′ → D′, and
∫


is the least fixed point of G′. We
use this idea in a modified form, obtaining


∫
directly as the least fixed point of


a function H : D → D.
Define a map p : [0, 1]3→ [0, 1] by


j(x, y, z) = max(x,min(y, z)).


Then, given a ≤ b, the map g : [0, 1]→ [0, 1] defined by


g(x) = j(a, x, b)


is idempotent,
a ≤ f(x) ≤ b,


and
g(x) = x iff a ≤ x ≤ b.


(Cf. Section 8.13). Also, define a function H : D → D by


H(F )(f) = j (inf f, F (f ◦ consL)⊕ F (f ◦ consR), supf) .


Lemma 14.17 For every continuous function f : I → I,


Hn(⊥)(f) =
∫ (n)


f̂ ,


where f̂ is defined as in Lemma 13.10.
Proof By induction on n. For the base case use the fact that f̂(⊥) =
j(inf f,⊥, supf). �


Proposition 14.18
∫


is the least fixed point of H.
Proof Immediate consequence of Lemmas 14.5 and 14.17. �


14.3 Real PCF extended with supremum


This section follows the same pattern as Section 14.1. Due to this reason, we
omit the proofs which are reworking of proofs given earlier. Again, for simplicity
and without essential loss of generality, we restrict ourselves to the unit interval.
Clearly, the map sup[0,1] : (I ⇒ R)→R restricts to (I ⇒ I)→ I. We denote
the restriction by sup.


Definition 14.19 Real PCFsup is Real PCF extended with a construction
supx Y , as in Definition 14.1, denoting the operation sup : (I ⇒ I)→ I. �


Lemma 14.20 For any continuous map f : I → I,


sup consa ◦ f = consa (sup f) ,


sup f = max (sup f ◦ consL, sup f ◦ consR) .


161







Definition 14.21 The immediate reduction rules for supremum are:


1. (Production) supx Y → supxZ if Y → Z,


2. (Output) supx consaY → consa (supx Y ),


3. (Input) supx Y → max (supx YL, supx YR),


where
Ya ≡ Y [x := consax]. �


Notice that these are the reduction rules for
∫


with
∫


and ⊕ replaced by sup
and max respectively. We obtain the following similar results, whose proofs are
omitted because they are similar too:


Lemma 14.22 For every natural number n define a map sup(n) : [I → I]→ I
by


sup(n)f =
2n


max
k=1


f


([
k − 1


2n
,
k


2n


])
.


Then sup(n) is continuous, and


sup f =
⊔↑
n≥0


sup(n)f.


Lemma 14.23 For every natural number n,


sup(0)f = f(⊥),


sup(n+1)f = max
(


sup(n)f ◦ consL, sup(n)f ◦ consR
)
.


As a corollary, we have that for every n there is a Real PCF program defining
sup(n). But, as we did for integration, we add the partial supremum operators
sup(n) as primitive, and we conclude that:


Theorem 14.24 (Adequacy) Every Real PCFsup term is computable.


The operation inf is definable from sup by


inf f = 1− sup
x


(1− f(x)),


so there is no need to include it as primitive too.


Corollary 14.25 The integration operator is definable in Real PCFsup.
Proof The function H in Lemma 14.17 is Real PCFsup definable. �


Corollary 14.26 For every natural number n there is a program in Real PCF
extended with either integration or supremum which computes the multiple in-
tegration operator


∫
: (In ⇒ I)→ I of order n.


Proof (Since PCF does not have cartesian products, we have to use curried
maps.) Our primitive or program for integration takes care of the case n = 1.
Fubini’s Rule (Theorem 13.16) can be read as a definition of a program for the
case n + 1 from a program for the case n. By the adequacy theorems, these
programs indeed compute multiple integrals of order n. �
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This application of the adequacy theorems shows that computational adequacy
is a powerful property. In fact, it allows us to derive correct programs from
analytical results, in a representation-independent fashion. Of course, this is
precisely the idea behind denotational semantics.


14.4 Computational completeness of Real PCF ex-
tended with supremum


Although Theorem 12.13 implies that sup is definable in Real PCF extended
with ∃, we do not know a neat fixed-point definition of sup.


Proposition 14.27 The existential quantification operator ∃ is definable in
Real PCF extended with sup.
Proof For D ∈ {N ,B}, define continuous maps


D
rD
�
sD


I


by


sN (n) = if n = 0 then 0 else consR(sN (n− 1))
rN (x) = if x <⊥ 1/4 then 0 else rN (tailR(x)) + 1,


sB(t) = if t then 1 else 0
rB(x) = if x <⊥ 1/2 then false else true


Then (sD, rD) is a section-retraction pair. This is immediate for D = B. For
D = N , we prove by induction on n that rN ◦ sN (n) = n. If n = ⊥ or n = 0
this is immediate. For the inductive step we have that


rN ◦ sN (n+ 1) = rN (consR(sN (n))
= rN (tailR ◦ consR(sN (n))) + 1
= rN (sN (n)) + 1
= n+ 1 by the induction hypothesis.


It follows that the diagram below commutes:


(I ⇒ I)
sup−−−→ I


rN→sB
x yrB


(N ⇒ B) −−−→
∃


B


In fact, let p ∈ [N → B] and define f : I → I by


f = (rN ⇒ sB)(p) = sB ◦ p ◦ rN .


If there is some n such that p(n) = true, then there is some x such that f(x) = 1,
namely x = sN (n), and in this case we have that sup f = 1. If p(⊥) = false,
then f(⊥) = 0, and in this case we have that sup f = 0. Therefore ∃ is definable
in Real PCF extended with sup. �
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Corollary 14.28 Real PCF extended with sup is computationally complete.


We don’t know whether Real PCF extended with integration is computationally
complete. Moreover, we don’t know whether integration is definable in Real
PCF with no extensions, but conjecture that this is not the case.


For applications of Real PCF to real analysis, it seems more natural to
include the supremum operator as a primitive operation than to include the
existential quantification operator.


Remark 14.29 Notice that the section-retraction pairs defined in the proof of
Proposition 14.27 are expressed in terms of sequential primitives only, and that
the maximum operation on I represents the “parallel or” operation ∨ on B, in
the sense that the following diagram commutes:


I × I max−−−→ I


sB×sB
x yrB
B × B −−−→


∨
B


�
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Part VI


Concluding remarks
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Chapter 15


Summary of results


Recall that this thesis consists of the following five parts:


I Background


II Domain theory revisited


III The partial real line


IV Computation on the partial real line


V Integration on the partial real line


15.1 Continuous words, Real PCF, and computa-
tional adequacy


In Chapter 9 of Part III we showed that partial real numbers can be considered
as continuous words. Continuous words and their basic properties were used in
Chapter 11 of Part IV to extend PCF with real numbers, obtaining Real PCF,
and to show that Real PCF is computationally adequate, in the sense that its
operational and denotational semantics coincide.


15.2 Induction and recursion on the partial real line


In Chapter 10 of Part III we introduced induction principles and recursion
schemes for the partial real line, similar to the so-called Peano axioms for nat-
ural numbers. In particular, we obtained an abstract characterization of the
partial unit interval, up to isomorphism, which does not mention real numbers
or intervals. In order to formulate this characterization, we introduced the
category of binary systems.


Based on the results of Chapter 5 of Part II, we showed that the partial
real line can be given the structure of an inductive retraction, thus obtaining
structural recursion and corecursion schemes. These schemes were formulated
in terms of “generalized bifree algebras”, which are quotients of bifree algebras
in a special way. As a byproduct, we obtained an effective version of binary
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expansions for partial real numbers, which we called “bifurcated binary expan-
sions”.


We gave many applications of induction and recursion. First, we obtained
several examples of recursive definitions on the partial real line, most of which
immediately give rise to Real PCF programs. Second, these induction principles
and recursion schemes were used to establish the existence of a unique sound
effective presentation of the Real PCF domains, up to equivalence. Third,
they were used to establish computational completeness of Real PCF. These
applications are discussed below.


15.3 Computability on the real numbers type hier-
archy


In our approach to computation on real numbers, we introduced two new in-
gredients, which are very natural for an approach based on domain theory.
First, we made partially successful computations official, via partial real num-
bers. Second, we admitted higher-order functions (such as integration operat-
ors). From the point of view of computability, these two new ingredients are not
problematic, because domain theory was designed to support them, via effect-
ively given domains and function spaces. Thus, in order to define computability
on the real numbers type hierarchy, one has to simply choose a natural basis
(such as the rational intervals) and a natural enumeration of the basis (such as
Cantor enumeration), and then lift the effective presentation to higher types.
Since computability is a robust notion, the choice of basis and its enumeration
should not make any difference. We proved that this is indeed the case, as
follows.


First, we needed a notion of equivalence of effective presentations of a con-
tinuous domain. Since such a notion was available only for the algebraic case,
and since it does not immediately generalize to the continuous case, we were
forced to introduce a new notion in Chapter 6 of Part II. We argued that
the natural notion of equivalence is just the existing notion of equivalence of
objects in concrete categories, specialized to the category of effectively given
domains, considered concrete over the category of domains, via the forgetful
functor which forgets effective presentations. We established two main results:
(1) two effective presentations on the same domain are equivalent iff they induce
the same notion of computability on the domain, and (2) effective presentations
can be lifted uniquely, up to equivalence, to function spaces. These are really
instances of two results on concrete categories and concretely cartesian closed
categories.


Second, we observed that all Real PCF definable functions should be re-
garded as computable, because Real PCF has an effective operational semantics.
We thus called “sound” an effective presentation of the real numbers domain
which makes all definable elements computable. In Chapter 12 of Part IV we
showed that there is a unique sound effective presentation, up to equivalence,
obtaining an absolute notion of computability for the real numbers type hier-
archy.
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Absoluteness was achieved by means of the inductive principles and recur-
sion schemes discussed above, in the following way. In Chapter 6 of Part II,
we showed that for any locally computable functor F and any domain D, there
is at most one effective presentation of D which makes D an F-inductive re-
tract, up to equivalence. In Chapter 10 of Part III, we exhibited a functor
which gives the the partial real line the structure of an inductive retract. In
Chapter 12 of Part IV, we observed that this functor is locally computable, and
we showed that there is an effective presentation of the partial real line which
makes the section and retraction both computable and Real PCF definable,
thus establishing soundness and absoluteness.


15.4 Computational completeness of Real PCF


In Chapter 12 of Part IV, we observed that a computable existential quantifier,
which is not PCF definable, is not Real PCF definable either. Again making use
of the induction principles and recursion schemes discussed above, we adapted
a technique by Thomas Streicher, establishing that Real PCF extended with
the existential quantifier is computationally complete, in the sense that all
computable elements are definable.


It is well-known that the existential quantifier is not needed to define all first-
order computable functions in PCF, and one would expect Real PCF to enjoy
the same property. Unfortunately, Thomas Streicher’s technique does not give
information about definability at first-order types. We thus developed a new
general technique for establishing computational completeness of extensions of
PCF with new ground types, which does give such information. In particular,
we obtained as a corollary a new proof of computational completeness of PCF
extended with parallel-if and the existential quantifier.


In its present form, the technique works in its full generality only when the
ground types are interpreted as algebraic domains. Nevertheless, we were able
to apply it to establish first-order computational completeness of Real PCF.


The technique makes use of what we called “joining maps” in Chapter 7 of
Part II, and also of general properties of joining maps developed in that chapter.
By the results of that chapter, a bounded complete domain admits joining maps
iff it is coherently complete. Therefore, the technique is intrinsically restricted
to coherently complete domains, of which the partial real line is an example
anyway.


15.5 Partial real valued functions


In Chapter 8 of Part III, we showed that for any space X , a continuous partial
real valued function f : X →R is essentially the same as a pair of respectively
lower and upper semicontinuous functions f : X → R and f : X → R, bounded
on compact intervals, with f ≤ f pointwise. Moreover, we showed that for any
(not necessarily continuous) function f : R→ R bounded on compact intervals
there is a continuous function f̈ : R → R which agrees with f at every point
of continuity of f .
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15.6 Interval Riemann integration


In Chapter 13 of Part V, we generalized Riemann integration of real valued func-
tions of real variables to “interval Riemann integration” of partial real valued
functions of partial real variables. We showed that interval Riemann integra-
tion fully captures Riemann integration, in the sense that for every Riemann
integrable function f : R → R (i.e., bounded on compact intervals and con-
tinuous almost everywhere), the Riemann integral of f : R→ R coincides with
the Interval Riemann integral of any continuous f̃ : R → R agreeing with f
at every point of continuity of f . We also proved basic properties of interval
Riemann integration, such as linearity and Fubini’s rule for multiple Riemann
integration.


15.7 Integration in Real PCF


In Chapter 14, we introduced an extension of Real PCF with simple inter-
val Riemann integration as a primitive operation, via reduction rules, and we
established computational adequacy of the extension. Fubini’s rule and com-
putational adequacy together imply definability of multiple interval Riemann
integration. Based on a suggestion by Peter Freyd, we obtained a fixed-point
definition of integration based on the reduction rules. Since the fixed-point
definition involves a supremum operator, we showed how to extend Real PCF
with it, again via reduction rules, retaining computational adequacy. We also
showed that the existential quantifier can be replaced by the supremum operator
in the computational completeness result, which is more natural for applications
to real number computation.


15.8 New results on domain theory


As it is clear by the above summary, we developed new results on domain theory
in order to obtain our main results on Real PCF, higher-order real number
computability, and Real PCF definability. Since these results are interesting in
their own right, we decided to collect them together in Part II. Running the
risk of being somewhat repetitive, we briefly summarize them independently
of their particular applications to domain-theoretic higher-order real number
computation via Real PCF.


Bifree algebras generalized In Chapter 5 we defined inductive retracts as
generalizations of bifree algebras, and we showed that any functor with a bifree
algebra has any of is inductive retractions as a retract of the bifree algebra, in
a canonical way. Moreover, we showed that inductive sections and retractions
behave as respectively final coalgebras and initial algebras, except that the
existence part in the definition of finality and initiality is missing. We gave
a general criterion for the existence of homomorphisms, which amounted to
saying that the involved (co)algebras (co)respect the congruence induced on
the bifree algebra. Moreover, we gave two explicit constructions of the (unique)
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homomorphisms, when they exist. Except for one of the last two constructions,
which holds only in certain order-enriched categories, all results hold in any
category.


Equivalence of effectively given domains We remarked in Chapter 6 that,
as far as we know, only equivalence of effectively given algebraic domains was
considered in the literature. We showed that the notion of equivalence of ob-
jects in concrete categories gives rise to an appropriate notion of equivalence of
effective presentations of domains, when we consider the category of effectively
given domains and computable maps as a concrete category over the category of
domains and continuous maps, via the forgetful functor which forgets effective
presentations. We proved that two effective presentations of the same domain
are equivalent iff they induce the same notion of computability on the domain,
and we also showed that effective presentations lift uniquely, up to equival-
ence, to cartesian products and function spaces. Also, we showed that, for any
functor F on the category of domains which extends to a locally computable
functor on effectively given domains, and any F-inductive retraction (D, α, β),
there is at most one effective presentation of D which makes retraction α and
the section β computable, up to equivalence. Moreover, if α and β are iso-
morphisms (and hence form a bifree algebra), then there is exactly one such
effective presentation.


Coherently complete domains We characterized the coherently complete
domains as the bounded complete domains which admit joining maps; we
showed that every element of a coherently complete domain admits a least
joining map; we obtained a new proof of universality of the coherently com-
plete domain Bω; and we showed how to construct joining maps of function
spaces from joining maps of the target domain, and from the best continuous
approximation to the characteristic function of the way below order on the
source domain. The last two items gave rise to the general technique for estab-
lishing computational completeness of PCF extended with coherently complete
domains, which works in its full generality only for the algebraic case as we
lack information about the best continuous approximation to the way-below
relation.
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Chapter 16


Open problems and further
work


16.1 Equivalence of effectively given domains


Since the original notion of equivalence of effectively given domains introduced
in [KP79] applies only to the algebraic case and doesn’t immediately gener-
alize to the continuous case, we introduced a new notion, based on concrete
categories, in Chapter 6 of Part II. Moreover, we showed that our definition
is appropriate for our purposes. Nevertheless, it is an open problem whether
our definition restricted to the algebraic case coincides with that of Kanda and
Park. We conjecture that this is the case.


16.2 Real number computability


In Section 12.1 of Part IV, we showed that there is a unique sound effective
presentation of the real numbers type hierarchy, thus providing an absolute
notion of higher-order real number computability. However, we didn’t relate
the resulting notion of computability to existing notions for total real num-
bers [Grz57, KV65, Ko91, ML70, Myh53, PeR83, Ric54, Tur37, Wei87, Wei95].
We conjecture that our notion of computability, when restricted to real num-
bers and total real functions of total real variables, coincides with at least those
of [Ko91, PeR83, Wei95]1. See [Wei95] for comments about (in)equivalence
of the existing notions. If our conjecture is true, we have that a function
f : R → R is computable in the sense of [Ko91, PeR83, Wei95] iff it has an
extension f̃ : R → R computable in our sense iff the lifting (If)⊥ : R⊥ → R⊥
of its canonical extension If : R → R is computable in our sense. The reason
is that there is a computable idempotent c : (R⊥ ⇒ R⊥) → (R⊥ ⇒ R⊥) such
that c(g) is the lifting of the canonical extension of f : R→ R, for any extension
g : R⊥ → R⊥ of f . Notice however that this closure operator is interdefinable
with the existential quantifier (or the supremum operator).


1Philipp Sünderhauff [Sün97] has shown that this is the case
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16.3 Injective spaces


Originally, we had planned a chapter in Part II containing new results about
injective spaces [Esc97]. Since most results are unrelated or vaguely related
to this thesis, we eventually decided to omit it. However, we discussed some
instances of some of the results. For instance, the idempotent c : (R⊥⇒R⊥)→
(R⊥ ⇒ R⊥) is an instance of a much more general construction for injective
spaces. Its continuity depends only on the fact that the singleton-embedding
R → R is proper in the sense of [HL82]. The fact that the idempotent has to
make functions strict is explained by the fact that the smallest dense subspace
of R⊥ whose embedding into R⊥ is a proper map is the subspace R ∪ {⊥}.
Any sober space has such a smallest subspace and, moreover, has an associated
closure operator defined roughly as above. Also, Lemma 8.6 (including the note
at the end of its proof) are vastly generalized in loc. cit.


16.4 Way-below order


A new technique for proving computational completeness of extensions of PCF
with new ground types was introduced in Section 12.4 of Part IV. In its present
form, it only works in its full generality when the ground types are interpreted
as algebraic domains. The generalization to the continuous case depends on
a suitable constructive characterization of the (characteristic function of) the
way-below order on function spaces of continuous domains. More precisely, we
need a characterization which allows us to prove the crucial Lemma 12.17 in
the continuous case. Some steps in this direction were already taken in joint
work with Thomas Erker and Klaus Keimel [EEK97], where we obtained several
characterizations of the way-below order on function spaces.


16.5 Full abstraction


Is Real PCF fully abstract? We conjecture that it is (recall that Real PCF
includes a parallel conditional). A solution to the problem of the previous
section would positively answer this question.


16.6 Sequentiality on the real numbers type hier-
archy


Is there any language-independent notion of sequentiality for the real numbers
type hierarchy? Does the notion of sequentiality for real numbers depend on
the model of computation? It seems that the answer to the last question is
positive.


We know thatR⊥ is a coherently complete domain and that Bω is a universal
coherently complete domain, which is essentially the same as the PCF domain
U = (N → B). It is thus natural to attempt to reduce sequentiality on R⊥
to sequentiality on U . Let us say that a (computable) function φ : U → U is
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sequential if it is PCF definable. Given any section-retraction pair s : R⊥ →
U and r : U → R⊥ with s ◦ r : U → U computable, we could say that a
(computable) function f : R⊥→R⊥ is s−r-sequential if the function r ◦f ◦s :
U → U is sequential. This notion generalizes to functions of several variables in
the obvious way. It is not hard to see that there are distinct section-retraction
pairs give which rise to distinct notions of sequentiality.


Is R⊥ a sequential retract of U (or of any universal PCF domain), in the
sense that the induced idempotent on U is sequential? We conjecture that this
is not the case. Are there s and r such that (some extension of) the addition
operation is sequential? We conjecture that the answer is also negative.


16.7 Joining maps


Some questions about joining maps were raised in Chapter 7 of Part II. Here we
add the following question: if joinx denotes the least joining map of an element x
of a coherently complete domain D, and if we define x � y = joinx(y), does it
follow that (D,�,⊥) is a monoid? It is enough to check the associativity law,
which can be expressed by the equation


joinx(joiny(z)) = joinjoinx(y)(z).


These questions should be easy to answer 2.


16.8 Continued fractions and Möbius transformations


Peter Potts [Pot96] has recently found a common generalization of the ideas
presented in this thesis about PCF extended with real numbers and the ideas
of Vuillemin [Viu90, Vui88] on continued fractions. The idea is to use Möbius
transformations, that is, functions of the form


x 7→ px+ q


rx+ s
,


which include our affine transformations x 7→ px+ q when r = 0 and s = 1. In
ongoing work with him and Abbas Edalat, we have generalized the monoid of
continuous words so that left actions are now Möbius transformations instead
of affine transformations. We obtained an extension of PCF with real numbers,
whose operational semantics is essentially the same as Real PCF’s [PEE97]. The
advantage of such an approach is that the parallel conditional can be avoided
in many important instances, such as programs for a wide class of analytic
functions.


2Michal Konecny has proved that this is not the case in general.
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[Poi92] A. Poigné. Basic category theory. In S. Abramsky, D.M. Gab-
bay, and T.S.E Maibaum, editors, Handbook of Logic in Computer
Science, volume 1, pages 413–640. Clarendon Press, Oxford, 1992.


[Pot95] P.J. Potts. The storage capacity of forgetful neural networks.
Master’s thesis, Department of Computing, Imperial College, 1995.


[Pot96] P.J. Potts. Computable real arithmetic using linear fractional
transformations. Manuscript presented during the second Computa-
tion and Approximation Workshop, held in Darmstadt, September
1996.


[Ric54] H.G. Rice. Recursive real numbers. Proc. Amer. Math. Soc., pages
784–791, 1954.


[Rog67] H. Rogers. Theory of Recursive Functions and Effective Comput-
ability. McGraw-Hill, New York, 1967.


[Roy88] H.L. Royden. Real Analysis. Collier Macmillan Publishing, third
edition, 1988.


[Rud76] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill,
New Yourk, 3rd edition, 1976.


[Sch93] A. Schalk. Algebras for Generalized Power Constructions.
PhD thesis, Technische Hochschule Darmstadt, July 1993.
ftp://ftp.cl.cam.ac.uk/papers/as213/diss.dvi.gz.


[Sco72a] D. S. Scott. Continuous lattices. In F.W. Lawvere, editor,
Toposes, Algebraic Geometry and Logic, volume 274 of Lectures
Notes in Mathematics, pages 97–136. Springer-Verlag, 1972.


[Sco72b] D. S. Scott. Lattice theory, data types and semantics. In
Formal semantics of programming languages, pages 66–106, Engle-
wood Cliffs, 1972. Prentice-Hall.


[Sco76] D. S. Scott. Data types as lattices. SIAM Journal on Computing,
5:522–587, September 1976.


180







[Smy77] M.B. Smyth. Effectively given domains. Theoretical Computer
Science, 5(1):256–274, 1977.


[Smy83] M.B. Smyth. Power domains and predicate transformers: a topo-
logical view. In J. Diaz, editor, Automata, Languages and Program-
ming, pages 662–675. Springer-Verlag, 1983. LNCS 154.


[Smy87] M.B. Smyth. Quasi-uniformities: Reconciling domains with metric
spaces. In M. Main, A. Melton, M. Mislove, and D. Schimidt, ed-
itors, Mathematical Foundations of Programming Languages, pages
236–253, London, 1987. Springer-Verlag. LNCS 298.


[Smy89] M.B. Smyth. Totally bounded spaces and compact ordered spaces
as domains of computation. In Oxford Topology Symposium’89, Ox-
ford, 1989. Oxford University Press.


[Smy92a] M.B. Smyth. I-categories and duality. In M.P. Fourman, P.T.
Johnstone, and Pitts A.M., editors, Applications of Categories in
Computer Science, pages 270–287, Cambridge, 1992. Cambridge
University Press. London Mathematical Society Lecture Notes
Series 177.


[Smy92b] M.B. Smyth. Topology. In S. Abramsky, D. M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 1, pages 641–761. Clarendon Press, Oxford, 1992.


[SP82] M.B. Smyth and G. Plotkin. The category-theoretic solu-
tion of recursive domain equations. SIAM Journal of Computing,
11(4):761–783, 1982.


[Sto66] R. Stoll. Set Theory and Logic. W.H. Freeman and Company,
San Fransisco, 1966.


[Str94] T. Streicher. A universality theorem for PCF with recursive
types, parallel-or and ∃. Mathematical Structures for Computing
Science, 4(1):111 – 115, 1994.


[Sün97] Ph. Sünderhauf. A domain-theoretic approach to computable
analysis. Department of Computing, Imperial College, March 1997.


[Tur37] A. Turing. On computable numbers, with an application to the
Entscheindungproblem. The London Mathematical Society, 42:230–
265, 1937.


[Vic89] S. Vickers. Topology via Logic. Cambridge University Press, Cam-
bridge, 1989.


[Vic96] S. Vickers. Flat completion of quasi-metric spaces. Department of
Computing, Imperial College of Science and Technology, University
of London, March 1996.


181







[Viu90] J. Viullemin. Exact real computer arithmetic with continued frac-
tions. IEEE Transactions on Computers, 39(8):1087–1105, 1990.


[Vui88] J. Vuillemin. Exact real arithmetic with continued fractions. In
Proc. ACM Conference on Lisp and Functional Programming, pages
14–27, 1988.


[Wei87] K. Weihrauch. Computability. Springer-Verlag, Berlin, 1987.


[Wei95] K. Weihrauch. A simple introduction to computable analysis.
Technical Report 171 – 7/1995, FernUniversitat, 1995.


[Wie80] E. Wiedmer. Computing with infinite objects. Theoretical Com-
puter Science, 10:133–155, 1980.


182







Index


(A,B)-representable, 48
(A,B)-representation, 48
N , 31
SDom, 18
B, 14
B, 14
curry, 15
δ, 20
ε-degradation, 78
ε− δ characterization of continuity,


13
head, 96
ω-continuous, 13
4, 34
<⊥, 69
if, 28
pif, 28
ρ, 20
uncurry, 15
B, 69
F-algebra, 18
F-algebra homomorphism, 18
F-coalgebra, 18
F-coalgebra homomorphism, 18
F-inductive retract, 38
F-inductive retraction, 39
B, 69
I, 63
L-terms, 30
R?, 63
KD, 13
∆n, 20


above, 11
absolute notion of computability, 5
abstract basis, 16
abstract rational basis, 74
abstractions, 30
adequacy property, 33, 124


affine map, 83
algebraic, 13
apart, 14
approximation, 74
axiom of approximation, 12


basis, 13
below, 11
bifree algebra, 18
bifurcated binary expansion, 109
binary T -algebra, 106
binary expansion, 110
binary system, 102
biquotient, 43
bisimilar, 115
bisimulation, 115
bottom, 11
bounded, 13
bounded complete, 13
bounded complete domain, 13
bounded universal quantifier, 138


canonical extension, 64
canonical index, 20
canonical solution, 18
closed, 31
coherently complete, 14, 53
coherently complete domain, 14
collection of domains for PCF, 31
combinations, 30
compact, 13
composable, 71
composite path, 71
computable, 21, 25, 33
computational adequacy, 2, 126
computational completeness, 2
computationally complete, 133
computationally complete program-


ming language, 5


183







computationally feasible, 136
concatenation, 82
concrete category, 48
concretely cartesian closed, 49
conjugacy, 103
consistent, 13, 14
consistently complete, 13
continuous, 12
continuous lattice, 13
continuous Scott domains, 13
countably based, 13
cut, 73


dcpo, 11
denotational semantics, 32
densely injective, 17
destructors, 104
directed, 11
directed complete poset, 11
discrete order, 10
discrete space of rational numbers,


75
domain, 13, 22
domain equation, 18
dyadic, 63
dyadic induction principle, 104


effective presentation, 24
effective presentation of a coherently


complete domain, 25
effectively given A-domain, 24
effectively given algebraic domain,


22
effectively given coherently complete


domain, 25
environments, 32
equivalent, 48
equivalent objects, 48
essentially definable, 134
extended cuts, 73
extended interval domain, 63
extended partial real line, 64
extended real line, 63
exterior, 58


fast-converging Cauchy sequence, 78
fibre, 48
finite, 13


first-order computationally complete,
141


flat domain of truth values, 14
formal intervals, 74
free variables, 30


ground types, 30
guarded, 88
guarding constant, 88


half-plane, 72
has internal joins, 52
Hausdorff metric, 78
head-normal form, 91
homomorphism, 102
hyper-cube, 151


ideal, 16
ideal completion of P , 16
immediate reduction relation, 33
immediate reduction rules for integ-


ration, 156
immediate reduction rules for supremum,


162
induce the same notion of comput-


ability, 47
induced, 13
inductive, 98, 104
infinitely iterated concatenation, 85
information order, 11
injective, 16
injective spaces, 17
integrals, 155
integrand, 155
interpolation property, 12
interpretation, 31
interval domain, 63
interval expansion, 85
interval Riemann integral, 146
interval Riemann sum, 145
interval space, 64
isochordal, 18
isochordally injective, 18
isolated from below, 13
iterated function system (IFS), 103


J-domain, 52, 53
joining map, 52


184







kernel operator, 54


lazy evaluation, 84
least fixed-point combinator, 15
left dominant, 82
lifting, 11
locally computable, 29
locally continuous, 18
lower, 66
lower quasi-metric, 76


maximal, 74
multiple interval Riemann integral,


152
multiple interval Riemann sum, 152
multiplicative, 63, 72


neighbourhoods, 74
non-trivial, 70


open, 31
open balls, 76
opposite, 76
order-continuous, 11


pairing function, 20
parallel conditional, 28
parallel-or, 120
partial extended cuts, 73
partial real line, 4, 64
partial real numbers, 64
partial unit interval, 4, 64
partially evaluated, 91
partially ordered set, 10
partition, 144, 151
pointed, 11
poset, 10
prefix, 80, 82
prefix preorder, 82
preordered set, 10
Programs, 31


quasi-metric space, 75


real number type, 124
real numbers type hierarchy, 4
Real PCF, 130
real programs, 124
recursive, 21


recursive definition, 15
refinement witness, 145
refines, 145
retract, 14
round completion, 16
round ideal, 16


Scott topology, 11
section-retraction, 14
sequential conditional, 28
set of truth values, 14
simulation, 116
single-step functions, 15
singleton-map, 64
sound, 5
specialization order, 10
standard, 31
standard effective presentation of Bω,


25
step functions, 15
strict, 11
strictly above, 11
strictly below, 11
structural corecursion, 43
structural recursion, 43
subbasis, 13
sublanguage, 159
suffix, 82
supremum, 153
symmetrization, 76
syntactic information order, 34


transpose, 15
truncated subtraction, 76
types, 30


undefined, 70
undefined environment, 32
underlying functor, 48
unit interval, 63
unit interval domain, 63
unit triangle, 72
universal, 14
upper, 66
upper quasi-metric, 76


volume, 152


185







way-below, 12
way-consistent, 23
word, 80


186






