

Elementary structural analysis for PEPA

Stephen Gilmore, Jane Hillston∗ and Laura Recalde†

December 18, 1997

Abstract

We consider the adaptation of important structural techniques for analysing behavi-
oural properties of Petri nets to models expressed in process algebras such as PEPA [Hil96].

1 Introduction

Performance Evaluation Process Algebra (PEPA) is a high-level modelling language which is
used for performance analysis of models of distributed computer and communication systems.
In common with the approach adopted by related modelling languages which also use a
process-algebra based approach [GHR93, BBG95] the analysis of system performance is made
possible by the inclusion of timing information in a PEPA model. Performance analysis is
only an appropriate tool to use in the investigation of a system if certain behavioural criteria
are met; one example being freedom from deadlock. Similarly, model solution could give
misleading results if some of the activities in the model are never performed. In this paper we
concentrate upon such behavioural investigation of PEPA models. One benefit of a separation
of the modelling process into behavioural analysis followed by performance analysis is that
if the model is found to be unsuitable due to the presence of a deadlock or the absence of
liveness then an expensive performance investigation can be avoided at the cost of a more
efficient structural analysis. A second, more important benefit is that although any deadlock
within a PEPA model would be detected in the performance analysis process the absence of
liveness property would not and so the preliminary structural analysis equips the modeller
with more confidence in the correctness of the model. This applies in the particular respect
that the modeller is assured that there are no activities in the model which are redundant
because they never become enabled.

In order to recreate structural analysis techniques from Petri nets [Sil93] for the PEPA
language we make use of an intermediate representation which consists of matrices which
record behavioural information and a vector which records a state. The identification of the
vector is a preliminary step which establishes the dimension of the matrices which are to
record the information about transitions from one state to another. The intermediate matrix
representation facilitates the structural analysis of PEPA models.
∗Both at Laboratory for Foundations of Computer Science, Department of Computer Science, The Uni-

versity of Edinburgh, Scotland. Electronic mail addresses: {stg, jeh}@dcs.ed.ac.uk
†Departamento de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza, Spain. Electronic mail

address: lrecalde@prometeo.cps.unizar.es

1

2 Structure of this paper

We focus on a sub-language of PEPA. We describe the conversion of models in the language
into a representation by a pair of matrices (termed the pre- and post-matrices) which are
the basis for the subsequent analysis of the system. At this point we summarise the relevant
techniques for structural analysis of Petri nets which we have used for the analysis of models
in our stochastic process algebra. We then present a procedure which can be used to extend
our sub-language to full PEPA by adding the hiding operator. Finally we point to future
directions of this work.

3 The PEPA language

We are not making use here of the added system description information which is provided
by the rates which are paired with each occurrence of an activity within a model and so in
order to simplify the presentation of the method of structural analysis we remove the spe-
cifications of rates from models. This action is justified because in PEPA we have the special
case of all activity rates being parameters of negative exponential distributions with infin-
ite support. In this situation we know that rate information can be systematically restored
afterwards [CABC93].

In order to facilitate the explanation of our present consideration of structural properties of
process algebra models we use the PEPA language without the hiding operator. We will show
in Section 7 that the hiding operator could be added without any significant complication.
Thus the simplified stochastic process algebra which we are using here is simply a convenient
explanatory device and does not compromise the usefulness of our work. The grammar of the
language is presented in Figure 1.

S ::= sequential components
| A constant
| α.S prefix
| S + S choice

P ::= parallel components
| S degenerate case
| P ��

L
P co-operation on L

Figure 1: Grammar for the PEPA sub-language

Constants are bound by defining equations of the form A
def= P . The function to determine

the activities of a component, written as Act A, calculates the complete alphabet of the
component syntactically as the set of all activity names which are used in the description of
the component.

A consequence of the grammar is that the collection of equations describing a system can
be partitioned into two sets. The equations which specify the behaviour of the sequential com-
ponents are known as defining equations ; those which specify how those components interact
are termed model equations. Note that, via a process of back substitution, we can always

2

reduce the set of model equations to a single system equation. We impose the constraint that
the constant introduced on the left hand side of the system equation cannot be used recurs-
ively. Without loss of generality, throughout the remainder of this paper we will assume that
PEPA models are formed by a set of defining equations and a single system equation. Thus
those combinators which are used to construct sequential components are dynamic combin-
ators, whereas those which are used to construct parallel components are static components.
The significance of this is that the number of parallel components contained within a model
will be invariant over all states.

4 An overview of Petri nets

Petri nets are another formalism which is widely used in the modelling and analysis of systems
that exhibit complex behaviour due to the interleaving of parallelism and synchronisation.
We concentrate here on Place/Transitions (P/T) net systems and summarise only enough for
our present needs. For a thorough introduction to the topic the reader should consult the
following references [Mur89, Pet81].

A P/T net is a bipartite directed graph, represented as a quadruple N=〈P, T,Pre,Post〉,
where P and T are the sets of the two kinds of nodes, places and transitions, and Pre and
Post are the |P | × |T | sized, natural-valued incidence matrices which represent the arcs.
Post[p, t] = w means that there is an arc from t to p with weight (or multiplicity) w, and
Pre[p, t] = 0 indicates that there is no arc from p to t. A marking m is a |P | sized, natural-
valued vector. In the graphical representation of a P/T net a place is represented by a circle,
a transition by a box or bar, and the marking by a number of dots or tokens present in each
place. A P/T system is a pair S=〈N ,m0〉, where m0 is the initial marking. A transition t
is enabled in a marking m if and only if m ≥ Pre[P, t]. Its occurrence or firing yields a new
marking m′ = m + C[P, t], where C = Post−Pre is called the token flow matrix.

A P/T system is live when every transition is live, i.e. it can ultimately occur from
every reachable marking, and it is deadlock-free when every reachable marking enables some
transition. A P/T system is bounded when every place is bounded, i.e. its marking value
is less than some bound at every reachable marking. Boundedness precludes overflows and
liveness ensures that no single transition in the system can become unattainable.

Structural techniques provide a valuable approach to the analysis of Petri net models.
These techniques are based on the idea that useful information about the behaviour of the
system can be gained from the structure of the net and the initial marking, without neces-
sarily carrying out a reachability analysis. This has led to the development of some efficient
algorithms for the analysis of P/T systems. Two techniques have been predominantly used:
(i) graph theory and (ii) linear algebra or convex geometry. Starting from the ideas of live-
ness and boundedness, in this paper we are seeking to define analogous properties for PEPA
models and to develop similar techniques for their investigation. Here “structure” is replaced
by “syntax”: we aim to analyse the behaviour of the model without generating a derivative
graph, but merely by syntactic analysis of the definitional equations (analogous to the net
structure) and the system equation (corresponding both to net structure and initial marking).

In [Rib95] it was proved that any PEPA model can be seen as a GSPN. Ribaudo’s
approach was to define a labelled GSPN semantics of PEPA models, in which a corresponding
net construction is associated with each of the combinators of the language. One consequence
of this work is that, in principle at least, all the structural theory developed for Petri nets is

3

available for the analysis of PEPA models. However, based on Ribaudo’s approach it is not
immediately apparent how this theory can be exploited at the level of the PEPA model.

In the following sections we will describe how to construct pre- and post-incidence matrices
for a PEPA model. This has the consequence that a P/T system can be defined from each
PEPA model. However, unlike Ribaudo’s work, finding the corresponding P/T system is
not the objective of our work. Instead, based on the matrix approach, we will see that
some important results from Petri net theory can be used in a straightforward manner to
obtain information about the PEPA model. We must point out, however, that the approach
of the two formalism is quite different, and this must be taken into account for a correct
interpretation of the results, as we shall see.

5 Conversion to a matrix representation

We explain the conversion from the process algebra definitional equations to an equivalent
representation as a pair of matrices which record the activities which are performed and the
derivatives which result from this. The presentation of the matrices has a column for each
activity instance and a row for each component derivative, whether named by an identifier or
not. Note that these are not the derivatives of the complete model, which would be generated
by application of the semantics to the system equation, but the derivatives of the sequential
components generated by application of the semantics to the definitional equations. Thus the
resulting matrices have a block structure, each block corresponding to one component in the
system equation.

We note that a similar representation of PEPA models in terms of pre- and post-transition
vectors for activities was previously presented by Sereno [Ser95] for the purpose of investig-
ating product form equilibrium distributions.

In order to establish the starting state of the PEPA model, in addition to the pre- and post-
incidence matrices we must also construct a state vector s0, analogous to the initial marking
m0. Recall that the specification of a PEPA model consists of a set of defining equations
and the system equation. The local states of our model are the sequential derivatives defined
by the defining equations. Given this set of “places”, each global state s, is the number of
instances of each sequential derivative apparent in the syntactic form representing that state.
In particular, the initial state s0 is a vector in which the entry for each derivative is the
number of instances of that syntactic form which are found on the right hand side of the
system equation. As with the incidence matrices, we can think of this vector as having a
block structure corresponding to the components of the model.

Just as the Pre and Post matrices of a P/T system can be combined to form the token
flow matrix, C = Post−Pre, the Pre and Post matrices of a PEPA model can be combined
to form the characteristic matrix, C = Post −Pre.

5.1 Prefix

Consider the following very simple component which only performs the activities α and β in
alternation.

P
def= α.β.P

This component has two states and two activities and the information in its defining equation
may be recorded in the following pair of pre- and post-matrices. The pre-matrix is compiled

4

by recording the information that the component P can perform an α activity, thereby placing
an entry in the first row and the component β.P can perform a β activity, thereby placing
an entry in the second row. The post-matrix is compiled in a similar fashion by recording
that the component P is reached after performing a β activity and that the component β.P
is reached after performing an α activity.

Pre =
P

β.P

α β(
1 0
0 1

)
Post =

P
β.P

α β(
0 1
1 0

)
Observe that we can associate with each non-null element of the pre-matrix another non-null
element of the post-matrix, i.e. we move from one local state to another. Therefore the number
of non-null elements in any column will be the same in the pre-matrix and the post-matrix.

5.2 Choice

Here a component performs a sequence of activities in which each α activity is followed by
either a β or a γ activity.

Q
def= α.R

R
def= β.Q+ γ.Q

The component has two states, both of which are named, and three activities. Its represent-
ation in terms of pre- and post-matrices follows.

Pre =
Q
R

α β γ(
1 0 0
0 1 1

)
Post =

Q
R

α β γ(
0 1 1
1 0 0

)
The preservation property which we noted in the previous case does not hold for rows. We
see this because the non-null elements of a row in the pre-matrix represent syntactically
distinct occurrences of an activity which can be performed in that state in order to evolve to
a derivative of that component. However the corresponding row in the post-matrix represents
a local state which was reached after performing those activities which are associated with
non-null entries. There is no reason for these two numbers to be the same. In our example
here the state Q can only perform a single activity but could have been reached by one of
two distinct activities. A complementary property can be observed of the state R.

5.3 Cooperation

5.3.1 A first example

We consider a pair of components P and Q which synchronise on their common activities α
and β and P performs an individual activity γ before returning to the α activity.

P
def= α.β.γ.P

Q
def= α.β.Q

5

The system which we are representing in the matrices is P ��
{α,β}

Q. This has three states and
three activities.

Pre =

P
β.γ.P
γ.P
Q

β.Q

α β γ
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0

 Post =

P
β.γ.P
γ.P
Q

β.Q

α β γ
0 0 1
1 0 0
0 1 0
0 1 0
1 0 0

Until this point because we were working with a single sequential component the states which
were associated with the rows of the matrices were coincident with the states of the system.
Now that we have a cooperation between two sequential components we note that the rows
present information about the local states of subcomponents of the model. The advantage
which this decomposition affords is that the sequential subcomponent which is performing the
activity is identified. This information would be lost if the state of the whole model—P ��

{α,β}
Q,

β.γ.P ��
{α,β}

Q or γ.P ��
{α,β}

Q—was used as the designator of each row in each matrix.
The row vector representation of the system equation of this model is shown below.

s0 =
P β.γ.P γ.P Q β.Q

(1 0 0 1 0)

The column labels of this vector are the row labels from the pre- and post-matrices. We will
normally omit these labels when presenting vector representations of system states.

We can observe from this example that synchronisations between the components P and
Q here can be clearly seen from the matrix representation where there is any column in the
pre-matrix whose sum is greater than one. However, it should be noted that in general a
column whose sum is greater than one merely represents a potential synchronisation between
components. If the model which is being investigated contains activities which are never able
to be performed then potential synchronisations might never actually occur.

5.3.2 A second example

In the previous example the matrix representation had more rows than the number of states
in the process algebra model of the system. This is because the component Q is tightly
synchronised to P in a slave relationship. We now consider an example where the numbers
are ordered in the other way, with the number of states in the process algebra model greater
than the number of rows in the matrix representation.

Consider the following model which has three components, P , Q and R where Q enforces
fairness between P performing activities and R performing activities.

P
def= α.β.P

Q
def= α.γ.Q

R
def= γ.δ.R

The system which we consider is P ��
{α}

Q ��
{γ}
R. The activity which P and Q synchronise upon

is α and the activity which Q and R synchronise upon is γ. The matrix representation for

6

this model is shown below. The process algebra model has eight states and twelve transitions.
The system equation gives s0 = (1 0 1 0 1 0).

Pre =

P
β.P
Q

γ.Q
R

δ.R

α β γ δ

1 0 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1

 Post =

P
β.P
Q

γ.Q
R

δ.R

α β γ δ

0 1 0 0
1 0 0 0
0 0 1 0
1 0 0 0
0 0 0 1
0 0 1 0

5.3.3 A third example

Observe that the possible activities in a PEPA model do not always coincide with the columns
in the pre- and post-matrices. Even more, since the matrices are derived in a purely syntactic
way, there may appear to be synchronisations recorded in the matrices which in fact will never
occur. For matrices derived from Petri net representations the presence of these phantom
synchronisations indicates a flaw in the given net. However, this is not the case for process
algebras.

P
def= α.β.α.P

Q
def= α.γ.α.Q

The system which we consider is P ��
{α}

Q. Components P and Q synchronise upon α, execute
β and γ on their own and synchronise again upon α. This model has five states and six
transitions.

The matrix representation for this model is shown below. In determining the transcription
of α in the matrices, since each component has two instances of α, four apparent synchron-
isation points are noted. Two of these are real—the leading α activities from P and Q and
the trailing α activities from P and Q—and two of these are phantoms—a leading α with a
trailing α, in both cases. From the system equation we have s0 = (1 0 0 1 0 0).

Pre =

P
β.α.P
α.P
Q

β.α.Q
α.Q

α α α α β γ

1 1 0 0 0 0
0 0 0 0 1 0
0 0 1 1 0 0
1 0 1 0 0 0
0 0 0 0 0 1
0 1 0 1 0 0

 Post =

P
β.α.P
α.P
Q

β.α.Q
α.Q

α α α α β γ

0 0 1 1 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 0 0 1

Note that Sereno explicitly excludes the case of repeated instances of an activity within a
sequential component [Ser95]. He also imposes that when sequential components undertake
activities of the same name they must do so in cooperation. We do not include this restriction
as the following example shows.

7

5.3.4 A fourth example

Until now, all of our examples have considered systems where the model components syn-
chronised on all of their common activities. In PEPA it is possible to express pure parallel
execution of activities as synchronisation over the empty set of activities. This permits the
representation of an implicit choice where, for example, cooperations take place pairwise
between two of three components. We show this in the present example along with the
treatment of self-loops where performing an activity leaves a model component in the same
state.

P
def= α.β.P

Q
def= α.γ.Q

R
def= α.R

The system we consider is (P ��
∅
Q) ��

{α}
R. Pair-wise synchronisations take place between P

and R and between Q and R. This model has four states and eight transitions. The system
equation gives s0 = (1 0 1 0 1). The matrix representation for this model is shown below.
It is evidently important to represent clearly the pair-wise synchronisations and not to allow
the inference of a three-way synchronisation between P , Q and R. For this reason the matrix
must devote two columns to the two kinds of synchronisations on the α activity.

Pre =

P
β.P
Q

γ.Q
R

α β α γ
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0

 Post =

P
β.P
Q

γ.Q
R

α β α γ
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
1 0 1 0

5.4 A fifth example

For our final example we consider the problem of capturing component duplication in the
system equation of a PEPA model. To illustrate one of the reasons why this can be problematic
we consider a model where the duplicated components are initiated in different local states
by the system equation.

P
def= α.P ′

P ′
def= β.P

Q
def= α.β.Q

R
def= β.α.R

The system which we consider is (P ��
{α,β}

Q) ��
∅

(P ′ ��
{α,β}

R). Here because the two copies of
the component P are initiated in the orientation which suits their partner component in
the cooperation expression the model has four states and eight transitions. In contrast, the
system (P ′ ��

{α,β}
Q) ��

∅
(P ��

{α,β}
R) immediately deadlocks. We require these two PEPA models

to have different representations and these differ only in their initial state vectors, as shown

8

below.

s0 =
P P ′ Q β.Q P P ′ R α.R

(1 0 1 0 0 1 1 0)

s0
′ =

P P ′ Q β.Q P P ′ R α.R
(0 1 1 0 1 0 1 0)

As we note from these vectors our method of processing duplicated components is to add
rows to the matrices for each of the copies. In net terms this corresponds to duplicating the
net structure. We omit the pre- and post-matrices.

6 Application of structural analysis techniques

In this section we show how structural analysis techniques from P/T nets can be applied to
stochastic process algebra models expressed in the PEPA language. We begin by introducing
relevant terminology which will enable us to classify structurally flawed PEPA models.

6.1 Notions of liveness

The concept of liveness is well understood for Petri nets. We introduce a variation on this
(group liveness) which can be mirrored in process algebra (PEPA liveness) and introduce a
stronger notion of liveness for process which implies PEPA liveness.

P/T liveness (PN): From each reachable state of a net there is, for each transition, a
sequence of firings which leads to the transition becoming enabled.

Group liveness (PN): From each reachable state of a labelled net there is, for each label,
a sequence of firings which will lead to a transition with that label being enabled.

PEPA liveness (PA): For each reachable state and every action type there exists another
state which is reachable where an activity of that type can be performed.

Full liveness (PA): For each reachable state and each syntactic occurrence of an activity
within a sequential component there exists another state which is reachable where this
occurrence of the activity can be performed.

The most interesting relationship between these four notions is the relation of P/T liveness to
full liveness. If we consider the P/T system corresponding to a fully live PEPA model, we can
see that P/T liveness implies full liveness but that the converse is not true. Problems arise
because of the possibility of phantom synchronisations; these are an artifact of the algebraic
representation of a model and do not arise in Petri net models.

It should be clear that full liveness implies PEPA liveness and that the notions of group
liveness and PEPA liveness are equivalent notions in the two formalisms. The existence
of phantom synchronisations does not present a difficulty here because there will be another
instance of the synchronisation on the same activity which can be performed from some state.

All of these notions of liveness guarantee freedom from deadlock.

9

6.2 Boundedness in process algebra models

Boundedness for P/T systems is defined in terms of a bound on the number of tokens which
can reside in each place of the net. For a process algebra model syntactic forms of sequential
components play a role analogous to places. Thus we can say that a model is bounded if
there is a bound on the number of instances of each sequential derivative which will appear
in any state of the model.

Given the direct mapping between syntactic states of the PEPA model and the states of
the underlying Markov process, boundedness is clearly a necessary condition for finiteness of
the stochastic model.

6.3 Significance of the structural analysis

We wish to have the structural analysis determine the strongest form of liveness, namely full
liveness. We caution the reader that this does not guarantee the well-known cyclic condition
for PEPA models but an example which makes clear the difference is not easy to construct
and so we do not present such an example here. The curious reader may consult [Col89].

One of the principal tools used in the analysis of P/T systems is the state equation. Recall
that when one transition t is fired from a state, m, the new state that is reached, m′, can be
obtained as m′ = m + C[P, t]. Analogously, if a sequence σ is fired, the state that is reached
can be computed as

m′ = m + C · σ
where σ[t] represents the number of times transition t occurs in the sequence. Unfortunately,
there may be solutions of the equation that do not correspond to firable sequences; these are
termed spurious solutions.

For any P/T net, flows (semiflows) are integer (natural) annullers of C. Right and left
annullers are called T- and P-(semi)flows, respectively. Flows are important because they
induce certain invariant relations which are useful for reasoning about the behaviour of the
net. For instance, if y ≥ 0 and y ·C = 0 then every reachable state m satisfies y ·m = y ·m0.
This implies the existence of a invariance relation which can be expressed in terms of the
number of tokens distributed over the places of the net. Similarly, any repetitive transition
sequence σ which returns a marking to itself satisfies that C · σ = 0.

The existence of certain annullers, or similar vectors, define several behavioural properties
over the corresponding net. These properties will hold for any P/T system with the given
net structure, i.e. for any initial marking. For example:

• N is consistent (structurally repetitive) if and only if x > 0 exists such that C ·x = 0.

• N is conservative (structurally bounded) if and only if y > 0 exists such that y ·C = 0.

The characteristic matrix of a PEPA model is always conservative, because, as we previ-
ously remarked, any non-null element in the pre-matrix has a corresponding element in the
post-matrix. In particular this means that the number of copies of processes does not change
as the system evolves, which from a Petri net point of view means that the system is bounded.

In bounded P/T systems, with a finite number of states, liveness cannot be achieved
unless there is a repetitive sequence covering all the transitions. Therefore, consistency is a
necessary condition for liveness in bounded systems. This condition has been improved by
the addition of an upper bound to the rank of the token flow matrix. The bound is based on
the definition of an equivalence relation between transitions.

10

Definition 1 (Equal conflict relation) We say that transitions t and t′ are in equal con-
flict relation, if Pre[P, t] = Pre[P, t′] 6= 0. Each equivalence class is an equal conflict set
denoted, for a given t, EQS(t). SEQS is the set of all the equal conflict sets of a given net.

Theorem 1 (The Rank Theorem [TS96]) If S is a live and bounded system, then it is
consistent, conservative and rank(C) ≤ |SEQS| − 1.

This theorem cannot be applied directly to PEPA models, because as we previously remarked,
full liveness in PEPA models does not imply liveness of the associated P/T system.

Our reasoning in the proof of the rank theorem for PEPA requires a slight restriction on
the form of PEPA models. We make use of a condition which we term uniqueness of guards,
defined as follows:

Definition 2 (Uniqueness of guards) In each sequential component the action types of
activities which are guards on choices (i.e. the activities which are in competition) can never
be performed again without first re-visiting the state where the choice was made.

The Rank Theorem for PEPA models is based on the following Lemma for P/T systems. For
the statement of the Lemma we need the following definition.

Definition 3 (Circuit arbiter) Let N be a P/T net and let e be an equal conflict set such
that |e| > 1. A net Ce = 〈Pe, e,Pree,Poste〉 is an (ordinary) circuit arbiter for the equal
conflict set e if and only if Ce is a net in which all arcs are weighted 1, such that Pe ∩ P = ∅
and its underlying graph is an elementary circuit.

The effect of the circuit arbiter is to impose a fair ordering over the firings of the transitions
of the equal conflict set.

Lemma 6.1 Let S = 〈N ,m0〉 be a P/T system that is bounded, group live and such that all
the transitions that belong to non-trivial equal conflict sets are live. Let e ∈ SEQS such that
|e| > 1. Let Ce be a circuit arbiter for e, and let N ′ be the net N merged with the circuit
arbiter Ce sharing the transitions in e. Then

1. There exists a marking m0
′ with m0

′[P] = m0 such that S ′ = 〈N ′,m0
′〉 is bounded,

group live and all the transitions in non-trivial equal conflict sets are live.

2. rank(C′) = rank(C) + |e| − 1, where C′ is the token flow matrix of N ′.

Theorem 2 (The PEPA rank theorem) Let S be a fully live PEPA model satisifying the
uniqueness of guards restriction. Then its associated characteristic matrix, C satisfies that:

• There exists y > 0 such that y ·C = 0

• There exists x ≥ 0 whose support covers all the action types in S and such that C·x = 0

• rank(C) ≤ |SEQS| − 1

11

Proof The existence of the positive left annuller is an immediate consequence of the fact
that in PEPA sequential processes are not created, nor destroyed.

Since the number of states of the system is finite, for it to be live there must exist a
repetitive sequence of activities. We cannot ensure this sequence will cover all the columns
of the matrix, due to the possible existence of “false synchronisations”, but it must contain
every action type at least once. Observe that this also means that the corresponding P/T
system is group live, although not necessarily live. The token flow matrix of this net C is
equal to the characteristic matrix C of the PEPA model.

Furthermore, observe that the uniqueness of guards condition ensures that in the corres-
ponding net all the transitions in non-trivial equal conflict sets are live.

Thus we can apply the Lemma. Let N ′ be the corresponding net N together with integ-
rated circuit arbiters for every non-trivial equal conflict set. Applying point 2 of Lemma 6.1
repeatedly after each circuit arbiter is merged, which can be done thanks to point 1 of the
Lemma, it follows that rank(C′) = rank(C) +

∑
e∈SEQS(|e| − 1). Moreover, this system re-

mains bounded and group live, hence there must exist a repetitive transition sequence and
thus C ≤ |SEQS| − 1. Rearranging the above inequalities we obtain a bound for the rank of
the PEPA characteristic matrix C :

rank(C) ≤ y −
∑

e∈SEQS

(|e| − 1)− 1

where y is the number of columns in C . Since
∑

e∈SEQS |e| = |T | = y, this bound is |SEQS|−1,
and the result follows. 2

By analysing the defining equations of a PEPA model we can partition the activities of the
model into equal conflict sets which are equivalent to the equal conflict sets of transitions in
the corresponding P/T system. Thus, this result becomes a procedure of structural analysis
which can be applied to any PEPA model to ascertain whether it is possible for it to be fully
live.

6.3.1 Determining absence of liveness

In order to clarify the reader’s understanding of the notions associated with equal conflict
relations and the use of the Rank Theorem, we present a small worked example which builds
the equal conflict relation for a small PEPA model with a deadlocking state. The model
contains two components, P and R, which synchronise on activities γ and δ.

P
def= α.γ.P + β.δ.P

R
def= γ.δ.R

The system which we study is P ��
{γ,δ}

R, which has a deadlock at δ.P ��
{γ,δ}

R. The matrix
representation for this model is shown below.

Pre =

P
γ.P
δ.P
R

δ.R

α β γ δ
1 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1

 Post =

P
γ.P
δ.P
R

δ.R

α β γ δ
0 0 1 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

12

We observe from the pre-matrix that the activities α and β satisfy the equal-conflict condition
for this model, and are thereby considered equal. We can now observe that we have the
following set of activities in equal conflict.

SEQS = { {α, β}, {γ}, {δ} }

For this model, the rank of the matrix C is equal to the cardinality of the set of equal-conflict
sets. Thus, solely from this structural analysis of the model, we can use the Rank Theorem
to conclude that the model is either not live or it is not bounded. Since all PEPA models are
bounded we can conclude that the model is not live. The failure of this property signals a
logical error in the model itself which would direct the performance modeller not to proceed
onto the performance analysis of the model but rather instead to attempt to diagnose the
source of the error.

Recall that for a P/T net structural analysis is based solely on the net structure without
the initial marking. To some extent the same is true for structural analysis of PEPA models.
However, note that although the system equation is used to form the initial state, analogous
to the initial marking, it also plays a crucial role in defining the structure of the model. For
example, if the system equation in the model discussed above had been P ��

{γ}
R the pre- and

post-matrices would each have had two δ columns corresponding to the two distinct instances
of the activity. Moreover, each instance would form a separate element within SEQS. However,
the rank of the characteristic matrix remains 3, indicating that the modified model is free
from deadlock, which it is.

When a deadlock is indicated one useful diagnostic method is to remove columns from C
in order to isolate one of the activities which appears in an equal conflict set of cardinality at
least two. The modeller then attempts to solve the consistency condition by seeking a right
annuller for the reduced matrix C ′. This process corresponds to forcing a choice always to be
resolved in a particular way, which has the consequence that if an annuller cannot be found
for this reduced matrix then it may be concluded that there is a problem which stems from
taking this branch of the choice. Repairing problems which are found by this method will
eventually result in a model which is worthy of performance-based analysis, possibly with an
intervening step to determine freedom from deadlock.

When analysing the possibility of deadlock, the existence of phantom synchronisations
will not present a problem and the techniques used for P/T systems can be used without any
modification. These techniques are again based on the state equation, although the existence
of spurious solutions prevents it from being a characterisation of the absence of deadlock.

Theorem 3 ([TCS93]) Let S be a P/T system. If there is no integer solution to

m−C · σ = m0

m, σ ≥ 0∨
{p;Pre[p,t] 6=0}

m[p] < Pre[p, t] ∀t ∈ T

then S is deadlock-free.

In general this means that the absence of solutions of several systems of equations has to be
proved. However, there are cases where the number of systems of equations can be significantly
reduced [TCS93]. In particular, when analysing a PEPA model we need to consider only

13

a single system of equations. This follows because even when the PEPA model contains
several copies of the same component each of these is represented separately in the pre-
and post-matrices and one linear inequality is sufficient to represent the restrictions on a
transition [TCS93].

Theorem 4 Let S be a PEPA model with n sequential components which we name P10, . . . , Pn0
and let the derivatives within Pi0 be named Pi0, . . . , Pini. Furthermore let A be the set of activ-
ity instances represented in the pre- and post-matrices of S. If there is no solution for s for
any activity sequence σ (represented in vector form) with

s−C · σ = s0

s, σ ≥ 0∑
{Pij ;Pre[Pij ,α] 6=0}

s[Pij] <
∑

{Pij ;Pre[Pij ,α] 6=0}
Pre[Pij, α] ∀α ∈ A

then S is deadlock-free.

7 Adding a hiding operator

Cooperation on activities in the PEPA language is fully general. Cooperation may involve
any number of components and any number of these cooperands may play an active role. This
generality is in marked contrast to the model of synchronisation in CCS [Mil89] in which ex-
actly two agents are involved in every synchronisation. In CCS a synchronisation between two
agents is hidden as an invisible τ action in order to make clear the impossibility of multi-way
synchronisation. One purpose of hiding in a process algebra which has multi-way synchron-
isation, as PEPA does, is to prevent additional components from being able to synchronise
on a particular set of activities (those activities which are hidden). Another use of hiding in
a stochastic process algebra such as PEPA is to designate activities which are considered in-
significant in terms of system performance because rewards cannot be associated with hidden
actions. In practice, the effect of hiding is to rename an activity to the reserved name τ , which
cannot be used in any synchronisation set. Thus, in order to add a hiding operator to PEPA,
we will describe the implementation of the operator in terms of this renaming operation. The
impossibility of synchronising on a τ activity is enforced by choosing for each replacement an
activity τ0, τ1, τ2, . . . drawn from an unbounded set. A freshly numbered τ activity is chosen
for each replacement so that the PEPA cooperation operator will allow these activities to be
performed independently.

The renaming activity can be implemented by a substitution operation combined with the
generation of new definitional equations for model components where necessary. Fresh names
for components are produced by decorating an identifier with a prime. We think of the prime
symbol as an operator which can be applied to a collection of equations in order to generate
a related collection of definitions for components with primed identifiers.

Before proceeding to the implementation of the operation we present a simple example
in order to reinforce the reader’s intuition about this operator. Consider two copies of a
component P which are prevented from synchronising on their common α activity by the

14

intervening hiding operator. This model is transformed as shown below.

P
def= α.β.P

(P\α) ��
{α}

P
;

P

def= α.β.P

P ′
def= τ0.β.P

′

P ′ ��
{α}

P

The definition of the implementation of the hiding operator follows. The definition is stated
in terms of the hiding of a single name and is expressed in terms of the use of a hiding
operator on a PEPA sublanguage expression which, of course, does not use hiding. This
has the consequence that it enforces the application of multiple uses of the hiding operation
to begin with the removal of inner applications and proceed outwards. The extension from
our description in terms of a single hidden name to hiding a set of names is routine. When
representing an expression where α is hidden we first choose a fresh τ -identifier, say τi, and
perform the substitution represented below.

(α.E)[τi/α] ; τi.E[τi/α]
(β.E)[τi/α] ; β.E[τi/α]

(E + F)[τi/α] ; E[τi/α] + F [τi/α]
(E ��

L
F)[τi/α] ; E[τi/α] ��

L
F [τi/α]

A[τi/α] ; A if α /∈ ActA
A[τi/α] ; A′ if α ∈ ActA where A′ def= E[τi/α] if A def= E

8 Conclusions and further work

One part of our structural analysis of PEPA models which deserves further study is the
treatment of repeated components which suffers from the limitation that it does not exploit
any of the symmetry which is implicit in such a model. Improving this aspect of the analysis
is a suitable direction for futher study.

In Petri nets the notion of implicit places is used to assist with the structural determination
of deadlock freedom. We have identified no corresponding notion for process algebra-based
modelling and the investigation of the usefulness of a related concept also remains as future
work.

We have suggested a separation of the analysis of performance models of distributed
computer systems into an initial structural analysis followed by a subsequent performance
analysis. As yet, these two phases in the modelling and analysis process are not integrated
in the sense that there is no means by which the modeller can take information which is
obtained in the structural analysis into the performance analysis phase. The purpose of
passing this information forward to the next phase would be for exploitation perhaps in order
to make an efficiency saving in the computation of properties such as system throughput or
component utilisation. Such a connection between these two phases of the analysis process
could potentially be of great benefit in facilitating the modelling of the generation of more
complex computer and communication systems which are being developed with the increase
in communication capacity and availability and the recent vastly increased use of mobile
computing.

15

Acknowledgements

The authors are grateful to Prof. Manuel Silva of the University of Zaragoza for his help.

References

[BBG95] M. Bernardo, N. Busi, and R. Gorrieri. A distributed semantics for EMPA based
on stochastic contextual nets. In Gilmore and Hillston [GH95], pages 492–509.

[CABC93] G. Chiola, M. Ajmone Marsan, G. Balbo, and G. Conte. Generalised stochastic
petri nets: A definition at the net level and its implications. IEEE Transactions
on Software Engineering, 19(2):89–107, February 1993.

[Col89] J. M. Colom. Análisis Estructural de Redes de Petri. Programación Lineal y
Geometŕıa Convexa. PhD thesis, DIEI. Univ. Zaragoza, June 1989.

[GH95] S. Gilmore and J. Hillston, editors. Proceedings of the Third International Work-
shop on Process Algebras and Performance Modelling. Special Issue of The Com-
puter Journal, 38(7), December 1995.

[GHR93] N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and Distributed System
Design: The Integration of Functional Specification and Performance Analysis
using Stochastic Process Algebras. In Performance’93, 1993.

[Hil96] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall,
1981.

[Rib95] M. Ribaudo. On the Relationship between Stochastic Petri Nets and Stochastic
Process Algebras. PhD thesis, Dipartimento di Informatica, Università di Torino,
May 1995.

[Ser95] M. Sereno. Towards a product form solution for stochastic process algebras. In
Gilmore and Hillston [GH95], pages 622–632.

[Sil93] M. Silva. In Practice of Petri Nets in Manufacturing, chapter Introducing Petri
Nets, pages 1–62. Chapman and Hall, 1993.

[TCS93] E. Teruel, J. M. Colom, and M. Silva. Linear analysis of deadlock-freeness of Petri
net models. In Procs. of the Second European Control Conference, volume 2, pages
513–518. North-Holland, 1993.

[TS96] E. Teruel and M. Silva. Structure theory of equal conflict systems. Theoretical
Computer Science, 153(1-2):271–300, 1996.

16

