

THAT ABOUT WRAPSIT UP
Using FIX to Handle Errors Without Exceptions,

and Other Programming Tricks

BRUCE J. MCADAM ∗

Technical Report ECS–LFCS–97–375
Department of Computer Science

University of Edinburgh

November 28, 1997

Abstract

TheY combinator for computing fixed points can be expressed in Standard ML.
It is frequently used as an example of the power of higher-order functions, but is not
generally regarded as a useful programming construction.

Here, we look at how a programming technique based on theY combinator and
wrapperscan give programmers a level of control over the internal workings of
functions not otherwise possible without rewriting and recompiling code.

As an experiment, the type-inference algorithmW is implemented using this
technique, so that error messages are produced with minimum interference to the
algorithm. The code for this example program illustrates the genuine usefulness
of the concepts and the ease with which they can be applied. A number of other
implementation techniques and possible applications are also discussed, including
the use of higher-order functions to simulate the use of exceptions and continuations.

∗e-mail: bjm@dcs.ed.ac.uk, WWW: http://www.dcs.ed.ac.uk/home/bjm/

Contents

1 Introduction 2

2 Defining and using the combinator in SML 2
2.1 SML implementations . 2

2.1.1 FIX recursively . 3
2.1.2 FIX non-recursively . 3

2.2 Using FIX . 4

3 Wrappers 5
3.1 Simple wrappers . 5
3.2 Simple wrapper for memoisation . 6
3.3 Complex wrappers — Heterogenous wrappers 8

3.3.1 Types of wrappers . 8
3.3.2 Writing a heterogenous wrapper . 9

3.4 Complex wrappers — adding extra information 9
3.5 Alternative implementations for wrapped functions 10
3.6 Simulation of other program constructions . 11

3.6.1 Exceptions . 11
3.6.2 Continuations . 13

4 Application to a type-checker 15
4.1 Starting point . 16

4.1.1 AlgorithmW . 16
4.1.2 My Implementation . 16

4.2 Required extension . 16
4.3 Modified implementation . 16
4.4 Relevance to other applications . 17

5 Conclusions 17

A Implementation of a type-checker 19
A.1 Program code . 19

A.1.1 The main functor . 19
A.1.2 Signatures . 21

A.2 Results . 23
A.2.1 Example causing one failure . 23
A.2.2 Example causing multiple failures in different declarations 24
A.2.3 Example with two errors in one application 24

1

1 Introduction

TheY -combinator for computing fixed points of higher-order functions can be defined in Stand-
ard ML (SML) and other higher-order programming languages. This provides one way for pro-
grammers to define recursive functions. The ability to represent this combinator is an indication
of the expressive power of these languages, but because these programming languages generally
have an explicit recursive declaration it is not generally regarded as anything more than a curi-
osity with little practical value. In this report, I demonstrate a programming technique which
makes use of the ability to define functions usingY .

I first describe how to implement and use this combinator in Standard ML in Section 2, and
the general principles of how to use it in conjunction withwrappersto modify the workings
of recursive functions in Section 3. At the end of this section I demonstrate how to use this
technique to simulate some uses of exceptions and continuations.

The first application of the ideas described here was in implementing an error-reporting
mechanism for Hindley-Milner type-inference [3] without using SML exceptions. Following
the example of Ramsey [6] I chose to implement the error-reporting algorithm by adding com-
binators to an implementation of the algorithm without any mechanism for handling failure. The
implementation of this application is described in Section 4. A summary of my conclusions
appears in Section 5.

2 Defining and using the combinator in SML

TheY combinator was defined in theλ-calculus by Church [2] as shown in Figure 1.

Figure 1 TheY combinator defined for theλ-calculus.

Y ≡ λf.((λf ′.f(λx.f ′f ′x)) (λf ′.f(λx.f ′f ′x)))

An explanation of whyY works (from a programmer’s perspective) can be found in [5].

2.1 SML implementations

We will denote the SML version of the fix-point combinator byFIX , this will emphasise its use
in programs and remind us that it is not exactly the same asY — it will only be able to fix a
certain form of function (which I call a ‘functional’) and is strictly evaluated.

FIX has the type shown in Figure 2.

2

Figure 2 The type of the fixed point combinator in SML.

val FIX : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b

FIX can be applied to a ‘functional’ with a type of the form(A -> B) -> A -> B to
return a function of typeA -> B . The functional first takes the function whose least fixed point
is to be computed, and then the parameter.

FIX can be defined using either a recursive definition or a non-recursive definition (which
uses a recursive datatype). The latter allows us to write any recursive function in SML without
using any explicit recursion (i.e. declarations of the form “val rec . . . ” or “fun . . . ”).

2.1.1 FIX recursively

Defining FIX using SML’s explicit recursive function declaration is quite simple as shown in
Figure 3.

Figure 3 DefiningFIX as a recursive function.

fun FIX f x = f (FIX f) x ;

The function fixes the parameterf . The parameter becomes fixed when it receives its own
fixed point as a parameter — so applying(FIX f) to f gives the required result.

The extra parameter toFIX , x , is the final parameter to the function. We must include this
here as SML is a strictly evaluated programming language and so we must delay the evaluation
of FIX f until it is applied to a value.

2.1.2 FIX non-recursively

DefiningFIX without recursion is a much more complicated affair (it appears to be impossible
to many SML programmers). The definition is based onY for theλ-calculus which appeared in
Figure 1. A direct implementation of the simpleλ-calculus version will fail to type-check with
an “unification occurs check” error — which happens when the unification function which forms
the basis of ML type-checking finds that a circular substitution is necessary. The solution is to use
a datatype to introduce a legal circular type and to add datatype construction and deconstruction
to change values to and from this type. The implementation shown in Figure 4 is taken from [1].

3

Figure 4 DefiningFIX with a recursive datatype.

local
datatype ’a t = T of ’a t -> ’a

in
val FIX = fn f => (fn (T x) => (f (fn a => x (T x) a)))

(T (fn (T x) => (f (fn a => x (T x) a))))
end

2.2 Using FIX

It is much more practical to use the directly recursive version ofFIX . This is because just as it
is easier for a programmer to see that it is a recursive function and that it finds fixed points, it
is easier for an SML compiler to exploit this and optimise the resulting code. A discussion of
optimisations for functions defined using theλ-calculusY combinator in Scheme can be found
in [7] (This discusses a scheme compiler, but the techniques apply equally well to SML).

To useFIX to define a recursive function we must first define a non-recursive version of the
function which expects the fixed version as a parameter. As noted previously, I refer to these
non-recursive higher-order functions asfunctionalsand write them as in Figure 5.

Figure 5 Examplefunctionalfor the factorial function.

val fact_ = fn fact => fn i => if i = 0 then 1 else i * fact (i-1) ;

I have written this usingfn notation in order to emphasise that it is not recursive, and I have
adopted the convention of giving such functionals names ending in underscores. The functional
shown will be used to define the factorial function, as it takes a function calledfact and integer
i and if this parameter function can compute the factorial of smaller values then the final result
will be the factorial ofi .

To fix the functionalfact , simply apply theFIX combinator to it as in Figure 6.

Figure 6 Create the factorial function by fixingfact .

val fact = FIX fact_ ;

The final functionfact follows the same algorithm and computes the same results as the
directly recursive definition in Figure 7.

4

Figure 7 The factorial function expressed using an SMLfun declaration

fun fact i = if i = 0 then 1 else i * fact (i-1) ;

3 Wrappers

The essence of the programming technique described here is to providewrappersfor the unfixed
versions of functions which do some extra work for the function. Once the wrapped function is
fixed the wrapper effectively intercepts every recursive function call.

I will describe two types of wrapper, the first is quite simple but the second provides us with
a substantial level of programming power by allowing us to fix functionals which would not
otherwise have well defined fixed-points because these would not have defined types under the
language’s type-system.

3.1 Simple wrappers

Unfixed functionals have types of the form(A -> B) -> A -> B . A simple wrapper takes
a functional (perhaps for specific instances ofA andB), and returns a new functional of the same
type.

For example, we can write a wrapper for thefact function which will allow us to see how
it recurses. I define this wrapper in Figure 8 using thefn notation to make it clear that it is not
recursive.

Figure 8 A simple wrapper.

val wrap = fn f => fn f’ => fn p =>
let

val result = f f’ p
in

print (Int.toString result); print "\n"; result
end ;

Note that the use ofInt.toString means that this wrapper is specific to functionals
returning integers.

To make use of the wrapper we need only add one extra line to the previous program from
Figure 6 (to apply the wrapper tofact). The required definition is in Figure 9.

5

Figure 9 Using the simple wrapper onfact .

val fact_’ = wrap fact_ ;
val fact’ = FIX fact_’ ;

The resulting functionfact’ has the same type as the originalfact , and was created
without makinganychanges tofact (or even needing to recompile the definition). Applying
fact’ gives the same answer as forfact , and it also prints a list of intermediate values, as
shown in Figure 10.

Figure 10An SML session showing use offact’ .

> fact’ 10;
1
1
2
6
24
120
720
5040
40320
362880
3628800
val it : int = 3628800

It is clear that a wrapper like this could be useful when debugging functions since it provides
an easy mechanism for tracing execution without having to insertprint expressions inside the
actual function definition.

3.2 Simple wrapper for memoisation

A popular programming technique is to writememoised functions. These functions store previous
values they have calculated and return the memorised value instead of recomputing it when given
the same parameter a second time.

Figure 11 show a wrapper for creating memoised functions.

6

Figure 11 Wrapper to memoise integer functionals. Only the results for the domain 0–99 are
memorised but this could easily be changed.

val memoise = fn f_ =>
let

val t = Array.array (100, NONE)
val lookup = fn x => Array.sub (t, x)
val store = fn (x, y) => (Array.update(t, x, SOME y); y)

in
fn f’ => fn x =>

if x>=0 andalso x<100 then (* Only use table if x in this range *)
case lookup x of

SOME y => y
| NONE => store (x, f_ f’ x)
(* The new value is only computed if the table does not contain

an entry. The new value is stored in the table, and returned
*)

else
f_ f’ x (* Do not use the table as x is not in range *)

end ;

Figure 12 creates a memoised version of the factorial functional and fixes it.

Figure 12Memoised factorial function.

val fact’ = FIX (memoise fact_)

In order to find out whether or not this really works, we will use another neat trick — using
two wrappers, one on top of the other. Figure 13 shows how to print the intermediate results of
the memoised function.

7

Figure 13 Printing intermediate results shows that the memoisation wrapper really does work
(output from an ML session). The wrapperwrap is the result printer from Figure 8.

> val fact’’_ = memoise (wrap fact_) ;
val fact’’_ : (int -> int) -> int -> int = fn
> val fact’’ = FIX fact’’_ (* This will print newly computed results *) ;
val fact’’ : int -> int = fn
> fact’’ 10 ;
1
1
2
6
24
120
720
5040
40320
362880
3628800
val it : int = 3628800
> fact’’ 10 (* This should use previous results *) ;
val it : int = 3628800
> fact’’ 12 (* This should start where fact’’ 10 left off *) ;
39916800
479001600
val it : int = 479001600

Consider what would happen if the order of the wrappers was reversed such thatfact’’
was defined aswrap (memoise fact) .

3.3 Complex wrappers — Heterogenous wrappers

It is possible to write wrappers which can turn some functionals which do not have fixed points
into functionals with fixed points, the particular case here is that of wrappers which deal with
functionals returning one type of data but expecting another from their ‘recursive’ calls.

3.3.1 Types of wrappers

The form of the type of a simple wrapper is shown in Figure 141.

1The example wrapper for printing integers actually has a weaker type than this, but we are only interested in
applications of it to functionals.

8

Figure 14The form of a simple wrapper’s type.P is the type of the parameter (of the final fixed
function), andR is its result.

((P -> R) -> P -> R) -> (P -> R) -> P -> R

A simple wrapper takes a functional and returns a functional of the same type as the original.
The simple wrapper shown earlier was homogenous — the data passing into it had the same type
as the data it returned. A heterogenous wrapper converts data from one type into another. This
will allow us to manipulate types in such a way that a wrapped functional will have a fixed-
point, but the original functional did not. The form of the type of the wrapper in this case is in
Figure 15.

Figure 15 The form of the type of aheterogenous wrapper. The result of the functional isR2,
which is different from that of the wrapped functionalR1.

((P -> R1) -> P -> R2) -> (P -> R1) -> P -> R1

Note that the original functional passed to a heterogenous wrapper cannot have a fixed point
(as it would not have a valid type), but the wrapped functional will have a fixed point.

3.3.2 Writing a heterogenous wrapper

One application of heterogenous wrappers is to convert a ‘no answer’ result from a function into a
default or dummy response. The large example described in Section 4 uses such a wrapper. There
I implement a type-checker which may return no result (if it cannot infer a type for its parameter),
the wrapper announces the problem and provides a default result known not to interfere with the
type-checking of other parts of the input.

3.4 Complex wrappers — adding extra information

It is possible to write a wrapper which can send information to recursive calls lying directly
below it in the call tree. To do this, we add a parameter to the wrapper, e.g. as in Figure 16.

Figure 16General form of a wrapper which adds extra information to recursive calls.

val wrap = fn f_ => fn f’ => fn extra => fn x =>
f_ (f’ (foo extra)) x

The extra parameter is not seen by the functional, but is available to future instances of
the wrapper. When we fix the wrapped functional, we must start it with an initial value as in
Figure 17.

9

Figure 17Using a wrapper which adds extra information.

val f_’ = wrap f_
val f’ = (FIX f_’) initialExtra

Typically we might use this to pass information about branch of the call tree down, as shown
in Figure 18.

Figure 18Passing the call tree between instances of a wrapper.

val wrap = fn f_ => fn f’ => fn callTreeBranch => fn x =>
let

val result = f_ (f’ (x::callTreeBranch)) x
(* We add the parameter to the call tree branch *)

in
(if isUnusual result then

printMessage (callTreeBranch, result)
(* The message can describe where in the computation the

unusual result was found *)
else ());
result

end

The wrapper in the figure prints a message if it encounters an unusual result. This message
can include a list of the nested calls which led up to the result.

We could also use this method to detect looping in simple integer functions: the extra inform-
ation would be a set of previous parameters and the wrapper can detect a loop by checking if the
current parameter is already on the call-tree.

3.5 Alternative implementations for wrapped functions

It is possible to implement wrapped functions using more conventional programming techniques.
As an example have a look at the definition in Figure 19.

10

Figure 19 fact’ (of Figure 9) defined without a wrapper.

fun fact’ i =
let

val result = if i = 0 then 1 else i * fact (i-1)
in

print (Int.toString result); print "\n"; result
end

This function behaves identically to the first wrapped factorial function shown earlier in Fig-
ure 9. The code contains all the main constructions of the wrapped functions and maintains the
separations between the computation and the printing routine so the workings of it should be
equally clear to a programmer.

One advantage in my approach over this definition offact’ is that, given the definition
of fact , it is possible to use different wrappers without editing and recompiling the function
body. Another advantage was shown in Figure 13 where I used two wrappers and a functional
which I had previously compiled, the wrappers gave me an easy way to try different combinations
of features. Where a function is extended in a complex way (for example if memoisation was
implemented for more complex parameter types by using hash tables or search trees) the same
wrapper can be used for many functions without the need to make many changes to the program
(and it should be remembered that changing source code is an easy way to introduce errors).
SML also allows us to change between many different wrappers (or no wrapper) and to generate
wrappers on the fly — something which would not be possible with the monolithic definition
above.

3.6 Simulation of other program constructions

Programming languages typically provide constructions so that programmers can control their
functions’ behaviour. Examples of such constructions include recursive function definitions,
continuations and exceptions. We have already seen howFIX can give programmers the same
functionality as SML’s “fun . . . ” declarations. In this section we will see howFIX and wrappers
can simulate some uses of exceptions and continuations.

3.6.1 Exceptions

In the next section, I will show how to use wrappers to simulate a possible use of exceptions.
Figure 20 show the general form of a wrapper simulating exception handlers and the datatype
associated with it.

11

Figure 20 Simulating exception handlers with a wrapper. We create a datatype representing the
possible results (a value or one of a number of exceptions), the wrapper converts the result into a
value and performs housekeeping (e.g. reporting errors to the user).

(* We know in advance all the exceptions used inside the functional,
so we can define these (and OK) as a datatype. *)

datatype ’a result =
OK of ’a

| EXN_1 of exn_1_data
| EXN_2 of exn_2_data
| ...
| EXN_n of exn_n_data

(* The handleWrapper uses a number of functions each of which
can transform ‘exception’ data into a dummy result. The
handleExn functions will also inform the user or do any other
housekeeping necessary. *)

val handleWrapper = fn f_ => fn f’ =>
fn OK r => r (* no ‘exception’, return result *)

| EXN_1 e => handleExn1 e (* returns data the same type as r *)
| EXN_2 e => handleExn2 e
| ...
| EXN_n e => handleExnn e

(* Define the functional so it expects a value as the result of
recursive calls, but returns data using one of the constructors
for the result *)

If there are no exceptions then it is easier to reason about the program since we do not need
to consider the complications caused when the order of execution is disrupted. A particular
advantage is that we can be sure that the ‘exception’ never travels further than to the handler
in the caller (represented by the wrapper), whereas if actual exceptions were used it would be
easy to make a mistake in the program leading to the exception either not being caught or being
caught by the wrong handler. This second reason is important as we often need an exception to
be caught by a particular handler (especially if the exception carries information). We cannot
make the mistake of forgetting a handler (represented by the wrapper) in this case as it would
prevent the program from type-checking.

While wrapping functionals cannot capture every possible use of exceptions, it can simulate
a wide range of applications. By using this technique, we can save exceptions forexceptional
circumstances where they really are required (such as terminating a program completely because

12

of an operating system error).

3.6.2 Continuations

Wrappers can control execution paths similarly to some uses of continuations. It is possible
to simulate some applications of continuations on languages without continuations (e.g. SML
without the extensions added to Standard ML of New-Jersey (NJ/SML)) using this technique. I
will show how it is possible to implement an example from the paper introducing continuations
for SML (as implemented in NJ/SML) [4]. The example written using continuations is shown in
Figure 21, it consists of a producer and consumer pair communicating through a shared reference.

Figure 21 A producer-consumer program written using continuations for NJ/SML, taken
from [4]. The functionsproduce andconsume will alternate whenpRun is called. Note
that the producer and consumer are ignorant about what a state actually is.

datatype state = STATE of state cont ;

fun resume (STATE k : state) : state =
callcc (fn k’ : state cont => throw k (STATE k’)) ;

val buf = ref 0 ;

fun produce(n : int, cons : state) =
(buf := n ; produce(n+1, resume(cons))) ;

fun consume(prod : state) =
(print ((Int.toString (!buf))ˆ"\n") ; consume(resume(prod)))

fun pInit(n : int) : state =
callcc(fn k : state cont => produce (n, STATE k))

fun pRun () = consume(pInit(0))

Besides the ‘state’ (containing a continuation), the producer has a value which it can pass to
the future calls to itself. The consumer has no data, but the program could be changed so it can
pass a value to its next incarnation.

In my version of this communicating system, the producer and consumer are defined as a pair
of functionals. The producer will pass an integer when it makes a recursive call, the consumer
will pass the unit value written as ‘() ’ in SML. I will write my scheduler in such a way that it is
polymorphic on the types of values passed on by the producer and consumer. The implementa-
tions of the producer and consumer appear in Figure 22.

13

Figure 22A one place buffer and the producer and consumer functionals.

val buf = ref 0 ;

val produce_ =
fn produce => fn i =>
(buf := i; produce (i+1)) ;

val consume_ =
fn consume => fn () =>
(print ((Int.toString (!buf))ˆ"\n"); consume ()) ;

The functionalproduce expects to receive a function which will do any other scheduled
tasks (in this case this is the consumer) and then return to the producer with the new value.
Similarly for the consumer functional, though it does not pass on a meaningful value.

The scheduler appears in Figure 23, instead of usingFIX a pair of mutually recursive func-
tions perform both the wrapping and fixing of the functionals.

Figure 23A scheduler. For clarity we combine wrapping and fixing in a pair of mutually recurs-
ive function definitions. SML’s type system prevents us from using a single function definition as
there is no polymorphic recursion (since the values associated with the producer and consumer
differ).

fun schedule p_ c_ pP cP =
p_ (schedule’ p_ c_ cP) pP

and schedule’ p_ c_ cP pP =
c_ (schedule p_ c_ pP) cP ;

A pair of functions is required to fix the two functionals as these pass on two different types.
The scheduler works for any pair of functionals with types of the form(A -> A) -> A -> A
whereA is the type of value passed on to the next instance.

To run the scheduled processes pass the two functionals and two starting values to the sched-
uler, as shown in Figure 24.

14

Figure 24 SML session running the producer and consumer. The type constraint is required as
otherwise this (non-terminating) function would produce a result of polymorphic type, SML’s
type system does not allow this.

> (schedule producer_ consumer_ 1 ()) : unit ;
1
2
3
4

. . . the program never terminates.

To demonstrate the flexibility of this way of scheduling processes, I define a different con-
sumer in Figure 25, in this example both the producer and consumer pass on information (of
different types), only the new process and the compound process need to be compiled to run the
new system.

Figure 25 An alternative consumer which can be scheduled usingschedule of Figure 23.
This gathers up the values from the producer into a list. When running, the final parameter to the
scheduler should be the empty list instead of() .

val consumer2_ = fn consumer2 => fn l =>
consumer2 ((!buf)::l)

A criticism which may be levied against my version of the producer-consumer program is
that it relies on a mutually recursive pair of functions and so cannot easily be extended to handle
any number of processes. The same argument holds against the continuation based program in
Figure 21, in fact thepRun andpInit functions of the scheduler would have to be rewritten if
we wished to change the type of the consumer. In general however it is easier to deal with large
numbers of processes using continuations, and the lack of polymorphic recursion in SML proves
a limitation when writing such programs as functionals.

4 Application to a type-checker

I developed the idea of using wrappers while writing an extension to the Hindley-Milner type-
inference algorithm,W . In this section I will describe my program, and how and why it was
written. A listing of the final program and examples of its use can be found in Appendix A.

15

4.1 Starting point

4.1.1 AlgorithmW

W is a type inference algorithm for Hindley-Milner type systems such as that of SML. I star-
ted with an implementation of algorithmW (written to be as close as possible to the description
in [3]). The algorithm takes aλ+let -calculus expression together with a set of type assumptions
for free identifiers in the expression, and produces an infered type for the expressions together
with a set of type assumptions (represented as a substitution from type-variables to types). The
algorithm recursively calls itself on subexpressions and can fail if the results from two subexpres-
sions do not fit together (this is generally called a ‘unification’ error because of the unification
subroutine used to combine two types).

4.1.2 My Implementation

The original version of my function was defined using an SMLfun declaration. When the
function failed to find a type for some subexpression, it simply raised an exception causing it to
terminate.

4.2 Required extension

My objective was to modify the program so that when encountering a subexpression with no
type, instead of raising an exception a message is printed to inform the user and type-checking
continues on the remainder of the program (possibly printing more error messages).

I wanted to implement this in a flexible way, for example so that I could substitute a more
complex function in place of the simple error reporter (perhaps to print more information about
the error, or to select only a subset of the errors to be reported). I also wanted to implement
this in a pure functional style (with no exceptions or references). I wish the program to avoid
imperative features as I intend to extend it further and to be able to study the algorithm without
complications.

4.3 Modified implementation

I chose to implement the changes to my program using combinators as much as possible, so
that the underlying algorithm could still be clearly seen and the combinators can be removed
to retrieve the original code. For example, if my implementation involved theoption type to
handle missing information, I would have used combinators such asOption.map andvalOf
to keep the code as clean as possible. In this respect, I follow the example of Ramsey [6].

I decided to change my code to a functional version suitable for the fixed point combinator
(this was a simple change to make, essentially involving only a change from “fun W . . . ” to
“val W = fn W => . . . ”). This allowed me to insert other code (a wrapper) to deal with
errors, I realised this would help because there should be a maximum of one error reported for
every call toW .

16

My first attempt used a homogenous wrapper. The wrapper only printed messages, and the
main functional had to deal with a datatype which could represent missing information. This
implementation seemed unsatisfactory as there were many changes to the main functional.

In the second version (shown in Appendix A along with examples of its results),W expected
to receive a value on recursive calls but returned an option (e.g. it could returnNONEif it failed
to unify two types). The heterogenous wrapper turns the type-checker into atotal function by
returning the pair〈Id, α〉 (α is new) when no type can be derived. This pair is a ‘safe’ assumption
as it will never create a conflict with another type (it can be unified with any type).

The function does not produce better error reporting than implementations of this algorithm
found in compilers, but it should be easier to modify in the future.

A further change I may make is to split the wrapper in two. One wrapper could provide the
assumed value, and the other could print the message. This would make it easy to study different
ways of doing each of these tasks.

4.4 Relevance to other applications

I had very specific aims when I implemented this variation of my type-inference function. While
my own situation may differ from that of a typical programmer working on a software engin-
eering project, the ability to make changes to code in such a flexible way while producing code
which is possible to reason about is important to everyone.

5 Conclusions

I have demonstrated that by implementing a recursive function using the fixed-point combinator
we can easily write ‘wrappers’ to intercept recursive calls and perform useful operations on the
data flowing in and out (e.g. printing trace messages or replacing null results with assumed
values). Moreover, we can use a wrapper to change the data (and even the type of data) returned
from ‘recursive’ calls and to make modifications to the algorithm (such as memoisation).

Wrappers are easy to implement and use, and can be repeatedly applied to functionals without
recompiling the functional or wrapper. We can therefore easily test different wrappers and com-
binations of wrappers without the time consuming (and possibly error-prone) tasks of rewriting
and recompiling programs. We can also use the same wrapper on a number of different function-
als, for example to write a number of different memoised functions. Because of this flexibility,
wrappers are ideal not only for adding to the functionality of programs, but also as software
engineering tools.

The technique has been shown to be useful and easy to use by the conversion of a simple
type-checker into one which prints error messages, and its flexibility has been shown through a
series of examples in which the factorial function is modified in different ways (such as making
it print intermediate results or memorise results).

Though more work is needed to devise a consistent method of providing total control over the
execution of recursive functions (e.g. to allow backtracking; upwards propagation of information
about the call tree; and to simulate some complex applications of continuations) and the lack

17

of polymorphic recursion in SML could prove to be a major limitation, examples included here
demonstrate that basic higher-order programming techniques (wrappers and theY combinator)
are powerful enough to simulate a wide range of situations in which exceptions or continuations
might be used. Avoiding the used of these control structures and using only higher-order func-
tions produces programs which are easier to analyse.

18

A Implementation of a type-checker

A.1 Program code

The original version ofWwas a simple recursive function defined usingfun . Whenever the
algorithm failed in the original, an exception was raised.

In the new version,Wis defined via a non-recursive functionalW which expects atotal
function as its first parameter but is itself onlypartial (possibly returning only a description of
why it has failed in place of infered information). The wrapper turns the partial function into a
total function by providing a ‘safe’ assumed value.

A.1.1 The main functor

functor Infer (structure StatObjects : STAT_OBJECTS
structure Assume : ASSUME
structure Exp : EXP
sharing type StatObjects.ty = Assume.ty

and type Assume.id = Exp.id
and type Assume.scheme = StatObjects.scheme)

: INFER =
struct

type exp = Exp.exp
type scheme = StatObjects.scheme
type assume = Assume.assume

(* Instead of returning options, we return a result which could
contain a message. *)

datatype ’a result =
OK of ’a

| FAIL of string

val assumeSubst = fn S => Assume.map (StatObjects.substSch S)

(* W_ expects (subst * ty) option as the result of recursive calls,
but returns (subst * ty, string) result. *)

val W_ = fn W =>
fn (A, Exp.ID i) =>
let

val tau = Option.map StatObjects.genInst (Assume.lookup i A)
in

case tau of
SOME tau => OK(StatObjects.id, tau)

| NONE => FAIL "Unbound identifier"

19

end
| (A, Exp.APP(e1, e2)) =>

let
val (S1, tau1) = W (A, e1)
val A’ = assumeSubst S1 A
val (S2, tau2) = W (A’, e2)
val tau1’ = StatObjects.subst S2 tau1
val beta = StatObjects.mkVarTy (StatObjects.newTyvar ())
val funTy = StatObjects.mkFunTy(tau2, beta)
val Vopt = StatObjects.U (tau1’, funTy)

in
case Vopt of

SOME V =>
OK
(StatObjects.compose

(V, (StatObjects.compose (S2, S1))),
StatObjects.subst V beta)

| NONE => FAIL ("Cannot apply\n "ˆ
(StatObjects.stringTy tau1)ˆ
"\nto\n "ˆ
(StatObjects.stringTy tau2))

end
| (A, Exp.ABS(x, e)) =>

let
val beta = StatObjects.mkVarTy (StatObjects.newTyvar ())
val (S, tau) =

W(Assume.append(A, (x, StatObjects.forall ([], beta))),
e)

in
OK(S,

StatObjects.subst S
(StatObjects.mkFunTy(beta, tau)))

end
| (A, Exp.LET(x, e1, e2)) =>

let
val (S1, tau1) = W(A, e1)
val tau1’ = Assume.closure (assumeSubst S1 A) tau1
val (S2, tau2) = W(assumeSubst S1

(Assume.append (A, (x, tau1’))),
e2)

in
OK(StatObjects.compose (S2, S1), tau2)

end

(* The wrapper takes the result of W_ and

20

Prints failure message (if necessary),
returns an option. *)

val wrap = fn W_ => fn W’ => fn p as (A, e) =>
case W_ W’ p of

OK (S, tau) => (S, tau)
| FAIL m => (print ("FAILURE in\n"ˆ(Exp.toString e)ˆ

"\n"ˆmˆ"\n");
(StatObjects.id,

StatObjects.mkVarTy
(StatObjects.newTyvar ())))

(* It would be possible to use a more complex wrapper to do something
more complex here, and my intention is to improve this wrapper
at a later date (e.g. to calculate a better assumption and/or
provide different information to the user). *)

val W_’ = wrap W_
val W = Fix.fix W_’

(* infer is just a ‘user interface’ wrapper, which converts the
(S, tau) pair into a single type-scheme *)

val infer = fn (A, e) =>
let

val _ = StatObjects.reset()
in

(fn (S, tau) => Assume.closure (assumeSubst S A) tau)
(W (A, e))

end

end

A.1.2 Signatures

These signatures are required by the functor.

signature STAT_OBJECTS =
sig

eqtype tyvar
val newTyvar : unit -> tyvar
val reset : unit -> unit (* Reset tyvars produced *)

eqtype tycon
val tycon : string -> tycon

21

eqtype ty
val mkVarTy : tyvar -> ty
val mkFunTy : (ty * ty) -> ty
val mkConTy : ty list * tycon -> ty

eqtype scheme
val forall : (tyvar list * ty) -> scheme
val genInst : scheme -> ty

val tyvars : ty -> tyvar list
val freeTyvars : scheme -> tyvar list

val stringTy : ty -> string
val stringScheme : scheme -> string

type subst

val id : subst

val subst : subst -> ty -> ty

val substSch : subst -> scheme -> scheme

val compose : (subst * subst) -> subst

val U : ty * ty -> subst option

end

signature ASSUME =
sig

type assume

val empty : assume

type id

type ty
type scheme

val lookup : id -> assume -> scheme option

val append : (assume * (id * scheme)) -> assume

22

val closure : assume -> ty -> scheme

val map : (scheme -> scheme) -> assume -> assume

val basis : assume

end

signature EXP =
sig

eqtype id

val idToString : id -> string
val idFromString : string -> id

datatype exp = ID of id
| ABS of (id * exp)
| APP of (exp * exp)
| LET of (id * exp * exp)

val toString : exp -> string

end

A.2 Results

A.2.1 Example causing one failure

Input program

let
func = fn i => fn j => i j

in
let

value = one
in

func value
end

end

Output

FAILURE in
(func) (value)
Cannot apply

23

((’A4) -> (’A3)) -> ((’A4) -> (’A3))
to

int

Explanation func expects a function as its parameter, butvalue is an integer.

A.2.2 Example causing multiple failures in different declarations

Input program

let
func = fn i => fn j => i i

in
let

value = one one
in

func value
end

end

Output

FAILURE in
(i) (i)
Cannot apply

’A0
to

’A0
FAILURE in
(one) (one)
Cannot apply

int
to

int

Explanation The first failure occurs because a function’s parameter cannot be applied to itself.
After finding the error in the first declaration, the program goes on to check the rest of the
program (finding the second error as it does this). The assumed types forfunc andvalue
ensure that no errors are announced for the final expression.

A.2.3 Example with two errors in one application

Input

pair (cons nil zero) (succ nil)

24

Output

FAILURE in
((cons) (nil)) (zero)
Cannot apply

(’A3 list list) -> (’A3 list list)
to

int
FAILURE in
(succ) (nil)
Cannot apply

(int) -> (int)
to

’A8 list

Explanation The list constructor,cons , expects an item followed by a list (this is the cause
of the first error). The successor function cannot be applied to the empty list,nil . Even though
both errors are in the same expression (not separated by declarations or abstraction), they are
both detected independently.

25

References

[1] Dave Berry, Greg Morrisett, and Rowan Davies.comp.lang.ml Frequently Asked Ques-
tions and Answers.
Available from ftp://pop.cs.cmu.edu/usr/rowan/sml-archive/faq.txt ,
1997.

[2] Alonzo Church.The calculi of lambda conversion. Princeton University Press, 1941.

[3] Luis Damas and Robin Milner. Principal type-schemes for functional programs. InNinth
Annual Symposium on Principles of Programming Languages. Association of Computing
Machinery, ACM Press, 1982.

[4] Bruce F. Duba, Robert Harper, and David MacQueen. Typing First-Class Continuations
in ML. In 18th Symposium on Priniciples of Programming Languages, pages 163–173.
Association of Computing Machinery, ACM Press, 1991.

[5] Matthias Felleisen and Danial P. Friedman.(Y Y) Works! A lecture on theWhyof Y, 1991.

[6] Norman Ramsey. Eliminating spurious messages. Technical Report CS–97–06, Department
of Computer Science, University of Virginia, 1997.

[7] Guillermo Juan Rozas. Taming the Y combinator. InACM Conference on Lisp and Func-
tional Programming. Association of Computing Machinery, 1992.

26

