
Categorical Structure of Continuation
Passing Style

Hayo Thielecke

Doctor of Philosophy
University of Edinburgh

1997

Abstract
This thesis attempts to make precise the structure inherent in Continuation Pass-
ing Style (CPS).

We emphasize that CPS translates λ-calculus into a very basic calculus that
does not have functions as primitive.

We give an abstract categorical presentation of continuation semantics by
taking the continuation type constructor ¬ (or cont in Standard ML of New
Jersey) as primitive. This constructor on types extends to a contravariant functor
on terms which is adjoint to itself on the left; restricted to the subcategory of
those programs that do not manipulate the current continuation, it is adjoint to
itself on the right.

The motivating example of such a category is built from (equivalence classes
of typing judgements for) continuation passing style (CPS) terms. The categor-
ical approach suggests a notion of effect-free term as well as some operators for
manipulating continuations. We use these for writing programs that illustrate
our categorical approach and refute some conjectures about control effects.

A call-by-value λ-calculus with the control operator callcc can be inter-
preted. Arrow types are broken down into continuation types for argument/result-
continuations pairs, reflecting the fact that CPS compiles functions into a special
case of continuations. Variant translation are possible, among them “lazy” call-
by-name, which can be derived by way of argument thunking, and a genuinely
call-by-name transform. Specialising the semantics to the CPS term model allows
a rational reconstruction of various CPS transforms.

Acknowledgements
I would like to thank my supervisors, Stuart Anderson and John Power.

Thanks for discussions and comments to Olivier Danvy, Matthias Felleisen,
Andrzej Filinski, Masahito “Hassei” Hasegawa, John Hatcliff, Peter O’Hearn,
Alan Paxton, Andy Pitts, Jon Riecke, David N. Turner and Phil Wadler.

Thanks to Glynn Winskel for inviting me to Aarhus for a week.
Diagrams were typeset with XY-pic.
I am grateful to my parents for moral and financial support throughout. To

them this thesis is dedicated.

Declaration
I declare that this thesis was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text.

(Hayo Thielecke)

Table of Contents

List of Programs 4

Chapter 1 Introduction 6

1.1 An introduction to continuations in programming languages . . . 7
1.1.1 An example program . 9
1.1.2 Upward continuations . 14
1.1.3 Continuation Passing Style 15
1.1.4 CPS as name-passing . 17

1.2 Introducing the continuation functor 18
1.2.1 The self-adjointness of higher-order jumping 21
1.2.2 Alternative control operators 24

1.3 Related Work . 26
1.4 Outline . 28

Chapter 2 The CPS calculus 31

2.1 CPS calculus . 31
2.2 Recursive CPS calculus . 34
2.3 Operational semantics for CPS 35

2.3.1 Observational congruence 35
2.4 Linear CPS calculus . 36

2.4.1 Linear unary CPS calculus 37
2.5 Constants . 37
2.6 Translation from CPS calculus . 38
2.7 Idioms and jargon for the CPS calculus 42

Chapter 3 CPS transforms 44

3.1 A survey of CPS transforms . 45
3.2 A simplified notation for non-recursive CPS 49
3.3 Soundness of the uncurrying call-by-name CPS transform 51
3.4 CPS transforms to the λ- and π-calculi 54

1

3.4.1 Prompts and control-specific full abstraction 55
3.5 Flattening transforms . 57

3.5.1 Flattening applications . 58
3.5.2 Flattening tuples . 58

3.6 A duality on CPS terms . 59
3.7 Two connections between call-by-value and call-by-name 62
3.8 From flattening tuples to premonoidal categories 64

Chapter 4 ⊗¬-categories 67

4.1 Introduction: what structure do we need? 67
4.2 Semantics of environments in a premonoidal category 69
4.3 Continuation types as higher-order structure 72
4.4 Some interdependencies of properties 75
4.5 λ-abstraction in a ⊗¬-category 77

Chapter 5 The CPS term model 81

5.1 Building a category from CPS terms 81
5.1.1 First-order structure . 81
5.1.2 Application as double negation elimination 82
5.1.3 Thunking as double negation introduction 84

5.2 The ⊗¬ term model . 84
5.3 The indexed ¬ term model . 92
5.4 Recursion in CPS . 93

5.4.1 Recursion from iteration 95

Chapter 6 Effects in the presence of first-class continuations 96

6.1 Using the current continuation twice 97
6.1.1 Writing twicecc compositionally 97

6.2 Copying and discarding . 100
6.2.1 twicecc is not thunkable 103
6.2.2 Cancellable and copyable are orthogonal 103
6.2.3 First-class control is not an idempotent effect 104

6.3 Centrality and effect-freeness . 105
6.3.1 twicecc is not central . 108

6.4 Another non-copyability result . 111
6.5 The failure of Laird’s bootstrapping of force 115
6.6 Cross reference to preceding chapters 118
6.7 Discriminating λx.xx and λx.x(λy.xy) under call by name 118

2

Chapter 7 Categorical semantics in ⊗¬-categories 124

7.1 Call-by-value semantics . 124
7.1.1 The naturality of callcc 125

7.2 Plotkin call-by-name semantics and variants 125
7.3 Uncurrying call-by-name semantics 127
7.4 State and meta-continuation-passing 128
7.5 Categorical semantics for CPS calculus 129

7.5.1 Continuation Grabbing Style semantics for CPS-calculus . 129
7.5.2 Back to Direct Style semantics for CPS-calculus 130

Chapter 8 Indexed ¬-categories 135

8.1 Environments as indices . 135
8.2 Premonoidal categories . 137
8.3 κ-categories . 140
8.4 Continuation semantics in indexed ¬-categories 143
8.5 Relating ⊗¬-categories and indexed ¬-categories 146

Chapter 9 Towards a graphical representation of CPS 150

9.1 A graphical calculus . 150
9.2 Duality, or inside out . 151
9.3 The CPS monoid . 152
9.4 Self-adjointness, or upside down 153
9.5 A semantics for linear unary CPS calculus 155
9.6 Duality and degeneracy . 156

Chapter 10 Conclusions and directions for further research 158

10.1 Conclusions . 158
10.2 Directions for further work . 158

10.2.1 Language design . 158
10.2.2 Applications to programming 159
10.2.3 Relation to π- and related calculi 160
10.2.4 The expressive power of callcc 161
10.2.5 Internal languages . 161
10.2.6 Robustness . 161
10.2.7 Refinement of the standard model 162
10.2.8 Relation to polymorphism and semantics in general 162

Bibliography 164

3

List of Programs

1.1 Two jumps in C . 8
1.2 Two jumps in ML . 8
1.3 Two jumps in Scheme . 8
1.4 remberuptolast in ML . 9
1.5 remberuptolast without consing in ML 10
1.6 remberuptolast without consing in Scheme 10
1.7 remberuptolast with dragging a pointer across the list (In ML) . 12
1.8 remberuptolast with dragging a pointer across the list (In Scheme) 12
1.9 remberuptolast (without consing) with ML exceptions 13
1.10 remberuptolast with explicit passing of a continuation parameter 13
1.11 remberuptolast with explicit passing of a continuation parameter 13
1.12 Categorical combinators for continuations in nj-sml 19
1.13 Categorical combinators for continuations in Scheme 20

6.1 twicecc in continuation-grabbing style (nj-sml) 98
6.2 twicecc in continuation-grabbing style (Scheme) 98
6.3 twicecc in compositional style (nj-sml) 98
6.4 twicecc in compositional style (Scheme) 98
6.5 Effectfulness of twicecc. Copying a computation, copying its re-

sult and a context to distinguish them (nj-sml) 101
6.6 Effectfulness of twicecc. Copying a computation, copying its re-

sult and a context to distinguish them (Scheme) 101
6.7 force is not copyable (nj-sml) 102
6.8 force = call/cc is not copyable (Scheme) 102
6.9 force can reify by being precomposed (in ML) 106
6.10 force can reify by being precomposed (in Scheme) 107
6.11 twicecc is not central (shown using I/O) 109
6.12 twicecc is not central (In ML) 109
6.13 twicecc is not central (In Scheme) 110
6.14 argfc cannot be copied (in ML) 112

4

6.15 argfc cannot be copied (in Scheme) 113
6.16 argfc with local state (in ML) . 114
6.17 argfc with local state (in Scheme) 114
6.18 Variant of callcc with void-returning continuations 115
6.19 Laird’s bootstrap in ML . 116
6.20 Laird’s bootstrap in Scheme . 116
6.21 Failure of Laird’s bootstrap: A distinguishing context in ML . . . 117
6.22 Failure of Laird’s bootstrap: A distinguishing context in Scheme . 117
6.23 Distinguishing λx.xx and λx.x(λy.xy) under call by name 122

5

Chapter 1

Introduction

The aim of this thesis is to make explicit the structure underlying continuation
passing style, reifying it, so to speak, by making it less of a style and more of a
structure.

There are (as yet) few programming languages that “have” continuations in
the sense of possessing a language construct for giving unrestricted access to
continuations. In a wider sense, however, most programming languages “have”
continuations in some sense or another. In contemporary Computer Science,
continuations may appear in various settings 1 and under different guises, among
them at least the following:

• as a style of semantic definition in denotational semantics, giving meaning
to generalised jumps;

• as a programming technique in mostly, or even purely, functional languages

• as a programming construct in (mostly/impurely) functional languages

• as a compiling technique

Many textbooks on denotational semantics, such as [Ten91] and [Sch86], contain
some material on continuations in the context of imperative languages.

As a first-class continuation primitive is part of the official definition of Scheme
[Re91], textbooks on Scheme, such as [FF96] typically give some examples of its
use, the most advanced being perhaps [SF89].

The functional programming textbook [Hen87] gives a thorough introduction
to the use of continuations in program transformation and code generation (inter-
estingly, using a purely functional language without control operators — which

1We have listed here only what can be considered mainstream in that it appeared in several
textbooks and is tought in undergraduate or at least MSc courses.

6

can be seen as evidence of the usefulness of continuations as a technique even
without language support.)

Continuations as an implementation technique are used in [FWH92] for a toy
interpreter and in [App92] for the New Jersey ML compiler.

1.1 An introduction to continuations in program-
ming languages

This section is intended to provide some background: the reader familiar with
continuations can safely skip it and jump to section 1.2 below.

The goto familiar from typical imperative (or “heritage”) languages like C

corresponds to a command continuation [SW74]. The much more powerful “jump
with arguments”, which we will be concerned with, corresponds to expression
continuations. Here a value is passed, or “thrown” along with the transfer of
control, much like the arguments in a function call. These were written with the
special forms valof and resultis in [SW74]; this construct survives in typical
imperative languages only in the case when the block is a function body: in this
case the result of the function is thrown by the return statement.

Incidentally, the reason, in our view, that goto may justly be considered
“harmful” [Dij68] is that it is so weak. In particular, it cannot pass arguments and
can be compared to GOSUB (without arguments) as a cruder and less structured
counterpart of a genuine procedure call.

See figures 1.1, 1.2 and 1.3 on page 8 for examples of jumps with and without
arguments.

We are particularly interested in two aspects of continuations: their use in
giving semantics to control operators, and their use in compiling functions into
more primitive jumps with arguments.

We illustrate the use of the control operator callcc by discussing a simple
example, using both Scheme and (the New Jersey version of) ML in the hope
that the reader may be familiar with one of these.

For Scheme, first-class continuations are part of the language definition [Re91].
In ML they are not, but the New Jersey implementation (see the manual [NJ93])
adds first-class continuations to ML by means of the following signature:

type ’a cont

val callcc : (’1a cont -> ’1a) -> ’1a

val throw : ’a cont -> ’a -> ’b

7

char* f()
{
return "Threw past the loop.\n";
while(1);

}

main()
{
goto skip;
while(1);
skip: printf("Jumped past the loop.\n");
printf("%s", f());

}

Figure 1.1: Two jumps in C

fun loop x = loop x;

callcc(fn skip =>
loop(throw skip ()));

output(std_out,"Jumped past the loop.\n");

output(std_out,
callcc(fn skip =>

loop(throw skip "Threw past the loop.\n")));

Figure 1.2: Two jumps in ML

(define (loop x) (loop x))

(begin
(call/cc(lambda (skip)

(loop (skip (list)))))
(write "Jumped past the loop."))

(write
(call/cc(lambda (skip)

(loop (skip "Threw past the loop.")))))

Figure 1.3: Two jumps in Scheme

8

fun remberuptolast a lat =
callcc(fn skip =>

let fun R [] = []
| R (b::l) =

if b = a then throw skip (R l) else b::(R l)
in

R lat end);

Figure 1.4: remberuptolast in ML

1.1.1 An example program

As an example of the use of expression continuations in programming, we con-
sider the function rember-upto-last form the recent programming textbook The
Seasoned Schemer [FF96]:

The function rember-upto-last takes an atom a and a lat [list of
atoms] and removes all the atoms from the lat up to and including the
last occurrence of a. If there are no occurrences of a, rember-upto-last
returns the list.

First we transliterate 2 the function rember-up-to-last from the original
Scheme to ML (see figure 1.4 on page 9).

remberuptolast a lat removes everything up to the last occurrence of a

from the list lat. For instance:

- remberuptolast 42 [];

val it = [] : int list

- remberuptolast 42 [1,2,3,4,5,6,7,8,9];

val it = [1,2,3,4,5,6,7,8,9] : int list

- remberuptolast 42 [1,2,3,4,42,5,6,7,8,9];

val it = [5,6,7,8,9] : int list

- remberuptolast 42 [1,2,3,4,42,5,6,7,42,8,9];

val it = [8,9] : int list

- remberuptolast 42 [1,2,3,4,42,5,6,7,42,8,9,42];

val it = [] : int list

2We pass between the different lexical conventions for identifiers in ML abd Scheme
(e.g.callcc and call/cc) without emphasising it. Similarly, in a more idealised setting we
write λ where one would have fn in ML and lambda in Scheme.

9

fun remberuptolast a lat =
callcc(fn skip =>

let fun R [] = ()
| R (b::l) =

(R l;
if b = a then throw skip l else ())

in
(R lat; lat) end);

Figure 1.5: remberuptolast without consing in ML

(define (rember-upto-last a lat) ; Look Ma no cons
(call/cc
(lambda (skip)
(letrec

((R
(lambda (l)
(if (null? l)

(list)
(begin

(R (cdr l))
(if (eq? a (car l))

(skip (cdr l))
(list)))))))

(begin (R lat) lat)))))

Figure 1.6: remberuptolast without consing in Scheme

10

The local helper function R in remberuptolast recurs over the list lat; every
time the element a is encountered the remainder of the list is made the overall re-
sult by being passed to the result continuation skip. Note that this is essentially
iteration and jumping, which becomes even clearer if we rewrite remberuptolast
so that it does not copy the list (figures 1.5 and 1.6 for remberuptolast without
consing). In this version, R does all its work by recurring and jumping, its re-
turn value being irrelevant. In that sense, it is highly non-functional, but rather
“jumperative”3. In fact, we can push the analogy with imperative programming
even further. The solution of traversing the list and throwing every time an a

in found is similar to the imperative solution of dragging a pointer across the
list, that is, updating a variable every time an a is found (figures 1.7 and 1.8).
In some sense, there is a duality here: a throw preempts later throws, while an
assignment undoes earlier assignments. Similarly, providing lat as a default (for
the case when no jump occurs) result at the very end of the argument of callcc
is analogous to initialising p to lat at the very beginning.

In this example, the jump with arguments provided by continuation invocation
could also be written using ML [Pau91], [MTH90] exceptions (which may be more
familiar to some readers): see figure 1.9. callcc(fn skip => . . .) is roughly
analogous to declaring a local exception and and handling it by retaining the
value it passed; while while throwing a value to a continuation is analogous to
raising an exception with that value.

Exceptions, and their semantic differences compared with first-class continu-
ations, are beyond the scope of this thesis. If pushed too far, the analogy with
exceptions may actually be misleading.

Hence we consider another way of explicating the role of continuations in
the example: that is, by making them an explicit argument to a function. This
foreshadows the formal (continuation) semantics of callcc.

Figures 1.10 and 1.11 show how remberuptolast can be written by explicitly
passing a continuation parameter during the recursion of R. This yields a purely
functional program, as all occurrences of control operators have been expanded
out or compiled away, as it were.

Note how jumping (if an a is found in the list) in the programs with callcc

in figures 1.5 and 1.6 amounts to ignoring the continuation parameter k in the
programs with an explicit continuation parameter in figures 1.10 and 1.11. 4

3to use a term coined by M-x dissociated-press in emacs
4Experts would perhaps point out that the versions of rember-upto-last with explicit

continuations in figures 1.10 and 1.11 are not strictly the continuations counterparts of the ones
with callcc and that they correspond more closely to aborting whenever an a is found and

11

fun remberuptolast a lat =
let val p = ref lat in

let fun R [] = ()
| R (x::l) =

(if x = a then p := l else ();
R l)

in
R lat;
!p

end
end;

Figure 1.7: remberuptolast with dragging a pointer across the list (In ML)

(define (rember-upto-last a lat)
(letrec

((p lat)
(R
(lambda (l)
(if (not (null? l))

(begin
(if (eq? a (car l))

(set! p (cdr l)))
(R (cdr l)))))))

(begin
(R lat)
p)))

Figure 1.8: remberuptolast with dragging a pointer across the list (In Scheme)

12

fun remberuptolastexn a lat =
let exception skipexn of int list in

let fun R [] = ()
| R (b::l) =

(R l;
if b = a then raise skipexn l else ())

in
(R lat; lat)

end
handle skipexn x => x
end;

Figure 1.9: remberuptolast (without consing) with ML exceptions

fun remberuptolast a lat =
let fun R [] k = k ()

| R (b::l) k =
R l
(fn () =>
if b = a then l else k ())

in
R lat (fn () => lat) end;

Figure 1.10: remberuptolast with explicit passing of a continuation parameter

(define (rember-upto-last a lat) ; Look Ma, no cons
(letrec

((R
(lambda (l k) ; R has a continuation parameter k
(if (null? l)

(k)
(R (cdr l)

(lambda ()
(if (eq? a (car l))

(cdr l)
(k))))))))

(R lat (lambda () lat))))

Figure 1.11: remberuptolast with explicit passing of a continuation parameter

13

While this formulation is very succinct, it is hard to understand in intuitive
programming terms, in that what is intuitively a jump is expressed by modifying
the current continuation before passing it to the recursive call. Here we have
introduced continuations only in that small portion of the program that makes
use of them. In general, we would have to introduce them everywhere, lead-
ing to a virtually unreadable program full of anonymous λ terms representing
continuations.

1.1.2 Upward continuations

The example of rember-upto-last in section 1.1.1 is perhaps not totally felici-
tous in that it only uses “downward” continuations (in the sense of [FWH92]: a
continuation can be passed “down”into a function call as an argument, but not
“up” from it as a result). Downward continuations do not really reveal the full
power of first-class continuations, as the latter comprise also the “upward” case.
The last two chapters of the textbook [SF89] are devoted to the use of continua-
tions; unfortunately heavy use is made of local state. While this combination of
first-class continuations with local state gives rise to a very useful programming
idiom (coroutines), it does not illustrate the power of continuations on their own,
without state. It is not totally clear whether, in the absence of local state to
encapsulate the current continuation [HFW86], [SF89], or at least a global queue
of suspended threads [BCL+96], one can obtain coroutines from continuations.
See also [Shi96].

Nevertheless, the following, somewhat Mickey Mouse, example of two corou-
tines from [SF89] can be written without using state. Instead we use a function
phi to manipulate the current continuation, about which we will say more in
section 1.2 below.

(define (phi f)

(lambda (h)

(call/cc (lambda (k) (h (f k))))))

(define (ping a)

(phi (lambda (x) (write a) x)))

(((ping ’ping) (ping ’pong)) ((ping ’ping) (ping ’pong)))

The two functions printing ping and pong, respectively, call each other inces-

delimiting this within the definition of rember-upto-last.

14

santly, producing a string

pingpongpingpongpingpong . . .

In fact, an even more distilled construction of looping from a double self-
application with first-class continuations in the untyped setting of Scheme is wit-
nessed by the fact that

((call/cc call/cc) (call/cc call/cc))

loops.
The failure to consider upward continuations appears to be the cause of a

misapprehension that one sometimes encounters, holding that “there are no closed
terms of continuation type”. It is easy to find examples refuting this, e.g. the
following:

- callcc(fn k => throw (callcc(fn h => throw k h)) 42);

val it = cont : int cont cont

Below, we introduce a set of functions (1.12 on 19 and figure 1.13 on page 20
for ML and Scheme) with which we can write terms of continuation type more
succinctly, for instance

- thunk 42;

val it = cont : int cont cont

— as well as the following:

- funtocont (fn x : int => x);

val it = cont : (int * int cont) cont

1.1.3 Continuation Passing Style

In the last version of remberuptolast (figures 1.10 and 1.11) the function R takes
an explicit continuation argument instead of seizing the current continuation by
means of a callcc. More generally, a program with callcc can be translated into
one without, but such that everything takes an explicit continuation argument.
(This continuation argument is an ordinary function, not an element of some
special continuation type.) For a highly idealised programming language, namely
simply-typed λ-calculus augmented by the constant callcc, this translation is
the CPS transform (adapted here from [DHM91], an extension of [Plo75]):

15

x = λk.kx

λx.M = λk.k(λxh.Mh)

MN = λk.M(λf.N(λx.fxk))

callcc M = λk.M(λf.fkk)

throwM N = λk.M (λk.Nk)

CPS transforms such as this may seem quite confusing if considered formalis-
tically as translations of λ-calculi, in that there is no obvious sense in which they
are homomorphic or otherwise structure-preserving; certainly λ is not translated
to λ.

This becomes somewhat clearer if we think of a CPS transform as an idealised
compilation. For instance, the translation of a function λx.M needs an explicit
return address h for the function body M along with its argument x; that explains
λxh.Mh. As we have a language with higher-order functions, the whole function
needs to be computed in the first place. Now function definitions evaluate to
themselves, or more accurately, the compiled λxh.Mh is immediately passed to
the overall return address k, i.e. k(λxh.Mh).

In a sense, no function in CPS ever returns; each will ultimately call some
continuation. So in order to make CPS work, only some mechanism for passing
arguments (without returning) is required — such as input prefixes in a process
calculus. What is crucial, though, is that the recipient address of such an input
can itself be passed as an argument. But that is the main feature of the π-calculus
(where this is often called “mobility”).

We can thus transliterate the CPS transform above, yielding a transform with
the π-calculus as the target language, related to, though not quite identical with,
Milner’s translations [PS93]. (The main reason that Milner’s translation differs
from our is that it was originally designed for the monadic, not the polyadic,
variant of the π-calculus.) In addition, this transform also has clauses for callcc
and throw:

LxM(k) = k〈x〉
Lλx.MM(k) = (νl)(k〈l〉 | ! l(xh).LMM(h))

Lthrow M NM(k) = (νm)(LMM(m) | !m(n).LNM(n))

Lcallcc MM(k) = (νm)(LMM(m) | !m(l).l〈kk〉)
LMNM(k) = (νm)(LMM(m) | !m(l).(νn)(LNM(n) | ! n(a).l〈ak〉))

16

1.1.4 CPS as name-passing

We briefly comment on CPS as an idealised compilation, using Milner’s π-calculus
as the target language.

Exponentials and λ-abstraction are often taken as foundational for the se-
mantics of programming languages. Naively, though, a “function” call consists
of two jumps with arguments: first the caller jumps to the callee, passing it the
actual parameters (if any) and the return address; the callee jumps to the return
address, passing the result (if any).

Less naively, one could argue that a concept of reference, address or pointer
(here in particular: pointer to code) is more fundamental for actual computation
than the notion of function; the π-calculus is perhaps the most successful embod-
iment of this view. But it is chiefly the mobility aspect of the π-calculus that
matters here, concurrency being somewhat orthogonal.

Both continuation-passing style [Plo75, DHM91] and the π-calculus decom-
pose or “compile” function abstraction into such jumps with arguments. Recall
the clause for λ:

Lλx.MM(k) = (νl)(k〈l〉 | ! l(xh).LMM〈h〉)

Here the caller would have to jump to the address l with actual parameters for x

and h, while the callee, for, say M = a, would jump to h with argument a. For
simplicity, let us consider a function without arguments, i.e. a delayed term or
thunk—the control flow becomes clearer if the jumping is not interspersed with
arguments.

LdelayMM(k) = (νl)(k〈l〉 | ! l(h).LMM(h)h)

Such delayed terms can be forced to evaluate themselves by sending them a
request for data, that is, an address where these are to be sent.

Lforce (delayM)M(k) = (νm)
(
LdelayMM〈m〉 | m(l).l〈k〉

)
So in particular, for M = a,

Lforce (delaya)M(k) = (νm)
(
LdelayaM(m) | ! m(l).l〈k〉

)
= (νm)

(
(νl)(m〈l〉 | ! l(h).h〈a〉) | ! m(l).l〈k〉

)
= (νl)

(
! l(h).h〈a〉 | l〈k〉

)
= k〈a〉
= LaM(k)

Looking at the jumps m〈l〉, l〈k〉, k〈a〉, we could observe that control first flows
outward, as the delayed expression evaluates to the thunk located at l, then

17

inwards, as the force sends the thunk a request to evaluate itself, and then
outward again, if the forced thunk sends a. From the point of view of the delayed
expression, though, one could equally say that its surrounding evaluation context
is delayed—the thunk (! m(l).l〈k〉) located at m— and needs to be forced by the
m〈l〉. The complementary forcings m〈l〉 and l〈k〉 cancel each other out. Somehow
the computation seems to be turned around, or even to be turned inside out
(twice, even). This appears to have inspired the coinage “pivots”[PS96].

In our view, this is not an epiphenomenon, but something characteristic of
control flow in a mostly functional setting. In fact, we will base our account on a
categorical notion of turning inside out, that is duality in the sense of adjointness
of a functor to its own dual.

1.2 Introducing the continuation functor

We give a first exposition of the crucial concepts from a programming perspective.
All important examples, displayed in figures, are bilingual, in both ML and

Scheme. In the main text there is usually a certain bias towards ML, largely
because ML produces type information along with results.

The ML implementation used in the experiments was Standard ML of New
Jersey, Version 0.93. No ML implementation with both the new value polymor-
phism and first-class continuations was available at the time of writing; that is
why we have weak type variables (’1a, ’2b, . . .) in programs with continuations
(see [HDM93] and [NJ93]). For Scheme, Bigloo (v1.6) and Gambit were used.

A by-product of a categorical semantics is a set of so-called categorical com-
binators. For λ-calculus, its categorical semantics in Cartesian closed categories
yields, for instance, the evaluation map and morphism pairing. These can be
seen as constituting a combinatory logic, with the added benefit of being more
semantically inspired than the Schönfinkel combinators S and K (see [FH88] for a
discussion). It is in fact easier to define the negation functor if we know that what
we are aiming for is an adjunction. Both the isomorphism of adjunction φ and the
unit forceare easy to define, and in terms of these, we have ¬f = φ(f ◦ force),as
in figures 1.12 and 1.13. Defined in one step, the negation functor is somewhat
harder to read, not least because of the nested callcc:

fun negate f =

fn h => callcc(fn k =>

throw h (f (callcc(fn p =>

throw k p))));

18

fun force h = callcc(throw h);
force : ’1a cont cont -> ’1a;

fun phi f h = callcc((throw h) o f);
phi : (’2a cont -> ’b) -> (’b cont -> ’2a);

fun negate f = phi(f o force);
negate : (’1a -> ’b) -> (’b cont -> ’1a cont);

fun thunk a = callcc(fn k => throw (force k) a);
thunk : ’1a -> ’1a cont cont;

fun conttofun c a =
callcc(fn k => throw c (a,k));
conttofun : (’a * ’2b cont) cont -> (’a -> ’2b);

fun funtocont f =
callcc((fn (a,k) => throw k (f a)) o force);
funtocont : (’1a -> ’1b) -> (’1a * ’1b cont) cont;

fun delay f x = ((negate(negate f)) o thunk) x;
delay : (’2a -> ’2b) -> (’2a -> ’2b cont cont);

Figure 1.12: Categorical combinators for continuations in nj-sml

negate : (’2a -> ’b) -> (’b cont -> ’2a cont);

The typing, such as it is, of continuations in Scheme consist of the single axiom

(call-with-current-continuation procedure?)⇒ #t

stating that what call-with-current-continuation passes to its argument is
a procedure.

It is essential here that continuations do not have to be unary, that is they
can take more than one argument — this makes it possible to identify functions
with a special case of continuations. In ML, this can be accommodated easily, as
a multi-argument function or continuation is one that takes a tuple of arguments.
Moreover, this is symmetric in that multiple return values amount to a single
return value that is a tuple.

Writing the same programs in Scheme is slightly awkward, because stan-
dard “R4RS” (as specified by the Revised4 Report on the Algorithmic Language

19

(define compose
(letrec ((compose-list

(lambda (l)
(lambda (x)

(if (null? l)
x
((car l) ((compose-list (cdr l)) x)))))))

(lambda l
(compose-list l))))

; force (in our sense) = call/cc when applied to a continuation

(define (phi f)
(lambda (h)
(call/cc (compose h f))))

(define (negate f)
(phi (compose f call/cc)))

(define (cont-to-fun c)
(lambda (a)
(call/cc (lambda (k)

(c (list a k))))))

(define (fun-to-cont f)
(call/cc
(compose
(lambda (ak)
((cadr ak) (f (car ak))))

call/cc)))

(define (thunk a)
(call/cc (lambda (k)

((call/cc k) a))))

Figure 1.13: Categorical combinators for continuations in Scheme

20

Scheme [Re91]), does not have multiple return values. In order to return multiple
values, one needs to return a single list.

Hence, unlike in ML, we cannot use even use the rudimentary pattern match-
ing available for lambda expressions in Scheme

(lambda (x1 . . . xn) M)

Instead, we write only single-argument procedures whose argument is a list. The
individual arguments are extracted from this list using projections car, cadr,
caddr,

In more modern implementations of Scheme incorporating multiple return
values as proposed in [Ree92], one could rewrite most of the Scheme programs
presented here more elegantly.

In Scheme, there is some possibility of confusion between the force as we
define it and the built-in procedure force in Scheme. In fact, both have nearly
the same functionality of forcing a thunk. The difference between them is that
thunk forced by the Scheme force is call-by-need, in that a second forcing will
not evaluate it again, whereas our force in terms of continuations only (without
any updating) conforms to the original call-by-name meaning of thunks [Ing61].

1.2.1 The self-adjointness of higher-order jumping

We give a detailed, but not formalised, argument in terms of what happens during
evaluation. (One could formalise this, either using a CPS transform, or the
operational semantics from [HDM93].)

We would like to show that the structure that we wish to analyse is due to
the intended meaning, independent of any particular formalisation.

Let callcc and throw be abbreviated as C and T, respectively.
From a programming perspective, the self-adjointness is closely related to a

style of using continuations that Sabry calls Continuation Grabbing Style [Sab96].
Its characteristic idiom is the following pattern of use of callcc:

(λx.N)(C(λk.M))

where both N and M jump out of their context by ultimately throwing. We say
that the callcc binds k to the continuation λx.N .

force allows the argument of a continuation to turn the tables on its contin-
uation.

Th(forcek) = T k h

21

force = λk.C(λp.T k p)

Th (forcek)

= Th (C(λp.T k p))

Th makes h the continuation of its argument. T k h

¬(λx.x)

= λh.C(λk.Th((λx.x)forcek))

= λh.C(λk.Th((λx.x)(C(λp.T k p))))

= λh.C(λk.Th(C(λp.T k p)))

= λh.C(λk.T k h)

¬f ◦ ¬g
= (λh1.C(λk1.Th1 f (C(λp1.T k1 p1))))(λh2.C(λk2.Th2 g (C(λp2.T k2 p2))))

= λh2.(λh1.C(λk1.Th1 f (C(λp1.T k1 p1))))(C(λk2.Th2 g (C(λp2.T k2 p2))))

(λh1. . . .) is a λ-expression, so its argument is evaluated next. The callcc binds
the k2 to λh1. . . . and T g makes the argument position of g the continuation of
the following term; this seizes its current continuation and binds it to p2, which is
then thrown to k2. Because k2 was bound to λh1. . . . it follows that h1 becomes
p2. The C(λk1. . . .) seizes the overall continuation and binds k1 to it. Th1 makes
h1 the continuation for f . Hence if f returns a result, this will be fed to h2 and
thus to g. The argument position of f is seized by the C(λp1. . . .), and bound to
p1 and then thrown to k1.

What is important here is that the throwing in the middle amounts just to a
function composition of f and g, so the whole term is equivalent to

λh.C(λk.Th (g ◦ f)(C(λp.T k p)))

which is ¬(g ◦ f).

¬¬A
¬¬f

��

force // A

f
��

¬¬B force // B

¬A ¬force //

id $$I
II

II
II

II
¬¬¬A

force
��
¬A

For example

22

- 1+callcc(fn k => 10 + throw ((force o (negate force)) k) 2);

val it = 3 : int

force = λh.C(λk.Thk)

¬ f = λh.C(λk.Th (f (forcek)))

= λh.C(λk.Th (f (C(λp.T k p))))

force ◦ ¬force
= (λh1.C(λk1.Th1 k1))

◦(λh2.C(λk2.Th2 (force (C(λp.T k2 p)))))

= (λh1.C(λk1.Th1 k1))

◦(λh2.C(λk2.Th2 ((λh3.C(λk3.Th3 k3)) (C(λp.T k2 p)))))

= λh2.(λh1.C(λk1.Th1 k1))(C(λk2.Th2 ((λh3.C(λk3.Th3 k3)) (C(λp.T k2 p)))))

If we try to formulate the triangular identity in prose, we would arrive at the
following narrative about jumping:

Let us assume that force ◦ ¬force gets evaluated. h2 becomes the current
argument; let us call the overall continuation of the whole expression k. We would
like to show that all that happens is that, in some circuitous manner, the current
argument h2 is passed to the current continuation k.

First of all, the term in the operator position is evaluated; as it is a λ-
expression (λh1. . . .), its argument is evaluated next. This is has C in the op-
erator expression: evaluating C(λk2. . . .) it binds k1 to λh1. Then the throw

to h2 is executed, making h2 the continuation of the subsequent term. This is an
application, with a λ-expression (λ.k3. . . .) in the operator position, so its argu-
ment is evaluated next. Again, executing the C(λp. . . .) binds p to λh3. . . ., before
throwing it to k2. Now k2 was bound to λh1, so h1 becomes p. The body of the
λ-expression then executes the callcc in C(λk1. . . .), which binds k1 to the cur-
rent continuation, which at this point is the overall continuation k. This is then
thrown to h1. This having been bound to p, which in turn points to λ.h3 . . ., h3

becomes k. The body of the λ-expression following λh3 is then evaluated; this is
the fourth and last callcc. This C(λk3. . . .) binds k3 to the current continuation,
which, due to the surrounding Th2, is just h2. Finally, this is thrown to k3, which
is to say to the overall continuation k.

23

Now we turn to the naturality.

f ◦ force
= λh.f(C(λk.Thk))

The thunk h is forced and the result supplied to f as its argument.

force ◦ ¬¬f
= (λh1.C(λk1.Th1 k1))

◦ (λh2.C(λk2.Th2 ((λh3.C(λk3.Th3 (f (forcek3))) (forcek2)))

= (λh1.C(λk1.Th1 k1))

◦ (λh2.C(λk2.Th2 ((λh3.C(λk3.Th3 (f (C(λp3.T k3 p3))))) (C(λp2.T k2 p2)))))

= λh2.(λh1.C(λk1.Th1 k1))

(C(λk2.Th2 ((λh3.C(λk3.Th3 (f (C(λp3.T k3 p3))))) (C(λp2.T k2 p2)))))

h2 is the overall argument. The operator position is (λh2. . . .); hence the argument
is evaluated. This is a callcc, which binds k2 to λh1. The Th2 is executed,
making h2 the continuation of the following term. The operator is (λk3. . . .), so
the argument is evaluated. This is C(λp2. . . .), which binds p2 to λk3. The
T k2 is executed; because k2 was bound to λh1. . . ., it follows that h1 becomes p2.
The body of λh1. . . . is evaluated; C(λk1. . . .) binds k1 to the overall continuation
k. This is then passed to h1. Because h1 was bound to p and p to λh3. . . ., this
means that h3 becomes k. The C(λk3. . . .) binds k3 to the current continuation
at this point. Because of the surrounding Th2 this is h2.

Hence the whole term is equivalent to

λh2.f(λp3.Th2 p3)

Not only do first-class continuations give rise to an adjunction; this is also a
particularly simple kind of adjunction. Whereas one would normally have two
functors, two naturality squares (one each for unit and counit) and two triangular
identities comprising an adjunction (as in a Cartesian closed category, say), we
have one of each. (This is fair enough somehow, in that a continuation is half a
function.)

1.2.2 Alternative control operators

We explain that our categorical combinators give a complete set of control oper-
ators, and hence an alternative to callcc and throw.

24

In the previous section, we focussed on the functor and the unit. But an
adjunction can equally well be expressed by the isomorphisms of adjunction; we
now explain how this can be seen as a new control operator.

phi together with a coercion function from functions to continuations is a
complete set of control operators, like callcc together with its coercion function
throw (coercing ¬τ to τ → α).

callcc does two conceptually quite separate things with the current continu-
ation: first it copies it, then it makes one of the copies available to its argument
as an ordinary function argument. The other copy is given as the current contin-
uation to the argument of callcc.

One could separate these; in particular Felleisen’s control operator C does not
copy the continuation. The continuation is given as an argument to the argument
of C, but the current continuation is not supplied to it.

Like C, phi considered as a control operator does not copy the continuation,
without the need to consider terms that can do without the current continuation.

For comparison, we list the CPS semantics of

• callcc with ML-style typing;

• a variant call/cc closer to that of Scheme, in that the continuation is
wrapped into a procedure;

• the C-operator, which is like call/cc, but does not copy the continuation
it seizes;

• φ, or phi in ASCII, which does not copy the continuation either, but re-
quires a second argument to supply the continuation for its first.

callccM = λk.M(λf.fkk)

call/ccM = λk.M(λf.f(λxk′.kx)k)

CM = λk.M(λf.f(λxk′.kx)(λx.x))

φM N = λk.M(λf.N(λn.fkn))

For comparison: callcc(λk.M) binds the current continuation, which nonetheless
is also the continuation for M , to k; C(λk.M) binds the current continuation to
k, the price for which is that M does not get a current continuation; φ(λk.M)h

binds the current continuation to k and supplies h as the continuation for M .

25

None of these is any more generic than the others, as they are all interdefin-
able 5, but φ is perhaps special in that it emphasises a certain symmetry: both
callcc and throw are special instances of it.

In the typing of continuations in ML, callcc needs its companion throw,
which is just a coercion from continuations to functions.

If one is willing to identify continuations with certain procedures those that
ignore their result continuation), as in Scheme, then callcc on its own is enough.

If we are willing to make another identification, reducing functions to continu-
ations, rather than embedding continuations into functions, then phi on its own,
without coercions, is enough. In continuation semantics, a function call consists
of passing both an argument and a return continuation to a function. A function,
then, is just something that expects these two: in other words, a continuation for
an argument/result continuation pair.

Hence, if σ → τ were an abbreviation for ¬(σ ∗ ¬τ), phi by itself would be
sufficient. We can recover callcc and force from phi as follows.

fun throw2 a = phi(fn h => a);

throw2 : ’a -> ’a cont -> ’2b;

fun callcc2 f = (phi(fn k => (k,k))) (funtocont f);

callcc2 : (’1a cont -> ’1a) -> ’1a;

The unit force and the negation functor can be defined similarly in terms of phi.

val force2 = phi(fn x => x);

force2 : ’1a cont cont -> ’1a;

fun negate2 f = phi(f o force2);

negate2 : (’1a -> ’b) -> ’b cont -> ’1a cont;

Axiomatising, and calculating with, phi, force and negate would then be
guided by the standard equational laws for adjunctions.

1.3 Related Work

Variants of the continuation functor, though not qua functor, have made appear-
ances in the literature, e.g. in [Hof94]. The following from [Shi96] also appears to
be related.

5We gloss over the issue of the aborting implicit in C.

26

(compose-cont k f) ≡ (lambda (v) (f v k))

By the standards of Computer Science, and particularly among advanced pro-
gramming language concepts, continuations are of great antiquity: the term “con-
tinuation” was coined in [SW74]; Continuation Passing Style appears implicitly
in [Fis72] (final version in [Fis93]) and explicitly in [Ste78]. (For a history see
[Rey93].)

They are also (explicitly or implictly) an almost ubiquitous concept. Thus the
potential background to the present thesis is vast. In addition to the literature on
continuations proper e.g. [Plo75, FFKD86, SF90, HDM93], work on the π-calculus
([Mil91] and [PS93]; explicitly in [Bou97]) and Scheme [Ste77, Ste78, Ste76] also
has some relevance.

A “ deep” connection between continuations and classical logic in sometimes
claimed, e.g. [Gri90], [RS94]. This seems orthogonal to our approach. Or we
could argue that first-class continuations have plenty of interesting structure in
their own right, so that there is no pressing need to establish connections to logic
in order to elucidate them.

There is, however, a much smaller area of work that is of direct relevance here.
The first attempt at a categorical continuation semantics was Filinski’s pioneering
[Fil89]. With the benefit of hindsight, [Fil92] is in its emphasis on linearity an
aberration. Filinski later chose to regard continuations not as primitive but as a
special instance of monads [Fil96]. Similar in its use of the monadic metalanguage
to provide a systematic presentation and classification is Danvy and Hatcliff’s
[DH94]. Much can be done in that setting, but decomposing the monad into
two instances of the continuation functor affords a more fine-grained analysis —
including, crucially, the control operators and an abstract account of thunking
[HD95].

Finally, one of the most important influences was the typing of first-class con-
tinuations in Standard ML of New Jersey, with the continuation type as primitive
[HDM93]. (See also the conference version [DHM91], where a CPS semantics is
given.) This type discipline is a natural starting point for a (categorical) seman-
tics: looking for universal properties of the continuation type constructor, one is
led to self-adjointness.

Incidentally, it was primarily for reasons of polymorphic typing that the con-
tinuation type was made primitive in Standard ML of New Jersey [HDM93]
(whereas the more minimalist, and untyped, Scheme simply conflates continu-
ations and procedures). We should like to regard this as a fortunate preadaption
(in the Darwinian sense) on the part of ML.

27

To summarise, what is perhaps amazing about Continuation Passing Style is
how far one can get with three little equations

x = λk.kx

λx.M = λk.k(λxk.Mk)

MN = λk.M(λm.N(λn.mnk))

These from [Plo75], together with two more if we include callcc and throw

[DHM91], encapsulate much of the backdrop to this thesis. To distill things
further, we could say that the essence of the transformation is really in the clause
for λx.M , that is, what happens to a function. Much of the effort herein is
devoted to trying to understand what

λx.M = λk.k(λxk.Mk)

really means, without taking the λ’s on the right too literally, but rather adopting
the view point of “λ the ultimate goto” [Ste77].

1.4 Outline

The aspect of CPS that is particularly emphasized in this thesis is that it breaks
down function types into continuations.

This view of function calls as “jump with arguments” [Ste78, SS76] is not low-
level and implementation specific, but should be taken seriously in semantics.

We also develop a calculus in support of this view. The categorical account
should be seen as complementary, not as an alternative, to it. The bureaucracy
inherent in names and their scope is particularly virulent in a name-passing cal-
culus, and although the CPS calculus is in some sense like an internal language,
even conceptually primitive operations can have quite complicated representa-
tions (for instance thunk and pair). This makes the more high-level, variable free,
perspective of a categorical description a valuable addition.

Focussing on the category of computations also facilitates experimentation,
in that we can write programs in real world languages, without some monadic
interpreter. as a bag on the side of Haskell, say.

In such experiments, or validations of concepts, the categorical semantics sug-
gests building blocks (for instance ◦ for functions, map for lists [Bac78]), which
could be regarded as “categorical combinators”, like eval for the λ-calculus.

In our case, the use of these categorical combinators lets us avoid spaghetti
code, like nested occurrences callcc.

28

Just as we try to be faithful to those features of CPS that are in evidence,
such as breaking down of functions types, we avoid introducing anything that is
not naturally part of it. A case in point are coproducts, in particular, the empty
coproduct 0 and the identification of continuations with functions A→ 0.

Parts of this thesis have appeared in [Thi96a] [Thi97]; some of it is joint work
[PT97], comprising chapter 8 here.

Chapter 2 The target language of the CPS transforms is presented as a calculus
in its own right, which we call the CPS calculus. This calculus is very simple
and quite low-level: only variables may be passed as arguments, moreover an
application is more like a jump with arguments than a λ-calculus application
in that it forgets its calling context. Compared to λ-calculus, the CPS

calculus could be said to be somewhere in between the λ-calculus itself
and explicit substitutions. Some variants are also considered, mostly for
theoretical reasons.

Chapter 3 is a review and discussion of various CPS transforms that have ap-
peared in the literature. Call-by-value is the basic case, various other calling
mechanisms being derivable by argument thunking.

Chapter 4 The categorical account of the structure underlying continuation
semantics is developed. Its fundamental structure is what we call self-
adjointness, i.e. a functor adjoint to its own dual in the two possible senses,
i.e. on the left and on the right. Environments are modelled by means
of premonoidal structure. This comes equipped with a notion of central
morphism.

Chapter 5 A term model is constructed as an instance of the categorical frame-
work in chapter 4. This is a CPS analogue of the construction of a Cartesian
closed category from simply-typed λ-calculus. In the setting of the term
model, the syntactic form of CPS terms can be related to the semantic
properties of the morphisms they represent.

Chapter 6 is an excursion, inasmuch as it illustrates some issues concerning
(semantic) notions of effect-freeness by means of concrete examples and
counter-examples. Specifically, we demonstrate that a term being can-
cellable (which has also been called total) is not sufficient for it to be free
of effects, whereas it being central is. At the same time, it is a first attempt
at showing how the categorical structure of continuations can help to write

29

programs, as we build on the functions defined in section 1.2. Thus it com-
plements chapter 5, using the structure from chapter 4 at the level of the
source language of CPS transforms.

Chapter 7 The categorical counterpart of the CPS transforms is given by cate-
gorical semantics. Parts of this chapter parallel chapter 3, giving a rational
reconstruction of CPS transforms. Among the categorical structures in-
troduced in Chapter 4, the self-adjointness on the left is shown to underlie
both the semantics of control operators and the thunk/force-mechanism
for variant calling strategies.

Chapter 8 A different categorical perspective on the self-adjointness is provided
by studying it in the framework of indexed categories; this shows the fun-
damental structure for continuations to be independent of the way envi-
ronments are modelled. Initially, in early drafts, there were two separate
formulations of the categorical continuation semantics presented in this the-
sis; these were then shown to be essentially equivalent in joint work with
John Power.

Chapter 9 We present some (preliminary) material on graphical representations
capturing some aspects of CPS. The formal link is again established by
self-adjointness — which can be visualised in this setting as turning upside
down. Some issues concerning the relation of CPS to duality are raised.

Chapter 10 concludes and points towards directions for further work, among
them some loose ends from the previous chapters as well as some more
ambitious proposals giving continuations a fundamental rôle.

The reader interested chiefly in the programming perspective may find it useful
to concentrate on section 1.2 and Chapter 6. The latter can be understood
independently of most of the preceeding chapters. It is quite long, because many
programs are included, but also because the counterexamples presented there,
while initially intended to show only that a certain subcategory does not admit
a (canonical) product, proved quite fruitful in refuting many naive assumption
about continuations.

Some knowledge of category theory would probably be helpful, but only very
little is really required. The various equivalent characterisations of adjunctions
(found in any category theory textbook, e.g. [Mac71]) would perhaps be the most
useful thing to keep in mind.

30

Chapter 2

The CPS calculus

We consider the target language of CPS transforms as a calculus in its own right
(similar to the intermediate language of the compiler in [App92]), which we call
the CPS calculus.

The CPS calculus was first used as a common idiom for the λ- and the π-
calculus in [Thi96b]. It was then turned into a calculus in its own right in the
course of initial discussions with Phil Wadler and David N. Turner.

Notational preliminaries

We let lowercase letters x, y, n, m, k, l, . . . range over variables (names) and up-
percase letters M, N, . . . range over terms (in various calculi). ~x, ~y, . . . range over
sequences x1 . . . xi of names. Commas in sequences are often omitted. When used
as indices, lowercase letters range over natural numbers, e.g. x1 . . . xn.

We write M [x 7→ N] for the capture-avoiding substitution of N for x in
M . Similarly, if ~x = x1 . . . xj and ~y = y1 . . . yj, we write M [~x 7→ ~y] for the
simultaneous substitution of yi for xi (i = 1, . . . , j) in M .

We use the traditional semantics brackets J−K for (categorical) semantics and
the slightly different L−M parentheses for transformations that can be seen as
somewhat intermediate between a proper semantics and a mere translation (a
matter of degree, not principle).

2.1 CPS calculus

The raw terms of the CPS calculus are given by the following BNF:

M ::= x〈~x〉 | M{x〈~x〉=M}

We call a term of the form k〈~x〉 a jump and a term of the form M{n〈~x〉=N} a
binding. As a first hint at the intended meaning, k〈~x〉 is a jump to the continua-

31

tion k with actual parameters ~x, while M{n〈~x〉=N} binds the continuation with
body N and formal parameters ~x to n in M .

2.1.1 Remark While succinct, the presentation of the syntax is strictly speaking
an abuse of notation, common for λ-calculi, in that the same symbol is used
for a syntactic category and the typical metavariable ranging over it. A more
technically orthodox BNF could be given as follows.

Term ::= V ar "〈" V ar∗ "〉"
| Term "{" V ar "〈" V ar∗ "〉=" Term "}"

Every CPS term can be written as a jump followed by a sequence of bindings,
that is, a term of the following form

k〈~x〉{p1〈~y1〉=M1} . . .{pn〈~yn〉=Mn}

Hence the BNF could be written in a somewhat cluttered form, like this:

M ::= x〈~x〉{x〈~x〉=M} . . . {x〈~x〉=M}

The set of free variables FV(M) of a CPS term M is defined as follows.

FV(x〈y1 . . . yk〉) = {x, y1, . . . , yk}
FV(M{n〈y1 . . . yk〉=N}) = (FV(M) \ {n}) ∪ (FV(N) \ {y1, . . . , yk})

In M{n〈~x〉=N} the scope of n extends to the left, while that of the xi extends
to the right. Therefore we have left and right α-conversions.

M{n〈~x〉=N} = M{n〈~y〉=N [~x 7→ ~y]} (αR)

M{n〈~x〉=N} = M [n 7→ n′]{n′〈~x〉=N} (αL)

We usually gloss over the α-conversion by identifying terms up to renaming of
bound variables.

The axioms of CPS calculus are as follows.

L{m〈~x〉=M}{n〈~y〉=N} = L{n〈~y〉=N}{m〈~x〉=M{n〈~y〉=N}} (Distr)

m 6= n m, ~x /∈ FV(N)
k〈~y〉{n〈~z〉=N} = k〈~y〉, n 6∈ FV(k〈~y〉) (GC)

n〈~y〉{n〈~z〉=N} = N [~z 7→ ~y] (Jmp)

M{n〈~x〉=n′〈~x〉} = M [n 7→ n′] (Eta)

The (Jmp) law is in some sense what drives the computation. By contrast,
(GC) and (Distr) can be seen as “structural” laws like those of the π-calculus.

Most of these laws appear in Appel’s [App92]. See also [Ste78].

32

We will be concerned primarily with simply-typed CPS terms. The only type
constructor is the negation type ¬(). The BNF for (simple) types for the CPS

calculus is as follows.
τ ::= ¬(τ1 . . . τn) | b

where b ranges over base types.
Terms are then typed according to these two rules:

Γ, k : ¬~τ , ~y : ~τ ` k〈~y〉
Γ, n : ¬~τ `M Γ, ~y : ~τ ` N

Γ `M{n〈~y〉=N}

Typing judgements in CPS are one-sided. Whereas in λ-calculus a judgement
Γ `λ M : τ (where we have decorated the Urteilsstrich ` with a λ to emphasise
that this is a λ-calculus judgement) states that, in the type environment Γ, the
term M has the type τ , a CPS typing judgement Γ `M states that, in the type
environment Γ the CPS term is consistent. Similar type systems exist for process
calculi, e.g. [Tur95]. For example, x : τ `λ x : τ states that under the assumption
that x has type τ , x has type τ . By contrast x : τ, k : ¬τ ` k〈x〉, states that,
under the assumption that x has type τ and k has type ¬τ , passing x to τ “does
not go wrong”.

Alternatively, one could compare a CPS term to a command in languages
like Idealized Algol, in that it is run for effect, not value.1 In that sense, a CPS

judgement x1, . . . , xn `M is analogous to M being a command, as in

x1 : var[τ1], . . . , xn : var[τn] `M : comm

We could call this “consistency” in that it implies that all internal communi-
cations channels, so to speak, are used in a consistent manner. Logically it would
appear closer to inconsistency, inasmuch as Γ ` M could be read as “M witnesses
that Γ entails a contradiction”, such as in the example above where Γ contained
both the assumptions that τ and not τ . The typing rule for the binding construct
could then be read as stating that if both “Γ and ~τ” and “Γ and not ~τ” entail a
contradiction, then the contradiction must be due to Γ alone.

In addition to these rules, we assume permutation, contraction and weakening
of typing environments unless explicitly stated otherwise.

x1 : τ1, . . . , xn : τn `M

xπ(1) : τπ(1), . . . , xπ(n) : τπ(n) ` M
π is a permutation of {1, . . . , n}

Γ `M

Γ, x : τ `M

Γ, x : ~τ, y : ~τ `M

Γ, x : ~τ `M [y 7→ x]

1This was pointed out to me by Peter O’Hearn.

33

One could visualize a CPS term as representing the state of a (stackless,
heap-allocating) abstract machine.

q︸︷︷︸
IP

〈p1 . . . pl︸ ︷︷ ︸
actuals

〉{ n1︸︷︷︸
address

〈x1 . . . xi︸ ︷︷ ︸
formals

〉= N1︸︷︷︸
code

} . . . {nm〈~xm〉=Nm}

2.2 Recursive CPS calculus

All that is needed in order to make the calculus recursive is to change the visibility
of names, making the address of a binding visible within its body, so that in
M{n〈~x〉⇐N}, N may refer to itself under n.

We use a slightly different notation for the binding construct, “⇐” instead of
“=”, to indicate the possibility of recursion.

M ::= x〈~x〉 | M{x〈~x〉⇐M}

Again, the BNF could be rendered in a more orthodox fashion:

Term ::= V ar "〈" V ar∗ "〉"
| Term "{" V ar "〈" V ar∗ "〉⇐" Term "}"

For the recursive CPS calculus, we modify the typing as follows.

Γ, n : ¬~τ `M Γ, ~x : ~τ , n : ¬~τ ` N

Γ `M{n〈~x〉⇐N} Cyclic Closure

As we have broadened the scope of n, we need to modify the left α-conversion
correspondingly.

M{n〈~y〉⇐N} ≡ M [n 7→ n′]{n′〈~y〉⇐N [n 7→ n′]}

The definition of free variables needs to be modified similarly.

FV(x〈y1 . . . yk〉) = {x, y1, . . . , yk}
FV(M{n〈y1 . . . yk〉⇐N}) = (FV(M) \ {n}) ∪ (FV(N) \ {n, y1, . . . , yk})

The set of bound variables is defined as follows.

BV(x〈y1 . . . yk〉) = ∅
BV(M{n〈y1 . . . yk〉⇐N}) = BV(M) ∪ BV(N) ∪ {n, y1, . . . , yk})

The axioms of the recursive CPS-calculus are as follows.
L{m〈~x〉⇐M}{n〈~y〉⇐N} = L{n〈~y〉⇐N}{m〈~x〉⇐M{n〈~y〉⇐N}} (Distr)

m 6= n m, ~x /∈ FV(N)
k〈~y〉{n〈~z〉⇐N} = k〈~y〉, n 6∈ FV(k〈~y〉) (GC)

n〈~y〉{n〈~z〉⇐N} = N [~z 7→ ~y]{n〈~z〉⇐N} (RecJmp)

M{n〈~x〉⇐n′〈~x〉} = M [n 7→ n′] (RecEta)

n 6= n′

34

Notice that the modification of the closure typing law makes the unrestricted
Eta law unsound. Consider

n〈a〉{x〈x〉⇐n〈x〉} = n〈a〉[n 7→ n] = n〈a〉.

But we know that n〈a〉{x〈x〉⇐n〈x〉} loops, which should not be identified with
the terminating n〈a〉. Hence the side condition on variables precluding the loop-
ing.

2.3 Operational semantics for CPS

We consider jumping as the only behaviour of CPS terms. The jumping axiom is
accompanied by the distributive law, which can be seen as a structural congruence
(in the sense of Milner) or “heating” (in the chemical metaphors of Boudol), in
that its purpose is to bring together the component parts of a (jumping) redex.

2.3.1 Definition We define oriented versions of the axioms distr and jump as
follows (avoiding name capture):

L{m〈~x〉=M}{n〈~y〉=N} ⇀ L{n〈~y〉=N}{m〈~x〉=M{n〈~y〉=N}} , n 6= m
n〈~y〉{n〈~z〉=N} → N [~z 7→ ~y]

2.3.1 Observational congruence

While derivability from the CPS axiom is the least equality we would wish to im-
pose on CPS terms, a notion of observational equivalence is arguably the greatest
such notion we could consider. (Here least and greatest are to be understood in
the sense of set-theoretic inclusion of relations, i.e. the least equality equates the
fewest terms.)

We define observational equivalence ≈ for CPS. We choose at our notion of
observation the “external” jump that a term may perform after it has performed
some internal jumps. For instance, in a jump of the form k〈~x〉, we can observe
(the occurrence of a a jump to) k. More generally, a free variable in the leftmost
position can be observed.

2.3.2 Definition Let M ↓ k iff M ⇀∗→∗ k〈~x〉{p1〈~y1〉=M1} . . .{pn〈~yn〉=Mn}
and k /∈ {p1, . . . , pn}.

Let M ≈ N iff for all contexts C and names k, C[M] ↓ k iff C[N] ↓ k

The axioms of the equational theory of the CPS calculus become laws in the
operational congruence.

35

2.3.3 Proposition

L{m〈~x〉=M}{n〈~y〉=N} ≈ L{n〈~y〉=N}{m〈~x〉=M{n〈~y〉=N}} (Distr)

m 6= n m, ~x /∈ FV(N)
k〈~y〉{n〈~z〉=N} ≈ k〈~y〉, n 6∈ FV(k〈~y〉) (GC)

n〈~y〉{n〈~z〉=N} ≈ N [~z 7→ ~y] (Jmp)

M{n〈~x〉=n′〈~x〉} ≈ M [n 7→ n′] (Eta)

This follows from preliminary work by Massimo Merro on a restricted version of
the π-calculus [Davide Sangiorgi and Massimo Merro, personal communication];
the details may appear elsewhere.

2.4 Linear CPS calculus

We consider a linear version of the calculus, as linearity will sometimes allow a
less complicated account.

In the linear CPS calculus the Garbage Collection and the Distributivity
axioms do not make sense. For a term M{n〈y〉=N}, GC is applicable iff n

does not occur in M , while Distr allows one to distribute the binding for n to
multiple occurrences. Neither of these cases is well-typed in the linear calculus.
So instead we have two separate axioms allowing us to “float” a binding into a
term L{M〈x〉=M}, depending upon whether n occurs in the left subterm (L)
or the right one (M). The linear calculus is still a fragment of the general CPS

calculus, as each application of the floating laws can be simulated by distributing
and garbage collection.

2.4.1 Definition The axioms of the linear CPS calculus are as follows.

n〈~y〉{n〈~z〉=N} = N [~z 7→ ~y] (Jmp)

M{n〈~x〉=n′〈~x〉} = M [n 7→ n′] (Eta)

L{m〈~x〉=M}{n〈~y〉=N} = L{n〈~y〉=N}{m〈~x〉=M} (Float-L)

if m 6= n, n /∈ FV(M)
L{m〈~x〉=M}{n〈~y〉=N} = L{m〈~x〉=M{n〈~y〉=N}} (Float-R)

if m 6= n, n /∈ FV(L)

The main point of restrictions like linearity is that they allow translations
from CPS to less powerful calculi: the linear CPS calculus can be translated
into Milner’s action structure for the π-calculus [Mil93]. Let k〈x̃〉† = (ỹ)[k〈x̃〉]〈〉.
If M† = (ỹn)S〈〉 and N † = (ỹ)T 〈〉, then let

(M{n〈x̃〉=N})† = (ỹ)[νn]_S_[n(x̃)]_T 〈〉

36

2.4.1 Linear unary CPS calculus

But we are more interested in restricting the linear CPS calculus even further.
The subset of CPS calculus in which only a single argument is allowed in jumps
k〈x〉 and bindings M{n〈x〉=N} is called unary, as opposed to polyadic. The
BNF for the unary subset of the CPS calculus is this:

M ::= x〈x〉 | M{x〈x〉=M}

For the fragment of CPS calculus that is both linear and unary, we can give
a simplified presentation of the typing rules:

xk ` k〈x〉 xk ` x〈k〉

xn ` M yk ` N

xk ` M{n〈y〉=N}
nk `M yx ` N

xk `M{n〈y〉=N}

2.4.2 Definition The axioms of the linear unary CPS calculus are as follows.

n〈y〉{n〈z〉=N} = N [z 7→ y] (Jmp)

M{n〈~x〉=n′〈~x〉} = M [n 7→ n′] (Eta)

L{m〈~x〉=M}{n〈y〉=N} = L{n〈y〉=N}{m〈~x〉=M} (Float-L)

if m 6= n, n /∈ FV(M)
L{m〈~x〉=M}{n〈y〉=N} = L{m〈~x〉=M{n〈y〉=N}} (Float-R)

if m 6= n, n /∈ FV(L)

2.4.3 Remark In a binding expression M{n〈~x〉=N}, the bindings of N and ~x

are conceptually quite distinct: one could try to reflect this in the calculus by
letting them bind variables from different zones of the type environment.

Γ; ~x, ∆ `M

Γ, ~x; ∆ `M

Γ, ~x; ∆ ` M

Γ; ~x, ∆ ` M

Γ; ~x, k ` k〈~x〉
Γ, n : ¬τ ; ∆ `M Γ; ~x, ∆ ` N

Γ; ∆ `M{n〈~x〉=N}

2.5 Constants

Although they play no rôle in the sequel, we sketch how PCF-style constants for
arithmetic and conditionals could be added to the CPS calculus. Constants, like
everything in CPS, take a continuation parameter.

Γ, n : int, f : ¬¬~τ , g : ¬¬~τ , k : ¬~τ ` ifzero〈pn+1qfgk〉 Γ, k : ¬int ` 0〈k〉

Γ, n : int, k : ¬int ` succ〈pnq k〉 Γ, n : int, k : ¬int ` pred〈pnq k〉
37

0〈k〉 = k〈p0q〉
succ〈pnq k〉 = k〈pn+1q〉
pred〈pnq k〉 = k〈pn−1q〉
ifzero〈p0qfgk〉 = f〈k〉
ifzero〈pn+1qfgk〉 = g〈k〉
diverge〈k〉 = p〈〉{p〈〉⇐p〈〉}

2.6 Translation from CPS calculus

If we think in terms of α-equivalence classes of terms, then the non-recursive CPS

calculus is evidently a subset of the recursive one, as we can embed terms of the
former in the latter

M{n〈~x〉=N} 7→M{n〈~x〉⇐N}

provided we α-convert in case n is free in N to avoid its name-capturing in
M{n〈~x〉⇐N}.

The recursive CPS calculus is in turn a fragment of Appel’s intermediate
language, the main difference being that Appel’s FIX constructor allows mutual
recursion.

CPS-calculus Appel’s datatype cexp
x〈y1 . . . yj〉 APP(VAR x,[VAR y1,. . .,VAR yj])
M{n〈x1 . . . xj〉⇐N} FIX([(n,[x1,. . .,xj],N)],M)

The binding of continuations in CPS can be implemented not only by “pass-
ing” (using the λ-calculus), but equally by “sending” (π-calculus) or even “grab-
bing” (using callcc to seize the current continuation [Sab96]).

First, the (recursive) CPS calculus can be translated into simply-typed λ-
calculus with a fixpoint combinator.

k〈x1 . . . xn〉◦ = kx1 . . . xn

(M{n〈~x〉⇐N})◦ = (λn.M◦)(µn.λ~x.N◦)

Here µ is a fixpoint-finder in the simply-typed λ-calculus satisfying µx.M =
M [x 7→ µx.M] and subject to the following typing

Γ, f : τ `M : τ

Γ ` µf.M : τ

2.6.1 Proposition The translation ()◦ is sound.

38

Proof

(n〈~x〉{n〈~y〉⇐N})◦

= (λn.n~x)(µn.λ~y.N◦)

= (λn.n~x)((λ~y.N◦)[n 7→ µn.λ~y.N◦])

= (λ~y.N◦[n 7→ µn.λ~y.N◦])~x

= N◦[n 7→ µn.λ~y.N◦][~y 7→ ~x]

= N◦[~y 7→ ~x][n 7→ µn.λ~y.N◦]

= (λn.N◦[~y 7→ ~x])(µn.λ~y.N◦)

= (λn.N [~y 7→ ~x]◦)(µn.λ~y.N◦)

= (N [~y 7→ ~x]{n〈~y〉⇐N})◦

Let n 6= n′.

= (M{n〈~x〉⇐n′〈~x〉})◦

= (λn.M◦)(µn.λ~x.n′ ~x)

= (λn.M◦)((λ~x.n′ ~x)[n 7→ µn.λ~x.n′ ~x])

= (λn.M◦)(λ~x.n′ ~x)

= (λn.M◦)n′

= M◦[n 7→ n′]

= (M [n 7→ n′])◦

(M{n〈~x〉⇐N}{l〈~y〉⇐L})◦

= (λl.(λn.M◦)(µn.λ~x.N◦))(µl.λ~y.L◦)

= (λn.M◦)(µn.λ~x.N◦))[l 7→ µl.λ~y.L◦]

= ((λn.M◦)[l 7→ µl.λ~y.L◦])((µn.λ~x.N◦)[l 7→ µl.λ~y.L◦])

= (((λl.M◦)(µl.λ~y.L◦)) (((λl.N◦)(µl.λ~y.L◦))

= (M{l〈~y〉⇐L}{n〈~x〉⇐N{l〈~y〉⇐L}})◦

2

For the non-recursive fragment of CPS calculus, one can simplify the trans-
lation to λ-calculus, not requiring the fixpoint combinator.

2.6.2 Definition

k〈x1 . . . xn〉◦ = k(x1, . . . , xn)

M{n〈x1 . . . xn〉=N}◦ = (λn.M◦)(λ(x1, . . . , xn).N◦)

39

2.6.3 Remark Alternatively, we could use simply-typed λ-calculus by uncurry-
ing the translation.

k〈x1 . . . xn〉◦ = kx1 . . . xn

M{n〈x1 . . . xn〉=N}◦ = (λn.M◦)(λx1 . . . xn.N
◦)

2.6.4 Definition CPS calculus can be translated into the π-calculus as follows.
(Note that continuation binding is essentially Sangiorgi’s “local environment”
idiom for the π-calculus [PS96].)

k〈x1 . . . xi〉• = k〈x1 . . . xi〉
M{n〈x1 . . . xi〉=N}• = (νn)(M• | !n(x1 . . . xi).N•)

2.6.5 Remark In the most general π-calculus, the CPS laws are not sound.
CPS gives rise to π-calculus terms of a very restricted from: there are constraints
both one the occurrence of names and on the shape of terms.

On the one hand, all names are used as continuations. A precise formulation
of what constitutes a continuation type discipline in the π-calculus seems to be an
open problem, although a necessary (but not sufficient) constraint could be given
in terms of the input/output type discipline developed in [PS96]. All names are
“write-only” in that a name that has been received may be used by the receiver
only for output, but not for input (it may also be passed as an argument).

Furthermore, all names are ω-receptive in the sense of [San97].
The terms in the image of the translation from the CPS calculus to the π-

calculus are of a the following form, in which restriction, parallel composition,
replication and input prefix occur only in an idiom and never by themselves. All
outputs are asynchronous.

P, Q ::= k〈x1 . . . xn〉 | (νq)(P | !q(y1 . . . ym).Q)

This restricted form automatically rules out usages of names like n(k).k(x).

A variant of the π-calculus that is more permissive than CPS, but still restri-
tive enough to be “well-behaved” with regard to it is the calculus Π−a .

2.6.6 Definition The fragment Π−a of the π-calculus is given by the following
BNF:

P ::= P |P
��� a(~x).P

��� !a(~x).P
��� (νa)P

��� a〈~x〉

where in a(x1 . . . xn).P none of the xi appears in input position (as in xi(~y).Q)
within P .

40

We consider terms of Π−a equivalent up to barbed congruence [ACS96], written
≈bc.

Hence received names can be only passed around or used for output. This
together with the fact that output is asynchronous, appears to be enough to
ensure a sufficiently continuation-like behaviour. More formally, we report the
following result, due to Massimo Merro:

2.6.7 Proposition The translation given in definition 2.6.4 above from CPS

calculus to Π−a / ≈bc is sound. For CPS terms M and N , M = N implies
M• ≈bc N•.

Another translation of CPS calculus is given by a “continuation-grabbing
style” transformation similar to that in [Sab96], which transforms CPS terms
back into idealised NJ-SML.

2.6.8 Definition The Continuation Grabbing Transform ()‡ is defined as fol-
lows.

M{n〈x1 . . . xj〉=N}‡ def= (λ(x1, . . . , xj).N ‡)(callcc (λn.M‡))

k〈x1 . . . xj〉‡ def= throwk (x1, . . . , xj)

On types, this translation is given by the identity.

2.6.9 Remark If Γ `M , then Γ `M‡ : β, where β is a fresh type variable.

Proof For terms of the form k〈x1 . . . xj〉, this is trivial. Consider Γ ` M{n〈~x〉=N}.
Then

Γ, n : ¬~τ `M and Γ, ~x : ~τ ` N

By the induction hypothesis,

Γ, n : ¬~τ `M‡ : β and Γ, ~x : ~τ ` N ‡ : β

Instantiating β to ~τ we have Γ, n : ¬~τ ` M‡ : ~τ and therefore Γ ` λ~x.M‡ : ¬~τ →
~τ . Because ` callcc : (¬α → α) → α, we have Γ ` callcc(λ~x.M‡) : ~τ . Now
Γ ` λ~x.N ‡ : ~τ → β, so

Γ ` (λ~x.N ‡)(callcc(λ~x.M‡)) : β.

2

41

2.7 Idioms and jargon for the CPS calculus

We sometimes use jargon, mainly from programming language theory, together
with some loan words from the π-calculus literature, for talking about CPS. This
is not done for obfuscation, but to make the presentation more intuitive for the
reader, who we assume is likely to be familiar with most of these terms. As a
preparation for chapter 3, we give a brief discussion. The purpose is not to give
terminology for different parts of a CPS term (hardly necessary, since the calculus
is so simple), but to certain idioms and points of view on terms.

Like the π-calculus, the CPS calculus is a “name-passing” calculus: the only
entities that may be substituted for variables are other variables (also called
“names”):

n〈~y〉{n〈~z〉=N} = N [~z 7→ ~y]

Because of this name-paaing, a notational shortcut we shall perpetrate is the
simulation of substitution by α-conversion. We rename the bound parameters
before contracting a redex.

a〈b〉{a〈x〉=x〈c〉}
= a〈b〉{a〈b〉=b〈c〉}
= b〈c〉

This saves us from having to write substitutions.

a〈b〉{a〈x〉=x〈c〉}
= x〈c〉[x 7→ b]

= b〈c〉

A characteristic feature of (reductions in) the CPS calculus is a kind of
leapfrogging of bindings like this:

k〈f〉{f〈xk〉=M}{k〈f〉=N{n〈x〉=f〈xk〉}}
= N{n〈x〉=f〈xk〉}{f〈xk〉=M}
= N{n〈x〉=M}

The same term may mean quite different things, depending on what we regard
as the current continuation. (One of the themes of the the categorical framework
is a development of this fact: one of the most basic operations is precisely this
switch of current continuation.) In the CPS calculus, there is no notion of a

42

current continuation as such; all continuations are equal. Nevertheless, when
reading a term in a structured fashion, it is often essential to single out one of
possibly many names as the current continuation. We consider two ways of doing
this. One is always to look at judgements rather than raw terms; the other,
more informal and ad hoc, is to use the same name, typically k, for the current
continuation everywhere.

The translation of λ-terms gives the spirit of (nearly all) CPS transforms.

λx.M = k〈f〉{f〈xk〉=M}

Here we call f a pivot. This concept seems absent from the usual CPS terminol-
ogy, probably because CPS is not normally presented as name-passing. So we
borrowed it from Pierce and Sangiorgi [PS93]; they write about the translation
of a λ-calculus term MN into the π-calculus:

The core of the protocol [. . .] is the action on an internal channel v,
by which the abstraction M comes to know its arguments. We call v
a pivot. (In the lazy λ-calculus encoding, the role of the pivot names
was played by the argument port names.)

Warning: Milner’s call-by-value π-calculus transformations have an additional
level of indirection not present in CPS. So our usage of pivot is not completely
the same as that of Sangiorgi and Pierce.

[Ing61] defines

A thunk is a piece of coding that provides an address. When executed,
it leaves in some standard location (memory, accumulator, or index
register, for example) the address of the variable with which it is
associated.

In the present setting, a thunk is a term of the form k〈q〉{q〈p〉=M}. k〈q〉{q〈p〉=M}
returns to its current continuation a “private” name q along which it is ready to
receive a continuation p for M ; M may then evaluate and return a result to p.

Complementary to thunking, a forcing is a jump with the current continuation
as the actual parameter.

43

Chapter 3

CPS transforms

The main purpose of this chapter is to review, and present in a unified notation,
the various CPS transforms that have appeared in the literature (the seminal
papers are [Plo75] and [DHM91] for callcc; a unified account is in [DH94]. See
also [Fil96].)

There is a large literature on the typing of CPS transforms, beginning with
[MW85], later with [Gri90] and in particular Murthy, e.g.. [Mur91]

The paradigmatic language that we consider as the source language for CPS

transforms is a simply-typed λ-calculus, usually (but not in all cases) augmented
by the control operators callcc and throw. The BNF for raw terms is this:

M ::= x | λx.M | MM | callccM | throwM

We call this language λ+callcc; it is essentially the same as that in [DHM91].
To prevent misunderstanding, one should perhaps emphasise that this calculus

is a (standard) idealisation of call-by-value programming languages like Scheme
or ML and semantically very different from the simply-typed λ-calculus whose
models are Cartesian closed categories, see [LS86].

We do not give an operational semantics here, as we regard the CPS trans-
forms as its proper semantics, but the intended meaning of the calculus is that
it should be a call-by-value calculus in the sense of [Plo75], where β and η laws
appy only in a restricted sense.

(λx.M)V = M [x 7→ V] (βV)
λy.V y = V (ηV)

where y is not free in M

Here V ranges over values, i.e. terms of the form V ::= x | λx.M .
The typing for first-class continuations in Standard ML of New Jersey in

[DHM91] is given by that of simply-typed λ-calculus and the two rules for the
continuation primitives callcc and throw.

44

Γ, x : τ ` x : τ

Γ, x : σ `M : τ

Γ ` λx.M : σ → τ

Γ ` M : σ → τ Γ ` N : σ

Γ `MN : τ
Γ `M : ¬τ → τ

Γ ` callcc M : τ

Γ `M : ¬τ Γ ` N : τ

Γ ` throw M N : σ

3.1 A survey of CPS transforms

From our point of view, the canonical CPS transform is the one from [DHM91].

3.1.1 Definition The call-by-value transform L M for λ+callcc is defined as
follows.

LxM(k) = k〈x〉
Lλx.MM(k) = k〈f〉{f〈xh〉⇐LMM(h)}
LMNM(k) = LMM(m){m〈f〉⇐LNM(n){n〈a〉⇐f〈ak〉}}

Lthrow M NM(k) = LMM(m){m〈n〉⇐LNM(n)}
Lcallcc MM(k) = LMM(m){m〈f〉⇐f〈kk〉}

L¬τ M = ¬Lτ M
Lσ → τ M = ¬(LσM¬Lτ M)

Lx1 : τ1, . . . xn : τnM = Lτ1M, . . . , LτnM

This is almost the same as the transform used by Appel in his ML compiler [App92].
We recall here what he calls the naive version, which does not deal with exception
handlers.

3.1.2 Definition We write x 7→ . . . for meta-level abstraction, i.e. ordinary
function abstraction, not construction of a λ-term, and c(x) for the corresponding
meta-level application. The following is Appel’s CPS transform (with the naive
version of callcc) [App92, ch. 5].

AL−M : Lambda→ (Name→ CPS)→ CPS

ALxM(c) = c(x)

ALλx.MM(c) = c(f){f〈xk〉=ALMM(z 7→ k〈z〉)}
ALMNM(c) = ALMM(m 7→ ALNM(n 7→ m〈nk〉)){k〈x〉=c(x)}

ALcallcc MM(c) = ALMM(m 7→ m〈kk〉){k〈x〉=c(x)}
ALthrow MM(c) = ALMM(m 7→ c(f){f〈xh〉=m〈x〉})

45

Appel’s transform performs a certain amount of administrative reductions. Up
to provable equality of the CPS calculus, the transform AL M is the same as L M.

3.1.3 Proposition

ALMM(c)) = LMM(k){k〈x〉=c(x)}

Hence ALMM(z 7→ k〈z〉) = LMM(k)
The call-by-value transform satisfies only the βV law, not the full β law.
Plotkin’s call-by-name transform satisfies the full β-law. However, despite

being traditionally called “call-by-name”, the transform does not satisfy the full
η-law.

This is because it is “lazy” in the sense that λ-abstraction delays the evaluation
of the body (sometimes called “protecting by a λ [Plo75])”. We could qualify
“call-by-name” with “lazy” to distinguish this transform from alternatives, not
afflicted by laziness, that satisfy the full η law. Unfortunately, the term “lazy” is
sometimes used to mean call-by-need in the sense of memoisation of arguments.

3.1.4 Definition The Plotkin call-by-name CPS transform [Plo75] is defined as
follows.

LLxM(k) = x〈k〉
LLλx.MM(k) = k〈f〉{f〈xh〉⇐LLMM(h)}
LLMNM(k) = LLMM(m){m〈f〉⇐f〈nk〉{n〈h〉⇐LLNM(h)}}

LLσ → τ M = ¬(¬¬LLσM,LLτ M)
LLx1 : τ1, . . . , xn : τnM = ¬¬LLτ1M, . . . ,¬¬LLτnM

3.1.5 Remark Note that the argument N in an application MN is not forced,
but only located at n. While this may look simpler than the corresponding clause
for call-by-value, we can nonetheless regard it as a special case of it.

LLMNM(k) = LLMM(m){m〈f〉⇐f〈nk〉{n〈h〉⇐LLNM(h)}}
= LLMM(m){m〈f〉⇐q〈n〉{n〈h〉⇐LLNM(h)}{q〈n〉⇐f〈nk〉}}

Written this way, the application follows the same pattern as for call-by-value,

LLMM(m){m〈f〉⇐ . . . {q〈n〉⇐f〈nk〉}}

except that the term in the argument position, represented by . . ., is not just
LLNM(h), but LLNM(h) wrapped into a thunk:

q〈n〉{n〈h〉⇐LLNM(h)}

46

Note that the whole computation is wrapped into the thunk, so that LLNM(h) is
not evaluated at this point. Alternatively, one could evaluate it, and wrap the
result (if any) into a thunk:

LLNM(h){h〈x〉⇐q〈n〉{n〈h〉⇐h〈x〉}}

This would give a variant CPS transform L′L M, agreeing with LL M except the
clause for application, in which the result, not the computation, is thunked:

L′LMNM(k)

= L′LMM(m){m〈f〉⇐L′LNM(h){h〈x〉⇐q〈n〉{n〈h〉⇐h〈x〉}}{q〈n〉⇐f〈nk〉}}
= L′LMM(m){m〈f〉⇐L′LNM(h){h〈x〉⇐f〈nk〉{n〈h〉⇐h〈x〉}}}

Hence, to reiterate a point made in [DH94], the typing of call-by-name does not
imply call-by-name behaviour.

The Plotkin call-by-name transform can be seen as a modification of the call-
by-value transform, given by delaying the argument in an application and forcing
variables. According to this view, it is merely one of a number of possible varia-
tions arising from different choices about the point in the computation at which
arguments are to be evaluated. Two other such variations, called the Reynolds
and modified Reynolds CPS transform, are presented in [DH94].

3.1.6 Definition The Reynolds call-by-value CPS transform [DH94] is defined
as follows.

RLxM(k) = x〈k〉
RLλx.MM(k) = k〈f〉{f〈nh〉=n〈h′〉{h′〈a〉=RLMM(h){x〈h′′〉=h′′〈a〉}}}
RLMNM(k) = RLMM(m){m〈f〉=f〈nk〉{n〈h〉=RLNM(h)}}

3.1.7 Definition The modified Reynolds call-by-value CPS transform [DH94]
is defined as follows.

R′LxM(k) = k〈x〉
R′Lλx.MM(k) = k〈f〉{f〈nh〉=n〈h′〉{h′〈x〉=R′LMM(h)}}
R′LMNM(k) = R′LMM(m){m〈f〉=f〈nk〉{n〈h〉=R′LNM(h)}}

The reason why the call-by-name CPS transform does not satisfy the η-law
is, roughly speaking, that λ “protects” an application from being evaluated in the
evaluation strategy codified by it. Hence in λx.MNx, the application is protected,
whereas in MN , M is evaluated.

47

There are two possible ways one could try to address this discrepancy: either
one could try to reduce under the λ in the case of λx.MNx; or one could avoid
evaluating the M in MN .

Murthy defines what he calls a “truly” call-by-name CPS transform, which
can be seen as reducing under λ.

3.1.8 Definition The Murthy call-by-name CPS transform [Mur92] is defined
as follows.

MLxM(k) = x〈k〉
MLλx.MM(k) = MLMM(m){m〈b〉=k〈f〉{f〈ak〉=k〈b〉}}{x〈h〉=k〈f〉{f〈ak〉=a〈h〉}}
MLMNM(k) = MLMM(m){m〈f〉=f〈nk〉{n〈h〉=MLNM(h)}}

Unfortunately, to be as well-behaved as claimed, this transform requires a
different notion of equality than provability by the CPS axioms. So in the present
setting, we can not really make much use of it. What seems fascinating about
this transform, though, is that returning the result and accessing the argument
are in some sense two separate processes. Only when the argument is needed is a
request sent to the calling context. This could mean that Murthy’s transform is
especially suitable for a concurrent scenario. The appropriate notion of equality
for this transform may be the observational congruence ≈ from definition 2.3.2.

The other, in some sense dual, possibility to make λx.MNx indistinguishable
from MN , we have indicated, is to not to force the evaluation of M in an applica-
tion MN . This is essentially what the uncurrying call-by-name CPS transform
does.

3.1.9 Definition The uncurrying call-by-name CPS transform is defined as fol-
lows.

N LxM(k) = k〈x〉
N Lλx.MM = k〈f〉{f〈x~yh〉⇐N LMM(m){m〈g〉⇐g〈~yh〉}}
N LMNM = N LMM(m){m〈f〉⇐N LNM(n){n〈a〉⇐k〈g〉{g〈~yk〉⇐f〈a~yk〉}}}

N Lτ1 → · · · → τn → bM = ¬(N Lτ1M, . . . ,N LτnM,¬b)
N Lx1 : τ1, . . . , xn : τnM = N Lτ1M, . . . ,N LτnM

This transform is related to Filinski’s call-by-name transform in [Fil96] in
that it doubly negates base types. In its name-passing presentation it appears
to be new. There may be a connection to graph reduction here, inasmuch as an

48

application with the result not being of base type does essentially nothing, other
than consing the given argument onto the argument list. A comparison with the
G-machine constructing an application graph [FH88] seems possible here.

3.2 A simplified notation for non-recursive CPS

For the non-recursive CPS calculus, we can present the CPS transforms in a
shorthand style in which the CPS transform (M , M and M) of a term contains
a free variable k for the current continuation. (This notational trick appears to
be due to Phil Wadler; see [SW96].)

This may seem utterly confusing at first, to the extent that just about every-
thing appears to be called k. But as the CPS calculus is a low-level name-passing
calculus, it is virtually intractable without some technique for simplifying nota-
tion. Given that CPS terms admit a very “imperative” reading, one could add
a more computational justification for always calling the current continuation k,
in that we could think of k as always being the same register (current continua-
tion pointer), but at different times during the computation. In that sense, the
fact that the variable k can be recycled endlessly reflects the fact that the non-
recursive CPS calculus can only express forward jumps. One can destructively
update the current continuation pointer, as one can never jump back to it.

3.2.1 Definition The call-by-value with callcc CPS transform in the short-
hand notation () is defined as follows.

x = k〈x〉
λx.M = k〈f〉{f〈xk〉=M}
MN = M{k〈f〉=N{k〈a〉=f〈ak〉}}

callcc M = M{k〈f〉=f〈kk〉}
throw M N = M{k〈k〉=N}

(M, N) = M{k〈m〉=N{k〈n〉=k〈mn〉}}
σ → τ = ¬(σ¬τ)

For the Plotkin call-by-name semantics, the semantics of the control operators
is somewhat tentative, as their intended meaning is not as clear as for call-by-
value. The absence of implementations of call-by-name languages with control
operators makes it hard to give pragmatic evidence as to what the definition of
callcc should look like. Nonetheless, if we view the Plotkin call-by-name CPS

transform as esssentially the same as call-by-name modulo thunking of function

49

arguments, we can argue that call-by-name callcc should be as in call-by-value,
with the only modification that the current continuation, once it has been seized,
is wrapped into a thunk. This allows us to keep the same typing rule for callcc.

3.2.2 Definition The Plotkin call-by-name CPS transform in the shorthand
notation () is defined as follows.

x = x〈k〉
λx.M = k〈f〉{f〈xk〉=M}
MN = M{k〈f〉=f〈nk〉{n〈k〉=N}}

callcc M = M{k〈f〉=f〈gk〉{g〈p〉=p〈k〉}}
throw M N = M{k〈k〉=N}

σ → τ = ¬(¬¬σ ¬τ)

3.2.3 Definition The uncurrying call-by-name CPS transform in the shorthand
notation () is defined as follows.

x = k〈x〉
λx.M = k〈f〉{f〈x~yk〉=M{k〈g〉=g〈~yk〉}}
MN = M{k〈f〉=N{k〈a〉=k〈g〉{g〈~yk〉=f〈a~yk〉}}}

callcc M = k〈f〉{f〈~yh〉=M{k〈f〉=f〈g~yh〉{g〈q〉=q〈~yh〉}}}
throw M N = k〈f〉{f〈~yh〉=M{k〈k〉=N}}

τ1 → . . .→ τn → b = ¬(τ1 . . . τn ¬b)

One difference to CPS transforms using the λ-calculus as the target language
is that there is no way to define the abort operator by using the λx.x as an
aborting continuation (as in [FFKD86]). But we can define Danvy and Filinski’s
meta-continuation passing style [DF92].

3.2.4 Definition For λ-calculus together with callcc, throw, the abort opera-
tor A and the control delimiter #, i.e. the following language

M ::= x | λx.M | MM | callccM | throwM | AM | #M

the Danvy/Filinski metacontinuation transform () is given as follows.

x = k〈xc〉
λx.M = k〈fc〉{f〈xkc〉=M}

50

MN = M{k〈fc〉=N{k〈ac〉=f〈akc〉}}
callcc M = M{k〈fc〉=f〈kkc〉}

throw M N = M{k〈kc〉=N}
#M = M{k〈xc〉=c〈x〉}{c〈x〉=k〈xc〉}
AM = M{k〈xc〉=c〈x〉}

The semantics of the composable continuation construct S is given as follows.

SM = M{k〈fc〉=f〈gkc〉{k〈xc〉=c〈x〉}{g〈yk′c′〉=k〈yc〉{c〈w〉=k′〈yc′〉}}}

3.3 Soundness of the uncurrying call-by-name
CPS transform

The transform () is genuinely call-by-name in that it satisfies both the unre-
stricted β- and η-laws. We show this for the non-recursive CPS calculus. Using
the shorthand with the current continuation always being called k, we can keep
track of what is happening without being swamped by too many distinct variables.

The crucial property of the uncurrying call-by-name CPS transform is that
the transform of all λ-terms is thunkable. For the call-by-value CPS transform,
by contrast, this would hold only for the transform of values.

3.3.1 Lemma Let L be a λ-term. Then its uncurrying call-by-name transform
L satisfies:

L = k〈q〉{q〈~z〉=L{k〈p〉=p〈~z〉}}

Proof By induction on L. Let L = x.

k〈q〉{q〈~z〉=x{k〈p〉=p〈~z〉}}
= k〈q〉{q〈~z〉=k〈x〉{k〈p〉=p〈~z〉}}
= k〈q〉{q〈~z〉=x〈~z〉}
= k〈x〉
= x

Suppose L = λx.M and let the induction hypothesis hold for M .

k〈q〉{q〈~z〉=λx.M{k〈p〉=p〈~z〉}}
= k〈q〉{q〈~z〉=k〈f〉{f〈x~yk〉=M{k〈g〉=g〈~yk〉}}{k〈p〉=p〈~z〉}}
= k〈q〉{q〈~z〉=f〈~z〉{f〈x~yk〉=M{k〈g〉=g〈~yk〉}}}
= k〈q〉{q〈x ysk〉=f〈x~yk〉{f〈x~yk〉=M{k〈g〉=g〈~yk〉}}}

51

= k〈q〉{q〈x~yk〉=M{k〈g〉=g〈~yk〉}}
= λx.M

Suppose L = MN with M and N satisfying the induction hypothesis.

k〈q〉{q〈~z〉=MN{k〈p〉=p〈~z〉}}
= k〈q〉{q〈~z〉=M{k〈f〉=N{k〈x〉=k〈g〉{g〈~yk〉=f〈x~yk〉}}}{k〈p〉=p〈~z〉}}
= k〈q〉{q〈~z〉=M{k〈f〉=N{k〈x〉=g〈~z〉{g〈~yk〉=f〈x~yk〉}}}}
= k〈q〉{q〈~yk〉=M{k〈f〉=N{k〈x〉=f〈x~yk〉}}}
= k〈q〉{q〈~yk〉=M{k〈f〉=k〈x〉{x〈~z〉=N{k〈p〉=p〈~z〉}}{k〈x〉=f〈x~yk〉}}}
= k〈q〉{q〈~yk〉=M{k〈f〉=f〈x~yk〉{x〈~z〉=N{k〈p〉=p〈~z〉}}}}
= k〈q〉{q〈~yk〉=M{k〈f〉=f〈x~yk〉}}{x〈~z〉=N{k〈p〉=p〈~z〉}}
= k〈x〉{x〈~z〉=N{k〈p〉=p〈~z〉}}{k〈x〉=k〈q〉{q〈~yk〉=M{k〈f〉=f〈x~yk〉}}}
= N{k〈x〉=k〈q〉{q〈~yk〉=M{k〈f〉=f〈x~yk〉}}}
= N{k〈x〉=k〈q〉{q〈~yk〉=f〈x~yk〉}{f〈x~yk〉=M{k〈f〉=f〈x~yk〉}}}
= k〈f〉{f〈x~yk〉=M{k〈f〉=f〈x~yk〉}}{k〈f〉=N{k〈x〉=k〈q〉{q〈~yk〉=f〈x~yk〉}}}
= M{k〈f〉=N{k〈x〉=k〈q〉{q〈~yk〉=f〈x~yk〉}}}
= MN

2

As a preparation for the soundness of β-reduction, we need to establish how,
under the transform (), substitution in the source language, λ-calculus, relates
to a binding in the target, CPS calculus. Because of lemma 3.3.1, we have
two equivalent views on what a substitution M [x 7→ N] means: we can see it as
M , expecting the argument x, becoming the current continuation for N ; or we
can see it as M having access, via the pointer x, to the resource N , expecting
its current continuation as its argument. In that sense, the uncurrying call-by-
name transform provides a “pure” semantics for simply-typed λ-calculus: the
denotation (transform) of everything is as good as a value.

3.3.2 Lemma

M [x 7→ N] = N{k〈x〉=M}

Proof By lemma 3.3.1, this is equivalent to

M [x 7→ N] = k〈x〉{x〈p〉=N{k〈p〉=p〈~z〉}}{k〈x〉=M}
= M{x〈~z〉=N{k〈p〉=p〈~z〉}}

52

If M = x, then

M{x〈~z〉=N{k〈p〉=p〈~z〉}} = k〈x〉{x〈~z〉=N{k〈p〉=p〈~z〉}} = N

If M = y 6= x, then

M{x〈~z〉=N{k〈p〉=p〈~z〉}} = k〈y〉{x〈~z〉=N{k〈p〉=p〈~z〉}} = y

The remaining cases follow by induction using the fact that the binding for x

distributes — except for the case when the scope of x has a hole because x is
λ-bound:

(λx.M)[x 7→ N]

= k〈f〉{f〈x~yk〉=M{k〈g〉=g〈~yk〉}}{x〈~z〉=N{k〈p〉=p〈~z〉}}
= k〈f〉{f〈x~yk〉=M{k〈g〉=g〈~yk〉}}

because x is not free in k〈f〉{f〈x~yk〉=M{k〈g〉=g〈~yk〉}}. 2

The η-law is sound for () just as ηV is sound for ().

3.3.3 Proposition (η for ())

λx.Mx = M

where x /∈ FV(M).

Proof

λx.Mx

= k〈f〉{f〈x~yk〉=Mx{k〈g〉=g〈~yk〉}}
= k〈f〉{f〈x~yk〉=M{k〈f〉=k〈g〉{g〈~yk〉=f〈x~yk〉}{k〈g〉=g〈~yk〉}}}
= k〈f〉{f〈x~yk〉=M{k〈f〉=f〈x~yk〉}}
= M by lemma 3.3.1

2

3.3.4 Proposition (β for ())

(λx.M)N = M [x 7→ N]

Proof

(λx.M)N

= k〈f〉{f〈x~yk〉=M{k〈g〉=g〈~yk〉}}{k〈f〉=N{k〈x〉=k〈g〉{g〈~yk〉=f〈x~yk〉}}}

53

= N{k〈x〉=k〈g〉{g〈~yk〉=f〈x~yk〉}}{f〈x~yk〉=M{k〈g〉=g〈~yk〉}}
= N{k〈x〉=k〈g〉{g〈~yk〉=M{k〈g〉=k〈g〉}}} by lemma 3.3.1

= N{k〈x〉=M} by lemma 3.3.2

= M [x 7→ N]

2

The above generalises to the recursive CPS calculus, so we have the following.

3.3.5 Lemma

N LMM(m) = k〈q〉{q〈~z〉⇐N LMM(m){m〈p〉⇐p〈~z〉}}

3.3.6 Lemma

N LM [x 7→ N]M(m) = N LNM(n){n〈x〉⇐N LMM(m)}

3.3.7 Proposition

N Lλx.MxM(k) = N LMM(k)

where x /∈ FV(M).

3.3.8 Proposition

N L(λx.M)NM(k) = N LM [x 7→ N]M(k)

3.4 CPS transforms to the λ- and π-calculi

The CPS transforms with the CPS calculus as the target language can be spe-
cialised if we compose them with one of the translations of CPS calculus into
other calculi.

For the λ-calculus, we recover the usual presentation of CPS transforms with
the λ-calculus as the target language.

It has been noted by several people, such as [Bou97] and also [Thi96b], that
translations from the λ- to the π-calculus (see [Tur95] for a survey of them,
together with a CPS-like typing) can be seen as CPS transforms.

3.4.1 Remark With the the λ-calculus as the target language, the call-by-value
CPS transform is the following:

LxM = λk.kx

Lλx.MM = λk.k(λ(x, h).LMMh)

Lthrow M NM = λk.LMMLNM

Lcallcc MM = λk.LMM(λm.m(k, k))

LMNM = λk.(LMM(λm.LNM(λn.m(n, k))))

54

3.4.2 Remark With the the λ-calculus as the target language, the Plotkin call-
by-name CPS transform is the following:

LLxM = λk.xk

LLλx.MM = λk.k(λ(x, h).LLMMh)

LLMNM = λk.(LLMM(λm.m(LLNM, k)))

3.4.3 Remark With the the π-calculus as the target language, the call-by-value
CPS transform is the following:

LxM(k) = k〈x〉
Lλx.MM(k) = (νl)(k〈l〉 | ! l(xh).LMM(h))

LMNM(k) = (νm)(LMM(m) | !m(l).(νn)(LNM(n) | ! n(a).l〈ak〉))
Lthrow M NM(k) = (νm)(LMM(m) | !m(n).LNM(n)

Lcallcc MM(k) = (νm)(LMM(m) | !m(l).l〈kk〉)

where k, l, m, n are fresh.

3.4.4 Remark With the the π-calculus as the target language, the (lazy) call-
by-name CPS transform is the following:

LLxM(k) = x〈k〉
LLλx.MM(k) = (νl)(k〈l〉 | ! l(xh).LLMM(h)

LLMNM(k) = (νm)(LLMM(m) | ! m(l).(νn)(!n(h).LLNM(h) | l〈nk〉))

3.4.1 Prompts and control-specific full abstraction

We would agree with [App92] that the intended meaning of (throw-ing to) a
continuation is a “jump with arguments”. But the CPS transform into the λ-
calculus allows the definition of control operators that are rather unlike jumps,
such as Felleisen’s abort operator A, definable as

LAMM = λk.(LMM(λx.x))

By ignoring the continuation k, AM discards the surrounding evaluation context
and jumps to the top level. But this is not the same as a jump by throw-ing to

55

some continuation previously reified by a callcc, as the destination of the jump
changes when the phrase AM is enclosed in a bigger program.

Stranger still from the point of view that continuations are like jumps, Felleisen’s
prompt or control delimiter, definable as

L%MM = λk.k(LMM(λx.x))

can intercept jumps out of M .
We would argue that there is a fundamental difference between callcc and

throw on the one hand and A and % on the other, certainly from a naive and
probably from an implementation point of view. callcc is often described as
labelling a control state, much as one can label a command in low-level imperative
languages. throw is then analogous to JMP or goto in that it jumps to such a
label. But whereas the label bindings introduced by callcc can be statically
determined from the program text, A refers dynamically to the top level. The
prompt %, from this point of view, destructively updates all the references from
within its argument to labels on the outside.

Whereas the definition of A for CPS into the λ-calculus looks innocuous, its
very behaviour seems odd for π-calculus semantics. A is characterised by its
discarding of the surrounding evaluation context E[], that is LE[AM]M = LMM.
But consider for instance E[] = (λx.y)[]. Consider

L(λx.y)(AM)M(k) = (νn)(! l(xk).k〈y〉 | LAMM(n) |! n(a).l〈ak〉).

Here LAMM has no access at all to k. It is hard to see how this could ever be
equal to LMM(k). This would appear to be simply a violation of the visibility of
names, reflecting the fact that the reference to the top level k that AM needs to
escape is essentially dynamic, whereas π-calculus names are statically scoped.

Given that Sitaram and Felleisen [SF90] have shown that the prompt is nec-
essary for the full-abstraction of standard CPS, it would be interesting to see
whether the π-calculus semantics is a fully abstract translation. Continuation se-
mantics in the π-calculus provides a different angle than the standard CPS model
on the relative status of various control constructs. In the usual CPS semantics,
direct style does not allow for control operators; and as soon as the interpretation
is “bumped up” in the functional hierarchy by the CPS transform, the prompt is
introduced along with callcc and throw. Felleisen and Sitaram [SF90] argue on
the basis of this for the naturality of the prompt. In the π-calculus semantics, by
contrast, the control operators already exist in the structure necessary to support
the λ-calculus; and the prompt could be introduced only in a very imperative
manner, by destructively updating the continuation of its subterm.

56

3.4.5 Remark We point out a connection between Milner’s original encoding
of the λ- in the π-calculus and a recently discovered CPS transform [HS97] for
the λµ-calculus [Par92]. In each case, functions are not fully CPS transformed.
Rather, a construct in the target language not properly inside the CPS discipline
is used for the translation of functions. For the π-calculus, the parameter of
the translation is used for input, whereas in CPS it would only ever be used for
asynchronous output. Recall Milner’s original transform [Mil91] from the λ- to
the π-calculus (which he calls “encoding of the lazy λ-calculus”):

LLxM(k) = x〈k〉
LLλx.MM(k) = k(xh).LLMM(h)

LLMNM(k) = (νm)(LLMM(m) | (νn)(m〈nk〉 | !n(h).LLNM(h)))

The Hofmann-Streicher CPS transform (̂) from the λµ-calculus is defined as
follows.

x̂ = λk.xk

λ̂x.M = λ(x, k).M̂k

M̂N = λk.M̂(N̂, k)

µ̂a.M = λa.M̂()

[̂a]M = λ().M̂a

σ̂ → τ = ¬σ̂ × τ̂

Γ̂, x : τ = Γ̂, x : ¬τ̂

Here ¬τ abbreviates τ → o. The typing invariant of (̂) is: if Γ ` M : τ , then
Γ̂ ` M̂ : ¬τ̂ . (CPS transforms are usually more comprehensible if one does not
η-reduce them.) From our point of view, such transforms are somewhat vexing,
in that they introduce continuations in some places, but do not appear to break
down function types into continuations in quite the same way that the canonical
CPS transforms do. It is not clear whether they can be accommodated in our
semantic framework.

3.5 Flattening transforms

We review flattening transforms, known to be a first step towards CPS; see
[LD93], although our account is somewhat different.

57

A first-order analogue of flattening for tuples leads us to a motivation for pre-
monoidal categories: we derive them from the computationally natural principle
of naming all intermediate results.

3.5.1 Flattening applications

We recall from [LD93] that CPS transforms can be staged by first translating into
a flattened form (called Core Direct Style in [LD93]); here we use a let-language
similar to that in [DH94].

3.5.1 Definition (Flattening transform for λ-terms)

x[= x

(λx.M)[def= λx.M [

(M N)[def= let f = M [in let a = N [in f a

3.5.2 Definition The CPS transforms for flat λ-terms are defined as follows.

x = k〈x〉
λx.M = k〈f〉{f〈xk〉=M}

fa = f〈ak〉
let x = N in M = N{k〈x〉=M}

x = x〈k〉
λx.M = k〈f〉{f〈xk〉=M}

fa = f〈k〉{k〈f〉=f〈ak〉}
let x = N in M = M{x〈k〉=N}

3.5.3 Proposition The call-by-value and the lazy call-by-name CPS transforms
factor over flattening.

M [= M M [= M

3.5.2 Flattening tuples

In the above, the only compound expressions (or serious terms) were combinations
M N . What the flattening transform achieved was to compile λ-calculus into a
de-sugared form in which the only combined expressions were those made up of
variables, f a.

We will now consider a first-order analogue of this, focussing on products
instead of function spaces. We de-sugar (flatten) tuple expressions (M, N) in the

58

same way as was done for applications M N . The target language shares some
features with Moggi’s metalanguage [Mog89], most notably in the distinction
between values and computations, but without any reference to monads.

In this setting, we have a very restricted notion of value: tuples of variables.
More complex entities cannot themselves be entries in a tuple; instead, all inter-
mediate results are named and only the names can appear in tuples. Values are
given by the following BNF:

V ::= () | x | (V, V)

Computations are values or let-expressions

M ::= V | let x = M in M

in general, though, M will range over other things in addition to the above, e.g.
computations with side-effects.

3.5.4 Definition The typing of the flattened tuple language is given by the
following rules.

x : τ ` x : τ

Γ ` U : σ ∆ ` V : τ

Γ, ∆ ` (U, V) : σ ⊗ τ
where U and V are values

Γ ` N : σ ∆, x : σ `M : τ

∆, Γ ` let x = N in M : τ

Γ ` N : σ x : σ, ∆ `M : τ

Γ, ∆ ` let x = N in M : τ

3.5.5 Definition The tuple flattening transform is defined as follows.

x[
def= x

(M, N)[def= let a = M [in let b = N [in (a, b)

3.6 A duality on CPS terms

We recall the call-by-value and (lazy) call-by-name CPS transforms.

x = k〈x〉
λx.M = k〈f〉{f〈xk〉=M}
MN = M{k〈f〉=N{k〈x〉=f〈xk〉}}

x = x〈k〉
λx.M = k〈f〉{f〈xk〉=M}
MN = M{k〈f〉=f〈xk〉{x〈k〉=N}}

59

It is striking that the translations of a free variable x under the two transforms
are dual to each other in the sense that each arises from the other by swapping
operator and argument. The same duality is evident in the translations of the
argument N in an application MN ; this is N{k〈x〉= . . .} for call-by-value and
. . .{x〈k〉=N} for call-by-name.

As long as continuations are unary, it is easy to define a transform that
swaps operator and argument everywhere. This does not make sense for gen-
eral, polyadic, continuations, as one cannot have a tuple in the operator position.
But inasmuch as replacing k〈x〉 with x〈k〉 amounts to replacing x with a thunk, we
can define a transformation for non-unary continuations f〈~y〉 in the same spirit,
by thunking them, giving f〈q〉{q〈p〉=p〈~y〉}. To compensate for this thunking, the
bindings for non-unary continuations . . . {f〈~y〉= . . .} need to be translated with
an additional forcing q〈p〉, giving . . . {f〈q〉=q〈p〉{p〈~y〉= . . .}}

3.6.1 Definition For a CPS term M , let its dual M⊥ be defined inductively as
follows:

k〈x〉⊥ def= x〈k〉
M{n〈x〉=N}⊥ def= N⊥{x〈n〉=M⊥}

f〈~y〉⊥ def= f〈q〉{q〈p〉=p〈~y〉}
M{f〈~y〉=N}⊥ def= M⊥{f〈q〉=q〈p〉{p〈~y〉=N⊥}}

for ~y 6= x; that is, ~y ranges over sequences other than those of unit length.

The duality between call-by-name and call-by-value is particularly vivid when
we transform terms after they have been flattened.

3.6.2 Proposition For a CPS term M , M⊥⊥ = M

Proof By induction on M . The cases k〈x〉 and M{n〈x〉=N} are trivial. For
the remaining two cases, we have

f〈~y〉⊥⊥

= f〈q〉{q〈p〉=p〈~y〉}⊥

= p〈~y〉⊥{p〈q〉=q〈f〉}
= p〈q〉{q〈f〉=f〈~y〉}{p〈q〉=q〈f〉}
= f〈~y〉

M{f〈~y〉=N}⊥⊥

60

= M⊥{f〈q〉=q〈p〉{p〈~y〉=N⊥}}⊥

= p〈q〉{p〈q〉=q〈f〉{f〈~y〉=N⊥⊥}}{q〈f〉=M⊥⊥}
= q〈f〉{f〈~y〉=N⊥⊥}{q〈f〉=M⊥⊥}
= M⊥⊥{f〈~y〉=N⊥⊥}
= M{f〈~y〉=N} by the induction hypothesis

2

This is a duality between call-by-value and call-by-name in the sense that it
connects the corresponding CPS transforms.

3.6.3 Proposition For a λ-term M not containing control operators,

M
⊥ = M and M⊥ = M

Proof By induction on M . For M = x,

x⊥ = k〈x〉⊥ = x〈k〉 = x

And conversely. Let the induction hypothesis hold for M and N .

M N
⊥

= N{k〈x〉=M{k〈f〉=f〈xk〉}}⊥

= f〈xk〉⊥{f〈k〉=M
⊥}{x〈k〉=N

⊥}
= f〈q〉{q〈p〉=p〈xk〉}{f〈k〉=M

⊥}{x〈k〉=N
⊥}

= M
⊥{k〈p〉=p〈xk〉}{x〈k〉=N

⊥}
= M{k〈p〉=p〈xk〉}{x〈k〉=N}
= M N

M N⊥

= M{k〈f〉=f〈xk〉{x〈k〉=N}}⊥

= N⊥{k〈x〉=f〈q〉{q〈p〉=p〈xk〉}}{f〈k〉=M⊥}
= N⊥{k〈x〉=M⊥{k〈p〉=p〈xk〉}}
= N{k〈x〉=M{k〈p〉=p〈xk〉}}
= M N

λx.M
⊥

= k〈f〉{f〈xk〉=M}⊥

61

= f〈k〉{f〈q〉=q〈p〉{p〈xk〉=M
⊥}}

= f〈k〉{f〈q〉=q〈p〉{p〈xk〉=M}}
= k〈p〉{p〈xk〉=M}
= λx.M

λx.M⊥

= k〈f〉{f〈xk〉=M}⊥

= f〈k〉{f〈q〉=q〈p〉{p〈xk〉=M⊥}}
= k〈p〉{p〈xk〉=M⊥}
= k〈p〉{p〈xk〉=M}
= λx.M

2

However, the duality does not in general respect equality, that is there are
M1 and M2 with M1 = M2 (provable equality), but not M1

⊥ = M2
⊥. Even for

terms arising as CPS transform of λ-terms, equality is not preserved in general.
Consider (λx.y)(fg).

(λx.y)(fg) = f〈gx〉{k〈x〉=k〈y〉}

(λx.y)(fg) = y〈k〉{k〈x〉=f〈gx〉} = k〈y〉

Clearly, the Garbage Collection axiom is the culprit here, so perhaps restricting
to the linear CPS calculus could help with the preservation of equality. Note
that the duality is well-behaved with respect to the Jmp and Eta laws, in that
it transforms their redexes into each other.

(M [n 7→ m])⊥ = (M{n〈x〉=m〈x〉})⊥ = x〈m〉{x〈n〉=M⊥} = M⊥[n 7→ m]

3.7 Two connections between call-by-value and
call-by-name

We have already mentioned in 3.1.5 that the lazy call-by-name CPS transform
can be seen as arising from thunking.

Consider λ-calculus augmented by two special forms, force and delay. We
give a translation from λ-calculus into the augmented variant.

xt = forcex

λx.M t = λx.M t

(MN)t = M t(delay N t)

62

We adapt the call-by-value CPS transform for special forms force and delay as
follows.

forcex = k〈x〉
delay M = k〈p〉{p〈k〉=M}

Then call-by-name factors over call-by-value by virtue of thunking [HD95]: M =
M t (see [HD95]).

We note that the variables appearing in a source term are reused in its CPS

transform, along with continuation variables freshly generated by the CPS trans-
form. For different transforms, this reuse is conceptually quite different.

In call-by-value, the variables from the source language are recycled to denote
the value of the translated term being passed to the current continuation. The
latter is anonymous, inasmuch as the current one is always used. For instance,
in x = k〈x〉, the variable x evaluates to itself; hence x is passed to the current
continuation, which, in the shorthand version of the transform, is always called k.
For λx.M = k〈f〉{f〈xk〉=M}, the λ-expression evaluates to a closure; a pointer
(private name) to this is passed to the current continuation.

For call-by-name, there are two intuitively different, but equivalent readings.
Either one of these may seem more natural, depending on whether one looks at
the thunking or the flattening transform as an intermediate step towards call-by-
name CPS. They are equivalent in that they are adjoint correspondent under
the self-adjointness on the left.

In the first interpretation, which regards call-by-name as a variant of call-
by-value obtained by thunking, λ-calculus variables are recycled in the manner
described above for call-by-value. The difference that the environment does not
hold values, but thunks. Hence x = k〈x〉 is read as saying that the thunk whose
address x is stored in the environment is forced by being sent the current contin-
uation k. (Categorically, then, Jx : τ ` x : τK denotes a morphism ¬¬JτK −→ JτK

representing this forcing.) According to this view, the translation of λ-expressions
is identical to that under call-by-value.

The second interpretation of call-by-name holds that source language variables
are recycled to denote the current continuation of the translated expression. The
latter, rather than the current continuation, now becomes an anonymous request
channel or return address. x = k〈x〉 is read as saying that k is passed to the
current continuation, called x, of the transform of the λ-term x. (Categorically,
this means that Jx : τ ` x : τK denotes a morphism ¬JτK −→ ¬JτK representing
the identity.) Under this interpretation, application in particular is quite different

63

from the call-by-value case.

fx = f〈q〉{q〈p〉=p〈xk〉}

f is now the current continuation of application, to which the request channel q

is passed.

3.8 From flattening tuples to premonoidal cate-
gories

One could argue that the tuple notation (M, N) in a call-by-value language should
be considered as no more than syntactic sugar for the flattened form

let a = M in let b = N in (a, b)

and that semantics should be based on the de-sugared form. Thus semantics
should not be based on the categorical structure for which the tuple language
M ::= () | x | (M, M) is the internal language, finite products [Cro93]; but
instead on the structure corresponding to the de-sugared let-language.

In the spirit of categorical semantics (for an accessible introduction, see e.g.
the textbook [Cro93]), we now attempt to arrive at a categorical semantics.

The minimal setting for a semantics of the flattened tuple language is a cate-
gory equipped with a “tensor”, more precisely, a binoidal category [PR97].

The let-construct is decomposed into tensor A⊗ () and composition. That
is, in a judgement

∆, Γ ` let x = N in M : τ

J∆K is composed “in parallel” with JΓ ` N : σK by means of the tensor J∆K⊗ (),
and the result is composed “sequentially” with J∆, x : σ ` M : τK by means of the
categorical composition “; ”.

In order to make the semantics cope with ambiguities in the notation, specif-
ically writing environments as associative lists, we require coherence conditions
that make the different readings of ambiguous syntax agree semantically. This
leads to the notion of premonoidal category [PR97].

3.8.1 Definition Given a premonoidal category and an interpretation J K of base
types as objects of that category, we give a semantics to the flattened tuples
language as follows.

Jx : τ1, . . . xn : τnK
def= (. . . (Jτ1K ⊗ . . .) . . .)⊗ JτnK

64

Jx : τ ` x : τK
def= id

JΓ, ∆ ` let x = N in M : τK
def= JΓ ` N : σK⊗ J∆K; Jx : σ, ∆ ` M : τK

J∆, Γ ` let x = N in M : τK
def= J∆K⊗ JΓ ` N : σK; J∆, x : σ `M : τK

JΓ, ∆ ` (U, V) : σ ⊗ τK
def= JΓ ` U : ΓK ⊗ J∆K; JσK⊗ J∆ ` V : τK

Jx : τ1, (y : τ2, z : τ3) ` ((x, y), z) : (τ1 ⊗ τ2)⊗ τ3K
def= assoc

J(x : τ1, y : τ2), z : τ3 ` (x, (y, z)) : τ1 ⊗ (τ2 ⊗ τ3)K
def= assoc−1

The coherence theorems [PR97] for premonoidal categories then let us write en-
vironments associatively. The ambiguities in the syntax do not lead to problems
because “every diagram commutes” (as long as it is made up of the denotations
of values).

The let expression can be written almost exactly the same in ML (let val

x = N in M end). By way of illustration, consider the following ML code.

fun assoc ((x,y),z) = (x,(y,z));

assoc : (’a * ’b) * ’c -> ’a * (’b * ’c);

fun tensorleft f (a,x) = (a, f x);

tensorleft : (’a -> ’b) -> ’c * ’a -> ’c * ’b;

fun tensorright f (x,a) = (f x, a);

tensorright : (’a -> ’b) -> ’a * ’c -> ’b * ’c;

In Scheme, we would write flattened tuple expressions using let* like this: (let*
((a M) (b N)) (list (a b))). Note that the heterogeneous lists in Scheme
allow us to define a strict premonoidal category by using list concatenation for
defining ⊗.

Some readers may be surprised that the premonoidal structure is not in fact
monoidal. We briefly illustrate why one should not expect this. For example, in a
language with state, there are two possible meanings of a tuple (M, N), depending
which component is evaluated first. Consider the following examples, where we
make the evaluation order explict by using let.

let val s = ref 0 in

let val x = (s := !s + 1; !s) in

65

let val y = (s := !s + 1; !s)

in #1(x,y) end end end ;

let val s = ref 0 in

let val y = (s := !s + 1; !s) in

let val x = (s := !s + 1; !s)

in #1(x,y) end end end;

Just as for state, in the presence of continuations (first-class or otherwise) there
are two possible meanings of the tuple (throw k 1, throw k 2).

callcc(fn k =>

let val x = throw k 1 in

let val y = throw k 2

in #1(x,y) end end);

callcc(fn k =>

let val y = throw k 2 in

let val x = throw k 1

in #1(x,y) end end);

In a monoidal category, there would be no way to distinguish between the
two composites. This makes monoidal categories suitable for those cases where
both composites are evaluated in parallel or where there can be no interference
between the two (which would the case, say, if both had access to disjoint pieces
of state). But with control, as given by continuations, we have both a sequential
evaluation order and interference between the components, since a jump in one
will prevent the other from being evaluated at all.

Put differently, the presence of computational effects, like state and control,
“breaks” the bifunctoriality, so one is left with a binoidal category. (Partiality
appears to be a separate case that should perhaps not be lumped together with
genuine effects like state and control.)

66

Chapter 4

⊗¬-categories

In this chapter, we develop a categorical account of the structure inherent in
first-class continuations.

For first-class continuations, it is particularly worthwhile to look at the cate-
gory of computations, for the following reasons:

• First-class continuations allow the full callcc to be added to the language,
which is the most powerful version of control found in actual languages.
This contrasts with the situation for state, where only a rather weak notion
of global state is added by commonly used notions like the state monad.

• The construct to be studied has universal properties on the category of
computations. That does not seem to be the case for constructs associated
with state, such as assignment.

• Continuations are an advanced concept in programming languages that
could be made easier to use by semantic clarification. While local state
has subtleties, it is not obvious if global variables as introduced by the state
monad are all that much in need of elucidation.

(We have made a comparsion with state here, as state and control appear to be
the most natural things to add to a programming language, but this discussion
would apply to other effects, e.g. exceptions.)

4.1 Introduction: what structure do we need?

The task of finding a semantic infrastructure for continuation semantics is some-
what analogous to that of interpreting λ-calculus in a cartesian closed category.
We need a first-order structure for interpreting environments and tuple types, in

67

analogy with, but weaker than, cartesian products, as well as higher-order struc-
ture for interpreting continuation types. These now become the fundamental
notion, while arrow types are derived as a special instance of continuation types.
But whereas in λ-calculus every morphism is a “pure function”, in CPS there is a
need to identify a subcategory of effect-free computations (or values) that satisfy
stronger properties than the general, possibly effectful, computations.

We show that effect-freeness in the presence of first-class continuations is a
more subtle notion than would at first appear. In particular, it is not enough to
exclude straightforward jumps like throw k 42.

In our framework, environments are modelled by means of a premonoidal cat-
egory [PR97]: this is a categorical framework which provides enough parallelism
on types to accommodate programs of multiple arity, but no real parallelism on
programs. For each object (type) A, there are functors A⊗ () and ()⊗ A. For
morphisms f : A −→ A′ and g : B −→ B′, there are in general two distinct
parallel compositions, f ⊗B;A′⊗g and A⊗g; f⊗B′. The central morphisms are
those f such that for all g, the above composites agree. That is, those programs
phrases which are not sensitive as to whether they are evaluated before or after
any other. This provides a robust notion of effect-free morphism.

The continuation type constructor extends to a contravariant functor, as every
function σ → τ gives rise to a continuation transformer τ cont → σ cont in the
opposite direction. This functor is adjoint to itself on the left, i.e., there is a
natural bijection

¬B −→ C

¬C −→ B

We use the notation ¬ and refer to an application of the continuation functor
more succintly as a negation, without claiming any deep connection. 1

Intuitively, a morphism ¬B −→ C expects both a B- and a C-accepting
continuation as its argument and current continuation, respectively. The above
correspondence arises by simply switching these. This ties in with the typing of
continuations in Standard ML of New Jersey.

We can define the unit force : ¬¬A −→ A of this adjunction, the isomorphism
of adjunction φ : hom(¬B, C) −→ hom(¬C, B) and the negation functor itself.

We require this to hold even “parametrically” in some other object A

A⊗¬B −→ C

A⊗¬C −→ B

1There is a formal resemblance between the continuation functor and logical negation, just
as there is a formal resemblance between, say, slice categories and division on the integers by
virtue of C/1 ∼= C and C/A/B ∼= C/(A× B).

68

The unit of this adjunction is the application map apply : A⊗¬(A⊗¬B) −→ B.
Restricted to the subcategory of central morphisms, ¬ is adjoint to itself on the
right.

A −→ ¬B
B −→ ¬A

Intuitively, a central morphism A −→ ¬B expects an argument of type A and
returns a B-accepting continuation. Hence there is demand for both A and B;
and again the correspondence arises essentially by swapping.

The unit of this adjunction is a generic delaying map thunk : A −→ ¬¬A.
Using thunk, we define a morphism

pair : C −→ ¬(A⊗¬(A⊗ C))

which is a natural transformation in the centre. This in turn is used to define
λ-abstraction.

λAf
def= pair;¬(A⊗¬f)

This definition of λ-abstraction in terms of control (and tuple types) does not
give rise to a closed category, although we have the following.

(A⊗ λf); apply = A⊗ pair; A⊗ ¬(A⊗ ¬f); apply = A⊗ pair; apply; f = f

The corresponding λ(A⊗ g; apply) = g, however does not hold in general. Hence
this λ-abstraction does not give rise to a cartesian closed category. But it is still
sufficient for interpreting a call-by-value λ-calculus, as a central g can be pushed
into λ (and values denote central morphisms). Although neither SML nor Scheme
make this identification of function types [A→ B] with ¬(A⊗ ¬B), we can still
define a pair of coercion functions (figures 1.12 and 1.13).

The basis for our categorical account of continuation semantics will be the
negation functor, corresponding to the typing based on ¬ in Chapter 2 However,
the continuations considered there were actually polyadic, that is, in k〈x1 . . . xi〉
k is applied to a tuple of arguments. That is why, before introducing ¬, we need
some first-order structure for building up such tuples (as well as environments).

4.2 Semantics of environments in a premonoidal
category

Before addressing the categorical semantics of environments, we should perhaps
clarify what we mean by “environment” here. The terminology we adopt may not
be completely standard, but is a rational one in being semantically motivated.

69

In Type Theory, the antecedent of a judgement x1 : τ1, . . . , xn : τn ` M : τ is
usually called a context. In Computer Science, an environment is traditionally a
map from variables to values. Here we use the word environment in the general
sense of anything that ascribes something (types, values, . . .) to variables; the
former, then, is a type environment and the latter a value environment .

Semantically, a type environment denotes an object in some semantic category,
while a value environment denotes an element thereof. (In the categorical sense
of element: an element of an object being a morphism with that object as its
codomain.)

This generalises the usual notion of types denoting objects and terms denoting
their elements in a straightforward pointwise fashion to indexed collections of
both: value and type environments, respectively.

In the sequel, we concentrate on the semantics of type environments and do
not deal with value environments explicitly. But their semantics is implicit in
that a morphism JΓK −→ JτK can be seen as mapping elements of JΓK to elements
of JτK.

In particular, suppose our semantic category consists of sets with structure,
and that we build up the denotation of a type environment Jx1 : τ1, . . . , xn : τnK

as the product of the denotations of the types JτiK. Then a value environment ρ is
(up to isomorphism) a (global) element of the denotation of the type environment

1
ρ // Jx1 : τ1, . . . , xn : τnK = Jτ1K × · · · × JτnK

This also implies a notion of value environments “matching” type environments
in that ρ ascribes to each xi a value vi having type τi.

The above generalisation of environments is also closely related to the view
of structures in Standard ML having the signatures which they match as their
“type” [FT95], to the extent that an ML structure represents a value environment
and a signature a type environment.

Another reason for avoiding the word “context” here is that in Computer
Science this often refers to a notion of “term with a hole”, such as evaluation
context. Using “context” in the sense of “type environment”, moreover, may lead
to an unfortunate inversion of terminology if the word “environment” is then used
for (the totality of) computing agents with which some interaction is possible, a
concept more closely allied with “evaluation context” or indeed “continuation”.

We will use a premonoidal structure ⊗ for interpreting environments of the
form Jx1 : τ1, . . . , xn : τnK as Jτ1K⊗ · · · ⊗ JτnK.

4.2.1 Definition ([PR97]) A strict premonoidal category is a category K to-

70

gether with an object 1 ∈ ObK and, for each A ∈ ObK, endofunctors A ⊗ ()
and ()⊗ A that agree in the sense that

(A⊗ ())(B) = (()⊗B))(A) =: A⊗B

such that 1⊗ (−) = idK = (−)⊗ 1 and

(A⊗B)⊗ C = A⊗ (B ⊗ C)

(f ⊗B)⊗ C = f ⊗ (B ⊗C)

(A⊗ g)⊗ C = A⊗ (g ⊗ C)

(A⊗B)⊗ h = A⊗ (B ⊗ h)

A morphism f : A −→ A′ is called central if it commutes with everything in
the sense that, for all g : B −→ B′, we have

A⊗ g; f ⊗B′ = f ⊗B;A′ ⊗ g

g ⊗ A;B′ ⊗ f = B ⊗ f ; g ⊗A′

That is, for f to be central, we require these diagrams to commute

A⊗B
A⊗g //

f⊗B
��

A⊗B′

f⊗B′
��

A′ ⊗B
A′⊗g // A′ ⊗B′

B ⊗ A
g⊗A //

B⊗f
��

B′ ⊗ A

B′⊗f
��

B ⊗A′
g⊗A′ // B′ ⊗ A′

The centre Z(K) of K is the subcategory of K consisting of all objects and all
central morphisms. Let ι : Z(K) ↪→K be the inclusion.

The inclusion of the centre will often be left implicit.

4.2.2 Remark To simplify the account, we have concentrated on the strict case,
rather than the more general premonoidal category. Because each premonoidal
category is equivalent to a strict premonoidal category (implicit in [PR97]), the
restriction to strictness is not a very severe one.

One could reasonably expect everything to generalise to the general case in a
routine way.

In any case, the emphasis here is on the categorical structure of continuations,
so we believe it to be defensible to postpone coherence issues until this is well-
understood and definitive. — For the present, the canonical example is a term
model (which we try to understand more abstractly), so it would be somewhat
counterproductive not to take advantage of the strictness afforded by term models.

71

4.2.3 Definition A ⊗-category is a strict premonoidal category K such that ⊗
is given by cartesian product in the centre of K and furthermore, the twist map
arising from this product

〈π2, π1〉 : A⊗B −→ B ⊗ A

is natural in A and and in B.

We extend the morphism pairing operation 〈 , 〉 given by the products in the
centre of K to the whole of K as follows. (Note that this implies a choice of
which component is computed first: here it is the second.) For f : C −→ A and
g : C −→ B, let

〈f, g〉 def= 〈idC , idC〉; C ⊗ g; f ⊗B : C −→ A⊗B

4.2.4 Definition We say that a morphism f : A −→ B is copyable iff it respects
the binary products of the centre in the sense that

f ; 〈id, id〉 = 〈f, f〉 : A −→ B ⊗B

and that f is discardable if it respects the terminal object 1 of the centre in the
sense that

f ; !B =!A : A −→ 1

In [Fil89], discardable morphisms are called total.

4.3 Continuation types as higher-order struc-
ture

We will be interested in a particularly simple kind of adjunction: a contravariant
functor being adjoint to its own dual, with the unit and co-unit being the same.

4.3.1 Definition A functor F : Cop −→ C is called self-adjoint on the left iff
there is a natural transformation ε : FF op −→ idC such that Fε; εF = id. Dually,
F is called self-adjoint on the right iff F op is self-adjoint on the left.

(See also [Mac71, p. 87] for the “on the left” idiom.)
The continuation functor ¬ has two universal properties, adjointness on the

left and right; we axiomatise them here in terms of the universal maps apply and
thunk, respectively.

4.3.2 Definition A ⊗¬-category is a ⊗-category K together with

72

• a functor ¬ : Kop −→ Z(K) such that for each object A of K,

(A⊗ ι¬()) : Kop −→ K

is self-adjoint on the left (let applyA : A⊗¬(A⊗¬B) −→ B be the unit of
this adjunction), and

• a natural transformation thunk : idZ(K) −→ ¬¬ in Z(K)

such that

• apply is dinatural in A

• thunk; force = id where force def= apply1 : ¬¬A −→ A

• ¬ force = thunk¬

• letting apply
A

def= A⊗ ¬(A⊗ force); applyA, we have

¬ force = thunk¬
thunk;¬¬apply = apply; thunk

thunkA⊗C = A⊗ thunkC ;A⊗ ¬apply; apply

applyA⊗A′ = 〈π2, π1〉 ⊗ ¬(A⊗ A′ ⊗ ¬B); A′ ⊗ apply
A
; applyA′

The first of these four axioms establishes another link between forcing and
thunking (in addition to the more familiar thunk; force = id); the second states
that the call-by-name application, unlike the call-by-value one, is effect-free; the
other two are somewhat technical coherence conditions.

Intuitively, dinaturality of the application map means that modifying the
operand of a function application by a map f : A −→ A′ is the same as modifying
the operator by a corresponding continuation transformer.

A⊗ ¬(A′ ⊗¬B)
A⊗¬(f⊗¬B) //

f⊗¬(A′⊗¬B)
��

A⊗ ¬(A⊗ ¬B)

apply
��

A′ ⊗ ¬(A′ ⊗ ¬B)
apply // B

Dinaturality is rquired as a separate axiom, as it does not seem to follow from
naturality (unlike in a Cartesian closed category).

The universal property of the continuation functor can be expressed by the
following diagrams (naturality and triangular identity for force.)

¬¬A
¬¬f

��

force // A

f

��
¬¬B force // B

¬A ¬force //

id $$I
II

II
II

II
¬¬¬A

force
��
¬A

73

In addition to the usual thunk; force = id, we have another axiom linking forcing
and thunking. A consequence of this is the self-adjointness on the right of the
restriction of ¬ to the centre, with unit thunk.

A

g

��

thunk // ¬¬A
¬¬g

��
B

thunk // ¬¬B

¬A thunk//

id $$I
II

II
II

II
¬¬¬A

¬thunk
��
¬A

(where g is central.) In chapter 6 (figures 6.3 and 6.4), we will consider programs
written in “compositional” style, that is, using sequential composition of functions
and the programming analogues of thunk, ¬, . . . (figures 1.12 and 1.13). We hope
that the simple and quite symmetric categorical laws expressed by the above
diagrams could facilitate reasoning about programs written in this style.

4.3.3 Definition Given a cartesian closed category C (with strict products), and
an object R of C we can define a ⊗¬-category K as follows

ObK def= Ob C
K(A, B) def= C(RB , RA)

A⊗ () is given by the product A× () in C. The functor ¬ is R(). force def= ηR()

and thunk def= RηηR(), where ηA : A −→ RRA is the unit of the “continuation
monad” on C. We call K the standard model for C and R.

Despite the apparent generality of this construction, we regard this as an
overly specific approach that does not do justice to the full generality of CPS
(compare section 2.6). It consists essentially of implementing CPS in simply-
typed λ-calculus and then interpreting this in the usual fashion in a cartesian
closed category.

4.3.4 Remark In the category C, the functor [() → R] is self-adjoint on the
right. The two isomorphic views of the continuation semantics category as a cat-
egory of continuation transformers and as the Kleisli category of the continuation
monad are connected by the self-adjointness (i.e. its isomorphism of adjunction).

C(A, RB) ∼= C(B, RA)

This is also the connection between the typings of the Plotkin-style (continuation
last) and Fischer-style (continuation first) CPS transforms. On types, this gives
the continuation monad view σ → τ = σ → ¬¬τ , or the continuation transformer
view σ → τ = ¬τ → ¬σ, respectively.

74

4.4 Some interdependencies of properties

We write φA for the isomorphism of adjunction for the self-adjointness on the left.
This is an involution. φA : K(A⊗¬B, C) −→ K(A⊗¬C, B)

φAf
def= A⊗ ¬f ; applyA

For A = 1, we have φ
def= φ1 : K(¬B, C) −→ K(¬C, B) with φf = ¬f ; force.

4.4.1 Remark Note that because of the finite product structure on the centre,
each functor A ⊗ () comes equipped with a comonad structure, the unit being
given by discarding, the multiplication by weakening.

We can regard φA as essentially the same as φ, but on the co-Kleisli category
for the comonad A⊗ ()

ObKA def= ObK
KA(B, C) def= K(A⊗B, C)

For each A, K has its own “indexed negation” ¬A, defined as

¬Af
def= φA(A⊗ force; f).

This “indexed functor” point of view has some advantages. In particular,
some of the axioms of an ⊗¬-category become more comprehensible: they were
essentially reverse-engineered to make ¬A viable as an indexed functor. This issue
will be addressed more fully in chapter 8 where we take the indexed category
presentation as fundamental.

4.4.2 Remark What is perhaps surprising about this definition is that we have
made such strong assumptions about the centre. All central morphisms are
deemed to be effect-free, so that they respect the product. While centrality is cer-
tainly necessary for effect-freeness, there is in general no reason to assume that it
is sufficient. It appears to be the presence of first-class continuations, specifically
the unit force, that that makes centrality such a strong property: if a morphism
commutes with everything, it must commute with force, and that implies that it
commutes with reification. Slightly more technically, if f : A −→ B is central,
then f ⊗ ¬¬¬B; B ⊗ force = A ⊗ force; f ⊗ ¬B. This implies the naturality of
thunk, as

f ; thunk

= A⊗ thunk; A⊗ ¬(f ⊗ ¬¬¬B; B ⊗ force; apply); apply

= A⊗ thunk; A⊗ ¬(A⊗ force; f ⊗ ¬B; apply); apply

= thunk;¬¬f

75

4.4.3 Remark If a morphism f is thunkable in the sense that it makes the
naturality square

A

f
��

thunk // ¬¬A
¬¬f

��
B

thunk // ¬¬B
commute, then it respects binary products.

f ; 〈id, id〉
= f ; 〈thunk; force, thunk; force〉
= f ; thunk; 〈force, force〉
= thunk;¬¬f ; 〈force, force〉
= 〈thunk;¬¬f ; force, thunk;¬¬f ; force〉
= 〈f, f〉

4.4.4 Remark Instead of defining ¬ to have the centre as it codomain, we could
have required the adjoint correspondence

A⊗¬B −→ C

A⊗¬C −→ B

to be natural in A , as this implies that every morphism of the form ¬f is
central. This property is perhaps more intuitive in terms of control flow: control
manipulation concerning B and C does not affect a separate strand of control
g : A −→ A′.

4.4.5 Proposition Every negated morphism ¬C
¬f // ¬B is central.

Proof Let B
f // C and A

g // A′ . We need to show that

A⊗ ¬C A⊗¬f // A⊗ ¬B g⊗¬B// A′ ⊗ ¬B

and

A⊗ ¬C g⊗¬C // A′ ⊗ ¬C
A′⊗¬f// A′ ⊗ ¬B

are the same morphism. Applying φA to the first composite, we get

φA(A⊗ ¬f ; g ⊗ ¬B)
= φA(A⊗ ¬f ; g ⊗ ¬B; idA′⊗¬B)
= φA(g ⊗ ¬B; idA′⊗¬B); f
= g ⊗ ¬(A′ ⊗ ¬B); φA′(idA′⊗¬B); f

76

For the second composite:

φA(g ⊗ ¬C;A′ ⊗ ¬f)
= φA(g ⊗ ¬C;A′ ⊗ ¬f ; idA′⊗¬B)
= g ⊗ ¬(A′ ⊗ ¬B);φA′(A′ ⊗ ¬f ; idA′⊗¬B)
= g ⊗ ¬(A′ ⊗ ¬B);φA′(idA′⊗¬B); f

Because φA is an isomorphism, this means that A⊗¬f ; g⊗¬B = g⊗¬C;A′⊗¬f .
2

4.4.6 Proposition

A′ ⊗A⊗ ¬(A⊗A′ ⊗ ¬B)
A′⊗A⊗¬(A⊗force) //

∼=

��

A′ ⊗ A⊗¬(A⊗ ¬¬(A′ ⊗ ¬B))

A′⊗applyA
��

A′ ⊗ ¬(A′ ⊗ ¬B)

applyA′
��

A⊗ A′ ⊗ ¬(A⊗A′ ⊗ ¬B)
applyA⊗A′ // B

could equivalently be expressed in terms of coherence for the indexed negation

A′ ⊗ A⊗ ¬(A⊗ A′ ⊗B)
∼=

��

A′⊗¬AidA⊗A′⊗B // A′ ⊗ ¬(A′ ⊗B)

¬A′ idA′⊗B
��

A⊗ A′ ⊗ ¬(A⊗ A′ ⊗B)
¬A⊗A′ idA⊗A′⊗B // ¬B

4.5 λ-abstraction in a ⊗¬-category
Just as in the standard CPS transforms, function types σ → τ will be decomposed
into continuations for arguments σ and result continuations ¬τ . So instead of
exponentials, we have a derived notion of arrow type

[A→ B] def= ¬(A⊗ ¬B)

The corresponding application map is the unit of the adjunction

applyA : A⊗¬(A⊗ ¬B) −→ B

In a cartesian closed category, we could define λ-abstraction in terms of the
right adjoint [A → ()] in A × () a [A → ()] and the unit of adjunction (the
curried pairing map) pair : C −→ [A −→ (A× C)] as λf

def= pair; [A→ f]. The
notion of λ-abstraction that we have in the present setting can be defined in a
way that is formally very similar, although we do not have cartesian closure.

77

We define a pairing map as

pair def= thunkC ;¬(A⊗¬(A⊗ force); applyA) : C −→ ¬(A⊗¬(A⊗ C))

Note that of the two possible composites of the functors A⊗ () and ¬, one is
self-adjoint on the left, the other on the right. A⊗¬() is self-adjoint on the left
¬(A⊗ ()) restricted to the centre is self-adjoint on the right.

The pairing map then allows us to define (call-by-value) λ-abstraction.

λf
def= pair;¬(A⊗ ¬f)

Although we may read apply and pair as having the types familiar from cartesian
closed categories, that is

apply : A⊗ [A→ B] −→ B

pair : C −→ [A→ (A⊗ C)]

this is really a kind of secondary etymology, as in reality apply and pair are the
unit/counit of negation functors A⊗ ¬() and ¬(A⊗ ()), respectively.

apply : A⊗ ¬(A⊗ ¬B) −→ B

pair : C −→ ¬(A⊗¬(A⊗ C))

4.5.1 Proposition The following two diagrams commute

A⊗ C
A⊗pair //

idA⊗C

''NN
NN

NN
NN

NN
NN

NN
NN

NN
NN

NN
NN

A⊗ ¬(A⊗ ¬(A⊗ C))

apply

��
A⊗ C

¬(A⊗¬B)
pair //

id¬(A⊗¬B)

((QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
¬(A⊗ ¬(A⊗¬(A⊗ ¬B)))

¬(A⊗¬apply)

��
¬(A⊗¬B)

In the framework of premonoidal categories, a notion of call-by-value λ-abstraction
was proposed [Pow]. Formally, this is a mild variation on monoidal closure, re-
quiring not A⊗ (), but it composition with the inclusion of the centre to have a
right adjoint, hence the name “central” closure.

78

4.5.2 Proposition A ⊗¬-category is centrally closed, in the sense that

ι(()⊗ A) a ¬(A⊗ ¬())

where ι : Z(K) ↪→K. In terms of equations:

A⊗ λ(f); apply = f

λ(A⊗ g; apply) = g

λ(A⊗ g; f) = g; λf

λf ;¬(A⊗ ¬h) = λ(f ; h)

where g is central.

The fact that pair is not natural with respect to all morphisms is what makes the
“protecting by a λ” technique work in this setting. (It is really the precomposition
with thunk that does the protecting.)

4.5.3 Corollary The inclusion of the centre is left adjoint to double negation.

ι a ¬¬

The isomorphism of adjunction is

λ1 : K(A, B) −→ Z(K)(A,¬¬B)

f 7→ thunk;¬¬f

This is a categorical formulation of thunking as a form of reification, given
here by f 7→ thunk;¬¬f .

4.5.4 Corollary K is the Kleisli category for the monad ¬¬ on Z(K).

We nonetheless prefer to regard the category of computations K as primary, rather
than reifying everything and then running a Kleisli interpreter on top of it.

4.5.5 Proposition The call-by-name application and abstraction satisfy the fol-
lowing:

A⊗ λ
A
f ; apply

A
= f

λ
A
(A⊗ g; apply

A
) = g

Moreover, apply
A

is itself central.
It could appear as if we were somehow recovering a Cartesian closed category.

But that is not really the case. Although the centre does have finite products, the

79

centrally closed structure given by apply does not restrict to the centre, as apply

is not itself central. Intuitively, this is because the application map is a jump
with arguments, and jumps are too effectful to be central. So there is a trade-off
of sorts: one can either have the products or the higher-order structure.

80

Chapter 5

The CPS term model

In this chapter, we build a term model of a ⊗¬-category from the syntax of
(simply-typed) CPS calculus. This is analogous to the (standard) construction
of a Cartesian closed category from simply-typed λ-calculus (e.g. [Cro93]).

The CPS calculus is of course rather different in style from λ-calculi, so instead
of familiar structures like (Cartesian) closure, or its generalisation to other binding
constructs as adjoints to reindexing 1, we get self-adjointness as the algebraic
manifestation of first-class jumping (hinted at in section 1.2.1 in the introduction).

5.1 Building a category from CPS terms

In this section we will attempt to isolate the crucial structure that makes con-
tinuation semantics work, gradually abstracting from the CPS calculus to arrive
at a syntax free-presentation that will lead to a categorical semantics in the next
section.

The jumping and the binding construct of CPS calculus correspond to iden-
tities and composition in the term model.

The self-adjointness on the left is responsible for various generalised jumps
(which eliminates double-negations); while the self-adjointness on the right builds
new places to jump to (which introduces a double negation).

5.1.1 First-order structure

In [App92], CPS terms are likened to the machine code of a von Neumann ma-
chine (as far as control is concerned). But as far as sequential composition is
concerned, CPS terms are even more low-level than code, as they do not have
a default or current continuation. The basic idea, then, is to ascribe meaning

1Consider for instance the definitions of
∏

,
∑

, ∀, ∃ in a topos

81

not to a CPS term by itself, but to a CPS typing judgement that lists the free
variables of the term, distinguishing one of them as the current continuation.

The type environment part ~x:~σ, k:¬~τ of a judgement ~x:~σ, k:¬~τ ` M gives
each morphism [~x:~σ, k:¬~τ ` M] a unique domain and codomain, as required.
Conversely, if the domain ~σ and codomain ~τ are clear from the context, we can
write more succinctly [~xk `M].

Once a current continuation has been singled out in a judgement, there is a
natural concept of sequential composition:

[~xn `M]; [~yk ` N] def= [~xk `M{n〈~y〉=N}]

This has [~xk ` k〈~x〉] as its identity.
Furthermore, we have product types (by concatenation); and although these

are not categorical products, we do have projections πi = [~x1~x2k ` k〈~xi〉] as well
as contraction δ = [~xk ` k〈~x~x〉].

Hence we have enough parallelism on types to accommodate multi-arity maps
denoting program phrases of more than one free variable. Given the sequential
nature of CPS, we would not expect genuine parallelism of morphisms (denoting
terms) f ⊗ g.

Given two CPS judgements

[~xk `M] [~yh ` N]

there are in general two different composites; we can run either M or N first.
In each case, the term first to be evaluated has to carry along the free variables
needed by the second judgement. If we run M first, this gives a judgement
[~x~yk′ `M{k〈~z〉=k′〈~x~z〉}]

But implicit in this composition of M and N was the notion of “carrying along
free variables”. Considered on its own this is, for every object A, a functor A⊗()
defined by

A⊗ [~xk ` M] def= [~y~xk′ `M{k〈~z〉=k〈~y~z〉}]

Symmetrically, we have a functor ()⊗ A.

5.1.2 Application as double negation elimination

All the above are trivial terms in the sense that they jump to the current continu-
ation. A CPS judgement that does not do this is evidently [hk ` h〈k〉]. But this
is just the identity [kh ` h〈k〉] with the argument and the current continuation
interchanged.

82

More generally, given any [hk `M] with a continuation parameter h, let

φ[hk `M] def= [kh `M]

¬ extends to a functor. We can define it in terms of φ and force as ¬f =
φ(force; f). Concretely, this boils down to the following:

¬[~xh ` M]

= φ(force; [~xh `M])

= φ([kl ` k〈l〉]; [~xh `M])

= φ[kh ` k〈l〉{l〈~x〉=M}]
= [hk ` k〈l〉{l〈~x〉=M}]

The switching operation does not interfere with any other names ~x in the
environment, that is, a judgement [~xhk ` M] can be switched to yield [~xkh `M].
And this is natural.

This switching operation is quite unfamiliar from direct-style programming,
but used on identities, projections and contraction it gives rise to some of the
most important idioms that we need for the interpretation of λ-calculus with
control.

force switching argument h and current continuation k in the identity [hk ` k〈h〉]
gives

force : [kh ` k〈h〉] : ¬¬A −→ A

apply switching argument f and current continuation k in the identity gives

apply : [~xfk ` f〈~xk〉] : A⊗ ¬(A⊗¬B) −→ B

throw switching h argument and current continuation k in the projection π1 =
[~xhk ` k〈~x〉] gives

throw = [~xhk ` k〈~x〉] : A⊗ ¬A −→ B

callcc switching argument k and current continuation f in [kf ` f〈kk〉] gives

[fk ` f〈kk〉] : ¬(¬A⊗ ¬A) −→ A

Note that the clauses for application, throw and callcc in figure 3.1.1 consist
essentially of composing with one of these constants, while force is essentially the
denotation of a free variable in call-by-name.

83

5.1.3 Thunking as double negation introduction

The units of the self-adjointness on the right wrap their argument into a thunk.

thunk = [~xk ` h〈f〉{f〈h〉=h〈~x〉}]

pair = [~xk ` h〈f〉{f〈~yh〉=h〈~y~x〉}]

5.2 The ⊗¬ term model

5.2.1 Definition The category K(CPS) is constructed as follows. Objects are
sequences ~τ of types. A morphism from ~σ to ~τ is an equivalence class [~x:~σ, k:¬~τ `
M] of judgements, where ~x:~σ, k:¬~τ `M and ~x′:~σ′, k′:¬~τ ′ `M ′ are equivalent iff

M = M ′[~x′k′ 7→ ~xk]

is derivable.

ObK(CPS) = {τ1 . . . τj | τi is a CPS type expression}
K(CPS)(~σ, ~τ) = {[~x : ~σ, k : ¬~τ `M] | ~x : ~σ, k : ¬~τ `M is derivable}

Identities and composition correspond to the two term-forming rules of CPS

calculus.

id~σ = [~x:~σ, k:¬~σ ` k〈~x〉]
[~x:~τ1, n:¬~τ2 `M]; [~y:~τ2, h:¬~τ3 `M] = [~x:~τ1, h:¬~τ3 `M{n〈~y〉=N}]

The structure on morphisms is given as follows:

¬[~x:~σ, h:¬~τ ` M] = [h:¬~τ , k:¬¬~σ ` k〈f〉{f〈~x〉=M}]
[~x:~σ1, k:¬~τ `M]⊗ ~σ2 = [~x:~σ1, ~y:~σ2, h:¬(~τ~σ2) `M{k〈~z〉=h〈~z~y〉}]
~σ1 ⊗ [~x:~σ2, k:¬~τ ` M] = [~y:~σ1, ~x:~σ2, h:¬(~σ1~τ) `M{k〈~z〉=h〈~y~z〉}]

apply~σ = [~x:~σ, f :¬(~σ,¬~τ), k:¬~τ ` f〈~xk〉]
thunk~τ = [~x:~τ , k:¬¬¬~τ ` k〈f〉{f〈h〉=h〈~x〉}]

5.2.2 Remark We should point out that focussing on the term model is not
really a restriction to syntactic, as opposed to semantic models.

Consider the definition of the premonoidal structure on the category of con-
tinuation transformers on a Cartesian closed category, where a morphism is of
the following form:

Φ : RA ←− RB

It would be easy to say that C ⊗Φ is given by virtue of the functor ()C and the
evident isomorphims

RC×A ∼= (RA)C ←− (RB)C ∼= RC×B

84

As soon as definitions become more complicated, that style becomes hopeless and
one needs to adopt a more systematic approach by using the internal langauge
of the Cartesian closed category, that is simply-typed λ-calculus with products
and a constant Φ for every morphism Φ in the category. Then we can write the
definition more concisely and rigorously as:

C ⊗ Φ def= Jk : RC×A ` λ(c, a) : C ×A.Φ(λb.k (c, b)) a : RK

Up to ordering of variables, this is essentially the definition in the CPS term
model, with CPS specialised to the λ-calculus. Moreover, the axioms of the CPS

calculus are sound for the translation to λ-calculus, hence proofs are translated
to proofs about (the internal language of) Cartesian closed categories.

Reasoning within the CPS term model is thus similar to using the internal
language of a Cartesian closed category or the internal logic of a topos instaed of
doing diagram chases.

5.2.3 Proposition K(CPS) as defined in Definition 5.2.1 is in fact a category.

Proof

• id is the identity
id; [~yh ` N]

= [~xn ` n〈~x〉]; [~yh ` N]
= [~xh ` n〈~x〉{n〈~y〉=N}]
= [~xh ` N [~y 7→ ~x]]
= [~yh ` N]

[~xn ` M]; id
= [~xn ` M]; [~yh ` h〈~y〉]
= [~xh ` M{n〈~y〉=h〈~y〉}]
= [~xh ` M [n 7→ h]]
= [~xn ` M]

• composition is associative

([~xm ` L]; [~yn ` M]) ; [~zk ` N]
= [~xn ` L{m〈~y〉=M}]; [~zk ` N]
= [~xk ` L{m〈~y〉=M}{n〈~z〉=N}]
= [~xk ` L{n〈~z〉=N}{m〈~y〉=M{n〈~z〉=M}}]
= [~xk ` L{m〈~y〉=M{n〈~z〉=M}}]
= [~xm ` L]; ([~yn `M]; [~zk ` N])

2

5.2.4 Lemma A morphism [~xk ` M] is central iff for all N with ~z 6∈ FV(N),
~w 6∈ FV(M)

M{k〈~z〉=N{h〈~w〉=l〈~z ~w〉}} = N{h〈~w〉=M{k〈~z〉=l〈~z ~w〉}}

85

Proof Let f = [~xk ` M] : A −→ A′ be central. Then for all g = [~yh ` N] :
B → B′, f ⊗B; A′ ⊗ g = A⊗ g; f ⊗B′.

f ⊗B; A′ ⊗ g

= [~x~yl `M{k〈~z〉=n〈~z~y〉{n〈~z~y〉=N{h〈~w〉=l〈~z ~w〉}}}]
= [~x~yl `M{k〈~z〉=N{h〈~w〉=l〈~z ~w〉}}]

A⊗ g; f ⊗B ′

= [~x~yl ` N{h〈~w〉=m〈~x~w〉{m〈~x~w〉=M{k〈~x〉=~z ~w〈}〉}}]
= [~x~yl ` N{h〈~w〉=M{k〈~z〉=l〈~z ~w〉}}]

2

For instance, the identity [~xk ` k〈~x〉] is central, but force = [hk ` h〈k〉] is not:
take M = x〈k〉 and N = y〈h〉.

5.2.5 Lemma If a morphism f is central, then thunk;¬¬f = f ; thunk.

Proof If f = [~xk ` M] is central, then by Lemma 5.2.4,

M{k〈~y〉=h〈f〉{f〈l〉=z〈~yl〉}} = h〈f〉{f〈l〉=M{k〈~y〉=z〈~yl〉}}

Hence, applying {z〈~yl〉=l〈~y〉}, we have

M{k〈~y〉=h〈f〉{f〈l〉=z〈~yl〉}}{z〈~yl〉=l〈~y〉}
= h〈f〉{f〈l〉=M{k〈~y〉=z〈~yl〉}}{z〈~yl〉=l〈~y〉}

And this simplifies to

M{k〈~y〉=h〈f〉{f〈l〉=l〈~y〉}} = h〈f〉{f〈k〉=M} (5.1)

Now

¬¬f
= ¬¬[~xk `M]

= ¬[kp ` p〈g〉{g〈~x〉=M}]
= [ph ` h〈f〉{f〈k〉=p〈g〉{g〈~x〉=M}}]

thunk;¬¬f
= [~xn ` n〈p〉{p〈k〉=k〈~x〉}]; [ph ` h〈f〉{f〈k〉=p〈g〉{g〈~x〉=M}}]
= [~xh ` n〈p〉{p〈k〉=k〈~x〉}{n〈p〉=h〈f〉{f〈k〉=p〈g〉{g〈~x〉=M}}}]

86

= [~xh ` h〈f〉{f〈k〉=p〈g〉{g〈~x〉=M}}{p〈k〉=k〈~x〉}]
= [~xh ` h〈f〉{f〈k〉=g〈~x〉{g〈~x〉=M}}]
= [~xh ` h〈f〉{f〈k〉=M}]

f ; thunk

= [~xk `M]; [~yh ` h〈f〉{f〈l〉=l〈~y〉}]
= [~xh `M{k〈~y〉=h〈f〉{f〈l〉=l〈~y〉}}]

So by (5.1), thunk;¬¬f = f ; thunk.
2

This implies that thunk is a natural transformation in the centre.

5.2.6 Remark The isomorphism of adjunction of the self-adjointness on the
right is a map ψ : hom(A,¬B) −→ hom(B,¬A) defined by

ψ[~xk `M] = [~yh ` k〈f〉{f〈~x〉=M{k〈l〉=l〈~y〉}}]

This is an involution when restricted to central morphisms; for general morphisms,
it is not quite an involution:

ψψ[~xk `M] = [~xk ` k〈g〉{g〈~y〉=M{k〈l〉=l〈~y〉}}]

Consider ~x = a and M = a〈k〉.

5.2.7 Proposition The centre of K(CPS) has finite products: ⊗ together with
the evident projections

πj
def= [~x1~x2k ` k〈~xj〉]

is a product in the centre of K(CPS); and the empty sequence together with
evident morphism [~xk ` k〈〉] is a terminal object in the centre.

Proof For fi = [~xki `Mi], let

〈f1, f2〉 def= [~xh `M1{k1〈~y1〉=M2{k2〈~y2〉=h〈~y1~y2〉}}].

〈π1, π2〉
= 〈[~x1k1 ` k1〈~x1〉], [~x2k2 ` k2〈~x2〉]〉
= [~x1~x2h ` k1〈~x1〉{k1〈~x1〉=k2〈~x2〉{k2〈~x2〉=h〈~x1~x2〉}}]
= [~x1~x2h ` h〈~x1~x2〉]
= id

87

Note that central morphisms can be copied and discarded because the corre-
sponding thunks can. This is the key to the proof, the remainder being routine
manipulations of the definition of 〈 , |〉. Let [~xk `M] be central. Then

M{k〈~y〉=h〈f〉{f〈l〉=l〈~y〉}} = h〈f〉{f〈k〉=M}

Therefore

M{k〈~y〉=l〈〉}
= M{k〈~y〉=h〈f〉{f〈k〉=k〈~y〉}}{h〈f〉=l〈〉}
= h〈f〉{f〈k〉=M}{h〈f〉=l〈〉}
= l〈〉{f〈k〉=M}
= l〈〉

Similarly, we have

M{k〈~y〉=l〈~y~y〉}
= M{k〈~y〉=p〈~y〉{p〈~y1〉=q〈~y〉{q〈~y2〉=l〈~y1~y2〉}}}
= M{k〈~y〉=f〈p〉{p〈~y1〉=f〈q〉{q〈~y2〉=l〈~y1~y2〉}}{f〈r〉=r〈~y〉}}
= M{k〈~y〉=h〈f〉{f〈r〉=r〈~y〉}}{h〈f〉=f〈p〉{p〈~y1〉=f〈q〉{q〈~y2〉=l〈~y1~y2〉}}}
= h〈f〉{f〈k〉=M}{h〈f〉=f〈p〉{p〈~y1〉=f〈q〉{q〈~y2〉=l〈~y1~y2〉}}}
= f〈p〉{p〈~y1〉=f〈q〉{q〈~y2〉=l〈~y1~y2〉}}{f〈k〉=M}
= M{k〈~y1〉=M{k〈~y2〉=l〈~y1~y2〉}}

This means that, for a central morphism g, we have g; 〈id, id〉 = 〈g, g〉. Let
g : A −→ B and fi : B −→ Ci. Then

g; 〈f1, f2〉
= g; 〈id, id〉; B ⊗ f2; C1 ⊗ f2

= 〈id, id〉; A⊗ g; g ⊗B; B ⊗ f2; f1 ⊗C2

= 〈id, id〉; A⊗ g; A⊗ f2; g ⊗C2; f1 ⊗ C2

= 〈id, id〉; A⊗ (g; f2); (g; f1)⊗C2

= 〈g; f1, g; f2〉

Therefore, for central gi, 〈g1, g2〉; πj = gj 2

5.2.8 Lemma A morphism f : A −→ ¬A′ is central iff f is of the form

[~xk ` k〈f〉{f〈~y〉=M ′}]

with k 6∈ FV(M ′).

88

Proof Let N = b〈h〉 with b and h fresh. Because [~xk `M] is central,

M{k〈a〉=b〈h〉{h〈~y〉=l〈a~y〉}} = b〈h〉{h〈~y〉=M{k〈a〉=l〈a~y〉}}

Applying (){l〈a~y〉=a〈~y〉} to both sides, we get

M{k〈a〉=b〈h〉{h〈~y〉=l〈a~y〉}}{l〈a~y〉=a〈~y〉}
= b〈h〉{h〈~y〉=M{k〈a〉=l〈a~y〉}}{l〈a~y〉=a〈~y〉}

Simplifying this yields

M [k 7→ b] = b〈h〉{h〈~y〉=M{k〈a〉=a〈~y〉}}

Hence

f

= [~xk ` M]

= [~xb `M [k 7→ b]]

= [~xb ` b〈h〉{h〈~y〉=M{k〈a〉=a〈~y〉}}]
= [~xb ` b〈h〉{h〈~y〉=M ′}]

for M ′ = M{k〈a〉=a〈~y〉} and b 6∈ FV(M ′), as b is fresh. 2

5.2.9 Definition (Trivial CPS term) A CPS term is called trivial in k iff it
is of the form

k〈p1 . . . pn〉{pi1〈~xi1〉=Mi1} . . . {pim〈~xim〉=Mim}

with k 6∈ FV(Mij). ({i1, . . . , im} ⊆ {1, . . . , n})

5.2.10 Proposition Suppose that there are no base types in CPS calculus. Then
a morphism f : A −→ B in K(CPS) is central iff f = [~xk ` M] such that M is
trivial in k.

This means we can find a trivial representative for the equivalence class, not
that all representatives are of this form (one could simply expand a redex). For
instance,

id = [~xk ` k〈~x〉] = [~xk ` n〈h〉{h〈k〉=k〈~x〉}{n〈h〉=h〈k〉}] = thunk; force

Proof By cases on B. If B = ¬τ , apply lemma 5.2.8. Otherwise, B = τ0τ1 . . . τn,
and we proceed by induction on n. Since B is a sequence of type expressions, we
split off the first one, which must be of the form τ0 = ¬σ. Apply the induction

89

hypothesis to f ; π2 : A −→ τ1 . . . τn. By lemma 5.2.8, f ; π1 : A −→ τ0 = ¬σ,
defined as

f ; π1 = [~wh `M{k〈p~y〉=h〈p〉}]

must be of the form
f ; π1 = [~wh ` h〈p〉{p〈~x〉=M ′}]

As f is central, f = 〈f ; π1, f ; π2〉. Then

〈f ; π1, f ; π2〉
= [~wk `M{k〈p~y〉=h〈p〉{h〈p〉=M{k〈q~z〉=k〈p~z〉}}}]
= [~wk `M{k〈p~y〉=h〈p〉}{h〈p〉=M{k〈q~z〉=k〈p~z〉}}]
= [~wk ` h〈p〉{p〈~x〉=M ′}{h〈p〉=M{k〈q~z〉=k〈p~z〉}}]
= [~wk `M{k〈q~z〉=k〈p~z〉}{p〈~x〉=M ′}]
= [~wk ` k〈pp1 . . . pn〉{pi1〈~xi1〉=Mi1} . . . {pim〈~xim〉=Mim}{p〈~x〉=M ′}]

2

5.2.11 Conjecture We conjecture that respecting the finite product structure
can be characterised syntactically by the occurrence of the current continuation.

• A morphism in K(CPS) is cancellable iff it is of the form

[~xk ` k〈p1 . . . pl〉{n1〈~y1〉=N1} . . . {nm〈~ym〉=Nm}]

• A morphism in K(CPS) is copyable iff it is of the form

[~xk ` q〈p1 . . . pl〉{n1〈~y1〉=N1} . . . {nm〈~ym〉=Nm}]

with k /∈ FV(Nj).

5.2.12 Proposition K(CPS) is a ⊗¬-category.

Proof

• ¬ is functorial: ¬ preserves identities

¬id~τ
= ¬[~xh ` h〈~x〉]
= [hk ` k〈f〉{f〈~x〉=h〈~x〉}]
= [hk ` k〈h〉]
= id¬~τ

90

¬ preserves composition

¬[~yh ` N];¬[~xn `M]
= [hk′ ` k′〈n〉{n〈~y〉=N}]; [nk ` k〈m〉{m〈~x〉=M}]
= [hk ` k′〈n〉{n〈~y〉=N}{k′〈n〉=k〈m〉{m〈~x〉=M}}]
= [hk ` k〈m〉{m〈~x〉=M{n〈~y〉=N}}]
= ¬[~xh `M{n〈~y〉=N}]
= ¬ ([~xn ` M]; [~yh ` N])

• φA : K(A ⊗ ¬B, C) ∼= K(A ⊗ ¬C, B) is natural in B and C, i.e. φA(A ⊗
¬g; f) = φA(f ; g)

(~σ ⊗ ¬[~yh′ ` N]) ; φ~σ[~xkn `M]
= ~σ ⊗ [hk′ ` k′〈n〉{n〈~y〉=N}]; [~xnk `M]
= [~xhh′ ` k′〈n〉{n〈~y〉=N}{k′〈n〉=h′〈~xn〉}]; [~xnh `M]
= [~xhk ` k′〈n〉{n〈~y〉=N}{k′〈n〉=h′〈~xn〉}{h′〈~xn〉=M}]
= [~xhk ` h′〈~xn〉{n〈~y〉=N}{h′〈~xn〉=M}]
= [~xhk ` M{n〈~y〉=N}]
= φ~σ[~xkh `M{n〈~y〉=N}]
= φ~σ ([~xkn `M]; [~yh ` N])

• φA : K(A⊗ ¬B, C) ∼= K(A⊗ ¬C, B) is natural in A, i.e. φA′(g ⊗ ¬B; f) =
g ⊗ ¬C;φA(f)

φ~σ ([~xn `M]⊗ ¬~τ ; [~yhk ` N])
= φ~σ ([~xhn′ `M{n〈~y〉=n′〈~yh〉}]; [~yhk ` N])
= φ~σ[~xhk `M{n〈~y〉=n′〈~yh〉}{n′〈~yh〉=N}]
= [~xkh ` M{n〈~y〉=N}]
= [~xkh ` M{n〈~y〉=n′〈~yk〉}{n′〈~yk〉=N}]
= [~xkn′ `M{n〈~y〉=n′〈~yk〉}]; [~ykh ` N]
= [~xn ` M]⊗ ¬~τ ′; φ~σ[~yhk ` N]

• (−)⊗ ~σ is functorial

id~σ1 ⊗ ~σ2

= [~xk ` k〈~x〉]⊗ ~σ
= [~x~yh ` k〈~x〉{k〈~z〉=h〈~z~y〉}]
= [~x~yh ` (h〈~z~y〉)[~z 7→ ~x]]
= [~x~yh ` h〈~x~y〉]
= id~σ1~σ2

= id~σ1⊗~σ2

([~xn `M]; [~yk ` N])⊗ ~σ
= [~xk `M{n〈~y〉=N}]⊗ ~σ
= [~x~wh `M{n〈~y〉=N}{k〈~z〉=h〈~z ~w〉}]
= [~x~wh `M{k〈~z〉=h〈~x~z〉}{n〈~y〉=N{k〈~z〉=h〈~z ~w〉}}]
= [~x~wh `M{n〈~y〉=N{k〈~z〉=h〈~z ~w〉}}]
= [~x~wk `M{n〈~y〉=n′〈~y ~w〉}{n′〈~y ~w〉=N{k〈~z〉=h〈~z ~w〉}}]
= [~x~wn′ ` M{n〈~y〉=n′〈~y ~w〉}]; [~y~wh ` N{k〈~z〉=h〈~z ~w〉}]
= [~xn `M]⊗ ~σ; [~yk `M]⊗ ~σ

91

Analogously for ~σ ⊗ (−).

2

In [Fil89], a different notion of value was proposed: a morphism f : A −→ B

is called total if it can be discarded in the sense that A −→ B −→ 1 = A −→ 1.
This is plausible insofar as jumps cannot be discarded, so that by excluding jumps
one might hope to isolate those program phrases that do not have control effects.

5.2.13 Proposition ⊗ is not a product in the subcategory of total morphisms.

Proof The following morphism twicecc is total (but not central). twicecc does
not respect ⊗.

twicecc def= [~xhk ` k〈~xl〉{l〈~y〉=k〈~yh〉}] : A⊗ ¬A −→ A⊗ ¬A

Informally, in terms of continuation transformers, twicecc could be read as “k 7→
k ◦ k”.

This is total, because twicecc; [~wk ` k〈〉] = [~xk ` k〈〉] However, twicecc is not a
value: it is too effectful to be copyable, in that twicecc; 〈id, id〉 6= 〈twicecc, twicecc〉
can be distinguished by ; [zcfz′c′gr ` f〈zq〉{q〈w〉=g〈wc〉}].

The two composites are “h3” as distinct from “h4”, that is,

[~xahk ` h〈~xq〉{q〈~w〉=h〈~wq〉{q〈~w〉=h〈~wa〉}}]

[~xahk ` h〈~xq〉{q〈~w〉=h〈~wq〉{q〈~w〉=h〈~wq〉{q〈~w〉=h〈~wa〉}}}]

We omit the calculations here; this counterexample will be discussed in Chap-
ter 6, where we demonstrate experimentally, by exhibiting programs, that twicecc

cannot be copied. 2

5.3 The indexed ¬ term model

We have mentioned in remark 4.4.1 during the discussion of ⊗¬-categories that
it may be helpful to think about negation as indexed.

As this chapter establishes the connection between CPS calculus and cate-
gories, we now sketch how this indexed viewpoint is related to a two-zone CPS

calculus (see remark 2.4.3), in which operations such as negation affect only a
subset of the environment. We arrive at an indexed category as a term model of
the alternative (indexed) view of ⊗¬-categories to be developed in chapter 8.

We define the equivalence of judgements as follows: ~x:~σ, k:¬~τ ` M and
~x′:~σ′, k′:¬~τ ′ `M ′ are equivalent iff

M = M ′[~x′k′ 7→ ~xk]

92

is derivable from the axioms of CPS calculus.
The indexed category H : Cop −→ Cat is defined as follows

• the objects of C and all the fibres HC are sequnces of CPS type expressions

• the product of objects in C is given by concatenation of sequences

• a morphism from ~σ to ~τ in the base category C is an equivalence class of
trivial judgements

~y : ~σ, q : ¬~τ ` q〈p1 . . . pn〉{pi1〈~xi1〉=Mi1} . . . {pim〈~xim〉=Mim}

• a morphism from ~τ1 to ~τ2 in H~σ is an equivalence class of judgements

~z : ~σ; ~x : ~τ1, k : ¬~τ2 `M

• the structure on the fibres is given as follows

id def= [~z; ~xk ` k〈~x〉]
[~z; ~xn `M]; [~z; ~yk ` N] def= [~z; ~xk `M{n〈~y〉=N}]

C∗[~z; ~yk ` M] def= [~z~x; ~yk ` M]

L[~z~x; ~wk ` M] def= [~z; ~x~wk′ `M{k〈~y〉=k′〈~x~y〉}]
κC[~z~x; ~wk ` M] def= [~z; ~x~wk `M]

¬[~z; ~xk ` M] def= [~z; kh ` h〈f〉{f〈~x〉=M}]
force def= [~z; hk ` h〈k〉]

• Reindexing on f along h: for f = [~xk `M] and

h = [~yq ` q〈p1 . . . pn〉{pi1〈~xi1〉=Mi1} . . . {pim〈~xim〉=Mim}]

let
Hh(f) def= [~yk `M{pi1〈~xi1〉=Mi1} . . . {pim〈~xim〉=Mim}]

5.4 Recursion in CPS

We can define a term model K(RecCPS) of a ⊗¬-category analogously to defi-
nition 5.2.1, but using the recursive CPS calculus.

93

Recursion plays no part in any of the categorical structure of a ⊗¬-category,
but we may ask what additional categorical structure it gives rise to. As a first
step towards an answer to that, we sketch how a looping operator could be intro-
duced categorically as a dinatural transformation. To some extent, this amount
to a categorical account of “recursion from iteration” [Fil94a].

Lµf.λx.MM(k) def= k〈f〉{f〈~xh〉⇐LMM(h)}

A looping operator on a ⊗¬-category K is a dinatural transformation

fixA : K(A⊗ (), ()) ·· // ZK(A,¬())

K(A⊗ C, C)
fixA,C // ZK(A,¬C)

ZK(A,¬C)

''PP
PP

PP
PP

PP
P

K(A⊗B, C)

K(A⊗B,g) ((QQ
QQ

QQ
QQ

QQ
QQ

K(A⊗g,C)
66mmmmmmmmmmmm

ZK(A,¬C)

K(A⊗B, B)
fixA,B // ZK(A,¬B)

ZK(A,¬g)

77nnnnnnnnnnn

For A⊗B
f // C and C

g // B

fixA(f ; g);¬g = fixA(A⊗ g; f)

5.4.1 Proposition In K = K(RecCPS), there is a looping operator

fixA : K(A⊗ (), ()) ·· // Z(K)(A,¬())

given as follows

fix~τ [~x : ~τ , ~y : ~σ, k : ¬~σ ` M] def= [~x : ~τ , h : ¬¬~σ ` h〈k〉{k〈~y〉⇐M}]

Proof Let f
def= [~x : ~τ, ~yn `M] and g

def= [~zk ` N]. Then

fix~τ (f ; g);¬g
= fix~τ [~xq ` h〈k〉{k〈~y〉⇐M{n〈~z〉⇐N}}]; [kq ` q〈f〉{f〈~z〉⇐N}]
= [~xq ` h〈k〉{k〈~y〉⇐M{n〈~z〉⇐N}}{h〈k〉⇐q〈f〉{f〈~z〉⇐N}}]
= [~xq ` q〈f〉{f〈~z〉⇐N}{k〈~y〉⇐M{n〈~z〉⇐N}}]

fix~τ (~τ ⊗ g; f)

= fix~τ [~x~zn ` N{k〈~y〉⇐M}]
= [~xq ` q〈n〉{n〈~z〉⇐N{k〈~y〉⇐M}}]

94

2

Our notion of equality for the recurive CPS calculus in not quite strong enough
without some induction principle allowing us to conclude that

q〈f〉{f〈~z〉⇐N}{k〈~y〉⇐M{n〈~z〉⇐N}} = q〈n〉{n〈~z〉⇐N{k〈~y〉⇐M}}

as required for the dinaturality. Alternatively, we could construct the term model
from term modulo observational congruence 2.3.2. We conjecture that for this
notion of equality the dinnaturality would follow, i.e.:

q〈f〉{f〈~z〉⇐N}{k〈~y〉⇐M{n〈~z〉⇐N}} ≈ q〈n〉{n〈~z〉⇐N{k〈~y〉⇐M}}

5.4.1 Recursion from iteration

The point of having a looping construct for recursively-defined continuations is
that, given our decomposition of functions into special continuations, it is exactly
what is needed for recursively-defined functions. The link is established by the
self-adjointness (on the left).

If M is the body of a recursively defined function f : σ → τ in the environment
Γ, we have a judgement Γ, x : σ, f : (σ → τ) ` M : τ whose denotation is a
morphism

JMK : JΓK ⊗ JσK⊗ ¬(JσK⊗ ¬JτK) −→ JτK

applying the isomorphism of adjunction φ yields a morphism

φJΓK⊗JσK (JMK) : JΓK ⊗ JσK⊗ ¬JτK −→ JσK⊗ ¬JτK

and looping this gives a morphism

JΓK −→ ¬(JσK⊗¬JτK)

which is the denotation

Jµf.λx.MK : JΓK −→ Jσ → τK

This can be seen as a categorical distillation of Filinski’s “Recursion from itera-
tion” [Fil94a], where φ was called a “context-switch”.

95

Chapter 6

Effects in the presence of
first-class continuations

In this chapter, we demonstrate that first-class continuations give rise to strong
and rather subtle effects. First of all, this is an illustration and validation of our
categorical semantics. The issue that we wish to clarify and give support to is
our choice of the subcategory of effect-free computations.

While semantic considerations form the backdrop, it is also possible to read
this chapter as an exploration of a simple idea: that the current continuation can
be used twice. Once it is established that this can indeed be done, essentially the
same idea leads to counterexamples to at least three separate conjectures:

• Andrzej Filinski’s view of the total morphisms as effect-free

• The idempotency hypothesis of Andrzej Filinski and Amr Sabry

• The decomposition of force (Felleisen’s C-operator), attempted by James
Laird

Put more positvely, this shows that callcc is very expressive (in the sense of
[Fel91]). The examples here seem to indicate that, intuitively or “morally”, first-
class continuations ought to be grouped together with state among the strong
computational effects and not with much weaker effects like divergence.

Preliminaries

We make use of the categorical combinators that were defined in figure 1.12 on
page 19 and figure 1.13 on page 20 for ML and Scheme, respectively.

We need to make a distinction between jumps in which the value thrown is
not itself of continuation (or function) type, as in a plain goto like throwk (),
and the unrestricted jumps afforded by callcc. We call the former first-order
jump or exit, and the latter first-class jump.

96

6.1 Using the current continuation twice

One way of thinking about the denotations of terms in the presence of first-
class continuations is as “continuation transformers” transforming a continuation
for their codomain backwards into a continuation for their domain, by analogy
with predicate transformers transforming postconditions into preconditions. At
first sight this appears to be dual to the usual functional way of thinking about
denotations as transforming a value (of the type given by the domain of the
denotation) forward into a result (of the type given by the codomain). However,
this is not really a duality, because, although each value transformer gives rise to a
continuation transformer by precomposition, not every continuation transformer
arises this way. Non-standard manipulations of the control flow, as by control
operators, do not simple apply the current continuation to a result. For instance,
a jump typically ignores the current continuation. (Strictly speaking, this applies
only to first-order jumps that do not pass the current continuation as an argument
the way force does.) But there are other ways, apart from applying it or ignoring
it, of transforming the current continuation: such as using it twice.

The identification of functions with certain continuations cuts both ways: not
only can we reduce functions to continuations; we may also regard continuations
of the appropriate type as functions and treat them accordingly.

In the context of the present discussion, this means that we can regard a
computation of type

’1a * ’1a cont -> ’1a * ’1a cont

viewed (on the meta-level) as a continuation transformer

(’1a * ’1a cont) cont -> (’1a * ’1a cont) cont

as just a “function transformer” mapping the function space ’1a -> ’a into
itself. A fairly obvious candidate for such a function transformer is the function
twice : f 7→ f ◦ f .

This continuation transformer counterpart of twice, while not representing a
jump (ignoring the current continuation), is still a non-standard control manipu-
lation, as it is different from applying the current continuation to a result.

6.1.1 Writing twicecc compositionally

We have two alternative ways of writing twicecc. We can take the CPS term

k〈~xl〉{l〈~y〉=k〈~yh〉}

97

fun twicecc (n,h) = callcc(fn k =>
(fn n => throw k (n,h))
(callcc(fn q => throw k (n,q))));

twicecc : ’1a * ’1a cont -> ’1a * ’1a cont;

Figure 6.1: twicecc in continuation-grabbing style (nj-sml)

(define twicecc
(lambda (l)
(call/cc (lambda (f)

((lambda (n)
(f (list n (cadr l))))

(call/cc (lambda (q)
(f (list (car l) q)))))))))

Figure 6.2: twicecc in continuation-grabbing style (Scheme)

fun twice f = f o f;

twice : (’a -> ’a) -> (’a -> ’a);

fun twicecc a = (phi(funtocont o twice o conttofun) o thunk) a;

twicecc : ’1a * ’1a cont -> ’1a * ’1a cont;

Figure 6.3: twicecc in compositional style (nj-sml)

(define (twice f)
(compose f f))

(define twicecc
(compose
(phi
(compose fun-to-cont twice cont-to-fun))
thunk))

Figure 6.4: twicecc in compositional style (Scheme)

98

and do a continuation-grabbing style transform (see definition 2.6.8 on page 41)
to arrive at an ML (and similarly, Scheme) program (figures 6.1 and 6.2).

This amounts to writing a continuation-passing style function composition in
the source language (ML or Scheme), bypassing its control structure in favour
of explicit jumps and continuation bindings. Although this method provides a
practical use for continuation-grabbing style, it is somewhat rough and ready,
in that it is a functional analogue of spaghetti coding and makes it harder for
the compiler to supply useful type information for those subterms that are non-
returning.

Informally, we could paraphrase figures 6.1 and 6.2 as follows. The current
continuation is seized by a callcc. It is then treated as a function by being
composed with itself. This composition, though, is done in the style of CPS.
That is to say, it the continuation treated as a function is invoked twice, each time
with an argument and a result continuation. Composition is achieved by making
the result continuation of the first invocation to be evaluated (textually this is
the second one) refer to the place where the second one expects its argument.
This is done by the inner callcc seizing the λ in the operator position as its
continuation.

A more structured approach would be to start with the familiar function
twice def= λf.f ◦ f

twice : [A→ A] −→ [A→ A]

which up to coercion is a map

¬(A⊗ ¬A) −→ ¬(A⊗ ¬A)

Negating this and and composing with thunk and force yields

A⊗ ¬A −→ ¬¬(A⊗ ¬A) −→ ¬¬(A⊗ ¬A) −→ A⊗ ¬A

And this is what we do in figures 6.3 and 6.4, using the categorical combina-
tors from figures 1.12 and 1.13. twicecc becomes a one-liner in ML, consisting
mainly of function composition (with a η-redex to prevent non-generic weak type
variable).

As a first illustration of what twicecc does, consider the following example
in ML:

callcc(fn k =>

(fn (n, h) => throw h (n+1))

(twicecc (0, k)));

(* val it = 2 : int *)

99

Here the continuation of twicecc could be phrased as “pass the first argument
incremented by one to the second argument”. The continuation that twicecc

supplies to its arguments, then, is twice that; hence 0 is incremented twice before
finally being passed to the (top-level) continuation supplied by the surrounding
callcc.

6.2 Copying and discarding

The fact that twicecc is total in the sense of discardable is corroborated by
considering its composite with a function that discards its argument.

fun bang _ = ();

bang : ’1a -> unit;

fun discardtester testee =

callcc(fn k => ((fn _ => 42) o testee)(0,k));

We demonstrate the fact that twicecc is not copyable (see proposition 5.2.13)
by counterexample.

Copying twicecc (using copy twicecc) and attempting to copy its result
after it has been run (using twicecc copy produce different results:

- distinguisher copy_twicecc;

val it = 3 : int

- distinguisher twicecc_copy;

val it = 4 : int

The context that can distinguish copy twicecc and twicecc copy, abstracted
as distinguisher above, could be visualised as follows.

(I︸︷︷︸
0

⊗ ¬I︸︷︷︸
k

)⊗¬(I ⊗ ¬I)︸ ︷︷ ︸
inc

−→((I︸︷︷︸
n

⊗ ¬I︸︷︷︸
h

)⊗¬(I ⊗ ¬I)︸ ︷︷ ︸
f

)⊗((I⊗¬I)⊗¬(I ⊗ ¬I)︸ ︷︷ ︸
g

)

We can show similarly that force is not copyable either (figures 6.2 and 6.8).
force is in some sense maximally effectful: it is a jump, but as it passes the
current continuation as an argument, it is more sensitive than an ordinary jump,
which is oblivious to its current continuation.

The distinguishing context to show that force is not copyable is built us-
ing the one for twicecc. Roughly speaking, (force, force) will behave like
(twicecc,twicecc) when each occurrence of force is given a separate copy of
twicecc wrapped in a thunk.

100

fun copy_twicecc x = (twicecc x, twicecc x);

fun twicecc_copy x = (fn y => (y,y)) (twicecc x);

fun distinguisher testee =
callcc(fn k =>

(fn (((n,h),f),(_,g)) =>
throw h (conttofun f (conttofun g n)))
(testee ((0,k),funtocont (fn n => n+1))));

Figure 6.5: Effectfulness of twicecc. Copying a computation, copying its result
and a context to distinguish them (nj-sml)

(define copy-twicecc
(lambda (l)

(list (twicecc l) (twicecc l))))

(define twicecc-copy
(lambda (l)
((lambda (y) (list y y))
(twicecc l))))

(define distinguisher
(lambda (testee)
(call/cc (lambda (k)

((lambda (l)
((cadaar l)
((cont-to-fun (cadadr l))
((cont-to-fun (cadar l))
(caaar l)))))

(testee
(list (list 0 k)

(fun-to-cont
(lambda (n) (+ n 1))))))))))

Figure 6.6: Effectfulness of twicecc. Copying a computation, copying its result
and a context to distinguish them (Scheme)

101

fun copyforce h = (force h, force h);

fun forcecopy h = (fn a => (a,a)) (force h);

fun distinguisher2 f = distinguisher (f o (delay twicecc));

Figure 6.7: force is not copyable (nj-sml)

(define copy-force
(lambda (h)
(list (call/cc h) (call/cc h))))

(define force-copy
(lambda (h)
((lambda (y) (list y y))
(call/cc h))))

(define (distinguisher2 testee)
(distinguisher
(compose
testee
(negate (negate twicecc))
thunk)))

Figure 6.8: force = call/cc is not copyable (Scheme)

102

6.2.1 twicecc is not thunkable

This also provides an example for the fact that twicecc is not thunkable in the
sense that composing with thunk does not succeed in wrapping the computation
of twicecc into a thunk. Hence the following simple-minded attempt to define
the distinguishing context for the non-copyability of force does not work:

fun forcecopytesterwrong f =

distinguisher (f o (pseudodelay twicecc));

Because forcecopytesterwrong cannot pass twicecc to each occurrence of
force, both tests evaluate to the same value, 4.

- forcecopytesterwrong copyforce;

val it = 4 : int

- forcecopytesterwrong forcecopy;

val it = 4 : int

A proper distinguishing context uses the delaying idiom , which negates twicecc.

fun forcecopytester f =

distinguisher (f o (delay twicecc));

Now the non-copyablity of force manifests itself in the same way as for twicecc

- forcecopytester copyforce;

val it = 3 : int

- forcecopytester forcecopy;

val it = 4 : int

6.2.2 Cancellable and copyable are orthogonal

Considering that values are copyable and discardable whereas jumps (throw) are
copyable but not discardable, we can summarise that copyable and discardable
are orthogonal.

While it is evident that values can be discarded and jumps cannot, the right
column was previously thought to be unoccupied, in that Filinski [Fil89] thought
that cancellability, separating the top from the bottom row, was sufficient for
separating value from all effects.

copyable not copyable
discardable x λx.M twicecc a

not discardable throw k 42 force h

103

A corollary of this table is that a first-order jump like throw 42 is not max-
imally effectful. When it comes to being effectful, it is self-defeating in that it
forgets the current continuation. This implies that is it copyable, because one
jump (λx.(x, x))(throwk 42) is as good as two (throwk 42, throwk 42), because
the first jump will ignore it continuation containing the second jump, so that it
does not matter whether the latter is present or not. The quintessential first-class
jump force, by contrast, is not oblivious to its continuation, as this is passed as
an argument. This makes force sufficiently sensitive to its continuation to resist
copying.

6.2.3 First-class control is not an idempotent effect

distinguisher also gives us a counterexample to the conjecture, due to Andrzej
Filinski and Amr Sabry, that control is an idempotent effect; thanks to Andrzej
Filinski for pointing this out to me. [Andrzej Filinski, personal communication].

The idempotency conjecture holds that (λx.(x, x))M should be indistinguish-
able from (M, M)

The conjecture could be perhaps be supported by informal arguments about
first-order jumps. We have mentioned that these can be copied essentially because
they are oblivious to their continuation, so that it does not matter if another jump
follows. Hence the idempotency could be defended for values, as well as for first-
order jumps. What it fails to take into account are terms that do not simply
pass something to the current continuation, but do not ignore it either. There
seems to be an assumption of a kind of excluded middle here, along the line of:
functions in continuations semantics can return a value or else they are goto’s.

As witnessed by twicecc, first-class continuations are more subtle than that.
Continuations of the appropriate type can be used just as ordinary function de-
clared with a fun or define.

To refute the idempotency hypothesis, we once again use distinguisher and
twicecc:

distinguisher (fn x => (fn y => (y,y)) (twicecc x));

distinguisher (fn x => (fn a => (fn b => (a,b))

(twicecc x)) (twicecc x));

To the extent that that such ideological conclusions can be drawn from this
example, we should like to argue that it is misleading to think of first-class control
as a form of non-termination due to jumping.

104

6.3 Centrality and effect-freeness

Having demonstrated in section 6.2 that discardable morphisms are too permissive
a notion to be a suitable characterization of effect-free computation, we now try
to add some plausibility to the claim that centrality in the presence of first-class
continuations is a suitable notion.

We mentioned in remark 4.4.2 that it is due to the self-adjointness that cen-
trality can be assumed to imply effect-freeness. There is some room for misun-
derstanding here, as there is a different, but weaker, argument for such an impli-
cation. We hope to clarify the connection between centrality and effect-freeness
in the presence of first-class continuations by some concrete examples

First note that we can talk about centrality in quite a general setting: when-
ever we have a language having a let- and a tuple construct, we can define a
term M to be central iff for all fresh variables a and b and all other terms N ,

let a = M in let b = N in (a, b)

is the same (under whatever notion of equality we happen to have) as

let b = N in let a = M in (a, b)

For instance, if our notion of effect is given by (not necessarily first-class)
continuations and at least two different values that can be thrown, then terms
M that throw cannot be central. We only need to take for N a term that throws
something else in order to tell the difference between the two composites.

-(callcc (fn k =>

let val a = throw k "A side effect." in

let val b = throw k "A subtly different side effect.\n" in

a end end));

= = = val it = "A side effect." : string

- (callcc (fn k =>

let val b = throw k "A subtly different side effect." in

let val a = throw k "A side effect." in

a end end));

= = = val it = "A subtly different side effect." : string

If additional side-effects, such as input-output, are present in the language, it
is quite straightforward to see that twicecc is not central; see figure 6.11. Some
more care is needed if control is the only effect.

105

fun forcefirst (a,b) =
let val y = force b in
let val x = (output(std_out, "A side effect.\n"); 42) in

(x,y) end end;

fun forcelast (a,b) =
let val x = (output(std_out, "A side effect.\n"); 42) in
let val y = force b in

(x,y) end end;

fun trytoreify f (n,k) =
(phi(fn h =>

(fn (x,y) => throw y x)
(f ((n,k),h)))) (thunk ());

val effectnotinclosure = trytoreify forcelast ((),());
effectnotinclosure : int cont cont;

val effectinclosure = trytoreify forcefirst ((),());
effectinclosure : int cont cont;

force effectnotinclosure;

force effectinclosure;

Figure 6.9: force can reify by being precomposed (in ML)

106

(define (forcelast l)
(let*

((x (begin (write "A side effect.") (newline) 42))
(y (call/cc (cadr l))))

(list x y)))

(define (forcefirst l)
(let*

((y (call/cc (cadr l)))
(x (begin (write "A side effect.") (newline) 42)))

(list x y)))

(define (trytoreify f)
(lambda (l)
((phi
(lambda (h)

((lambda (l) ((cadr l) (car l)))
(f (list l h)))))

(thunk (list)))))

(define effectnotinclosure ((trytoreify forcelast) (list)))

(define effectinclosure ((trytoreify forcefirst) (list))))

(call/cc effectnotinclosure)

(call/cc effectinclosure)

Figure 6.10: force can reify by being precomposed (in Scheme)

107

However, with first-class continuations, one can do much more than subject M

to testing for effects; one can actually reify M . For N = force h, the composite
with force coming after M

let a = M in let b = force h in (a, b)

passes to h the continuation after running M ; this gives access to the value that
M returns after being run and possibly side-effecting. The composite with force

coming first, by contrast, passes to h the continuation before M is computed.
This has the same effect as wrapping the whole computation, include possible
side-effects, into a thunk.

So instead of the somewhat weak argument “if M had effects, we should be
able to find a test N that can tell the difference”, we know that force will reify
anything that follows. Now, intuitively speaking, in order for the two composites
to agree, (i.e. for M thunked and unthunked to be the same) M itself must
already be as good as reified.

Depending on whether force appears first or not, one can achieve either the
genuine thunking

A
thunk// ¬¬A

¬¬f // ¬¬B

or the “pseudo-delaying”

A
f // B

thunk// ¬¬B

The difference between these two is demonstrated in figures 6.9 and 6.10.

6.3.1 twicecc is not central

We established in 6.2 that twicecc cannot be copied. In our semantics, central
morphisms respect the product and can be copied. Thus twicecc cannot be
central — at least that is what the semantics predicts.

To show that this is indeed the case, and so to validate our semantics, we
consider a final experiment.

As in the above, counterexamples are easier to find if we allow ourselves the
additional observations afforded by I/O) — see figure 6.11 for a demonstration
that twicecc is not central.

For the general case, without relying on I/O, we reuse the distinguishing
context once more. The fact that twicecc is not central is demonstrated in
figures 6.12 and 6.13.

108

callcc(fn k =>
(fn (((),x),y) => throw x y)
(let val y = output(std_out, "Side effect.\n") in
let val x = twicecc ((),k) in

(x,y) end end));

(* prints once *)

callcc(fn k =>
(fn (((),x),y) => throw x y)
(let val x = twicecc ((),k) in
let val y = output(std_out, "Side effect.\n") in

(x,y) end end));

(* prints twice *)

Figure 6.11: twicecc is not central (shown using I/O)

fun twicecc_first (a,b) =
let val x = twicecc a in
let val y = force b in

(x,y) end end;

fun twicecc_last (a,b) =
let val y = force b in
let val x = twicecc a in

(x,y) end end;

fun centralitytester testee =
distinguisher ((fn h => (force h, force h))

o (trytoreify testee));

centralitytester twicecc_last; (* val it = 3 : int *)

centralitytester twicecc_first; (* val it = 4 : int *)

Figure 6.12: twicecc is not central (In ML)

109

(define (twicecc_first l)
(let*

((x (twicecc (car l)))
(y (call/cc (cadr l))))

(list x y)))

(define (twicecc_last l)
(let*

((y (call/cc (cadr l)))
(x (twicecc (car l))))

(list x y)))

(define (centralitytester testee)
(distinguisher
(compose
(lambda (h) (list (call/cc h) (call/cc h)))
(trytoreify testee))))

(centralitytester twicecc_last)

(centralitytester twicecc_first)

Figure 6.13: twicecc is not central (In Scheme)

110

6.4 Another non-copyability result

We consider another morphism that is total, but not copyable, while easier to
understand in intuituive terms than twicecc. We will also need it for the con-
struction of counterexamples in Sections 6.5 and 6.7 below.

Written as a CPS term, twicecc seems to be the simples way of using the
current continuation twice.

[~xhk ` k〈xq〉{q〈~y〉=k〈~yh〉}]

If we want something of function type using its current continuation twice, we
can write the following CPS term in the same spirit as twicecc, though slightly
longer:

[k ` k〈f〉{f〈xp〉=k〈f〉{f〈yq〉=q〈x〉}}]

Despite being longer as a CPS term, this is easier to write in ML or Scheme,
requiring no messy Continuation Grabbing Style:

callcc(fn k => throw k (fn x => throw k (fn y => x)))}

This term passes a function to its current continuation k. When this function is
called with an argument x, the constant function always returning that argument
is passed to k. Hence the function eventually (on the second call to the current
continuation) returned by the term is the function always returning the argument
to the first call. We can regard this as the solution to the following continuation
programming exercise:

Define a function f such that all calls to f return the argument of the
first call of f. Do not use state.

(We name this argfc, for “argument of first call”.)
At first sight, it seems hard to see how to do this without state: the obvious

solution, after all, uses two variables (or in ML, references): a non-local variable
to hold the argument of the first invocation and a boolean flag to record if the
function has been called before (if not, then the variable needs to be assigned).
See figures 6.16 and 6.17 for a version of argfc with local state. In Scheme (fig-
ure 6.17), we can give a better analogue of argfc with continuations (figure 6.15)
by using a function that updates its own definition when it is called.

111

fun argfc () =
callcc(fn k =>

throw k (fn x => throw k (fn y => x)));

let val f = argfc () in
[f 1, f 2, f 3, f 4] end;

let val f = argfc () in
[f 42, f 2, f 3, f 4] end;

fun distinguisher testee =
let val (f, g) = testee argfc () in

(f 1, g 2)
end;

distinguisher (fn f => fn x => (f x, f x));
(* (1,2) : int * int *)

distinguisher (fn f => fn x => ((fn y => (y,y)) (f x)));
(* (1,1) : int * int *)

Figure 6.14: argfc cannot be copied (in ML)

112

(define argfc
(lambda ()
(call/cc
(lambda (k)
(k
(lambda (x)
(k
(lambda (y) x))))))))

(let ((f (argfc)))
(list (f 1) (f 2) (f 3) (f 4)))

; a list with the all entries the same (1,2,3 or 4); unspecified which
; bigloo picks the last

(let ((f (argfc)))
(list (f 5647) (f 3425) (f 2484) (f 75473)))

; Cannot be copied

(define (distinguisher testee)
((lambda (l)

((car l) 1)
((cadr l) 2))

((testee argfc))))

(distinguisher
(lambda (f)

(lambda ()
(list (f) (f))))) ; 2

(distinguisher
(lambda (f)

(lambda ()
((lambda (y) (list y y)) ; 1
(f)))))

Figure 6.15: argfc cannot be copied (in Scheme)

113

fun argfc () =
let val fc = ref true

and arg = ref 0
in

fn x =>
(if !fc then (fc := false; arg := x)
else ();

!arg)
end;

Figure 6.16: argfc with local state (in ML)

; use local variable for argument of first call

(define (argfc)
(let

((fc #t)
(arg 0))

(lambda (x)
(if fc

(begin
(set! fc #f)
(set! arg x)))

arg)))

; use variable for the function

(define (argfc)
(letrec

((fc #t)
(f (lambda (x)

(if fc
(begin
(set! fc #f)
(set! f (lambda (y) x))))

(f x))))
f))

Figure 6.17: argfc with local state (in Scheme)

114

datatype void = VOID of void;

fun invoid (VOID x) = invoid x;

fun callcc’ f = callcc(fn k => f (fn x => VOID(throw k x)));
callcc’ : ((’1a -> void) -> ’1a) -> ’1a;

Figure 6.18: Variant of callcc with void-returning continuations

6.5 The failure of Laird’s bootstrapping of force

In [Lai97], James Laird claims that control operators at ground type are sufficient
in that one can inductively define them at function types. Specifically, he gives
an inductive definition for the double-negation control operator of type

(((’a -> ’2b) -> void) -> void) -> ’a -> ’2b;

in terms of that of type

((’2b -> void) -> void) -> ’2b)

[James Laird, personal communication/email].
For ML, the inductive definition supposes a variant of callcc in which con-

tinuations are identified with functions . . .− > void; see figure 6.18.
In figure 6.19, we give a simplistic version laird1 first; the function laird

can then be seen as a refinement thereof designed to cope with control effects in
its argument. The Scheme analogue is in figure 6.20.

The informal argument for the correctness of this construction seems essen-
tially similar to that which one could advance in favour of the idempotency hy-
pothesis. The function laird, in its improved version, first gives its argument
h a chance to side-effect by jumping out of the current evaluation. If h did not
jump, it can then be treated like a value.

Implicit in this reasoning, one can find the assumption that all total morphisms
are effect-free. Again, it is refuted by using the current continuation twice: figures
6.21 and 6.22.

The importance of this refutation lies in that it invalidates Laird’s claim to
have a fully abstract semantics for a language with callcc [Lai97]. Hence the
situation for full abstraction is not improved by Games models. There still is a
tradeoff between models with the full callcc, but not fully abstract without the

115

fun laird1 (h :((’a -> ’2b) -> void) -> void) =
fn x =>
(force’ : ((’2b -> void) -> void) -> ’2b)
(fn y => h ((fn z => y (z x))));

laird1 : (((’a -> ’2b) -> void) -> void) -> ’a -> ’2b;

fun laird h =
(fn u =>
fn x => force’ (fn k =>

h (fn f => k (f x))))
(force’ (fn p => h (fn f => p (fn z => z))));

laird : (((’a -> ’2b) -> void) -> void) -> ’a -> ’2b;

Figure 6.19: Laird’s bootstrap in ML

(define (laird h)
((lambda (u)

(lambda (x)
(call/cc (lambda (k)

(h (lambda (f) (k (f x))))))))
(call/cc (lambda (p)

(h (lambda (f) (p (lambda (z) z))))))))

Figure 6.20: Laird’s bootstrap in Scheme

116

val argfct =
callcc’(fn a =>

(fn k =>
invoid (k (fn x =>

invoid (k (fn y => x: string)))))
(force’ a));

argfct : ((string -> string) -> void) -> void;

fun lairddistinguisher testee =
(fn f =>

(f "Not Laird.";
f "Laird."))

(testee argfct);

lairddistinguisher force’;

lairddistinguisher laird;

Figure 6.21: Failure of Laird’s bootstrap: A distinguishing context in ML

(define argfct
(call/cc (lambda (a)

((lambda (k)
(k (lambda (x) (k (lambda (y) x)))))

(call/cc a)))))

(define (lairddistinguisher testee)
((lambda (f)

(f "Not Laird.")
(f "Laird."))

(testee argfct)))

(lairddistinguisher call/cc)

(lairddistinguisher laird)

Figure 6.22: Failure of Laird’s bootstrap: A distinguishing context in Scheme

117

prompt [SF90], and fully abstract models with callcc only at base types, as in
[KCF92].

A possible formal connection between the refutation of Laird’s attempt at
bootstrapping force and the categorical approach appears to be given by co-
herence conditions, or more specifically lack thereof. Whereas the unit of the
self-adjointness on the right satisfies coherence, the unit for the self-adjointness
on the left seems to be inherently indecomposable. Intuitively, it seems evident
(in the light of the counterexample) that force at function type σ → τ needs
to pass the continuation of type ¬(σ → τ) to its argument and cannot get away
with passing something else fabricated from a continuation of type ¬τ . It may be
an open problem meriting futher work to state in precisely which algebraic sense
force is indecomposable (or possibly prime).

6.6 Cross reference to preceding chapters

The programs in this chapter are intended to illustrate a (semantic) point. This
relates then to material in other chapters. We give a little link table.

Slogan ML code Scheme code Proposition or remark
twicecc not copyable figure 6.5 figure 6.6 5.2.13

force can reify figure 6.9 figure 6.10 4.4.2
twicecc not central figure 6.12 figure 6.13 implied by 5.2.7

6.7 Discriminating λx.xx and λx.x(λy.xy) under
call by name

We show that the expressive power of callcc is sufficient to distinguish the
terms λx.xx and λx.x(λy.xy) under call-by-name. Moreover, the key ingredient
for making the distinction is a term that uses its current continuation twice.

Recall the Plotkin call-by-name CPS transform from Definition 3.2.2: ()
extended with callcc and throw.

x = x〈k〉
λx.M = k〈f〉{f〈xk〉=M}
MN = M{k〈f〉=f〈nk〉{n〈k〉=N}}

callcc M = M{k〈f〉=f〈gk〉{g〈p〉=p〈k〉}}
throw M N = M{k〈k〉=N}

118

Here we consider this as an untyped transform from untyped λ-calculus (with
callcc) to untyped CPS calculus.

We define a source language term argfc by

argfc
def= callcc(λh.throwh (λx.throwh (λy.x)))

Let A(k) def= argfc be the corresponding CPS term (for current continuation
k), that is to say:

argfc

= callcc(λh.throwh (λx.throwh (λy.x)))

= h〈k〉{k〈k〉=k〈f〉{f〈xk〉=h〈k〉{k〈k〉=k〈f〉{f〈yk〉=x〈k〉}}}}{h〈p〉=p〈k〉}
= k〈f〉{f〈ap〉=k〈f〉{f〈bq〉=a〈q〉}}
def= A(k)

First, we note that A(k){k〈f〉=f〈yk〉} = y〈k〉.

A(k){k〈f〉=f〈yk〉}
= k〈f〉{f〈ap〉=k〈f〉{f〈bq〉=a〈q〉}}{k〈f〉=f〈yk〉}
= f〈yk〉{f〈ap〉=f〈yk〉{f〈bq〉=a〈q〉}}
= y〈k〉

Now the CPS transform of xx is:

xx = x〈k〉{k〈f〉=f〈xk〉}

Therefore,

(λx.xx) argfc

= k〈f〉{f〈xk〉=xx}{k〈f〉=f〈xk〉{x〈k〉=A(k)}}
= xx{x〈k〉=A(k)}
= x〈k〉{k〈f〉=f〈xk〉}{x〈k〉=A(k)}
= A(k){k〈f〉=f〈xk〉{x〈k〉=A(k)}}
= A(k){k〈f〉=f〈xk〉}{x〈k〉=A(k)}
= x〈k〉{x〈k〉=A(k)}
= A(k)

On the other hand, the CPS transform of x(λy.xy) is:

x(λy.xy) = x〈k〉{k〈f〉=f〈nk〉{n〈k〉=k〈g〉{g〈yk〉=x〈k〉{k〈f〉=f〈yk〉}}}}

119

Hence,

(λx.x(λy.xy)) argfc

= k〈f〉{f〈xk〉=x(λy.xy)}{k〈f〉=f〈xk〉{x〈k〉=A(k)}}
= x(λy.xy){x〈k〉=A(k)}
= x〈k〉{k〈f〉=f〈nk〉{n〈k〉=k〈g〉{g〈yk〉=x〈k〉{k〈f〉=f〈yk〉}}}}{x〈k〉=A(k)}
= A(k){k〈f〉=f〈nk〉{n〈k〉=k〈g〉{g〈yk〉=A(k){k〈f〉=f〈yk〉}}}}
= A(k){k〈f〉=f〈nk〉}{n〈k〉=k〈g〉{g〈yk〉=A(k){k〈f〉=f〈yk〉}}}
= n〈k〉{n〈k〉=k〈g〉{g〈yk〉=y〈k〉}}
= k〈g〉{g〈yk〉=y〈k〉}

Finally, A(k) and k〈g〉{g〈yk〉=y〈k〉} can be distinguished.
The terms λx.xx and λx.(λy.xy) are one of the canonical examples cited as

evidence of the expressive power of the π-calculus [San95]. While it was originally
claimed that this expressive power was due to specific features of the π-calculus,
notably nondeterminism, the realisation of the importance of CPS in the trans-
lation form λ to π-calculus makes it seem plausible that it is in fact due to the
presence of continuations [Davide Sangiorgi, personal communication]. The above
can be seen as preliminary evidence of this view. It is perhaps not surprising that
we can distinguish λx.xx and λx.x(λy.xy), in that the same terms were already
used in [Plo75] as a counterexample to show a non-completeness result.

Compare this with Theorem 8.5 and the “conditional η-rule” Corollary 8.4
in [San94]. There Sangiorgi shows that in a Church-Rosser calculus, λx.xx and
λx.x(λy.xy) cannot be distinguished. Roughly, the reason is that in case M

diverges, both MM and M(λy.My) diverge; otherwise M and λy.My (y fresh)
cannot be distinguished.

This reasoning, valid for a restricted class of calculi, appears to be precisely
what gave rise to the flawed assumptions about control operators encountered in
the preceding sections.

In the remainder of this section, we formualise the distinction between λx.xx

and λx.x(λy.xy) in Scheme. In order to make Scheme behave like call-by-name,
we use a thunking transform, with the thunks being implemented by means of con-
tinuations. Concretely, this means that variable occurences need to be replaced
by forcings and function arguments need to be thunked. The first is achieved by
replacing x with (call/ccx) Recall that in Scheme, forcing a CPS thunk is just
a special case of call/cc. (This is not necessarily the same as Scheme’s built in
force, which may or may not be implemented in this way.) In the two λ-terms

120

and λx.x(λy.xy), the only arguments are values, hence we can thunk them by
applying then function thunk, and if the argument is a variable that cancels its
forcing, i.e.(thunk(force x))= x, so we can just write x.

Notice that the call-by-name semantics of argfc is the same as the call-by-
value semantics of an almost identical term.

callcc(λh.throwh (λx.throwh (λy.forcex)))

= callcc(λh.throwh (λx.throwh (λy.x)))

So in Scheme, the distinguishing context will consist essentially of a (call by name)
application to callcc(λh.throwh (λx.throwh (λy.forcex))).

For writing the distinguishing context in figure 6.23, we need to take some
care in thunking term that are not values. For thunking a value, we can simply
apply the function thunk:

(define (thunk a)

(call/cc

(lambda (k)

((call/cc k)

a))))

However, applying thunk to a side-effecting term does not succeed in wrapping
the side effect into the thunk. In (thunk (write ’Effect)), the argument will
be evaluated an the effect will not be wrapped into the thunk. That can only be
achieved by putting the side-effecting term into the thunking idiom:

(define effect-in-thunk

(call/cc

(lambda (q)

((lambda (p)

(p (write ’Effect)))

(call/cc q)))))

The printing occurs only when (call/cc effect-in-thunk) is forced.
More generally, a computation, as opposed to a value, is thunked by the

following idiom:

(call/cc

(lambda (q)

((lambda (p)

(p

121

(define lambda-x-xx
(lambda (x)
((call/cc x)
x)))

(define lambda-x-x-lambda-y-xy
(lambda (x)
((call/cc x)
(thunk
(lambda (y)

((call/cc x)
y))))))

(define dist
(lambda (testee)
((lambda (f)

(f (thunk 1))
(f (thunk 2)))

(testee
(call/cc
(lambda (q)
((lambda (p)

(p
(call/cc
(lambda (h)

(h
(lambda (x)

(h
(lambda (y)

(call/cc x)))))))))
(call/cc q))))))))

Figure 6.23: Distinguishing λx.xx and λx.x(λy.xy) under call by name

122

computation to be thunked

))

(call/cc q))))

In figure 6.23, we put all these ingredients, namely, (a variant of) the function
argfc, the thunking idiom, and a distinguishing context like that in figure 6.15,
together to get a distinguishing context for λx.xx and λx.x(λy.xy) under call by
name.

(dist lambda-x-xx) evaluates to 1, while (dist lambda-x-x-lambda-y-xy)

evaluates to 2.

123

Chapter 7

Categorical semantics in
⊗¬-categories

In this chapter, we develop the categorical counterparts of CPS transforms (see
chapter 3).

7.1 Call-by-value semantics

Given the notions of λ-abstraction from section 4.5, a simply-typed λ-calculus
can be interpreted in a ⊗¬-category.

For call-by-value, control operators are naturally part of such a semantics, as
they relate directly to the fundamental operations on the ¬ type. Specifically,
callcc is interpreted as post-composition with the adjoint correspondent

[¬A→ A] = ¬(¬A ⊗¬A) −→ A

of the diagonal map ¬A −→ ¬A⊗ ¬A.

7.1.1 Definition (Semantics for call-by-value with callcc) Given a ⊗¬-
category K, we can give an interpretation VJ−K for λ-calculus with control as
follows. Types and environments are interpreted as usual, except for the breaking
down of arrow types.

VJ¬τK def= ¬VJτK
VJσ → τK

def= ¬(VJσK⊗ ¬VJτK)
VJx1 : τ1, . . . , xn : τnK

def= VJτ1K⊗ · · · ⊗ VJτnK

A judgement Γ `M : τ denotes a morphism VJΓK −→ VJτK, defined by induction
on M .

VJx1:τ1, . . . , xn:τn ` xj:τjK
def= πj

124

VJΓ ` λx.M : σ → τK
def= λVJσK VJx : σ, Γ `M : τK

VJΓ ` throwM N :σK
def= 〈VJΓ ` N :τK,VJΓ `M :¬τK〉;VJτK⊗¬π1; apply

VJΓ ` callccM : τK
def= VJΓ ` M :¬τ → τK;¬〈id¬VJτ K, id¬VJτ K〉; force

VJΓ ` MN : τK
def= 〈VJΓ ` N : σK,VJΓ `M : σ → τK〉; apply

What makes the call-by-value semantics work is the fact that all values denote
central morphisms, together with the fact that the centre has finite products and
that we have central closure.

7.1.1 The naturality of callcc

Perhaps the most canonical property of control operators is the naturality of
callcc, in the sense of the following axiom from [Hof94].

V (callcc M) = callcc(λk.V (M(λx.k (V x))))

where V ranges over values, i.e. V ::= x |λx.M . However, this relies on con-
tinuations being a special case of procedures, as in Scheme. With a typing for
continuations like that in nj-sml, instances of this axiom will be ill-typed.

The negation operation suggested by our categorical semantics, definable as
negate

def= λf.λh.callcc((throwh) ◦ f ◦ callcc ◦ throw), is useful for adapting
this axiom as follows

V (callcc M) = callcc(V ◦M ◦ (negateV))

(For example, let V = fn n => n + 1 and M = fn k => throw k 1. Then V

(callcc M) and callcc(V o M o (negate V)) both evaluate to 2.) This
axiom is sound for our semantics.

7.1.2 Proposition

VJΓ ` V (callcc M) : τK = VJΓ ` callcc(V ◦M ◦ (negateV)) : τK

7.2 Plotkin call-by-name semantics and variants

Plotkin call-by-name is a slight variation on call-by-name obtained by the tech-
nique of thunking arguments in applications and forcing variables; this is a cate-
gorical analogue of [HD95].

We consider the doubly-negated ¬¬A as the type of lazy data of type A.

125

7.2.1 Definition (Plotkin Call-by-name semantics) Given a ⊗¬-category,
we define the Plotkin call-by-name semantics LJ−K as follows.

LJσ → τK
def= ¬(¬¬PJσK⊗¬PJτK)

LJx1 : τ1, . . . , xn : τnK
def= ¬¬PJτ1K⊗ · · · ⊗ ¬¬PJτnK

Again, a judgement Γ `M : τ denotes a morphism PJΓK −→ PJτK.

PJx1:τ1, . . . , xn:τn ` xj:τjK
def= πj; force

PJΓ ` λx.M : σ → τK
def= λPJσKPJx : σ, Γ `M : τK

PJΓ `MN : τK
def= 〈λ1 PJΓ ` N : σK,PJΓ `M : σ → τK〉; apply

The Plotkin call-by-name semantics satisfies the full β law by thunking argu-
ments at the point of application. Thus arguments are always central. However,
the application map is still the same as in call-by-value; the “jump with argu-
ments”, apply, which is not central.

The Plotkin semantics rests on the thunking corollary 4.5.3 along with the
central closure 4.5.2.

7.2.2 Remark We now have the categorical framework in place in order to talk
more abstractly about some of the issues addressed in terms of name-passing in
chapter 3. We mentioned in remark 3.1.5 two possible choices for a semantics with
the call-by-name typing. These correspond to the two passages in the naturality
square for thunk. Because the naturality does not hold in general (only in a
subcategory), there really is a choice.

As explained in [DH94], the Reynolds and modified Reynolds have the same
semantics of function types, but they differ in the choice of when the delayed
argument is forced.

7.2.3 Definition Given a ⊗¬-category, we define the Reynolds call-by-value se-
mantics RJ−K as follows.

RJσ → τK
def= ¬(¬¬RJσK ⊗¬RJτK)

RJx1 : τ1, . . . , xn : τnK
def= ¬¬RJτ1K⊗ · · · ⊗ ¬¬RJτnK

A judgement Γ `M : τ denotes a morphism RJΓK −→ RJτK.

RJx1:τ1, . . . , xn:τn ` xj:τjK
def= πj; force

RJΓ ` λx.M : σ → τK
def= λRJσK((force; thunk)⊗RJΓK;RJx : σ, Γ `M : τK)

RJΓ `MN : τK
def= 〈λ1RJΓ ` N : σK,RJΓ `M : σ → τK〉; apply

126

7.2.4 Definition Given a ⊗¬-category, we define the modified Reynolds call-by-
value semantics R′J−K as follows.

R′Jσ → τK
def= ¬(¬¬R′JσK⊗¬R′JτK)

R′Jx1 : τ1, . . . , xn : τnK
def= R′Jτ1K⊗ · · · ⊗ R′JτnK

A judgement Γ `M : τ denotes a morphism R′JΓK −→R′JτK.

R′Jx1:τ1, . . . , xn:τn ` xj:τjK
def= πj

R′JΓ ` λx.M : σ → τK
def= λR′JσK(force⊗R′JΓK;R′Jx : σ, Γ `M : τK)

R′JΓ `MN : τK
def= 〈λ1R′JΓ ` N : σK,R′JΓ `M : σ → τK〉; apply

7.3 Uncurrying call-by-name semantics

The uncurrying call-by-name semantics relies on the variant λ-abstraction λ and
application apply.

7.3.1 Definition (Semantics for uncurrying call-by-name)

N Jτ1 → . . .→ τn → bK
def= ¬(N Jτ1K⊗ · · · ⊗ N JτnK⊗ ¬N JbK)

N Jx1 : τ1, . . . , xn : τn ` xj : τK
def= πj

N JΓ ` λx.M : σ → τK
def= λN JσK

N Jx : σ, Γ `M : τK

N JΓ `MN : τK
def= 〈N JΓ ` N : σK,N JΓ `M : σ → τK〉; apply

The uncurrying call-by-name semantics, by contrast with the Plotkin one,
uses an application map that is itself central (see 4.5.5). Hence all denotations
are central. This it what make this semantics validate both the full β and η.

We can now explain more conceptually the invariant (lemma 3.3.1) that made
the syntactic soundness proof of the uncurrying call-by-name CPS transform
work: it is just one of the many equivalent characterisation of centrality, namely
thunkability.

Both the denotations of variables and the application map used by the un-
currying semantics are central (denotations of λ-abstraction are central for all
semantics considered here). This is what makes the uncurrying semantics gen-
uinely call-by-name. For the Plotkin call-by-name semantics, by contrast, not
even the denotations of variables are central.

127

7.3.2 Proposition For the special case of the term model, that is K = K(CPS),
the denotation of a judgement is the equivalence class of its CPS transform.

VJΓ `M : τK = [LΓM, k : ¬Lτ M ` LMM(k)]

PJΓ `M : τK = [LLΓM, k : ¬Lτ M ` LMM(k)]

RJΓ `M : τK = [RLΓM, k : ¬Lτ M ` LMM(k)]

R′JΓ `M : τK = [R′LΓM, k : ¬Lτ M ` LMM(k)]

N JΓ `M : τK = [N LΓM, k : ¬N Lτ M ` N LMM(k)]

For the shorthand transformation this reads as follows

VJΓ ` M : τK =
[
Γ, k : ¬τ `M

]
PJΓ `M : τK = [Γ, k : ¬τ `M]

N JΓ `M : τK =
[
Γ, k : ¬τ `M

]
7.4 State and meta-continuation-passing

A very elementary construction on a premomoidal category is to “add state”:
each morphism takes and returns an additional argument. This can be regarded
as depending on, and possibly modifying, some global variable. Whiel this is not a
very satisfactory account of state in programming languages, it is sufficient to give
a categorical counterpart of meta-continuation passing style 3.2.4 on page 50. The
combination of first-class control and (even a single piece of global) state seems
to be a rather powerful one; see [Fil94b].

ObK!S = ObK
K!S(A, B) = K(S ⊗ A, S ⊗B)

¬SA = ¬(S ⊗ A)

¬Sf = S ⊗ ¬f
φSAf = φS⊗Af

thunkS = S ⊗ pair

7.4.1 Remark In K!S, we have operations for dereferencing and assigning to
the single piece of state:

:= : S −→ 1

! : ! −→ S

128

These are just the second projection

:= def= π2 : S ⊗ S −→ S = 1⊗ S

the diagonal map
! def= δS : S ⊗ 1 = S −→ S ⊗ S

in the base category K. Note that, in the CPS term model ! = [sk ` k〈ss〉] and
:= = [sxk ` k〈x〉]. In that sense, ! is essentially the same as callcc, and := the
same as throw. There may be a connection with the relationship, mentioned in
the introduction, between figures 1.7 and 1.8, and figures 1.5 and 1.6. Compare
also figures 6.16 and 6.15 in Chapter 6.

7.4.2 Conjecture We conjecture that, under some “mild” conditions on K, if
K is a ⊗¬-category and S ∈ ObK, then K!S is a ⊗¬-category.

Meta-continuation-passing style arises as the special case S = ¬R. Expressions
of type R can be aborted and control-delimited.

7.5 Categorical semantics for CPS calculus

Assigning a morphism to each CPS calculus judgement is made somewhat awk-
ward by the fact that these judgements have only premises (typing for names),
but no conclusions (type for the whole term), so that there does not seem to be
a canonical choice for the codomain of its denotation. This is perhaps surpris-
ing, but we would argue that CPS is so low-level that even composition is not
fundamental, but a relatively involved idiom from its perspective.

We could either choose a “dummy” codomain (the corresponding continuation
never being used) or single out one of the names in a judgement as the current
continuation corresponding to the codomain.

Compared to the (syntactic) CPS transforms from the CPS literature, the
first of these is analogous to a Continuation Grabbing Style [Sab96] transforma-
tion, while the second would amount to a Back to Direct Style [Dan94, DL92]
transform.

We sketch each of those, before giving a more detailed account of a Direct
Style semantics for a small fragment of CPS calculus.

7.5.1 Continuation Grabbing Style semantics for CPS-calculus

A Continuation Grabbing Style semantics for CPS-calculus could be defined as
follows.

129

JΓ `MK : JΓK −→ ¬1

JΓ, ~x : ~σ, k : ¬~σ ` k〈~x〉K
= πj

JΓ ` M{n〈~x〉=N}K
= δJΓK; JΓK ⊗ JΓK ⊗ thunk1; JΓK⊗

(
φJΓKJΓ, n : ¬~σ `MK

)
; JΓ, ~x : ~~σ ` NK

7.5.2 Back to Direct Style semantics for CPS-calculus

A Back to Direct Style would have to solve the problem of how to choose a
current continuation, corresponding to the codomain of the denotation, in each
CPS calculus judgement.

One could introduce conventions for singling out one variable (the last, say) in
a judgement as the current continuation. (Incidentally, it is not trivial that this
is always possible; we conjecture that in the non-recursive CPS calculus, for each
derivable judgement at least one variable in the typing assumptions is assigned a
continuation type.)

A judgement Γ, k : ¬τ ` M would then denote a morphism

JΓK −→ JτK

The problem is how to define this inductively on the structure of M .
If, in a binding M{n〈~x〉=N}, k is free in N , but not in M , then the denotation

of Γ, k : ¬τ ` M{n〈~x〉=N} should be a straightforward composition 1 of the
denotations JΓ, n : ¬~σ `MK and JΓ, ~x : ~σ ` NK.

But in general k may occur anywhere in M or N or both, requiring a compli-
cated case analysis. (In [Dan94, DL92], this necessitates intricate techniques for
digging out a current continuation.)

We restrict ourselves to a fragment of CPS so simple that a few cases are
enough: that is we consider only the linear unary CPS calculus. This is a fairly
severe restriction: without polyadic continuations, we loose the ability to trans-
late functions. On the other hand this simple fragment has a clean categorical
semantics: it is the internal language of a self-adjointness.

It is straightforward to build a category equipped with a self-adjoint functor
from the syntax of simply-typed, linear unary CPS calculus along the lines of
definition 5.2.1. We focus on the other direction.

1In the co-Kleisli category KJΓK

130

7.5.1 Definition Given a category K together with a self-adjoint functor ¬ :
Kop −→ K with unit force, we define a semantics for the linear unary CPS

calculus.

Jxk ` k〈x〉K = id

Jxk ` x〈k〉K = force

Jxk `M{n〈y〉=N}K = Jxn `MK; Jyk ` NK , k ∈ FV(N)

Jxk `M{n〈y〉=N}K = ¬Jyx ` NK; Jnk `MK , k ∈ FV(M)

7.5.2 Lemma Jxk ` MK = Jyh `M [xk 7→ yh]K

7.5.3 Lemma The denotation of a judgement kx `M with the variables swapped
is the adjoint correspondent of the denotation of the original judgement xk `M .

¬Jxk ` MK; force = Jkx `MK

Proof By induction on M .

k〈x〉

¬Jxk ` k〈x〉K; force

= ¬id; force

= force

= Jxk ` x〈k〉K

x〈k〉

¬Jxk ` x〈k〉K; force

= ¬force; force

= id

= Jxk ` k〈x〉K

M{n〈x〉=N} First, let k ∈ FV(N).

¬Jxk `M{n〈y〉=n}K; force

= ¬(Jxn `MK; Jyk ` NK); force

= ¬Jyk ` NK;¬Jxn `MK; force

= ¬Jyk ` NK; Jnx `MK

= Jkx `M{n〈y〉=N}K

131

Because of the naturality of and the triangular identity for force, we have:

¬(¬Jxk `MK; force); force

= ¬force;¬¬Jxk `MK; force

= ¬force; force; Jxk ` MK

= Jxk `MK

2

7.5.4 Proposition The semantics J K of linear unary CPS-calculus in defini-
tion 7.5.1 is sound with respect to the axioms of the calculus given in defini-
tion 2.4.1.

Proof We show for each axiom M1 = M2 that JM1K = JM2K.

Jmp

Jn〈x〉{n〈y〉=N}K
= Jxn ` n〈x〉K; Jyk ` NK

= id; Jyk ` NK

= Jyk ` NK

= Jxk `M [y 7→ x]K

Jxk ` n〈k〉{n〈y〉=N}K
= ¬Jyx ` NK; Jnk ` n〈k〉K
= ¬Jyx ` NK; force

= Jxy ` NK

= Jxk ` N [y 7→ k]K

Eta

Jxk ` M{n〈y〉=k〈y〉}K
= Jxn ` MK; Jyk ` k〈y〉K
= Jxn ` MK; id

= Jxn ` MK

= Jxk ` M [n 7→ k]K

132

Jxk `M{n〈y〉=x〈y〉}K
= ¬Jyx ` x〈y〉K; Jnk `MK

= id; Jnk ` MK

= Jnk `MK

= Jxk `M [n 7→ x]K

Float-L: n ∈ FV(L)

• k ∈ FV(M)

Jxk ` L{m〈y〉=M}{n〈z〉=N}K
= ¬Jzx ` NK; Jnk ` L{m〈y〉=M}K
= ¬Jzx ` NK; Jnm ` LK; Jyk `MK

= Jxm ` L{n〈z〉=N}K; Jyk `MK

= Jxk ` L{n〈z〉=N}{m〈y〉=M}K

• k ∈ FV(N)

Jxk ` L{m〈y〉=M}{n〈z〉=N}K
= ¬Jyx ` MK; Jmn ` LK; Jzk ` NK

= ¬Jyx ` MK; Jmn ` L{n〈z〉=N}K
= Jxk ` L{n〈z〉=N}{m〈y〉=M}K

Float-R: n ∈ FV(M)

• k ∈ FV(N)

Jxk ` L{m〈y〉=M}{n〈z〉=N}K
= (Jxm ` LK; Jyn `MK;)Jzk ` NK

= Jxm ` LK; (Jyn `MK; Jyk ` NK)

= Jxm ` LK; Jyk `M{n〈y〉=N}K
= Jxk ` L{m〈y〉=M{n〈z〉=N}}K

• k ∈ FV(L)

Jxk ` L{m〈y〉=M}{n〈z〉=N}K
= ¬Jzx ` NK; Jnk ` L{m〈y〉=M}K
= ¬Jzx ` NK;¬Jyn `MK; Jmk ` LK

133

= ¬(Jyn `MK; Jzx ` NK); Jmk ` LK

= ¬Jyx `M{n〈z〉=N}K; Jmk ` LK

= Jxk ` L{m〈y〉=M{n〈z〉=N}}K

2

We have established that an extremely distilled version of CPS, a unary name-
passing calculus, is the internal language of a self-adjointness. From the point of
view of categorical semantics, an intriguing question would be what, if anything,
in the categorical structure makes its internal language a name-passing calculus.

134

Chapter 8

Indexed ¬-categories

In Chapter 4, we have mentioned that we can see the continuation functor as
indexed. Here we develop this point of view. Although relevant for continuation
semantics, the possibility to use either indexed categories or premonoidal struc-
ture for the semantics of environments arises in denotational semantics in general,
so we treat it at its natural level of generality.

This chapter presents joint work with John Power [PT97]; in particular, the
result (8.3.4 below) on which the connection is built is due to him.

8.1 Environments as indices

Traditionally in denotational semantics, there have been two categorical ways of
modelling environments. The first is given by finite products in a Cartesian closed
category, as for instance in modelling the simply typed λ-calculus. Over the years,
that has gradually been extended. For instance, in order to model partiality, one
must generalise from finite product structure to symmetric monoidal structure;
and more recently, that has been further generalised to the notion of symmetric
premonoidal structure [PR97].

A premonoidal category is essentially a monoidal category except that the
tensor need only be a functor in two variables separately, and not necessarily a
bifunctor: given maps f : A → A′ and g : B → B′, the evident two maps from
A⊗ B to A′ ⊗ B′ may differ. Such structures arise naturally in the presence of
computational effects, where the difference between these two maps is a result of
sensitivity to evaluation order. So that is the structure we need in order to model
environments in the presence of continuations or other such strong computational
effects. A program phrase in environment Γ is modelled by a morphism in the
premonoidal category with domain JΓK.

The second approach to modelling environments categorically, also used to

135

model the simply typed λ-calculus, is based on indexed categories with structure,
and has been heavily advocated, although not introduced, by Bart Jacobs [Jac92]:
the slogan is that contexts, which we call environments, are indices for the cate-
gories in which the terms definable in that context are modelled. Here, a program
phrase in environment Γ is modelled by an element 1 −→ JτK in a category that
implicitly depends on Γ, i.e., by an arrow from 1 to JτK in the fibre of the indexed
category over JΓK. We consider a weak version of indexed category with structure,
called a κ-category, implicit in recent work by Masahito Hasegawa [Has95]. In
the setting of indexed categories, various binding constructs can be studied. A
κ-category has a weak first order notion of binding, given by the assertion that
reindexing along projections has a left adjoint. In programming terms, that cor-
responds to a special form that binds an identifier but is not reifying in the sense
that it does not produce a first class function. Hasegawa [Has95] compares it to
lambda in early LISP.

The first major result of this chapter is to prove the above two models of envi-
ronments equivalent. More precisely, we show that every symmetric premonoidal
category with a little more of the structure cited above, gives rise to a κ-category,
and that this gives a bijection between the classes of symmetric premonoidal cat-
egories with such structure and κ-categories. The extra structure we need on a
symmetric premonoidal category K is a category with finite products C and an
identity on objects strict symmetric premonoidal functor J : C −→ K. At first
sight, that may seem a somewhat complex structure, but in fact, as made precise
in [Pow], it is particularly natural category theoretic structure, more so than that
of premonoidal structure alone, as it is algebraic structure.

Related Work

The relationship between symmetric premonoidal categories and κ-categories is
related to work by Blute, Cockett, and Seely [RBS]. Implicit in their work is
the construction which, to a symmetric premonoidal category with a little added
structure, assigns a κ-category. The latter are closely related to their context cat-
egories. Identifying precisely which indexed categories thus arise did not appear
in their work.

Bart Jacobs’ thesis [Jac91] championed the view of contexts as “indices for
the terms and types derivable in that context.” We believe this to be relevant
not only to type theory but also to the modelling of environments in computer
science, and we use it for that purpose in our third approach to continuation
semantics.

136

Ong [Ong96] also uses a fibration to model environments for his categorical
formulation of the λµ-calculus [Par92]. As this calculus is an extension of the call-
by-name λ-calculus, Ong can assume every fibre to be Cartesian closed. However,
for call-by-value programming languages like ML or Scheme, one cannot assume
Cartesian closure. (And even if one were to assume call-by-name, the intended
meaning of callcc would be less than clear.)

8.2 Premonoidal categories

In this section, we recall the definitions of premonoidal category and strict pre-
monoidal functor, and symmetries for them, as introduced in [PR97] and further
studied in [Pow]. We also develop a basic construction on a premonoidal category
that we will need later. A premonoidal category is a generalisation of the concept
of monoidal category: it is essentially a monoidal category except that the tensor
need only be a functor of two variables and not necessarily be bifunctorial, i.e.,
given maps f : A −→ B and f ′ : A′ −→ B′, the evident two maps from A⊗A′ to
B ⊗B′ may differ.

Historically, for instance for the simply typed λ-calculus, environments have
been modelled by finite products. More recently, monoidal structure has some-
times been used, for instance when one wants to incorporate an account of par-
tiality [RR88]. In the presence of stronger computational effects, an even weaker
notion is required. If the computational effects are strong enough for the order
of evaluation of f : A −→ B and f ′ : A′ −→ B′ to be observable, as for instance
in the case of continuations, then the monoidal laws cannot be satisfied. The
leading example for us of such stronger computational effects are those given by
continuations. However, for a simple example of a premonoidal category that
may be used for a crude account of state [PR97], consider the following.

8.2.1 Example Given a symmetric monoidal category C together with a speci-
fied object S, define the category K to have the same objects as C, with K(A, B) =
C(S ⊗ A, S ⊗ B), and with composition in K determined by that of C. For any
object A of C, one has functors A⊗− : K −→ K and −⊗A : K −→ K, but they
do not satisfy the bifunctoriality condition above, hence do not yield a monoidal
structure on K. They do yield a premonoidal structure, as we define below.

In order to make precise the notion of a premonoidal category, we need some
auxiliary definitions.

137

8.2.2 Definition A binoidal category is a category K together with, for each
object A of K, functors hA : K −→ K and kA : K −→ K such that for each pair
(A, B) of objects of K, hAB = kBA. The joint value is denoted A⊗B.

8.2.3 Definition An arrow f : A −→ A′ in a binoidal category is central if for
every arrow g : B −→ B′, the following diagrams commute:

A⊗B
A⊗g //

f⊗B
��

A⊗B′

f⊗B′
��

A′ ⊗B
A′⊗g // A′ ⊗B′

B ⊗ A
g⊗A //

B⊗f
��

B′ ⊗ A

B′⊗f
��

B ⊗A′
g⊗A′ // B′ ⊗ A′

Moreover, given a binoidal category K, a natural transformation α : g =⇒ h :
B −→ K is called central if every component of α is central.

8.2.4 Definition A premonoidal category is a binoidal category K together with
an object I of K, and central natural isomorphisms a with components (A⊗B)⊗
C −→ A ⊗ (B ⊗ C), l with components A −→ A ⊗ I , and r with components
A −→ I ⊗ A, subject to two equations: the pentagon expressing coherence of a,
and the triangle expressing coherence of l and r with respect to a.

Now we have the definition of a premonoidal category, it is routine to ver-
ify that Example 8.2.1 is an example of one. There is a general construction
that yields premonoidal categories too: given a strong monad T on a symmetric
monoidal category C, the Kleisli category Kleisli(T) for T is always a premoidal
category, with the functor from C to Kleisli(T) preserving premonoidal structure
strictly: of course, a monoidal category such as C is trivially a premonoidal cate-
gory. That construction is fundamental, albeit implicit, in Eugenio Moggi’s work
on monads as notions of computation [Mog89], as explained in [PR97].

8.2.5 Definition Given a premonoidal category K, define the centre of K, de-
noted Z(K), to be the subcategory of K consisting of all the objects of K and the
central morphisms.

For an example of the centre of a premonoidal category, consider Example 8.2.1
for the case of C being the category Set of small sets, with symmetric monoidal
structure given by finite products. Suppose S has at least two elements. Then
the centre of K is precisely Set. In general, given a strong monad on a symmetric
monoidal category, the base category C need not be the centre of Kleisli(T), but,
modulo a faithfulness condition sometimes called the mono requirement [Mog89,
PR97], must be a subcategory of the centre.

The functors hA and kA preserve central maps. So we have

138

8.2.6 Proposition The centre of a premonoidal category is a monoidal category.

This proposition allows us to prove a coherence result for premonoidal cat-
egories, directly generalising the usual coherence result for monoidal categories.
Details appear in [PR97].

8.2.7 Definition A symmetry for a premonoidal category is a central natural
isomorphism with components c : A⊗B −→ B⊗A, satisfying the two conditions
c2 = 1 and equality of the evident two maps from (A⊗B)⊗ C to C ⊗ (A⊗B).
A symmetric premonoidal category is a premonoidal category together with a
symmetry.

All of the examples of premonoidal categories we have discussed so far are
symmetric, and in fact, symmetric premonoidal categories are those of primary
interest to us, and seem to be those of primary interest in denotational semantics
in general. For an example of a premonoidal category that is not symmetric,
consider, given any category C, the category Endu(C) whose objects are functors
from C to itself, and for which an arrow from h to k is a C-indexed family of
arrows α(A) : h(A) −→ k(A) in C, i.e., what would be a natural transformation
from h to k but without assuming commutativity of the naturality squares. Then,
this category, together with the usual composition of functors, has the structure
of a strict premonoidal category, i.e., a premonoidal category in which all the
structural isomorphisms are identities, which is certainly not symmetric.

8.2.8 Definition A strict premonoidal functor is a functor that preserves all the
structure and sends central maps to central maps.

One may similarly generalise the definition of strict symmetric monoidal func-
tor to strict symmetric premonoidal functor.

In order to compare the various models of environments in the next section, we
need to study a construction that, to a premonoidal category, assigns a Cat-valued
functor.

8.2.9 Definition A comonoid in a premonoidal category K consists of an object
C of K, and central maps δ : C −→ C ⊗C and ν : C −→ I making the usual
associativity and unit diagrams commute.

It follows from centrality of the two maps in the definition of comonoid that one
has the usual coherence for a comonoid, i.e., n-fold associativity is well defined,
and comultiple products with counits are also well defined.

139

8.2.10 Definition A comonoid map from C to D in a premonoidal category K
is a central map f : C −→ D that commutes with the comultiplications and
counits of the comonoids.

Again, it follows from centrality that a comonoid map preserves multiple applica-
tion of comultiplication and counits. Given a premonoidal category K, comonoids
and comonoid maps in K form a category Comon(K) with composition given
by that of K. Moreover, any strict premonoidal functor sends a comonoid to
a comonoid, so any strict premonoidal functor H : K −→ L lifts to a functor
Comon(H) : Comon(K) −→ (L).

Trivially, any comonoid C in a premonoidal category K yields a comonad
on K given by − ⊗ C, and any comonoid map f : C −→ D yields a map of
comonads from −⊗C to −⊗D, and hence a functor from Kleisli(−⊗D), the
Kleisli category of the comonad − ⊗D, to Kleisli(− ⊗C), that is the identity
on objects. So we have a functor from Comon(C)op to Cat , which we denote by
s(K). See [PR97] for this construction and another application of it.

Now, given a category C with finite products, every object A of C has a unique
comonoid structure, given by the diagonal and the unique map to the terminal
object. So Comon(C) is isomorphic to C.

Thus, given a category C with finite products, a premonoidal category K, and
a strict premonoidal functor J : C −→ K, we have a functor κ(J) : Cop −→ Cat
given by s(K) composed with the functor induced by J from C ∼= Comon(C) to
Comon(K).

8.3 κ-categories

In this section, we introduce κ-categories, and show that the construction at the
end of Section 8.2 yields an equivalence between premonoidal categories with
added structure as we shall make precise, and κ-categories.

Hasegawa has decomposed the λ-calculus into two calculi, the κ-calculus, and
the ζ-calculus [Has95]. This analysis arose from study of Hagino’s categorical
programming language. The idea of the κ-calculus, also known as the contextual
calculus, is that it has product types on which its abstraction and reduction are
constructed, and it can be regarded as a reformulation of the first-order fragment
of simply-typed λ-calculus, but does not require the exponent types. We do not
explicitly present the κ-calculus here. However, we do describe the notion of κ-
category, which is a categorical analogue of the definition of κ-calculus. Further,
we compare the notion of κ-category with that of symmetric premonoidal category

140

with a extra structure. That relationship is one of the main theorems of the
chapter, which we later extend to relate our two main models of continuations.

Given a small category C, a functor from Cop to Cat is called an indexed
category, a natural transformation between two indexed categories is called an
indexed functor. The notion of indexed natural transformation is definable too,
and this gives us a evident notion of adjunction between indexed categories. In
concrete terms, it amounts to an ObC-indexed family of adjunctions, such that
the units and counits are preserved by reindexing along each f : A −→ B. And
given an indexed category H : Cop −→ Cat , we denote by Hop : Cop −→ Cat the
indexed functor for which Hop

A = (HA)op with Hop
f defined by Hf .

We will need the definitions of Hop and adjunctions between indexed cate-
gories in later sections to extend the notion of a functor being self-adjoint on
the left, as in the semantics for continuations with premonoidal structure used to
model environments in Chapter4 to that of an indexed functor being self-adjoint
on the left as in the semantics for continutations using κ-categories to model
environments in Section 8.4. But now for our definition of κ-category.

8.3.1 Definition A κ-category consists of a small category C with finite prod-
ucts, together with an indexed category H : Cop −→ Cat such that

• for each object A of C, ObHA = ObC, and for each arrow f : A −→ B in
C, the functor Hf : HB −→ HA is the identity on objects

• for each projection π : B ×A −→ B in C, the functor Hπ has a left adjoint
LB given on objects by −× A

• (the Beck-Chevalley condition) for every arrow f : B −→ B′ in C, the natu-
ral transformation from LB ◦Hf×idA to Hf ◦LB′ induced by the adjointness
is an isomorphism.

HB′×A
LB′ //

Hf×idA

��

=⇒

HB′

Hf

��
HB×A

LB // HB

We shall denote the isomorphism associated with the adjunctions given in the
definition by

κ : HB×A(C, C ′) ∼= HB(C × A, C ′).

A κ-category allows us to model the environments in the presence of continu-
ations or other computational effects. Of course, modelling computational effects

141

involves more structure than that of a κ-category: for continuations, it requires
the assignment to each type τ of a type ¬τ that awaits an input of type τ . We
shall study such structure in Section 8.4, where we shall define an indexed ¬-
category. But here, we restrict out attention to modelling environments, and we
shall pursue our leading example, that of continuations, later.

8.3.2 Proposition Given a κ-category H : Cop −→ Cat , there is an indexed
functor inc : s(C) −→ H as follows: for each A in C, we have a functor from s(CA)
to HA. On objects, it is the identity. To define inc1 on arrows, given f : A −→ B

in C, consider the arrow ιB : 1 −→ B in HB corresponding under the adjunction to
idB in H1. Applying Hf to it gives a map Hf (ιB) : 1 −→ B in HA, or equivalently,
under the adjunction, a map from A to B in H1. Define inc1(f) to be that map.

1 A
f // B 1

A

inc1(f)
��

1
Hf (ιB)

��

1
ιB

��

B

idB
��

B B B B

�Hfoo

This plus naturality determines the rest of the structure.

Proof It is immediate that inc1 preserves identities, and one can prove that
it preserves composition: this follows by proving that for any map f : A −→ B in
C and any map g : 1 −→ C in HB, the map Hf (g) corresponds to the composite
in H1 of inc1(f) with the adjoint correspondent to g. Moreover, this yields a
functor incA for every A, with naturality as required. 2

Using proposition 8.3.2, we can exhibit the relationship between symmet-
ric premonoidal categories with specified extra structure and κ-categories. This
forms the basis for the first main result of the chapter, Prop 8.3.4. First, for the
construction of a κ-category from a symmetric premonoidal category, we have

8.3.3 Proposition Given a small category C with finite products, a small sym-
metric premonoidal category K and an identity on objects strict symmetric pre-
monoidal functor J : C −→ K, the functor κ(J) : Cop −→ Cat is a κ-category.

Proof It follows immediately from the construction of κ(J) in Section 8.2 that
for each object A of C, we have Obκ(J)A = ObC, and that for each arrow
f : A −→ B in C, the functor κ(J)f is the identity on objects. Moreover, the
existence of the adjoints to each κ(J)π follows directly from the construction and

142

the fact that C is symmetric. The Beck-Chevalley condition also follows directly
from the construction. 2

Now, for the converse, giving our first main result of the chapter.

8.3.4 Proposition Let C be a small category with finite products. Given a κ-
category H : Cop −→ Cat , there are a symmetric premonoidal category K and an
identity on objects strict symmetric premonoidal functor J : C −→ K, unique up
to isomorphism, for which H is isomorphic to κ(J).

Proof Define K to be H1. For each object A of K, equally A an object of C
since ObH1 = ObC, define − ⊗ A : K −→ K by the composite L ◦ H! where
! : A −→ 1 is the unique map in C from A to 1. Note that ! is of the form
π, so the left adjoint exists. Moreover, for each map g : C −→ C ′ in K, we
have g ⊗ A : C × A −→ C ′ × A. The rest of the data and axioms to make K a
symmetric premonoidal category arise by routine calculation, using the symmetric
monoidal structure of C determined by its finite product structure, and by use of
the Beck-Chevalley condition.

Define J : C −→ K by inc1 as in proposition 8.3.2. It follows from the Beck-
Chevalley condition that for a map f : A −→ B in C, and for a map g : C −→ D

in HB , we have that Hf (g) is given by the composite of J(idC × f) with the
adjoint correspondent of g. The Beck-Chevalley condition further implies that
(inc1−)⊗A agrees with inc1(−×A). It follows from functoriality of the Hf ’s that
every map in C is sent into the centre of K. Functoriality plus the Beck-Chevalley
condition similarly imply that all the structural maps are preserved. So J is an
identity on objects strict symmetric premonoidal functor.

It follows directly from our construction of J that κ(J) is isomorphic to H.
Moreover, J : C −→ K is fully determined by H since C is fixed, K must be H1 up
to isomorphism, with premonoidal structure as given, and J must agree on maps
with the construction as we have given it. Hence, J is unique up to isomorphism.

2

8.4 Continuation semantics in indexed ¬-categories
In this section, we use the definition of κ-category as a basis, together with self-
adjointness, for defining the notion of an indexed ¬-category. We then use that
latter definition to give our third continuations semantics. In the final section,
we shall prove that it is essentially equivalent to the second, i.e., that given by
⊗¬-categories.

143

8.4.1 Definition An indexed ¬-category consists of a κ-category H : Cop −→ Cat
together with an indexed functor ¬ : Hop −→ s(C) such that inc ◦¬ is self-adjoint
on the left, together with a coretract thunk of force1 ◦ inc, where force is the unit
of the self-adjunction, such that

• force is dinatural in A with respect to all maps in H1 and

• letting (force
A
)B be the correspondent under the adjunction to LAHπ((force1)B),

we have

¬force1 = thunk¬

thunk;¬¬force = force; thunk

thunkA×C = A× thunkC ;A× ¬force; force

¬κ−1(idC×A) = ¬C(LH!(force1)); forceC

The left adjoint to reindexing along projections gives rise to a comonad on
each fibre, which we will write as () ⊗ A. Furthermore , using inc, we have a
diagonal map δA : A −→ A⊗A in each fibre.

The thinking behind the definition is as follows. The category C with its finite
product structure allows us to model an environment as the product of the types
it contains. In the indexed category, program phrases defined in an environment
will be modelled as elements in the fibre over the denotation of that environment.

Jσ1K× · · · × JσnK

1

Jx1:σ1,...,xn:σn`M :τ K
��

JτK

The isomorphism of adjunction κ is a first order binding construct that allows
us to make the dependency of a program phrase on certain variables explicit. The
negation functor is much as before, except that it now acts on those variables
explicitly singled out by a previous κ.

Γ× C Γ

A

f

��

A×C

κf

��
B B

� κ //

Γ Γ

A

f

��

¬B

B ¬A
¬f

OO
� ¬ //

144

The motivation for the axioms is as for ⊗¬-categories, except that here, we can
avoid one of the axioms as it follows from the indexing of ¬. However, we need
our last axiom here in order to make the indexing of ¬ coherent: intuitively, it
means that negating the retrieving of a value of type C from the environment
to cons a value of type C to a value of type A gives us an operation of partially
satisfying demand for a value of type C while leaving the demand for a value of
type A untouched.

This formalism, unlike that for a ⊗¬-category, separates the data and the
control mechanisms. The indexed functor ¬ is in some sense oblivious to the
indexed structure with which first order data manipulation is described. We do
not want control to interfere with any data with which it is not concerned. So
the ability to model continuations with indexed categories as we do here is a
clear indication that we have separated the two. In the final section, we show
that this modelling is essentially equivalent to that using premonoidal categories
and self-adjointness. We take this as evidence that modelling continuations by
self-adjointness is a robust notion in the sense that it is not overly sensitive to
the way we model environments, as we could model them in two different ways,
in each case fitting the self-adjointness into this framework.

To model λ+callcc, types are interpreted as objects in C. Environments are
interpreted using the product in C.

J¬τK def= ¬JτK
Jσ → τK

def= ¬(JσK⊗ ¬JτK)
Jx1 : τ1, . . . , xn : τnK

def= Jτ1K × · · · × JτnK

A judgement Γ ` M : τ denotes an element JΓ ` M : τK : 1 −→ JτK in the fibre
over JΓK.

Jx1 : τ1, . . . xn : τn ` xj : τjK
def= Hπjκ

−1(idJτjK)

JΓ ` λx.M : σ → τK
def= thunk;¬(κ¬JΓ, x : σ `M : τK)

JΓ ` throw M N : σK
def= JΓ `M : ¬τK;¬(κ(Hπ1JΓ ` N : τK)); force

JΓ ` callcc M : τK
def= JΓ `M : ¬τ → τK;¬δ; force

JΓ `MN : τK
def= JΓ `M : σ → τK;¬(JΓ ` N : σK⊗¬JτK); force

Again, the semantics as such is not the topic of the present chapter. We only give
some hint at how it is intended to work.

We write a morphism from X to Y in the fibre over C as

X
C

// Y

145

The most interesting clause is the one for λ-abstraction in that abstracting over
a variable implies moving from one fibre to another.

In a more traditional (call-by-name) setting, λ would be interpreted by means
of an adjoint to reindexing. Here, it is more elaborate, as it is decomposed into
the first-order abstraction given by the structure on the fibration on the one hand
and the fibrewise “negation” given by the continuation functor on the other.

A judgement Γ, x : σ `M : τ denotes a morphism

1
JΓK×JσK

// JτK

Negating this given an arrow

¬JτK
JΓK×JσK

// ¬1

which, by virtue of κ, amounts to

JσK×¬JτK
JΓK

// ¬1

Negating this yields a morphism

¬¬1
JΓK

// ¬(JσK× ¬JτK)

All that remains to be done in order to get the meaning of λx.M is to precompose
with thunk : 1 −→ ¬¬1, taking care of the double negation:

1
JΓK

// ¬¬1
JΓK

// ¬(JσK×¬JτK)

8.5 Relating ⊗¬-categories and indexed ¬-categories
In this final section of the chapter, we build upon the equivalence between κ-
categories and symmetric premonoidal categories with the extra structure speci-
fied in Proposition 8.3.4 to relate ⊗¬-categories and indexed ¬-categories. They
are almost but not quite equivalent. The only difference lies implicit in Propo-
sition 8.3.4: for our definition of ⊗¬-category, we assert that the centre of our
category has finite products, whereas Proposition 8.3.4 merely asserts that we
have a category with finite products mapping, as the identity on objects, into the
centre of our category. We regard this as a minor difference, as the latter merely
extends the former mildly without changing any other structure.

Let δA
def= 〈idA, idA〉 : A −→ A⊗ A

Let K be a ⊗¬-category. Let ∗A be the Kleisli composition

f ∗A g
def= 〈π1, id〉; A⊗ f ⊗ g

146

Define ¬A : KleisliK(A⊗ ())op −→ KleisliZ(K)(A × ()) by ¬AB = B on
objects and by

¬Af
def= A⊗ ¬f ; apply

A

on morphisms. This is well-defined: A⊗ ¬f is central, because ¬f is, and

apply = apply; thunk;¬thunk = thunk;¬¬apply;¬thunk

is also central.
Define forceA : ¬A¬AB −→ B in KleisliK(A⊗ ()) by forceA

def= π2; apply1.
¬A preserves identities π2 : A⊗B −→ B because

¬A(π2)

= ¬A(!⊗B)

= A⊗ ¬(!⊗B); A⊗ ¬(A⊗ apply1); applyA

= A⊗ ¬(A⊗ apply1; !⊗B); applyA

= A⊗ ¬(!⊗¬¬B;1⊗ apply1); applyA

= A⊗ ¬(1⊗ apply1); A⊗¬(!⊗ ¬¬B); applyA

= A⊗ ¬(1⊗ apply1); !⊗¬(1 ⊗¬¬B); apply1

= A⊗ ¬(apply1); !⊗¬¬¬B; apply1

= !⊗ ¬B;1⊗ ¬(apply1); apply1

= !⊗ ¬B
= π2 : A⊗¬B −→ ¬B

¬A preserves composition: let f : A⊗B −→ C and g : A⊗ C −→ D. Then

¬A(f ∗A g)

= ¬A(δA ⊗B;A⊗ f ; g)

= A⊗¬(δA ⊗B;A⊗ f ; g); A⊗ ¬(A⊗ apply1); applyA

= A⊗¬(A⊗ apply1; δA ⊗B; A⊗ f ; g); applyA

= . . .

= δA ⊗ A⊗A⊗ ¬C;A⊗ A⊗¬g; A⊗ A⊗¬(A⊗ f); apply
A⊗A

¬A(f) ∗A ¬A(g)

= δA ⊗ ¬B;A⊗ A⊗ ¬(A⊗ apply1; f); A⊗ applyA; A⊗ ¬(A⊗ apply1; g); applyA

= . . .

= δA ⊗ A⊗ A⊗¬C; A⊗A⊗ ¬g; A⊗ A⊗ ¬(A⊗ f); A⊗ apply
A
; apply

A

147

So the required identity follows from the axiom

applyA⊗A′ = 〈π2, π1〉 ⊗ ¬(A⊗ A′ ⊗ ¬B); A′ ⊗ apply
A
; applyA′

and the facts that 〈π2, π1〉 is central and δ; 〈π2, π1〉 = δ.
The triangular identity ¬AforceA ∗A forceA = id holds:

¬AforceA ∗A forceA

= ¬A(π2; apply1) ∗A forceA

= (A⊗ ¬apply1;¬A(π2)) ∗A forceA

= (A⊗ ¬apply1;π2) ∗A forceA

= δA ⊗ ¬B;A⊗ A⊗ ¬apply1; A⊗ π2; π2; apply1

= A⊗ ¬apply1; δA ⊗¬¬¬B; A⊗ π2; π2; apply1

= A⊗ ¬apply1;π2; apply1

= A⊗ ¬apply1; !⊗ ¬¬¬B; apply1

= !⊗ ¬B;1⊗ ¬apply1; apply1

= π2;¬apply1; apply1

= π2 : A⊗ ¬B −→ ¬B

force is natural:

¬A¬Af ∗A forceA

= A⊗ ¬(A⊗ ¬f ; apply
A
); apply

A
; apply1

= A⊗ ¬apply
A
; A⊗¬(A⊗ ¬f); applyA

= A⊗ ¬apply
A
; applyA; f

= A⊗ apply1; f

= forceA ∗A f

Putting this all together, it follows that we have

8.5.1 Proposition Given a ⊗¬-category, (K,¬, apply, thunk), the construction
(κ(J),¬A, forceA) as above, together with the given thunk, give an indexed ¬-
category.

Proof Most of the proof is given above. For the rest, the axioms hold simply
because the category H1 is given by K. 2

8.5.2 Proposition Given a symmetric premonoidal category K for which the
premonoidal structure restricts to finite product structure on the centre, to extend

148

this to the structure of a ⊗¬-category is equivalent to extending the structure of
the κ-category κ(J) to that of an indexed ¬-category.

Proof We need to prove that the construction of the proposition is a bijection
up to isomorphism. Given an indexed ¬-category, one can obtain a ⊗¬-category
by considering H1. In order to show that the construction applied to that ⊗¬-
category yields the original indexed ¬-category, everything is routine provided one
can show that for any indexed ¬-category, the behaviour of ¬ on H1 determines
its behaviour on HA for all A. But this follows from the fact that ¬ is indexed
and from the final axiom. 2

There is little difference between the notions of indexed ¬-category and ⊗¬-
category. The only difference between them lies in the choice of an explicitly
given category with finite products and an identity on objects strict monoidal
functor into a symmetric premonoidal category rather than consideration of a
property of the centre. The former is the structure given naturally by an indexed
¬-category. Computationally, it is natural to assume that in the presence of
first-class continuations the whole of the centre admits finite products. This is
because the self-adjoint structure allows every central morphism to be reified, as
explained in section 6.3.

149

Chapter 9

Towards a graphical
representation of CPS

In this chapter, we present a graphical notation that may be seen as an extreme
distillation of CPS (a negation-only fragment). This graphical representation
relates to CPS roughly as Milner’s graphical action structure PIC [Mil93] for the
π-calculus relates to the full π-calculus. We may regard it as giving some insight,
though the match with CPS is not a perfect one. (See also [Mil94] and [Par95].)

Given the composition and identity definable in the calculus, we naturally
arrive at a (“CPS”) monoid. Despite its simplicity it has some of the deeper
structure characteristic of CPS: considered as a one-object category, it comes
equipped with a contravariant functor self-adjoint on the left and on the right.

Among the aspects of CPS that can be illustrated by the graphical presenta-
tion we would like to point out the following:

• The self adjointness, and in particular

• a view of the isomorphism of adjunction as turning a program upside down

• A view of variables as nodes in a graph or pointers

While our graphical formalism allows to visualise the above, it fails to address
other aspects of CPS. The self-adjointness “degenerates” (in the sense of a line
degenerating to a point, say) to a duality. However, the degeneracy is not a
collapse (in the sense that all morphisms are equal).

9.1 A graphical calculus

The • // -calculus consists of boxes , possibly containing “bullets” •, linked
by directed edges // .

150

An arrow can be linked (on either end) to the box or the bullet it contains;
hence there are four possible ways (apart from the direction of the arrow) in which
two boxes can be linked.

//

//•

• //

• //•
If nothing connects to the bullet, we omit it.

The calculus has the following four rules:
// // = // (α)

//• // = // (β)

• //• = • (η)

// = (σ)

Strictly speaking, these rewrite rules are only a shorthand for a more complicated
pattern matching. In the last two laws, the two boxes are to be fused into one;
this (and if there is one, the • inside) inherits all arrows connected to either of
the fused boxes. For example, applying η may look like this:

// • //• // // • //

9.2 Duality, or inside out

We point out two dualities. Poincaré duality: the rôles of boxes and arrows are
interchanged, while the bullet/box distinction remains:

// oo is dual to // //

//• oo is dual to // • //

While the Poincaré duality appears to reflect a certain symmetry of the formal
set-up, the second duality, that between boxes and bullets may be more relevant
as an operation.

// oo is dual to // •oo

•// oo is dual to // oo

151

This latter duality can be regarded as “turning inside out” inasmuch as the dual
of putting the left box into the one on the right

//•

is given by putting the right box into the left one

•oo

The rules are connected by the dualities like this:

oo Poincaré //

(α) (σ)

��

bullet/
box

OO

(β) (η)

So up to the two dualities, the four laws are only a single law, stating that
connected things at the same level of box nesting can be merged.

9.3 The CPS monoid

The elements of the CPS monoids are finite nonempty sequences of boxes, where
any two adjacent ones are connected in one of the eight possible ways, i.e. any
box/bullet combination and any direction of the connecting arrow. We usually
draw these vertically or, to save space, from left to right. Elements which can
be proved equal using the laws are identified (so the elements of the monoid are
actually equivalence classes, but this will be glossed over by representative-wise
definitions etc.).

We use
+3/o/o /o/o

as a meta-notation ranging over morphisms. Here are some examples of mor-
phisms that will be used later.

id

��•

force •OO thunk

��•

•

OO

��•
152

In addition to these constants, we also have operations on morphisms. For mor-
phisms f and g, the composition f ; g, the negation ¬f and the transpose φf are
defined as follows:

f ; g
f

��
�O
�O

�O
�O

•

��

g
��

�O
�O

�O
�O

¬f
f

KS
O�
O�

O�
O�

•

OO

��•

φf

f

KS
O�
O�

O�
O�

The associativity of composition is trivial.
We write proofs of equations about the CPS monoid as sequences of graphs

side by side, with adjacent graphs transformed into each other by one rewrite
step. id is the identity:

��•

��

��
�O
�O

�O
�O

=β

��

��
�O
�O

�O
�O

=σ

��
�O
�O

�O
�O

��
�O
�O

�O
�O

•

��

��•

=α

��
�O
�O

�O
�O

•

��•

=η

��
�O
�O

�O
�O

9.4 Self-adjointness, or upside down

9.4.1 Proposition ¬ is a contravariant functor right adjoint to its dual. force
is both the unit and counit of this adjunction.

Proof

¬ preserves identities ¬id = id:

•OO

•

OO

��•

•

•

OO

��•

��•

153

¬ preserves composition ¬g;¬f = ¬(f ; g):

g

KS
O�
O�

O�
O�

•

OO

��•

��

f

KS
O�
O�

O�
O�

•

OO

��•

g

KS
O�
O�

O�
O�

•

OO

��

f

KS
O�
O�

O�
O�

•

OO

��•

g

KS
O�
O�

O�
O�

•

OO

f

KS
O�
O�

O�
O�

•

OO

��•

¬ is natural: ¬¬f ; force = force; f

•

•

OO

��

f
��

�O
�O

�O
�O

•

OO

��•

��
•OO

•

•

OO

��

f
��

�O
�O

�O
�O

•

OO

��
•OO

•

•

OO

��

f
��

�O
�O

�O
�O

•

OO

OO

•

•

OO

��

f
��

�O
�O

�O
�O

OO

•

•

OO

��

f
��

�O
�O

�O
�O

154

triangular identity for ¬: ¬force; force = id

��•

•

OO

��•

��
•OO

��•

•

OO

��
•OO

��•

•

OO

OO

��•OO ��•

2

This completes the proof of the adjointness. Notice that the adjoint correspondent
of a morphism f is just its transpose φf , that is, f upside down.

The self-adjointness on the right follows from the fact that force and thunk are
actually inverses in this model, i.e. force; thunk = id. Hence force is the unit of a
duality; but then so is its inverse thunk.

•

•

OO

��

��•

•

OO

��•

•

•

OO

��•

•

OO

��•

•

•

OO

•

OO

��•

•

•

OO

��•

��•

9.5 A semantics for linear unary CPS calculus

Recall the typing of linear unary CPS calculus.

xk ` k〈x〉 xk ` x〈k〉

xn ` M yk ` N

xk ` M{n〈y〉=N}
nk `M yx ` N

xk `M{n〈y〉=N}

155

We can give a semantics for the linear unary CPS-calculus in the • // -
monoid

Jxk ` k〈x〉K

��•

Jxk ` x〈k〉K

•

OO

Jxk `M{n〈y〉=N}K
Jxn`MK

��
�O
�O

�O
�O

•

��

Jyk`NK
��

�O
�O

�O
�O

Jxk `M{n〈y〉=N}K
Jyx`NK

KS
O�
O�

O�
O�

•

OO

��•

��

Jnk`MK
��

�O
�O

�O
�O

This semantics can be summed up in the following recipe for drawing the graph-
ical representation of a term. To translate a linear unary CPS term, do the
following:—

• α-convert if necessary, making all variables pairwise distinct;

• draw a box for each variable;

• for every subterm of the form k〈x〉, draw an arrow from the box for x to a
bullet in the box for k;

• for every subterm of the form M{n〈x〉=N}, draw an arrow from a bullet
in the box for N to the box for x.

9.6 Duality and degeneracy

Put crudely, the graphical representation can account for . . . 〈. . .〉, but not . . .{. . . =
. . .}. This is analogous to the way PIC does not account for guarding [Mil94].

The self-adjointness and the duality appear closely connected.
Somewhat more ominously, we have

force; thunk = id

This means that force and thunk are both isomorphisms; hence both self-adjointnesses
collapse to a duality.

156

Thus this calculus is a degenerate model even of the tiny fragment of CPS that
it can describe, as it does not adequately account for reification. It is reification
(wrapping things into closures) that makes a proper CPS negation non-involutive.
On the other hand, the calculus has a great deal of the intuitive flavour of CPS;
and if the missing ingredient is indeed only reification, we could hope for the
following connection between CPS negation (self-adjointness, unit not iso) and
classical negation (duality):

CPS− reification = duality = classical negation

If this is so, one should get a classical negation from CPS by adding a law for
dissolving closures:

classical negation = CPS + (−reification)

So the degeneracy of this model may actually be useful for exploring those con-
nections in a simplified setting. Note that attempting to add extra axioms to the
CPS calculus in order to enforce “classicality” will quite easily lead to collapse,
e.g. if one makes force; thunk = id by adding the following axiom

h〈k〉{k〈a〉=n〈f〉{f〈p〉=p〈a〉}} = n〈h〉 (inv)

This issue of the degeneracy of a self-adjointness (for instance to a duality), is
also explored in Masahito Hasegawa’s manuscript [Has97].

Preliminary though they are, the ideas in this chapter may lead to two com-
plementary directions for further work. On the one hand, we could attempt to
add extra structure on the graphs to represent reification. A conventional way
to do this would be to add boxes to encapsulate certain subgraphs and preclude
certain reductions, as in [Mil94] and [Par95].

On the other hand, the duality aspects of CPS may become clearer if ad-
dressed in a setting where there actually is a duality functor. Duality seems to
have a powerful, though somewhat ambiguous, influence on intuitions about con-
tinuations. (For instance, the subtitle of Filinski’s early categorical account of
continuations is “an investigation of duality”.)

A related point is the duality on terms from section 3.6, which can be visual-
ized here as the box/bullet duality.

157

Chapter 10

Conclusions and directions for
further research

10.1 Conclusions

We have tried to show that continuations are a universal raw material from which
low-level as well as high-level programming language constructs can be crafted.
The categorical properties of the operations, such as force basically being the unit
of adjunction, appear to defy common prejudices against control manipulation as
excessively low-level and unprincipled. Like functions, continuations scale up
well, but unlike functions, they do not require “purity”. That is to say, the
adjunction is not destroyed by the addition of effects in the style done by call-by-
value languages like ML or Scheme.

To some extent what we have attempted here is a bridge-building effort be-
tween a tradition of semantics, centred around a few institutions in the USA,
relying much more on metacircular interpreters for Scheme than on, say, domains
and the more mathematically inclined European (predominantly British) tradi-
tion. Whether or not the Schemers need anyone to tell them that there is an
adjointness about remains to be seen, but we believe that for the European tra-
dition of semantics, it is of particular importance to maintain the link between
theoretical fields such as categorical semantics and programming languages.

10.2 Directions for further work

10.2.1 Language design

The self-adjointness seems characteristic of continuations that are first-class as
well as statically bound. Neither ML-style exceptions nor a Lisp-style (dynam-
ically bound) catch construct appear to give rise to this kind of structure. We

158

conjecture, then, that self-adjointness is a semantic criterion that sets first-class
continuations apart.

Perhaps the best use of category theory in the semantics of programming
languages is to rationalise semantic definitions [Ten91]; we hope to add more
objective reasons to the general impression that continuations are, for lack of a
better word, “cool”. (This may even lend some moral support to the cause of
their inclusion in future ML-like languages, whether idealised or real.)

The treatment of continuations in the type system of Standard ML of New
Jersey is already fairly conducive to our semantic views of them (not least because
it shaped them in the first place). A suggestion that we could offer is to facili-
tate passing between functions and continuations, by making it easy to convert
between, or even identifying arrow types σ → τ with special continuations, i.e.
¬(σ ∗ ¬τ).

In traditional imperative languages, both functions and continuations (in the
form of jump labels, say) are very far from being first-class: both can be intro-
duced only as compile-time literals.

But semantically (even more categorically) it is precisely the first-class version
that is more natural. First-class functions (of different flavours) give rise to
cartesian, or monoidal, or central, closure. First-class continuations give self-
adjointness.

On the basis of that, we would argue that callcc is the natural choice of con-
trol operator. While advanced, it is not particularly incomprehensible. Attempts
to “improve” on it may be counterproductive.

The drive for first-class notions without arbitrary restrictions (as well as the
related principle of orthogonality of such notions), appears to be one of the major
feedbacks from semantics into practice, in particular language design, and on a
more everyday level, programming language teaching.

(Given that first-class control is more natural than plain goto in that it enjoys
universal properties, one could be led to speculate whether there is not a notion
of first-class state more natural than plain “:=”.)

10.2.2 Applications to programming

While Scheme in particular is expression-oriented, the categorical combinators
could form the basis for a more composition-oriented approach to continuations.

We conjecture that they, together with a recursive (reflexive?) continuation
type, could be used as a set of primitives for upward (in the sense of [FWH92])
continuations and coroutines in particular. (See also sections 1.1.2 and 1.2) in

159

the introduction.
A related point is that we seem to be almost forced to define a continuation

transformer akin to the negation functor for reasoning about callcc in the setting
of an ML style typing of continuations. See 7.1.1.

10.2.3 Relation to π- and related calculi

Continuation Passing Style transformations have been studied primarily as a
translation between different versions of λ calculus. Such a translation between
different λ-calculi is indifferent to the calling mechanism of the target calculus.
What appears to have been studied much less (although it underlies CPS com-
piling) is that CPS is indifferent even as to whether the target language is a
λ-calculus at all, in that function application is translated into a kind of message
passing between caller and callee. In that sense, CPS transforms are closer in
spirit to π-calculus and related formalisms than to λ-calculi.

Much of the expressiveness of the π-calculus appears to be due to the fact
that its “first-class” names can be used to implement generalized first-class con-
tinuations. We propose to find criteria for when names are used in such a CPS
discipline, in order to scale up some of the essentially simple structure of CPS
from the sequential to a concurrent scenario. In particular, a categorical charac-
terization of continuation types appears to be quite robust in the sequential case,
so that a generalisation to channels used as continuations appears possible. This
would allow the isolation of a class of well-behaved computations lying properly
between the purely functional and the fully concurrent. The ability of the lan-
guages in this class to accommodate (generalized) continuations would provide a
more modular account of their expressive power. This would automatically entail
the existence of encodings (CPS transforms) of various evaluation strategies for
the λ-calculus, with control operators for free.

A related use of CPS as a unifying principle would be to take the existence of
a CPS transform between two languages as a comparison of their expressiveness.
We conjecture that a CPS discipline can be found not only in λ-calculus encodings
[Bou97], but also in Sangiorgi’s translation of Higher Order π-calculus back into
the π-calculus.

We hope to explore these connections and extend the analysis of CPS as
a particularly structured form of name-passing. Dually, given the popularity
of graphical representations in concurrency, aspects of CPS could perhaps be
elucidated by building on graphical presentations of, say, the π-calculus. Other
techniques from concurrency that could profitably be conferred on CPS include

160

contextual notions of equivalence and bisimulation.
Among the uses of CPS in compiling, we may distinguish between optimisa-

tions and translations to more low-level constructs.
The former do not change the character of the language: they re-write λ-terms

into other, more efficient, λ-terms. The latter eliminate the λ altogether in favour
of jumps with arguments.

In [FSDF93], it is argued that CPS is superfluous for optimisation purposes,
as one can optimise while staying in the source language by so-called A-reductions
that allow the same optimisations to be made as after a CPS transform. That
would imply that CPS transforms, if considered as transforms from the λ-calculus
to itself, are of little use to compiling. That would shift the emphasis to the other
aspect of CPS, which we have attempted to address here, namely breaking down
the λ’s, as it were.

10.2.4 The expressive power of callcc

Section 6.7 consitutes preliminary evidence to the discriminating power of tt
callcc. It seems possible that the equivalence induced on λ-terms by the Plotkin
CPS transform (M and N are equivalent iff M = N) is similarly fine-grained to
that given by Milner’s π-calculus encoding, which coincides with the Levy-Longo
tree equality [San94]. Specifically, the presence of first-class continuations allows
to distinguish values from general computations.

10.2.5 Internal languages

Both the concreteness and ease of use of the CPS calculus and the more abstract
viewpoint based on the self-adjointness are useful, not least because they comple-
ment each other. Their relationship would be clarified if the CPS calculus were,
in a precise sense, the internal language of a ⊗¬-category.

Similarly, one could hope for a fuller development of the flattened calculi as
the internal languages for premonoidal categories.

10.2.6 Robustness

We have argued informally that the structure that we propose for first-class con-
tinuations is not something specific to the small fragment of programming lan-
guages that we actually studied and that it would still be present in a more
realistic language with state, I/O and other effects. A connection with state has
been sketched in section 7.4.

161

10.2.7 Refinement of the standard model

As a first refinement of the standard model, we propose that some care should
be taken in the choice of the result type R. Of course, literally any type in C
could be taken as the result type, but it should be clear that the choice of the
terminal object yields a trivial interpretation. Other choices, such as a NNO are
more defensible and possibly sufficient for PCF-like languages [SF90].

As one of the fundamental properties of the CPS transform is its being poly-
morphic in the result type, we would argue that this should be reflected in the
model.

Realizability models have enough structure to allow for such a polymorphic
result type. In the terminology of [FT95], we could take the result type R to be

the “generic predomain”

0
B@
G

↓
C0

1
CA in a slice of the category of assemblies. (While this

is probably not the best account of a “generic” type is seems quite sufficient for
our purposes here.) If we wanted to add recursion, we could simply take the lift
of this object instead; that would just amount to its fibrewise lift.

It appears that the abort operator A could not be well typed in this setting.
No value produced by a program phrase could be polymorphic enough, as it were,
to inhabit the result type.

Another conjecture is that in this setting, the control-flow and the domain-
theoretic concepts of lifting should coincide, as on grounds of parametricity one
would expect, for any base type A, that

R
RA⊥
⊥
∼= A⊥

(The question arises: over how big a collection of types does R have to vary for
this to hold?)

10.2.8 Relation to polymorphism and semantics in general

The difficulties faced when trying to accommodate continuations as morphisms
with a domain but without a codomain, as it were, are in some ways similar to
those when attempting to account for polymorphic functions as morphisms with-
out fixed domain and codomain. In each case the mathematical framework seems
ill-equipped to deal with them, being based on (monomorphic, non-escaping)
functions.

There is also a more direct link to polymorphism in continuation semantics. If
one does model continuations as functions, at least one should wish to do justice
to the parametricity of the answer type and explore its ramifications. Examples

162

of the latter are the existence or non-existence of the abort operator and control
delimiters and the issue of full abstraction without them. Felleisen and Sabry
show that in their model, control operators are necessary for full abstraction
[SF90].

The approach in this thesis could help the search for a better denotational
account inasmuch as it points out what to look for, namely self-adjointness, and
what not (exponentials). One of the goals of the present approach was to give an
account of continuation semantics without answers, so to speak.

163

Bibliography

[ACS96] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisim-
ulations for the asynchronous pi-calculus. In Seventh International Con-
ference on Concurrency Theory (CONCUR ’96), volume 1119 of Lecture
Notes in Computer Science. Springer Verlag, August 1996.

[App92] Andrew Appel. Compiling with Continuations. Cambridge University
Press, 1992.

[Bac78] John Backus. Can programming be liberated from the von Neumann
style? Comm. ACM, 8:613–641, 1978.

[BCL+96] Edoardo Biagioni, Ken Cline, Peter Lee, Chris Okasaki, and Chris
Stone. Safe-for-space threads in Standard ML. In Proceedings 2nd ACM
SIGPLAN Workshop on Continuations, number NS-96-13 in BRICS
Notes Series, December 1996.

[Bou97] Gerard Boudol. Pi-calculus in direct style. In ACM Symposium on
Principles of Programming Languages, 1997.

[Cro93] Roy Crole. Categories for Types. Cambridge University Press, 1993.

[Dan94] Olivier Danvy. Back to direct style. Science of Computer Programming,
22(3):183–195, 1994.

[DF92] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, December 1992.

[DH94] Olivier Danvy and John Hatcliff. A generic account of continuation-
passing styles. In ACM Symposium on Principles of Programming Lan-
guages, pages 458–471, 1994.

[DHM91] Bruce Duba, Robert Harper, and David MacQueen. Typing first-class
continuations in ML. In Proc. ACM Symp. Principles of Programming
Languages, pages 163–173, January 1991.

164

[Dij68] E. W. Dijkstra. Goto statement considered harmful. Communications
of the ACM, 11, 1968.

[DL92] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class
continuations. In ACM Conference on Lisp and Functional Program-
ming, pages 299–310, 1992.

[Fel91] Matthias Felleisen. On the expressive power of programming languages.
In Science of Computer Programming, volume 17, pages 35–75, 1991.
Preliminary version in: Proc. European Symposium on Programming,
Lecture Notes in Computer Science, 432. Springer-Verlag (1990), 134–
151.

[FF96] Matthias Felleisen and Daniel P. Friedman. The Seasoned Schemer. MIT
Press, 1996.

[FFKD86] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and
Bruce Duba. Reasoning with continuations. In Proceedings of the Sym-
posium on Logic in Computer Science, pages 131–141, Washington DC,
June 1986. IEEE Computer Society Press.

[FH88] Anthony Field and Peter Harrison. Functional Programming. Addison-
Wesley, 1988.

[Fil89] Andrzej Filinski. Declarative continuations: an investigation of duality
in programming language semantics. In D. H. Pitt et al., editors, Cat-
egory Theory and Computer Science, number 389 in Lecture Notes in
Computer Science, pages 224–249. Springer-Verlag, 1989.

[Fil92] Andrzej Filinski. Linear continuations. In Proceedings of the Nine-
teenth Annual ACM Symposium on Principles of Programming Lan-
guages, 1992.

[Fil94a] Andrzej Filinski. Recursion from iteration. Lisp and Symbolic Compu-
tation, 7(1), Jan 1994.

[Fil94b] Andrzej Filinski. Representing monads. In Proceedings of the 21st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, January 1994.

[Fil96] Andrzej Filinski. Controlling Effects. PhD thesis, School of Computer
Science, Carnegie Mellon University, 1996.

165

[Fis72] Michael J. Fischer. Lambda-calculus schemata. In Proceedings ACM
Conference on Proving Assertions about Programs, pages 104–109, Los
Cruces, 1972. SIGPLAN Notices, 7(1), January 1972.

[Fis93] Michael J. Fischer. Lambda-calculus schemata. Lisp and Symbolic Com-
putation, 6(3/4):259–288, November 1993.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In Proc. SIGPLAN
’93 Conference on Programming Language Design and Implementation,
pages 237–247, June 1993.

[FT95] Michael Fourman and Hayo Thielecke. A proposed categorical seman-
tics for ML modules. In David Pitt et al., editor, Category Theory in
Computer Science, number 953 in LNCS. Springer Verlag, 1995.

[FWH92] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Es-
sentials of Programming Languages. MIT Press and McGraw-Hill, 1992.

[Gri90] Timothy G. Griffin. A formulae-as-types notion of control. In Confer-
ence record of the 17th ACM Symposium on Principles of Programming
Languages (POPL), pages 47–58, San Francisco, CA USA, 1990.

[Has95] Masahito Hasegawa. Decomposing typed lambda calculus into a cou-
ple of categorical programming languages. In David Pitt et al., editor,
Category Theory in Computer Science, number 953 in LNCS. Springer
Verlag, 1995.

[Has97] Masahito Hasegawa. Continuation monoids. unpublished manuscript,
March 1997.

[HD95] John Hatcliff and Olivier Danvy. Thunks and the lambda-calculus. Tech-
nical Report Technical report 95/3, DIKU, Computer Science Depart-
ment, University of Copenhagen, February, 1995.

[HDM93] Robert Harper, Bruce Duba, and David MacQueen. Typing first-class
continuations in ML. Journal of Functional Programming, 3(4), October
1993.

[Hen87] Martin C. Henson. Elements of Functional Languages. Blackwell Scien-
tific Publications, Oxford, 1987.

166

[HFW86] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Ob-
taining coroutines with continuations. Journal of Computer Languages,
11(3/4):143–153, 1986.

[Hof94] Martin Hofmann. Sound and complete axiomatizations of call-by-value
control operators. Math. Struct. in Comp. Science, 1994.

[HS97] Martin Hofmann and Thomas Streicher. Continuation models are uni-
versal for lambda-mu-calculus. In Proc. LICS ’97, 1997. (to appear).

[Ing61] P. Z. Ingerman. Thunks: a way of compiling procedure statements with
some comments on procedure declarations. Comm. A.C.M., 4(1):55–58,
January 1961.

[Jac91] Bart Jacobs. Categorical Type Theory. PhD thesis, University of Ni-
jmegen, 1991.

[Jac92] Bart Jacobs. Simply typed and untyped lambda calculus revisited. In
M.P. Fourman, P.T. Johnstone, and A.M. Pitts, editors, Applications of
Categories in Computer Science. Cambridge Univ. Press, 1992.

[KCF92] Ramma Kanneganti, Robert Cartwright, and Matthias Felleisen. SPCF:
its model, calculus, and computational power. In Proc. REX Workshop
on Semantics and Concurrency, LNCS. Springer-Verlag, 1992.

[Lai97] James Laird. Full abstraction for functional languages with control. In
Proc. LICS ’97, 1997. (to appear).

[LD93] Julia L. Lawall and Olivier Danvy. Separating stages in the continuation-
passing style transformation. In ACM Symposium on Principles of Pro-
gramming Languages, pages 124–136, 1993.

[LS86] J. Lambek and P. J. Scott. Introduction to higher-order categorical logic.
Cambridge University Press, 1986.

[Mac71] Saunders Mac Lane. Categories for the Working Mathematician.
Springer Verlag, 1971.

[Mil91] Robin Milner. The polyadic π-calculus: A tutorial. LFCS Report ECS-
LFCS-91-180, LFCS, University of Edinburgh, October 1991.

[Mil93] Robin Milner. Action structures for the π-calculus. Technical Report
ECS–LFCS–93–264, LFCS, May 1993.

167

[Mil94] Robin Milner. Pi-nets: a graphical form of pi-calculus. In European
Symposium on Programming, volume LNCS 788, pages 26–42. Springer-
Verlag, 1994.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. In 4th
LICS conference. IEEE, 1989.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Defintion of Stan-
dard ML. MIT Press, 1990.

[Mur91] Chet Murthy. An evaluation semantics for classical proofs. In Proc. 11th
IEEE Annual Symposium on Logic in Computer Science. IEEE Com-
puter Society Press, 1991.

[Mur92] Chet Murthy. A computational analysis of girard’s translation and LC.
In IEEE Annual Symposium on Logic in Computer Science. IEEE Com-
puter Society Press, 1992.

[MW85] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed
lambda-calculi (summary). In Rohit Parikh, editor, Logics of Programs,
number 193 in Lecture Notes in Computer Science, pages 219–224.
Springer-Verlag, 1985.

[NJ93] AT&T Bell Laboratories. Standard ML of New Jersey — Base Environ-
ment, 0.93 edition, February 1993.

[Ong96] C.-H. L. Ong. A semantics view of classical proofs: type-theoretic, cate-
gorical, denotational characterizations. In Proc. 11th IEEE Annual Sym-
posium on Logic in Computer Science, pages 230–241. IEEE Computer
Society Press, 1996.

[Par92] Michel Parigot. λµ-calculus: an algorithmic interpretation of classical
natural deduction. In Proceedings International Conference on Logic
Programming and Automated Deduction, number 624 in LNCS, pages
190–201, 1992.

[Par95] Joachim Parrow. Interaction diagrams. Nordic Journal of Computing,
2:407–443, 1995.

[Pau91] Lawrence C. Paulson. ML for the Working Programmer. Cambridge
University Press, 1991.

168

[Plo75] Gordon Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theo-
retical Computer Science, 1(2):125–159, 1975.

[Pow] John Power. Premonoidal categories as categories with algebraic struc-
ture. (submitted).

[PR97] John Power and Edmund Robinson. Premonoidal categories and notions
of computation. Mathematical Structures in Computer Science, 1997. to
appear.

[PS93] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mo-
bile processes. In Logic in Computer Science, 1993. Full version in
Mathematical Structures in Computer Science, 1996.

[PS96] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. Mathematical Structures in Computer Science, 6(5):409–454,
1996.

[PT97] John Power and Hayo Thielecke. Environments, continuation semantics
and indexed categories. In Proceedings TACS’97, 1997.

[RBS] J.R.B. Cockett R.F. Blute and R.A.G. Seely. Categories for computation
in context and unified logic. (submitted).

[Re91] Jonathan Rees and William Clinger (editors). Revised4 report on the
algorithmic language scheme. ACM Lisp Pointers IV, July-September
1991.

[Ree92] Jonathan Rees. The scheme of things: The june 1992 meeting. ACM
Lisp Pointers, 5(4):40–45, 1992.

[Rey93] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3/4):233–247, November 1993.

[RR88] Edmund Robinson and Guiseppe Rosolini. Categories of partial map.
Information and Computation, 79(2):95–130, 1988.

[RS94] Niels Jakob Rehof and Morten Heine Sørensen. The λ∆ calculus. In
M. Hagiya and J. Mitchell, editors, Theoretical Aspects of Computer
Software, volume 789 of Lecture Notes in Computer Science, pages 516–
542. Springer-Verlag, 1994.

169

[Sab96] Amr Sabry. Note on axiomatizing the semantics of control operators.
Technical Report CIS-TR-96-03, University of Oregon, 1996.

[San94] Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario.
Information and Computation, 111(1):120–153, may 1994.

[San95] Davide Sangiorgi. Lazy functions and mobile processes. Technical Report
RR-2515, INRIA-Sophia Antipolis, 1995.

[San97] Davide Sangiorgi. The name discipline of uniform receptiveness. In Proc.
ICALP’97, 1997.

[Sch86] David A. Schmidt. Denotational Semantics - A Methodology for Lan-
guage Development. Allyn and Bacon, 1986.

[SF89] George Springer and Daniel P. Friedman. Scheme and the Art of Pro-
gramming. MIT Press, 1989.

[SF90] Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II:
full abstraction for models of control. In M. Wand, editor, Lisp and
Functional Programming. ACM, 1990.

[Shi96] Olin Shivers. Continuations and threads: Expressing machine concur-
rency directly in advanced languages. In Proceedings 2nd ACM SIG-
PLAN Workshop on Continuations, number NS-96-13 in BRICS Notes
Series, December 1996.

[SS76] Guy Steele and Gerald Sussman. Lambda: The ultimate imperative.
Technical Report AI Memo 353, MIT, March 1976.

[Ste76] Guy Steele. LAMBDA: The ultimate declarative. Technical Report AI
Memo 379, MIT, November 1976.

[Ste77] Guy Steele. Debunking the “expensive procedure call” myth or, proce-
dure call implementations considered harmful or, lambda: The ultimate
goto. Report AI Memo 443, MIT, 1977.

[Ste78] Guy Steele. Rabbit: A compiler for Scheme. Technical Report AI TR
474, MIT, May 1978.

[SW74] Christopher Strachey and C. P. Wadsworth. Continuations: A mathe-
matical semantics for handling full jumps. Technical Monograph PRG-
11, Oxford University Computing Laboratory, January 1974.

170

[SW96] Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM SIG-
PLAN Notices, 31(6):13–24, June 1996.

[Ten91] Robert D. Tennent. Semantics of Programming Languages. Prentice-Hall
International, 1991.

[Thi96a] Hayo Thielecke. Continuation passing style and self-adjointness. In
Proceedings 2nd ACM SIGPLAN Workshop on Continuations, number
NS-96-13 in BRICS Notes Series, December 1996.

[Thi96b] Hayo Thielecke. Continuation semantics, self-adjointness and the π-
calculus. Unpublished draft, March 1996.

[Thi97] Hayo Thielecke. Continuation semantics and self-adjointness. In Pro-
ceedings MFPS XIII, Electronic Notes in Theoretical Computer Science.
Elsevier, 1997.

[Tur95] David Turner. The Polymorphic Pi-Calculus: Theory and Implementa-
tion. PhD thesis, University of Edinburgh, 1995.

171

